a9y United States

US 20090037592A1

12y Patent Application Publication o) Pub. No.: US 2009/0037592 Al

Lyon

43) Pub. Date: Feb. 5, 2009

(54) NETWORK OVERLOAD DETECTION AND
MITIGATION SYSTEM AND METHOD

Barrett Lyon, Sacramento, CA
(US)

(75) Inventor:

Correspondence Address:
FROMMER LAWRENCE & HAUG

745 FIFTH AVENUE-10TH FL.
NEW YORK, NY 10131 (US)

(73) Prolexic Technologies, Inc.,

Hollywood, FL (US)

Assignee:

Appl. No.: 12/251,723

(21)

(22) Filed: Oct. 15, 2008

Related U.S. Application Data

(63) Continuation of application No. 10/956,721, filed on

Oct. 1, 2004.

Publication Classification

(51) Int.CL

GOGF 15/173 (2006.01)
(52) U.SeCLe oo 709/228
(57) ABSTRACT

Systems and methods are provided for detecting and mitigat-
ing overload conditions affecting one or more computers
attached to a network, such as overloads resulting from dis-
tributed denial of service (DDoS) attacks, for example.
According to some described embodiments, an attempted
overload condition 1s detected, e.g., by a system, through
following a method, or both, within a data cleaning center.
Detection may be achieved, e.g., by analyzing data packets
traveling over the network to 1dentity packets that bear char-
acteristics thatmay be associated with DDoS attacks, and this
analysis may include examination of the packets” data pay-
loads. Mitigation, 1n turn, may include discarding some data
packets, redirecting network traific, or some combination
thereof.

100

DISTRIBUTION ROUTER
Optianal backbone / clean pipe
connection point.

112

ACLs
108

104
(UNIX SYSTEM)

102

Internet
10 -

Data Cleaning Center

CORE ROUTING TCP inbound

CORE EDGE AGGREGATION

(Protocol Filtering, UDP, ICMP)

Attack Mitigation

Pipe/lLoop
150

158
100c -
100d

LOAD BALANCING SOFTWARE!/
HARDWARE

114

Proxy Servers
116
_ PROXY SERVER L1

PROXY SERVER [}

PROXY SERVER [_}

110

US 2009/0037592 Al
F

Feb. 5, 2009 Sheet1 of 10

O
-
-
P

Patent Application Publication

. qog - ®08 +
208 |
= I3

e]

OLl

_ﬁ

(dDI ‘dan ‘Buualiy 1000j014)
A
NOILYOIHO9OY 3903 340D

L] H3AH3IS AXO¥d

L1 _H3AYIS AXOud
L) Y3ANIS AXOdd

] H3IAYIS AXOHd

SIAMBG AXOid

> E S0V

PUNOQUI 4D L DNILNOY FHOD

vl
IHYMAHYH
/FHVMLIOS ONIONVTVE AvO1

478
Juiod uonIsuuoD
adid uea|o / auogyoeq [euopdO

d3.LN0Y NOLLNBIYLSIa

0sL
dooadid

uonebiin soepy

00l

loua) Buues)) ejeq

(W3ILSAS XINN)

vol
19BN °a/q

Patent Application Publication Feb. 5, 2009 Sheet 2 of 10 US 2009/0037592 Al

Fig. 2

Patent Application Publication Feb. 5, 2009 Sheet 3 of 10 US 2009/0037592 Al

300

FILTER D, BASED ON PROTOCOL
(FILTER UDP, ICMP)

302
METER D,,/P;,
(Mbits/Second) 304
PROCESS ATTACK MITIGATION
MODULES. 306

LOAD BALANCE PROXY |
SERVERS 308
DISTRIBUTE Dout TO PROXY |
SERVERS 310

METER Dgy/P oyt

(Mbits/Second)

312

DETECT WHETHER THE RECEIVED
DATA IS SUBSTANTIALLY LESS THAN
THE RECEIVED DATA

314 F|g | 3
DISTRIBUTE D, TO

CUSTOMER SERVERS 516

Patent Application Publication Feb. 5, 2009 Sheet 4 of 10 US 2009/0037592 Al

RECEIVE GET

COMMANDS 400

STORE GET COMMANDS OVER A SAMPLE
TIME PERIOD OR OTHER HEAD DATA (OR

HASH GET COMMANDS AND STORE VALUES) 402

COUNT DUPLICATE GET COMMANDS OR OTHER
HEADER ENTRIES

(TAKE STANDARD DEVIATION OF HASH VALUES) 404

DOES COUNT
EXCEED THRESHOLD
(OR IS STANDARD DEVIATION
THRESHOLD MET FOR EMBODIMENTS
USING HASH
FUNCTION)?

ATTACK . YES
DETECTED

406

408
BLOCK FURTHER
DUPLICATE GET
COMMANDS NO
410 CLEAR GET COMMAND OR

SEND TO

'HEADER STORAGE BUFFER
REPORTING ‘

412

7592 Al
Patent Application Publication Feb. 5, 2009 Sheet 5 of 10 US 2009/003

RECEIVE DATA

PACKET

500

502

| NO 1S

User-Agent VALUE PROPER (e.q.,
ALPHANUMERIC)? |

204

206

SEND TO
REPORTING
SYSTEM

YES

SEND PACKETS TO PROXY
08 SERVER _
516

Patent Application Publication Feb. 5, 2009 Sheet 6 of 10 US 2009/0037592 Al

RECEIVE DATA

PACKET 500

READ HOST VALUE FROM DATAPACKET [\ _
NO - IS
3?&33’?55 HOST VALUE PROPER (e.g., NOT o
BLANK)? 6

606 .
SEND TO YES

REPORTING

SYSTEM . '608 | SEND PACKETS TO PROXY |
. SERVER
616

Patent Application Publication Feb. 5, 2009 Sheet 7 of 10 US 2009/0037592 Al

RECEIVE DATA

PACKET 200

READ LINE'BREAK CHARACTERS 209

~ ARE
THE LINE BREAK CHARACTERS
~ PROPER?

DISCARD NO
SESSION

704

' 706
SEND TO YES

REPORTING

sysTem [N SEND. PACKETS TO PROXY
708 SERVER -
716

Fig. [

Patent Application Publication Feb. 5, 2009 Sheet 8 of 10 US 2009/0037592 Al

RECEIVE INITIAL

DATA PACKET(S)

800

REDIRECT INITIAL DATA DATA PACKET(S) TO
TEMPORARY COMPUTER

802

PROCESS INITIAL DATA
PACKETS WITH ATTACK

MITIGATION MODULES 804
REDIRECT
SUBSEQUENT NO INITIAL
DATA PACKETS DATA PACKETS DETECTED TO BE PART
DIRECTLY TO - OF AN ATTACK?
TARGET
COMPUTER 806
YES
808
| CENTER
PROCESS LOCAL -
. ATTACK |
MITIGATION 810
MODULES ON 314
TARGET
COMPUTER
NO SUBSEQUEN
ATTACK YES
DETECTED?

~ Fig. 8

US 2009/0037592 Al

Feb. 5, 2009 Sheet 9 of 10

Patent Application Publication

Ot

0t

|

4

¢06
d0SS300dd

mrm ~Vl6

006
WJLSAS NOILD310¥Yd SNC

Patent Application Publication Feb. 5, 2009 Sheet 10 of 10 US 2009/0037592 Al

RECEIVE DNS
REQUESTS

1006

DISCARD VALID DOMAIN?
REQUESTS
| YES 1008
1004 PLACE REQUEST IN TABLE:
SOURCE ADDRESS : REQUEST : HIT COUNT [_J\
1010

PROCESSOR PROVIDES

NO HIT

RESPONSES TO
REQUESTING CLIENTS C%gggggfggs
DURING PERIOD OF HIGH -

HIT COUNTS 1012

1014 Y

ES
SEND REQUEST TO DNS SERVER

1016

Fig. 10

US 2009/0037592 Al

NETWORK OVERLOAD DETECTION AND
MITIGATION SYSTEM AND METHOD

FIELD OF THE INVENTION

[0001] This invention relates to a system and method for
preventing distributed demal of service (DDoS) attacks, or
the like, via a network, such as the Internet. In particular, the
invention relates to a data cleaning center having attack detec-
tion and/or mitigation modules that provide DDoS attack-iree
data to back-end servers.

BACKGROUND OF THE INVENTION

[0002] During the past few decades, the Internet has pro-
vided a convenient way to obtain a wealth of information on
almost any subject. Many paid and free information services
may be offered over the Internet, including electronic mail,
home shopping, gaming, paperless billing services, and the
like. Users merely need to obtain a web page address or
uniform resource locator (URL) for the service they desire.

[0003] In this regard, commercial revenue for Internet-
based operations has steadily increased, even for those com-
panies that offer their Internet services for free. The compa-
nies that offer free services may obtain revenue from related
non-Internet services oflered to their customers or through
advertising on their web site. For example, many banks offer
free on-line banking services to their account holders. Fur-
ther, the most popular Internet search engine providers charge
for advertising on their search engine web sites, which are
accessed by millions of Internet users every day.

[0004] However, as the customer base for on-line services
has grown dramatically over the years, so have the opportu-
nities for those who wish to engage 1n malicious activity
targeting Internet web sites. What originated as several indi-
viduals, or hackers, breaking 1nto systems for unauthorized
viewing ol information or sending individual virus attacks
against selected systems just for the thrill of doing so, has
evolved 1nto extortion-based, multi-front, attacks on many
systems or whole sub-networks within the Internet.

