a9y United States

US 20080189383A1

12y Patent Application Publication o) Pub. No.: US 2008/0189383 A1

Schuh et al.

43) Pub. Date: Aug. 7, 2008

(54) DISTRIBUTED CACHE BETWEEN SERVERS
OF A NETWORK

(76) Inventors: Karl Schuh, Santa Cruz, CA (US);
Chris Hawkinson, Fullerton, CA
(US); Scott Ruple, Gilbert, AZ
(US); Tom Volden, Newport Beach,

CA (US)

Correspondence Address:
URIARTE LAW

257 RODONOVAN DRIVE
SANTA CLARA, CA 95051

(21) Appl. No.: 11/829,886

(22) Filed: Jul. 28, 2007

Related U.S. Application Data

(63) Continuation of application No. 10/313,861, filed on
Dec. 6, 2002, now Pat. No. 7,254,617.

Client Workstations

Publication Classification

(51) Int.CL

GOGF 15/167 (2006.01)
(52) U.SeCLe oo 709/214
(57) ABSTRACT

A distributed cache module that allows for a distributed cache
between multiple servers of a network without using a central
cache manager. The distributed cache module transmits each
message with a logical timestamp. The distributed cache
module of a server that recerves the message will delay for-
warding of the message to, for example, a client computer, 1
preceding timestamps are not recerved. This insures a correct
order of timestamped messages without requiring a central
manager to allocate and control the transmission of the mes-
sages within the network. Each distributed cache module will
request and possibly retrieve data from the cache of another
server 1n response to a file request for the data. The data of a
file may be accessed by a plurality of servers joined 1n a file
context.

—

7

7 /A
¥

4-—-"’"-.,-‘

18

Controffer
. 20-

Patent Application Publication Aug. 7,2008 Sheet1 of 10 US 2008/0189383 Al

L
12
16
i
|

Client Workstations
-’l ”

NAS
Controlfer
20
JJdC

[/
10

—
%
FIG. 1

Patent Application Publication Aug. 7, 2008 Sheet 2 of 10 US 2008/0189383 Al

FIG. Z

|
Keyboard
Port
-50..