[0005] For example, many oifshore extortionists have
developed ways to extract significant revenue from compa-
nies located in multiple jurisdictions. These extortionists
avold prosecution by law enforcement by launching their
malicious attacks from countries 1n which they may avoid
prosecution, either legally or practically. Further, the extor-
tionists may obluscate their 1dentities by launching attacks
from different computers at different locations.

[0006] Typically, an extortiomist pre-warns a web site
owner before an attack, demanding that a sum of money 1s
wired to an anonymous, foreign account. For example, in the
case of a gaming web site, the extortionist may wait until just
before a significant event, such as an on-line poker tourna-
ment, or 1n the case of gambling, a major horse race, such as
the Kentucky Derby. An electronic mail message may be sent
to the site owner with the warning and appropriate bank
account information. If the site owner does not pay the
amount requested by the extortionist, then the extortionist
may cause an attack to occur at the peak time for usage of the
web site during the event. Still an attack may essentially shut
down operations for the site. Acknowledging that the threat 1s
real, the site owner will likely pay a potentially significant
sum of money, rather than risk the loss of a significant profit
obtained during the special event or peak time of the year.

[

Feb. 5, 2009

[0007] The methods available to the extortionist are many.
For example, one type of malicious attack that may target a
system 1s called a distributed denial of service (DDoS) attack.
This type of attack 1s universally acknowledged as being one
of the most troublesome types of attacks of our time. A DDoS
attack includes “flooding” a host computer or network with
information. The tlood of information can consume all avail-
able bandwidth of the host computer’s or network’s comput-
ing resources, thereby preventing legitimate network traffic
from reaching the host network and further preventing an
individual user from accessing the services of the host net-
work. More particularly, the attacker can consume bandwidth
through a network flood either by generating a large number
of data packets, which contain data exchanged over the Inter-
net, or by generating a small number of extremely large
packets, directed to the target computer or network. Typically,
those packets comprise Internet Control Message Protocol
(ICMP) packets, User Datagram Protocol (UDP) stream
attack packets, TCP SYN flood packets, or packets used 1n
TCP based attacks such as GET flood attacks that typically
occur aiter handshaking 1s completed and a session is started.
In principle, however, the packets can include any form.

[0008] The attacker can execute the flood attack from a
single computer. This comprises a non-distributed or conven-
tional denial of service (DoS) attack. Alternatively, during a
DDoS attack, the attacker coordinates or co-opts several com-
puters on different networks to achieve the same effect. The
attacker also can falsity (spoot) the source IP address of the
packets, thereby making it difficult to trace the identity of the
computers used to carry out the attack. Spoofing the source IP
address also can shiit attention onto innocent third parties.

[0009] An attacker also may execute a more defined attack
using spootfed packets called a “broadcast amplification™ or a
“smurf attack.” In this common attack, the attacker generates
packets with a spoofed source address of the target. The
attacker then sends a series of network requests using the
spoofed packets to an organization having many computers.
The packets contain an address that broadcasts the packets to
every computer within the organization. Every computer
within the organization then responds to the spoofed packet
requests and sends data on to the target site. Accordingly, the
target computer or network becomes flooded with the
responses from the organization. Unfortunately, the target site
then may blame the organization for the attack.

[0010] Further, recent attacks have been launched against
domain name service (DNS) servers. DNS servers are essen-
tial to the operation of the Internet, as they provide the key
function of converting alphanumeric domain names, such as
XYZ.com, into the number based Internet protocol (IP)
addresses on which each Internet connection 1s ultimately
based. Attackers have discovered a new way to bring down
whole segments of the Internet by attacking the DNS servers
themselves, instead of the computers that the IP addresses
identity.

[0011] Todate, systems for detecting and mitigating DoS or
DDoS attacks have been few. Some prior systems or solutions
have individually used or proposed different tools or soft-
ware, sometimes 1n the form of so-called firewalls, 1n an
attempt to combat such attacks. These tools or software may
include: systems that detect half-open connections that are
typically caused by many attacks; systems that compare
headers of packets to specific, known flood attack headers; or
systems that monitor data packet tlow that 1s above average or
that exceed various thresholds.

US 2009/0037592 Al

[0012] However, while these prior systems have experi-
enced some success, such success has been limited. For
example, typical systems attempt to prevent attacks from one
or more computers, each of which having one source, and
cach targeted toward a single computer. These prior systems
typically require i1dentification of the source computers
involved 1n the attacks, as well as the target, to compare
duplicate source and target values to threshold values at the
network or lower layers of the open system interconnect
(OSI) model. If the attack detection tools are successtully
spoofed at lower levels of the OSI model, this leaves higher
levels of the OSI model, such as the application layer, vul-
nerable to subsequent attacks. This 1s true, because the prior
systems assume that the data passing through a connection 1s
safe after i1t has passed through the tools at the lower layers.
[0013] Thus, none of the prior systems provide for reliable
universal protection ol many computer systems or nodes
through one access point, regardless of the source and target
of an attack. Further, none of the prior systems provide for
reliable universal protection of several computer systems or
nodes at the same time, or after a connection has been deemed
as safe using typical tools at lower levels of the OSI model.

[0014] Finally, none of the prior systems provide for reli-
able protection of DNS servers to prevent whole networks
from becoming non-operational. Accordingly, there 1s a need
in the art for a system and method that solves the problems
associated with such prior systems.

SUMMARY OF THE INVENTION

[0015] Brnefly, and 1n general terms, a preferred embodi-
ment relates to a system and method for detecting and/or
mitigating an overload condition from one or more first com-
puters, such as a distributed denial of service (DDoS) attack,
viral attack or the like, targeting one or more of a plurality of
second computers located on a network. The network may
comprise any type of public or private network, such as the
Internet, intranet, virtual private network (VPN) or the like.
While one or more DDoS attacks originating from the one or
more first computers on the network are mitigated, a meter,
detection apparatus, soitware, or method, detects the condi-
tion being mitigated 1n a data cleaning center, and in one
embodiment, 1t provides an alert or notification regarding the
mitigated attack.

[0016] A preferred embodiment comprises a data cleaning
center, preferably as a stand-alone node on the network,
which has a network connection for receiving a volume of
data, and which may be measured as D, , over a time period,
P. . The data may be received from, for example, one or more
first computers located on the network.

[0017] The overload condition 1s directed to one more of a
plurality of second computers located on the network. Typi-
cally, the second computers are server computers, and the first
computers are client or user computers. However, a preferred
embodiment does not necessarily ditlerentiate between client
and server computers in detecting and mitigating the overload
condition. Thus, each of the first and second computers may
comprise a server, client, networked electronic device, or any
type of network node. Sometimes, for example, an attempted
overload condition 1n the form of a SYN-flood attack may be
launched from several different computers, including servers
and clients, that are unwittingly infected with a SYN-flood
VIrus.

[0018] One embodimentincludes one or more attack detec-
tion and/or mitigation modules that are used for detecting

Feb. 5, 2009

and/or mitigating the attempted overload condition. One pur-
pose of the attack detection and/or mitigation modules 1s to
produce a volume of data that 1s free from the data causing the
overload or attempted overload condition, called clean data,
or D_ ., herein, for sending to the one or more second com-

QO LEED

r—

puters. The amount or volume of the clean data may be
measured as D___, over a time period, P__ .
[0019] In one embodiment, a meter 1s included to perform

the task of measuring D, and D_ . and for comparing such
measurements to determine whether the attempted or actual
overload condition has been mitigated by the attack detection
and/or mitigation modules. The meter determines that such an
attempted or actual overload condition directed toward one or
more of the second computers has been mitigated 1t D_ .
divided by P__ _ 1s substantially less than D, divided by P, .

[0020] One embodiment includes an alert apparatus to pro-
vide an alert 1f the meter detects an overload or attempted
overload condition. The alert apparatus may provide an elec-
tronic mail alert, an audible alert, a visible alert, or the like, 11
an attempted overload condition 1s detected by the meter.

[0021] Inoneembodiment, the one or more attack detection
and/or mitigation modules include a module that determines
whether a number of duplicate GE'T commands have been
received that exceeds a threshold value. Another attack mati-
gation module may also iclude a module that determines
whether a user agent header entry in a packet header of a
received data packet contains an alphabetical character. ITnot,
the data packet 1s discarded. Further, one attack detection/and
or mitigation module 1s included that determines whether a
host value header entry exists 1in a packet header of a data
packet, and i1 not, discards the data packet.

[0022] Another preferred embodiment relates, in general
terms, to a system and method for detecting and/or mitigating,
an overload or attempted overload condition targeting a
domain name service (DNS) server. A network connection 1s
provided for recerving one or more DNS requests from one or
more client computers located on a network. A preferred
embodiment includes a processor for providing a response to
the one or more DNS requests to the one or more client

computers before normal processing by the domain name
Server.

[0023] The added processor preferably executes processes
used to detect whether the one or more DNS requests com-
prise an attempted overload condition before allowing pro-
cessing of the requests by the domain name server. If an
overload or attempted overload condition 1s detected by the
processor, then processing by the domain name server of the
DNS requests 1s performed by the processor. Specifically, the
requests are diverted to the processor, which comprises high-
speed application specific hardware that can process requests
much faster than typical DNS servers. Once the overload
condition or attempted overload condition has subsided, pro-
cessing of the requests are re-diverted back to the DNS server.

[0024] Another preferred embodiment relates, in general
terms, to a system and method for detecting and/or mitigating
an attempted overload condition targeting a networked com-
puter system by counting a number of duplicate GET com-
mands recerved. A network connection 1s provided for recerv-
ing a plurality of data packets from one or more {irst
computers located on a network, wherein the data packets
include a plurality of GE'T commands directed toward one or
more second computers located on the network. An attack
detection and/or mitigation module 1s provided that com-
prises a module to compare the recetved GET commands, and

US 2009/0037592 Al

to determine whether a threshold number of the recetved GET
commands are duplicative. If the threshold value 1s exceeded
by the duplicate GET commands, then the attack mitigation
module blocks or discards the duplicate GET commands
from processing by the one or more second computers.

[0025] Dueto the large volume of GE'T commands that may
be recerved, a database function may be performed on the
received GET commands to determine 11 the GET commands
are duplicates. The database function may include a hashing
algorithm applied to the GET commands to speed processing
and to use less memory.

[0026] Another preferred embodiment relates, 1n general
terms, to a system and method for detecting and/or mitigating,
an attempted overload condition targeting a networked com-
puter system that checks the user agent header entry of a
packet header. A preferred embodiment includes a network
connection for receiving a data packet having a packet header.
An attack detection and/or mitigation module 1s provided to
determine whether a user agent header entry in the packet
header contains an alphanumeric character. Thus, the attack
detection and/or mitigation module discards the data packet if
the user agent header entry contains a non-alphanumeric
character. Further, patterns 1n the user agent entry and/or
other header entries may be detected that may indicate an
attack.

[0027] Another preferred embodiment relates, 1n general
terms, to a system and method for detecting and/or mitigating,
an attempted overload condition targeting a networked com-
puter system that checks the host value header entry of a
packet. A network connection 1s provided for recerving a data
packet having a packet header. An attack detection and/or
mitigation module determines whether a host value header
entry exists 1in the packet header. The attack detection and/or
mitigation module discards the data packet i1 the host value
header entry does not exist in the packet header.

[0028] Another preferred embodiment relates, 1n general
terms, to a system and method for detecting and/or mitigating,
an attempted overload condition targeting a networked com-
puter system that checks line break indicators 1n packets. A
network connection 1s provided for receiving a data packet.
An attack detection and/or mitigation module determines
whether the data packet contains valid line break indicators.
An example of anon-valid line break indicator 1s one that only
contains one of a carriage return character (CR) or a line feed
character (LF), and not both. The attack detection and/or
mitigation module discards the data packet 11 the data packet
does not contain a valid line break indicator.

[0029] Another preferred embodiment relates, 1n general
terms, to a system and method for detecting and/or mitigating,
an attempted overload condition targeting a networked com-
puter system that uses a redirection module to divert data until
it 1s deemed to be clean. A network connection 1s provided for
receiving one or more 1nitial data packets from one or more
first computers for processing by a second computer. A redi-
rection module redirects the first computer to send the one or
more mitial data packets to a third computer. An attack detec-
tion and/or mitigation module determines whether the one or
more 1nitial data packets are a part of an overload or attempted
overload condition. The redirection module then redirects the
one or more first computers to send one or more subsequent
data packets directly to the second computer if the attack
detection and/or mitigation module determines that the mitial
data packets are not a part of an attempted overload condition.
Otherwise, the data from the one or more first computers

Feb. 5, 2009

remains redirected to the third computer. These and other
aspects of the invention will become apparent from the fol-
lowing more detailed description, when taken in conjunction
with the accompanying drawings of illustrative embodi-
ments.

DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1 1s a block diagram of a data cleaming center
according to an exemplary embodiment of the system and
method for detecting and/or mitigating an overload or
attempted overload condition;

[0031] FIG. 21sa block diagram 1llustrating packet switch-
ing flow through various hardware components of the data
cleaning center according to another exemplary embodiment;
[0032] FIG. 3 1s a flow diagram illustrating the steps per-
formed by one or more embodiments of the data cleaning
center,

[0033] FIG. 4 1s a flow diagram 1illustrating a method per-
tformed by one exemplary embodiment of an attack mitigation
module for detecting an attack based on whether a suspect
number of duplicate GET commands are recetved over a
sample time period;

[0034] FIG. 5 1s a flow diagram 1illustrating a method per-
formed by one exemplary embodiment of an attack mitigation
module for detecting and/or mitigating an attack by discard-
ing data packets that have packet headers with a suspect user
agent entry:

[0035] FIG. 6 1s a tlow diagram 1llustrating a method per-
formed by one exemplary embodiment of an attack mitigation
module for detecting and/or mitigating an attack by discard-
ing data packets that have packet headers with suspect host
value entries;

[0036] FIG. 7 1s a flow diagram 1illustrating a method per-
tformed by one exemplary embodiment of an attack mitigation
module for detecting and/or mitigating an attack by discard-
ing data packets that use improper end-of-line or return char-
acters:;

[0037] FIG. 8 illustrates a method for preventing an
attempted overload condition targeting a networked com-
puter system that lessens or eliminates the latency effect of
using the data cleaning center, such as that i1llustrated 1n FIG.
1

[0038] FIG. 9 1s a block diagram of a DNS protection
system according to an exemplary embodiment; and

[0039] FIG. 10 15 a flow diagram that illustrates a method
preformed by the DNS protection system.

DETAILED DESCRIPTION

[0040] A preferred embodiment of a system and method for
detecting and/or mitigating an overload condition, con-
structed 1n accordance with the claimed invention, provides
detection and/or mitigation of an overload condition style
attack from one or more first computers that target one or
more of a plurality of second computers located on a network.
Such attack includes, by way of example only, and not by way
of limitation a distributed denial of service (DDoS) attack,
viral attack or the like. The network may comprise any type of
public or private network, such as the Internet, intranet, vir-
tual private network (VPN) or the like.

[0041] Referring now to the drawings, like reference
numerals denote like or corresponding parts throughout the
drawing figures.

US 2009/0037592 Al

[0042] Referring now to FIG. 1, a preferred data cleaning
center 100 1s 1llustrated, according to an exemplary embodi-
ment of the system and method for detecting and/or mitigat-
ing an overload or attempted overload condition (hereinafter
“an attack™). In a preferred embodiment, the data cleaning
center 100 operates as a stand-alone node on a network 10,
which has anetwork connection 126 for receiving a volume of
data, which 1s measured as D, , over a time period, P, . The
network connection 126 comprises a core edge aggregation
router 102 to provide a backbone connection to the network
10. Core edge aggregation routers 102 that are available from,
for example, Juniper Networks or Cisco Systems, are able to
provide Internet connections of 76 gigabits per second or
larger. In one embodiment, the data cleaning center 100 1s
configured to provide attack free, or clean, data to hundreds or
thousands of servers, a core edge aggregation router 102
having a capability in the 1 to 76 gigabit per second range 1s

desirable, although not necessary.

[0043] Through the network connection 126, data may be
received from, for example, one or more first computers 20a,
206 and 20c¢ located on the network 10. Typically, the one or
more first computers 20a, 205 and 20¢ comprise client com-
puters or devices used by Internet users for accessing one or
more second computers 80a, 805 80c and 804 also located on
the network 10. In one embodiment, it 1s preferable for all
data to pass through the data cleaning center 100. In other
words, both requests and responses to and from servers pret-
erably pass through the data cleaning center 100.

[0044] Preferably, the data cleaning center 100 discards all
data packets that are a part of the recerved data, D, , that use
User Datagram Protocol (UDP) or Internet Control Message
Protocol (ICMP). This 1s performed because, presently, these
are common protocols used to launch DDoS attacks against
the second computers 80a, 805, 80c and 80d. Further, many
commercial networks do not need to use UDP and ICMP
protocols. The filtering of UDP and ICMP packets may be
performed by the core edge aggregation router 102. However,
i 1t becomes more common to use a different type of protocol
to launch attacks against the second computers 80a, 805, 80c¢
and 80d, then the core edge aggregation router 102 may be
re-tuned to filter and discard data packets using such protocol.
Alternatively, the core aggregation router 102 may discard all
data packets, except those having selected protocols, such as
Transmission Control Protocol (TCP).

[0045] In one preferred embodiment, a core router 108 1s
provided that has or connects to, an mbound access control
list (ACL) 124 for sanity checking, which typically includes
confirming that the target node 1s listed in the ACL. Specifi-
cally, each mncoming packet 1s preferably checked against the
ACL, which provides a list, or range, of valid IP addresses for
the second computers 80a, 805, 80c and 804 serviced by the
data cleaning center 100. If a data packet 1s not directed to, or
coming from, an IP address contained 1n the ACL 124, 1t 1s

discarded.

[0046] In a preferred embodiment, a meter 104 1s either
connected to the core router, or within the core router for
measuring the recerved data, D, . The meter 104 preferably
operates on a Unix-based platform or other platform, and
preferably performs 1ts measurement of the received data,
D, ,from the core router 108 after the filtering of the UDP and
ICMP data packets by the core edge aggregation router 102.
However, 1n some embodiments 1t 1s desirable to include
measurements of the UDP and ICMP data packets received

by the data cleaning center 100. In those embodiments, the

Feb. 5, 2009

meter 104 1s preferably connected to the core edge aggrega-
tion router 102 instead of the core router 108.

[0047] Adter the core router 108 has completed 1ts process-
ing procedures, the recerved data, D, , 1s preferably further
processed by one or more attack detection and/or mitigation
tools or modules 110 (referred to herein as attack mitigation
modules). In one embodiment, the one or more attack miti-
gation modules 110 are used to detect, mitigate, prevent and/
or suppress one or more DDoS attacks that originate from the
one or more of the first computers 20a, 206 and 20¢ on the
network 10, and are directed to the one or more second
computers 80a, 805, 80c and 80d, located on the network 10.

[0048] Typically, the one or more second computers 80a,
8056, 80c and 80d at which an attack 1s targeted, are server
computers, and the one or more first computers 20q, 205 and
20c from which an attack originates, are client or user com-
puters. However, a preferred embodiment does not necessar-
ily differentiate between client and server computers 1n
detecting and/or mitigating an attack. Thus, each of the first
and second computers may comprise a server, client, net-
worked electronic device, or any type ol network node. Some-
times, for example, an attack in the form of a SYN-flood
attack 1s launched from several different computers, includ-
ing servers, clients, company networks or sub-networks that
are unwittingly infected with a SYN-tlood virus.

[0049] Furthermore, 1t may be desirable to detect and miti-
gate attacks using multiple different techniques. As such,
some preferred embodiments use more than one attack maiti-
gation module 110. In some embodiments, the attack mitiga-
tion modules 110 are chained or combined, for example, by
providing a series of processors connected within a prefer-
ably high-speed local fiber optic network, or attack mitigation
pipe or loop 150, within the data cleaning center 110. Prefer-
ably, the attack mitigation modules 110 are embodied 1n
hardware, software, or via a combination of hardware and
soltware.

[0050] There are several types of attack mitigation modules
110 that may be used 1n a preferred embodiment of the
claimed mvention. For example, many types of attack miti-
gation modules 110 are configured to detect a flood-type DoS
attack, or DDoS attack. Some modules 110 perform this type
of detection by using statistical analysis on data packets D_
received from the network 10 to determine when the data
packets vary from normal network traffic. Normal network
traffic 1s determined based on observations of network traffic
for a particular network. Thresholds for abnormal network
traffic may be established based upon the observations and
upon a balance between security level and false positive indi-
cations. An appropriate balance must be selected since a
lower threshold will likely result in higher security, but may
cause more false positive indications of an attack. On the
other hand, a higher threshold can result in lower security, but
with fewer false positive indications.

[0051] Preferably, after establishing the thresholds, the
attack mitigation module 110 statistically analyzes the net-
work traflic to determine when the traffic exceeds the thresh-
olds. In this embodiment, it the tratfic exceeds the thresholds,
an attack 1s detected. After an attack 1s detected, countermea-
sures can be 1mtiated to block data packets from a specific IP
address. Additionally, countermeasures can be nitiated to
block data packets to or from a common port, data packets
having a common protocol, and/or data packets having the
same target or destination IP address.

US 2009/0037592 Al

[0052] In some attack mitigation modules 110, a hash (or
reduction) function 1s performed on the data packets, the
results of which are sorted 1in a hash table. In such an embodi-
ment, 1f the standard deviation of the entries 1n the hash table
meets a threshold value, then a network attack 1s detected.
[0053] Preferably, some attack mitigation modules 110 can
monitor a parameter value, such as the protocols or protocol
flags of network data packets. These modules preferably con-
struct a histogram of the parameter value, and compare the
histogram to a threshold value. In such an embodiment, 11 a
portion of the histogram exceeds the threshold, then a net-
work attack 1s detected.

[0054] Another preferred attack mitigation module 110
monitors the ratio of data packets received and sent to a single
computer. If the ratio exceeds a threshold value, then a net-
work attack i1s detected. Alternatively, the attack mitigation
module 110 may monitor, for example, the ratio of traffic
from a first computer (e.g., 20a), to a second computer; e.g.,
80b), over the tratlic from the second computer 805 to the first
computer 20q. If the ratio exceeds a threshold value, then an
attack may be detected, and the traffic between the first com-
puter 20a and second computer 805 may be discarded.

[0055] In another aspect of a preferred embodiment,
another attack mitigation module 110 determines whether the
attack was 1itiated from a single source computer 20a, or
determines whether data packets included 1n an attack have a
common port or protocol. It the attack was 1nitiated from a
single source computer 20a, then all data packets having the
same attacking source IP address can be discarded. Addition-
ally, if the attack was initiated by data packets having a
common port or protocol, then all data packets having the
common port or protocol can be discarded. Preferably, the
attack mitigation modules 110 use other 1dentifying informa-
tion, such as the destination address, the destination port, or
the content of the data packet itself, to determine whether a
data packet should be discarded.

[0056] Additionally, 1n another preferred attack mitigation
module 110, the module detects an attack by determining
whether a number of duplicate GET commands have been
received that exceeds a threshold value. If the threshold value
1s exceeded, then the duplicate packets are discarded. This
module 1s described 1n more detail below.

[0057] Yet another preferred attack mitigation module 110
detects an attack by determining whether a user agent header
entry 1n a packet header of a recerved data packet contains an
alphabetical character. If an alphabetical character 1s not
detected, the data packet 1s discarded. This module 1s
described in more detail below.

[0058] Still another preferred attack mitigation module 110
detects an attack by determining whether a host value header
entry exists in a packet header of a data packet. If the host
value header entry does not exist, the data packet1s discarded.
This module 1s described 1n more detail below.

[0059] In vet another preferred embodiment, the attack
mitigation module 110 keeps a blacklist of source addresses.
The blacklist 1s created, for example, from prior recorded
attacks. If a recewved data packet, D, , contains a source
address that 1s a member of the black list, the packet is
blocked or discarded. In this regard, as attacks get more
sophisticated, the attackers are able to modily the source
address 1n the attacking data packets. However, even after
changing the source addresses, many of the attacks use data
packets that have not changed the source server or sub-net-
work. The blacklist also tracks suspect servers or sub-net-

Feb. 5, 2009

works. In one preferred embodiment, the attack maitigation
module 110 discards data packets from a server or sub-net-
works 1f, for example, more than a threshold number of
attacks have originated from the server or sub-network within
the past year. It should be noted that any time period might be
used, however, for such a determination.

[0060] Preferably, the attack mitigation modules 110 pro-
duce a volume of data that 1s free of data causing the attack,

called clean data, or D_ ., herein, for sending to the one or
more second computers 80a, 805, 80c and 80d. The amount

or volume of the clean data 1s measured as D__, over a time
period, P__ .
[0061] Thedatacleaning center 100 may optionally include

a distribution router 112, which provides a backbone or clean
pipe to other data cleaning centers 100a, 1005, 100¢ and 1004
following processing by the attack mitigation modules 110.
Preferably, the backbone uses a high-speed connection 158 to
directly connect each data cleaning center 100, 100a, 1005,
100¢c and 100d. Providing a connection to other data cleaning
centers 100a, 1005, 100¢ and 1004 allows two or more data
cleaning centers to share and distribute processing. For
example, some data cleaning centers have updated attack
mitigation modules 110 that preferably are remotely accessed
by other data cleaning centers that have not been updated.

[0062] Further, if a particular data cleaning center 100 has
one or more subsystems that fail, such as one or more attack
mitigation modules 110, then the attack detection and/or maiti-
gation function may be outsourced to a fully functioning data
cleaning center through the distribution router 112. More-
over, 1f one data cleaning center 100qa 1s overwhelmed by one
or several large attacks, processing of the one or more attacks
may be load balanced across the backbone 158 to distribute

processing across the other data cleaning centers 100, 1005,
100¢ and 1004.

[0063] Preferably, after the received data, D
to produce the clean data, D_ ., the next task 1s to provide the
clean data, D_ ., to one or more proxy servers 116. In one
preferred embodiment, the proxy servers provide a reverse
proxy function to the one or more second computers 80a, 805
80c and 80d. In this case, the second computers 80a, 805, 80c,
and 80d comprise server computers. As 1s typical, the proxy
servers 116 provide added protection to the second computers
80a, 805 80c¢ and 804 that are server computers. For example,
a firewall may be included 1n a proxy server 116 that is
specific to the target server. Further, a server may also use two
or more of the proxy servers 116 to provide load balancing.

[0064] In this regard, load balancing of all of the proxy
servers 116 1s preferably provided using a load balancing
apparatus 114. The load balancing apparatus 114 may
include, by way of example only, and not by way of limita-
tion, a RADWARE WSD™ device produced by Radware,
Inc. of Mahwah, N.J., a JUNIPER™ M series device pro-
duced by Junmiper Networks, Inc. of Sunnyvale, Calif. Any
other similar device may also be used.

[0065] Inone embodiment, two or more of the load balanc-
ing systems 114 are provided so that different types of sys-
tems are available for matching with the proxy servers 116
depending on specific requirements. For example, soltware-
based load balancing systems 114 tend to be less expensive,
but slower, than hardware-based load balancing systems 114.
Further, a particular sever computer 800 may, for example,
only require that the slower soiftware-based load balancing
system 114 1s used because the server 806 has a lower

.. 18 processed

US 2009/0037592 Al

throughput of clean data, D__ ., than another server 80¢, which
requires a faster, hardware-based, load balancing system 114
because of 1ts higher usage.

[0066] One or more of the attack mitigation modules 110
may be located 1n, or execute on, each of the proxy servers
116. It 1s preferable, for example, for those mitigation mod-
ules 110 that execute on the application layer to reside 1n the
proxy servers 116 after the network layer packet headers have
been stripped. For example, the mitigation module 110 that
checks for duplicate GET commands 1s preferably located on
cach of the proxy servers 116.

[0067] Adfter the clean data, D___, 1s routed through the
proxy servers 116, it 1s processed by the core router 108 for
forwarding to their destination over the network 10. The
meter 104 takes a measurement of the clean data, D_ ., asitis
routed out to the core edge aggregation router 102, which
processes the clean data, D__,, for distribution through the
network 10.

[0068] In one embodiment, while the meter 104 performs
the task of measuring D, and D__ ., the meter 104 further
compares the measurements to determine whether an attack
has been mitigated by the attack mitigation modules 110. For
example, the meter 104 may determine that such an attack
directed toward one or more of the second computers 80a,
800, 80c and 804 has been mitigated i1 D___ divided by P___1s
substantially less than D, divided by P, .

[0069] Inpreferred embodiments of the claimed invention,
there 1s flexibility with regard to this implementation of the
detection method. For example, in most embodiments,
wherein the time periods. P, and P__, are long enough (e.g.,
10 seconds), the measurement ofthe data D, andD___occurs
during the same time 1nterval, wherein the start of time peri-
ods P, and P_ . are concurrent. In these embodiments, any
latency, L, that occurs in the one or more data mitigation
modules 110, proxy servers 116, or other modules within the
data cleaning center 100, would be a matter of microseconds.
Accordingly, any difference in the measurement of D, and
D_ . caused by the latency, L, would be relatively minimal
when compared to the data throughput of the data cleaming
center 100.

[0070] However, in configurations wherein the time peri-
ods P, and P_ _are closer in duration to the latency period, L,
for processing of the recetved data, D, , the latency period, L,
1s preferably taken into account in the detection method. In
these configurations, 1t may be desirable to measure D, and
D_ _over two different, but equal, time periods, P, and P
to account for the latency, L, for processing of the received
data D, by the attack detection and/or mitigation modules.
More specifically, the time period, P__ ., has a start time that
occurs after the start time of P, , plus a latency time period, L,
for processing of the recerved data, D, , by the attack detec-
tion and/or mitigation modules. Typically, the latency period,
L, 1s calculated by using historical averages for processing the
received data D, by the attack detection and/or mitigation
modules 110, or other sub-systems within the data cleaning,
center 100.

[0071] Another variable in the implementation of the detec-
tion method 1s the measure of the value of “substantially less™
with regard to the comparisonof D, divided by P_ _.and D,
divided by P, . For example, in one embodiment, the measure
of what 1s “substantially less” to determine if an attack 1is
occurring may be an almost absolute measurement. Specifi-
cally, D_ . divided by P_ __ may be deemed substantially less

than D, divided by P, 1f (D, divided by P,) minus (D

QL

O LEE

Feb. 5, 2009

divided by P__.) 1s greater than O, plus or minus a number of
megabits 1 high-throughput systems.

[0072]
PGHf

However, 1n another embodiment, D_ _ divided by
may be considered to be substantially less than D,
divided by P, 11 (D, divided by P,) minus (D_ . divided by
P_) 1s greater than a specified threshold value. Preferably,
the threshold value 1s determined from historical averages of
differences between the values of the received data, D
divided by P, , and the clean data, D_ . divided by P_ ., during
normal, non-attack time, operations. The differences 1n the
values may be due to processes 1n the system such as caching
or the like. In this embodiment, the use of the threshold value

may also provide a method for taking latency, L, into account
in the determination as to whether there 1s an attack.

[0073] In another preferred embodiment, some of the data
D. received from the one or more first computers 20a, 205
and 20c¢ 1s cached after 1t 1s cleaned. Subsequently, as is
typical in many networked systems, a portion of the recerved
data D, 1s the same as, or the duplicate of, previously recerved
data D, .Ifthecleaned version, D _ ., of the recerved datais in
the cache, then the cached cleandata, D ___, , 1s sent to the one
or more second computers 80a, 805, 80¢c and 804 in licu of a
portion of the received data, D, . In this embodiment, the
cache 1s mathematically taken into account in determining the

meaning of “substantially less.”” Specifically, the system

O LE QLEE?

determines that D_ . divided by P___ 1s substantially less than
D. dividedby P, ,if (D, plusD___,)dividedbyP_)isless
than (D, divided by P,). As described above, 11 the result 1s

a non-zero value, athreshold value 1s used 1n this embodiment
to compare to the result to allow for non-attack condition
variances before an attack 1s determined to have been
detected.

[0074] In another embodiment, the time periods for P, and
P___do not necessary have to be equal in length, as the com-
parison of the recerved data, D, ., and clean data, D_, ., 1s
normalized due to the division by the relative time periods, P,
and P__, to provide megabit per second (Mbit/sec) ratios that
can be compared. Also 1n this embodiment, a threshold value
1s used 1n the comparison of the ratios to take ito consider-
ation non-attack condition fluctuations in data rates.

[0075] In one embodiment, the meter 104 1s more passive
and merely records the measurements of D, overP, andD_
over P___. Further, it may be preferable to provide for remote
access by a network device, such as a client computer or
workstation 90, to the data cleaming center 100 to perform any
other calculations necessary to determine 1f an attack 1s occur-
ring. In this embodiment, the remote workstation 90 com-
prises a standard personal computer or notebook with access
to the network 10. Using the workstation 90, components of
the data cleaning center 100 are preferably accessed through
a secure connection using known encryption techniques. Spe-
cifically, the remote workstation 90 may read measurements
taken by the meter 104 to perform the determination of
whether an attack 1s occurring. Using such a workstation 90
provides the added advantage of allowing the measurements
from the meter 104 to be downloaded, stored, and manipu-
lated 1n various statistical software packages, such as

EXCEL™ by the Microsoit Corp., or OPENVIEW™ by the
Hewlett-Packard Development Company, L.P.

[0076] In one embodiment, an alert apparatus 1s provided
cither as a part of the meter 104 or the remote workstation 90,
to provide an alert 1f an attack 1s detected and/or mitigated.
Preferably, the alert apparatus provides, by way of example

US 2009/0037592 Al

only and not by way of limitation, an electronic mail alert, an
audible alert, a visible alert, or the like.

[0077] Referring now to FIG. 2, a schematic block diagram
of various hardware components of the data cleaning center
100 are shown according to another preferred embodiment.
The data, D, , 1s recerved by the core edge router 102. Such a
core edge router 102 may comprise a JUNIPER M40™ router
produced by Juniper Networks of Sunnyvale, Calif. Any simi-
lar device may also be used. The core edge router 102 per-
forms the task of filtering the incoming data packets, D, ,
which comprises the discarding of all packets using UDP or
ICMP protocols. In some instances, one of the second com-
puters being protected by the data cleaning center 100 may
require reception of UDP or ICMP packets. In those
instances, an administrator at the data cleaning center 100 sets
the core edge router 102 so that UDP or ICMP data packets
received for the particular second computer are allowed to
pass through the data cleaning center 100. Nevertheless, the
attack mitigation modules 110 described herein can suili-
ciently protect the second computer 80 receiving UDP and

ICMP packets from various attacks.

[0078] Preferably, the corerouter 108 1s, by way of example
only, a BIG IRON™ 4000 router available from Foundry
Networks of San Jose, Calif., which provides network layer
three packet switching. In some embodiments, more than one
router 1s used to perform the functions of the core router 108.
For example, one BIG IRON™ 4000 system may be used to
process the recetved data, D_ , and another may be used to
process the clean data, D__ ..

[0079] From the core router 108, the recerved data, D, ,
may pass through the meter 104. In one preferred embodi-
ment, the meter 104 comprises, by way of example only, a
NET IRON 800™ monitor, which provides a gigabit layer
three switch that can monitor the recerved data, D, . As stated
above, the meter 104 also may be configured to monitor the
clean data, D__ . that 1s outgoing back to the network 10 after
passing through the other components of the data cleaning
center 100. In this way, the meter 104 provides a “mirrored
image” observation of data D, , being received by the data
cleaning center, and the corresponding clean data, D _, ., being
produced by the data cleaning center 100.

[0080] In one preferred embodiment, over and above the
measurement of D, verses D_ ., the NET IRON 800™ per-
forms some of the functions of the data mitigation modules
110. For example, a SYN-tlood attack detector may be
included in the meter 104. The meter 104 sorts and counts the
received data packets, D, , according to their sources and
destinations, and count the number of packets marked with an
“S” for send packets verses the number of other types of
packets over the same period of time, P, , such as acknowl-
edge (ACK) packets. If the number of send packets over other
types of packets 1s more than a threshold, for example, 20%
more, then a possible attack may have been detected, and an
alert may be provided by the alert apparatus.

[0081] In some situations, however, it 1s preferable to use
dedicated computer hardware systems on the local fiber net-
work 150 to perform the attack detection and/or mitigation
functions. For example, one of the attack mitigation modules

110 may comprise, by way of example only, and not by way
of limitation, an ATTACK MITIGATOR IPS 2800™ or

ATTACK MITIGATOR IPS 5500™ which are each avail-
able from Top Layer Networks of Westborough, Mass. The
ATTACK MITIGATOR IPS 3500™ blocks HI'TP worms

and other hybrid threats, using advanced “normalized” deep

37 2

O Ll

Feb. 5, 2009

packet and multi-packet HI'TP URL matching and wildcard
checking, and 1s pre-configured to identily hundreds of HI'TP
URL exploits, including DoS and DDoS attacks, and trojan
horses.

[0082] In another preferred embodiment, one ATTACK
MITIGATOR IPS™ 3500 contains several or all of the attack
mitigation modules 110. However, two or more of the
ATTACK MITIGATOR IPS 5500™s, shown as 110a, 1105,
110c and 1004 1n FIG. 2, are duplicated in the local fiber
network 150 to allow load balancing to provide higher output.
Open Shortest Path First (OSPF) routing protocol also may be
used, and 1s able to determine if a link to an attack mitigation
module 110a or 1104 1n the local fiber network 150 1s down,
so that the recerved data, D,, , may be re-routed to other attack
mitigation modules 110c¢ or 1104 performing the same func-
tion.

[0083] Another router 130 may be used to re-aggregate the
load balanced data, D, , which, for the most part, 1s charac-

terized as clean data, D___., when 1t reaches the router 130.

Another NET IRON 800™, or NET IRON 400™ offered
from the same manufacturer, may be used to perform this
function. In some embodiments, the router 130 may comprise
an aggregate of several routers 130q and 1305.

[0084] Optionally, further attack mitigation modules 110e
and 110/ are used after re-aggregation of the data. For
example, the attack mitigation modules 110e and 110/ pret-
erably comprise available firewall systems to turther ensure
that the data, D_, ., 1s free of data packets sent as part of an
attack. If the firewalls 110e and 110/ are load balanced, then
a router 160, such as a Netlron 800 or 400 may be used to
re-aggregate the data. In higher volume systems, the re-ag-

gregation process may be split between two or more routers
160a and 160b.

[0085] Adter the clean data, D_, ., 1s re-aggregated, it 1s
ready to be load balanced and apportioned to proxy servers
116. In the embodiment shown 1n FIG. 2, the load balancing,
apparatus 114 comprises a cluster of load balancing systems
114a and 1145. In one embodiment, each load balancing

system ol the cluster 114 comprises, by way of example only,
one of the atorementioned RADWARE WSD™ devices,

Foundry SERVER IRON™ devices, and Dell POWER-
EDGE™ devices. The brand selection of each of the load
balancing devices 114a and 1145 mainly depends on the
number of proxy servers serviced by the device and the total
throughput required. For example, some hardware-based sys-
tems, such as the RADWARE WSD™ device, operate faster

than some software based systems, such as the Foundry
SERVER IRON™ device.

[0086] Preferably, the clean data, D__, 1s then transmitted
over the local network 150 back to the core router 108, and
then core edge router 102. The proxy servers 116 may be
divided into clusters, wherein the proxy servers within each of
the clusters are load balanced by one of the load balancing
devices 114.

[0087] As described with respect to FIG. 1, one or more of
the attack mitigation modules 110 may be executed on each of
the proxy servers, as symbolically shown as 110¢g in FIG. 2.

[0088] In some embodiments, each and every component
illustrated 1n FI1G. 2 may either be combined 1nto one proces-
sor or computer that has multiple processors, and/or software
processors, to process the functions described above. In other
embodiments, the processing for all, or at least some of, the
components may be expanded across multiple hardware
devices for processing 1n parallel. As an example, in some

US 2009/0037592 Al

embodiments, only one load balancing device 114 may be
required if only a few proxy servers 116 are needed in the data
cleaning center 100. Further, the proxy servers 116 may be
combined into one multiplexing device that provides proxy
services for several servers.

Methods Performed by the Data Cleaning Center

[0089] Referring now to FIG. 3, a flow diagram 1s shown
that 1llustrates the steps performed by one or more exemplary
preferred embodiments of the data cleaning center 100. Spe-
cifically, the flow diagram 1llustrates the steps performed 1n a
method for detecting and mitigating an attack, overload con-
dition, or attempted overload condition (collectively referred
to as an “attack’) that may originate from one or more first
computers, targeting one or more of a plurality of second
computers located on a network. A volume of data, D, , 1s
received over a time period, P, , from one or more first com-
puters located on a network, step 300. The data packets of the
received data, D, , 1s filtered to discard data packets using
UDP and ICMP protocols, with the exception that the UDP
and ICMP packets directed to destination addresses requiring
those protocols are not discarded, step 302. The remaining,
received data packets, D, , are measured by the meter over a
time period, P, , step 304.

[0090] The received data packets, D, , are processed
through the attack mitigation modules to detect and mitigate
the attack, step 306, to produce a volume of clean data, D
over a time period, P_ ., wherein the time period, P

OLEE?

outs s I g 11AY be
equal to the time period, P, . The clean data, D_ . 1s load
balanced, step 308, and processed by the proxy servers, step
310. The clean data, D_, , over the time period, P_ ., 1s mea-
sured, step 312. The presence or absence of the attack target-
ing the one or more second computers 1s determined by cal-
culating whether D___divided by P_ 1s substantially less than
D. divided by P, , step 314. Finally, the clean data, D___, 1s
distributed over the network to the one or more second com-
puters, step 316.

[0091] Referring now to FIG. 4, a preferred embodiment
method 1s shown of an attack mitigation module for detecting,
an attack, based on whether a suspect number of duplicate
GET commands, or commands requesting the same informa-
tion, are received from one or more first computers targeting,
one or more second computers on a network over a sample
time period. However, 1t should be noted that duplicates or
patterns in the header may also be detected by this method.
[0092] The attack mitigation module may be included for
use 1n a data cleaning center protecting a plurality of com-
puter systems, such as that shown i FIG. 1. Preferably, the
method of FIG. 4 1s executed on each of the proxy servers
(116 of FIG. 1). However, the attack mitigation module may
be used 1n a stand-alone device or computer system on the
network to protect one or a few server computers, and may be
implemented 1n soitware, hardware, or 1n a programmable
logic chip, such as an application specific imtegrated circuit
(ASIC), field programmable gate array (FPGA), or the like.
[0093] A network connection (e.g., the network edge router
of FIG. 1), recerves a plurality of data packets, wherein many
of the data packets may comprise GET commands, from the
one or more first computers located on the network, step 400.
Each GET command 1s stored in a database for a period of
time, step 402, which 1s preferably determined according to a
statistical history of the length of time needed to collect a
suificient number of GET commands to sample, and the
capacity of the storage device used to store the GET com-

Feb. 5, 2009

mands. For example, for a system processing up to 10 gigabits
per second, and having a network storage device with a capac-
ity of two or more hundred gigabytes set aside for the attack
mitigation module’s storage, the sample period to store GET
commands may easily be 10 seconds, without taxing the
system.

[0094] The attack mitigation module counts the number of
duplicate GET commands that have been received and stored
over the sample period, step 404. If the number of duplicate
GET commands exceeds a threshold value, step 406, the
attack mitigation module may deem an attack to have been
detected, step 408. In this embodiment, the attack mitigation
module blocks and discards any further duplicate GET com-
mands received from the network, step 410. A message may
be sent to a reporting system that alerts an administrator that
a GET-flood type attack may be underway, step 411. The
message may be in the form of, without limitation, an elec-
tronic mail, voice mail, or an audio or visual alert on an
administrator’s computer system.

[0095] Altematively, if the threshold i1s not exceeded, the
stored GE'T commands are cleared from storage, step 412,
and processing moves back to step 400. In some embodi-
ments, not all of the GET commands are captured and stored
over the sample period, but a statistically relevant number of
sampled GET commands are copied and stored in order to
save on processing time and storage.

[0096] Still, in other embodiments, 1n order to save storage
space and processing time, a hash, or reduction, function may
be performed on each of the GET commands, the results of
which are stored and sorted into a hash table 1n step 402. The
hash function may reduce each GET command to a smaller
amount of data for evaluation. If the standard deviation of the
entries 1n the hash table, measured in step 404, meets a thresh-
old value, which 1s checked in step 406 (for being lower 1n
some embodiments, or higher 1n other embodiments), then a
network attack may be detected.

[0097] Referring to FIG. §, a flow diagram 1s shown that
illustrates a method performed by one preferred embodiment
of an attack mitigation module for detecting and/or mitigating
an attack by discarding data packets that have packet headers
with a suspect user agent, or User-Agent, entry. The attack
mitigation module may be included for use 1n a data cleaning
center protecting a plurality of computer systems, such as that
shown 1n FIG. 1. Preferably, the method of FIG. 5 1s executed
on each of the proxy servers (116 of FIG. 1). However, the
attack mitigation module may be used 1n a stand-alone device
or computer system on the network to protect one or a few
server computers, and may be implemented 1n software, hard-
ware, or 1n a programmable logic chip, such as an ASIC, field
programmable gate array (FPGA), or the like.

[0098] In standard Internet HTTP protocol, each data
packet recerved has a header portion, having a user agent
entry. When the attack mitigation module receives a data
packet, step 500, 1t reads the user agent entry, step 502. It next
determines whether the user agent entry contains a proper
value, step 504. For example, a proper user agent header entry
may resemble the following sample:

[0099] User-Agent: Mozilla/4.0 (compatible; MSI.
Windows NT 5.0)

[0100] In most cases, an improper user agent entry 1s one
that does not contain an alphabetical character. Many viral or
other types of attacks on network systems send data packets
that have non-alphabetical, or sometimes blank, user agent
entries.

(L]

6.0;

US 2009/0037592 Al

[0101] If the entry 1s improper, the session from which the
data packet was sent 1s discarded or ended, step 506. A report-
ing system may alert an administrator that there was a poten-
tial attack, step 508.

[0102] Ifthe User-Agent value 1s proper, then the session 1s
not discarded, and 11 no other attack mitigation modules pre-
vent processing, the proxy server processes the packets in the
session, step 316.

[0103] As shown i FIG. 6, a preferred embodiment
method of an attack mitigation module that detects and/or
mitigates an attack 1s performed by discarding data packets
that have packet headers with suspect host value entries.
Preferably, the attack mitigation module 1s included for use 1n
a data cleaming center protecting a plurality of computer
systems, such as that described in FIG. 1. Preferably, the
method of FIG. 6 1s executed on each of the proxy servers
(116 of FIG. 1). However, the attack mitigation module may
be used 1n a stand-alone device or computer system on the
network to protect one or a few server computers, and may be
implemented in software, hardware, or in a programmable
logic chip, such as an ASIC, field programmable gate array
(FPGA), or the like.

[0104] In standard Internet HTTP protocol, each data
packet received has a header portion, having a host value
entry. The host value entry 1s required by HT'TP protocol to
represent the naming authority of the origin server or gateway
given by the original uniform resource locator (URL). This
allows the origin server or gateway to differentiate between
internally-ambiguous URLs, such as the root “/” URL of a
server for multiple host names on a single IP address.
[0105] When the attack mitigation module receives a data
packet, step 600, 1t reads the host value entry, step 602. It next
determines whether the host value entry contains a proper
value, step 604. For example, a proper user host value header
entry may resemble the following sample:

[0106] Host="Host” “:”” host [**:” port]

[0107] In most cases an improper host value entry 1s one
that 1s blank. Many viral or other types of attacks on network
systems send data packets, which have blank host value
entries.

[0108] If the entry 1s improper, the session from which the
data packet was sent 1s discarded or ended, step 606. A report-
ing system may alert an administrator that there was a poten-
tial attack, step 608.

[0109] If the host value entry 1s proper, then the session 1s
not discarded, and 11 no other attack mitigation modules pre-
vent processing, the proxy server processes the packets in the
session, step 616.

[0110] Referring now to FIG. 7, a flow diagram 1s shown
that illustrates a method performed 1n one exemplary embodi-
ment of an attack mitigation module for detecting and/or
mitigating an attack by discarding data packets that use
improper end-oi-line or return characters. Preferably, the
attack mitigation module 1s included for use in a data cleaning
center protecting a plurality of computer systems, such as that
described 1n FIG. 1. Preferably, the method of FIG. 7 1s
executed on each of the proxy servers (116 of FIG. 1). How-
ever, the attack mitigation module may be used 1n a stand-
alone device or computer system on the network to protect
one or a few server computers, and may be implemented 1n

soltware, hardware, or in a programmable logic chip, such as
an ASIC, field programmable gate array (FPGA), or the like.

[0111] In standard Internet HTTP protocol, the structures
of data packets are required to include full control-return

Feb. 5, 2009

(CR) and linefeed (LF) characters. The standard specifically
states that a bare CR or LF should not be substituted for a tull
CRLF within any of the HT'TP control structures. Web brows-
ers must send CRLF as a line break indicator under the stan-
dard. If the session does not use CRLF, the session 1s rejected.
[0112] When the attack mitigation module recerves a data
packet, step 700, 1t reads the line break characters, step 702. It
next determines whether the line break characters are proper,
step 704. In most cases an improper line break character 1s one
that that1s merely a CR or LF, and not a full CRLF. Many viral
or other types of attacks on network systems send data pack-
ets, which have merely CR or LF line breaks.

[0113] If a line break 1s improper, the session from which
the data packet was sent 1s discarded or ended, step 706. A
reporting system may alert an administrator that there was a
potential attack, step 708.

[0114] If the host value entry 1s proper, then the session 1s
not discarded, and 11 no other attack mitigation modules pre-
vent processing, the proxy server processes the packets in the
session, step 716.

Clean Data Redirection

[0115] Referring againto FI1G. 1, with some applications of
the data cleaning center, the latency involved 1n using proxy
servers to proxy every data packet that 1s sent from a first
computer (e.g. 20c¢) to a second computer (e.g. 80a) may slow
down communications between the first computer 20c¢ and the
second computer 80a. When the first computer 20¢ and sec-
ond computer 80a are physically within the same region of
the world on the Internet, the latency involved 1n using the
proxy servers 116, or any proxy server, within the same
region may not add very much relevant communication time.
[0116] However, there 1s a unique problem that arises
when, for example, the first computer 20¢ and the second
computer 80a are located 1n the same region, for example 1n
Australia, and the data cleaning center 100 1s located in, for
example, the United States. In this case, 1f the second com-
puter 80a 1s a real-time processing server, the latency period
required for each packet sent between the first computer 20c
and the second computer 80a to be sent through a proxy
server 116 1n the data cleaning center, or any proxy server in
the United States for that matter, could degrade performance
of time-critical or real-time applications. However, adminis-
trators at the second computer 80a may still desire to take
advantage of the attack protection system and methods of the
data cleaning center 100.

[0117] Referring now to FIG. 8, a method 1s shown for
preventing an attempted overload condition targeting a net-
worked computer system that lessens or eliminates the
latency eflect of using the data cleaning center (e.g., 100 1n
FIG. 1) to protect the second computer (e.g., 80a 1n FIG. 1).
Just as 1s the normal case when the first computer (e.g. 20¢ 1n
FIG. 1) requires access to the second computer, the data
cleaning center may recerve one or more initial data packets
from the first computer for processing by a second computer,
step 800. For example, the one or more 1mitial data packets
may comprise session imitiating data packets so that the first
computer may initiate contract with, and set up a session for
using, the second computer.

[0118] In one embodiment, the data cleaning center redi-
rects the first computers to send the one or more 1nitial data
packets to a third computer, step 802, which may comprise a
proxy server (116 i FIG. 1) within or proximate to the data
cleaning center, or another computer that may or may not be

US 2009/0037592 Al

remote from the data cleaning center. The third computer 1s
designated to receive tratfic from the first computer until the
first computer 1s verified not to comprise an attacking system.

[0119] The attack mitigation modules 110 process the 1ni-
tial data packets to determine whether the one or more 1nitial
data packets are legitimate, and not a part of, for example, an
attack on the second computer, step 804. If the attack mitiga-
tion modules determine that the initial data packets are not a
part of an attempted overload condition 110, step 806, then
the first computer 1s redirected to send subsequent data pack-
cts directly to the second computer, step 808, thereby elimi-
nating any latency that would be associated with continuing
to process subsequent data packets in the data cleaning center.

[0120] With this embodiment and the use of the data clean-
ing center, there 1s concern that an attack may escape detec-
tion by delaying the attack until after the maitial data packets
are processed. In order to lessen this possibility, the second
computer 1s configured with one or more local attack detec-
tion and/or mitigation modules that are at the least configured
to detect such subsequent attacks, step 810. For example, a
SYN-Flood mitigation module may be installed on the sec-
ond computer, or a version of the data 100 center of FIG. 1
may be installed. If a subsequent attack 1s detected, step 812,
then processing of all subsequent data packets 1s redirected
back to the data cleaning center to use attack mitigation
modules and proxy servers to clean the data before processing,
by the second computer, step 814.

[0121] Insome embodiments, the domain name of the third
computer has a different prefix than the domain name of the
second computer. For example, the second computer may
have a prefix of www, and the domain name of the third
computer may have a prefix of wwwn, wherein n 1s a numeric
value. This way, the main body of the domain name could be
the same so that users do not become confused to think that
they have been redirected to the wrong server computer.

[0122] In one preferred embodiment, the method of the
attack mitigation module includes determining whether the
initial data packets are a part of an attack. The attack mitiga-
tion module determines whether each received initial data
packet 1s from a browser executing on the first computer. For
example, this can be checked by attempting to write one or
more cookies to the one or more first computers. Viruses
running on the first computer, for example, sending data
packets to the second computer currently do not have the
ability to accept cookie files from the second computer. The
failure to write the cookie file could indicate the 1nitial data
packets are a part of the attack, and the subsequent data
packets should not be redirected to the second computer.

[0123] In another preferred embodiment, another way of
determining whether the network connection has received the
initial data packets from a browser executing on the first
computer comprises presenting text, i a distorted 1mage, or

other human only readable test, to be typed 1nto the one or
more browsers by one or more users. An example of a human-
only readable challenge 1s used, by way of example only, by
Yahoo!, Inc. of Sunnyvale, Calif., in their user-mail registra-
tion systems. Other human-only readable challenges are also
known (e.g., ticket master, and the like): If the second com-
puter receives an incorrect response that does not satisty the
human-only challenge, or 1f there 1s no response at all, as
would be the case with most viruses, then an attack could be

Feb. 5, 2009

indicated, and the subsequent data packets should not be
redirected to the second computer.

DNS Attack Mitigation

[0124] Another preferred embodiment relates to a system
and method for detecting and/or mitigating an attack targeting
a domain name service (DNS) server. The DNS server may
operate remotely from the system protecting 1t, as 1s the case
with respect to one or more second computers described in
FIG. 1. A pre-processing system for the DNS server 1s pro-
vided to absorb, to detect and to mitigate attacks. However, in
some configurations, the DNS server may use 1ts own protec-
tion system embodied in a separate processor connected
between the network and the DNS server, or 1n a local pro-
cessor embedded within the DNS server 1itsell.

[0125] FIG. 91llustrates an embodiment of the DNS server
protection system 900 to protect a DNS server 30. A network
connection 126 1s provided for receiving one or more DNS
requests Irom one or more client computers 22a, 225 and 22¢
located on the network 10. A preferred embodiment includes
aprocessor 902, separate from that normally used by the DNS
server 30, for providing a response for the one or more DNS
requests to the one or more client computers 22a, 225 and 22¢
before or instead of normal processing by the DNS server 30.
[0126] In one embodiment, the processor 902 protects two
or more load balanced DNS servers 30. A load balancing
router 950 performs load balancing between the DNS servers
30.

[0127] Preferably, the added processor 902 monitors the
volume of requests received per second to the DNS servers
30. If a threshold volume 1s detected, then processing of the
DNS requests 1s diverted to the processor 902.

[0128] Referring now to FIG. 10, a flow diagram 1s shown
that illustrates a preferred method preformed by the DNS
protection system for detecting and/or mitigating an attack
targeting the DNS server. One or more DNS requests are
received from the one or more client computers located on a
network, step 1000. The processor 902 checks for whether the
request 1s directed to port 53, step 1002. All requests not
directed to part 53 are discarded, step 1004. A sanity check 1s
performed on the request, which determines whether DNS
standard request requirements are met 1n the request, step
1006. Standards for DNS requirements may be found by
contacting the Internet Engineering. Task Force (www.IETF.
org). Specifically, standards may be viewed 1n the request for
comments (RFC) section of the IETF web site. If the request
does not comply with DNS requirements, the request 1s dis-
carded, step 1004.

[0129] Next, the processor 902 determines whether the
request 1s for a domain name on a list of valid domain names
for the DNS server, step 1008. If not, then the request is
discarded, step 1004.

[0130] If the request 1s not discarded, the processor 902
places the request 1in a database, step 1010. The database may
be keyed by the source address, and target domain name
requested. Further, a hit count 1s kept 1n the database to count
the number of (duplicate) requests for each source address
and request.

[0131] The processor 902 checks for whether the recorded
hit count for the request exceeds a threshold for the number of
requests over a period of time (for example, over the last ten
seconds), step 1212. The threshold 1s based on the capacity of
the DNS sever(s) 30. If the threshold 1s exceeded, then the

processor 902 itsell services all requests for the particular

US 2009/0037592 Al

source address and target domain requested until the hit count
1s reduced, step 1014. If necessary, the processor 902 makes
a request to the DNS server 30 to obtain the IP address to
answer the request. However, in one embodiment, the
required information 1s kept 1n a memory in the DNS protec-
tion system 900.

[0132] Otherwise, 11the hit count threshold 1s not exceeded.,
the DNS sever(s) 30 process the request directly, step 1016.
[0133] Referring again to FI1G. 9, the processor 902 1s pret-
crably configured to execute mstructions as fast as possible,
given the size and speed of attacks that typically are to be
handled by the processor. Thus, in a preferred embodiment,
the structions to respond to requests are built directly 1nto
the chip logic of the processor 902. The list of valid domain
names may be stored i a database 912 i1n a high-speed
memory 920 in the DNS protection system 900. The high-
speed memory 920 1s preferably connected to the processor
902 through a high-speed data bus 922 Further, the database
ol recerved requests and hit counts are stored in a sorted
database 914 located 1n the high-speed memory 920.

[0134] A cache 916 of requests previously processed by the
DNS server 30 may be stored 1n the memory 920 so that the
processor 902 may perform step 1014 of FIG. 10 without the
need to make a special request to the DNS server(s) 30.
[0135] It will be apparent from the foregoing that, while
particular forms of the invention have been illustrated and
described, various modifications can be made without depart-
ing from the spirit and scope of the invention. Accordingly, 1t
1s not intended that the invention be limited, except as by the
appended claims.

1. A system for detecting and mitigating an attempted
overload condition targeting a domain name server, compris-
ng:

a network connection for recewving a plurality of DNS

requests from one or more client computers located on a

network, the plurality of DNS requests directed to a
DNS server; and

a processor for providing a response to the plurality of DNS
requests to the one or more client computers, instead of
the DNS server, if the processor detects that a threshold
number of the plurality of DNS requests recetved over a
time period are substantially duplicate.

2. The system of claim 1, wherein the processor discards

any of the DNS requests that are not directed to port 33.

3. The system of claim 1, wherein the processor discards
any DNS request that does not pass a DNS sanity check.

4. The system of claim 1, wherein the processor discards
cach request containing a domain name that 1s not on a list as
a valid domain name.

5. The system of claim 1, wherein the processor detects
whether a threshold number of DNS requests are duplicate by
storing the recerved requests 1n a database, counting the num-
ber of requests for a domain name from the same source to
produce a hit count over a period of time, and comparing the
hit count against a threshold value.

6. The system of claim 5, wherein the processor detects
whether a threshold number of DNS requests are duplicate for
two or more domain names to produce a hit count over a
period of time for each of the two or more domain names.

7. A system for detecting an attempted overload condition
targeting a networked computer system, comprising:

a network connection for recerving a data packet having an
HTTP header; and

Feb. 5, 2009

an attack detection module to determine whether a user
agent header entry 1n the HI'TP header contains a non-
alphabetical character.

8. The system of claim 7, further comprising an attack
mitigation module to discard the data packet 1f the user agent
header entry contains a non-alphabetical character.

9. A system for detecting an attempted overload condition
targeting a networked computer system, comprising:

a network connection for receiving a data packet having an
HTTP header; and

an attack detection module to determine whether a host
value header entry exists in the HT'TP header.

10. The system of claim 9, wherein the attack mitigation
module discards the data packet 1f the host value header entry
does not exist 1n the HT'TP header.

11. A system for detecting an attempted overload condition
targeting a networked computer system, comprising:

a network connection for receiving a data packet; and

an attack detection module to determine whether the con-
tents of the data packet include a valid line break indi-
cator.

12. The system of claim 11, further comprising an attack
mitigation module to discard the data packet 11 the contents of
the data packet do not include a valid line break indicator.

13. A system for mitigating an overload condition targeting
a networked computer system, comprising:

a network connection for recerving a plurality of data pack-
ets from one or more first computers located on a net-
work, the data packets including a plurality of GET
commands directed toward one or more second comput-
ers located on the network:; and

an attack mitigation module to determine whether a num-
ber of duplicate GET commands that have been
received-exceeds a threshold value.

14. The system of claim 13, wherein the attack mitigation
module blocks the duplicate GE'T commands 11 the threshold
value 1s exceeded.

15. The system of claim 13, wherein the attack mitigation
module performs a hash function on the received GET com-
mands to determine 1f the GET commands are duplicates.

16. A system for preventing an attempted overload condi-
tion targeting a networked computer system, comprising:

a network connection for receiving one or more 1nitial data
packets from one or more {irst computers for processing
by a second computer;

a redirection module to redirect the first computer to send
the one or more 1nitial data packets to a third computer;

an attack detection module to determine whether the one or
more 1nitial data packets are a part of an attempted
overload condition; and

wherein the redirection module redirects the one or more
first computers to send one or more subsequent data
packets directly to the second computer i the attack
detection module determines that the 1initial data packets
are not a part of an attempted overload condition.

17. The system of claim 16, wherein the domain name of
the third computer has a different prefix than the domain
name of the second computer.

18. The system of claim 17, wherein the domain name of
the second computer has a prefix of www, and the domain
name of the third computer has a prefix of wwwn, wherein n
1s a numeric value.

US 2009/0037592 Al

19. The system of claim 16, wherein the attack detection
module determines whether the one or more 1nitial data pack-
cts are a part of the attempted overload condition by deter-
mimng whether the network connection has received the one
or more initial data packets from one or more browsers
executing on the one or more first computers.

20. The system of claim 19, wherein the attack detection
module determines whether the network connection has
received the one or more 1nitial data packets from one or more
browsers executing on the one or more first computers by
attempting to write one or more cookies to the one or more
first computers.

21. The system of claim 19, wherein the attack detection
module determines whether the network connection has
received the one or more 1nitial data packets from one or more
browsers executing on the one or more first computers by
providing a representation of text, 1n a non-machine readable
format, to be typed 1nto the one or more browsers by one or
more users.

Feb. 5, 2009

22. A system for preventing an attempted overload condi-

tion targeting a networked computer system, comprising:

a network connection for receiving one or more 1nitial data
packets from one or more {irst computers for processing
by one or more second computers;

a redirection module to redirect the one or more first com-
puters to send the one or more 1nitial data packets to one
or more third computers;

an attack detection module to determine whether the one or
more 1mitial data packets are a part of an attempted
overload condition; and

wherein the redirection module redirects the one or more
first computers to send one or more subsequent data
packets directly to the one or more second computers 11
the attack detection module determines that the nitial
data packets are not a part of an attempted overload
condition.

	Front Page
	Drawings
	Specification
	Claims

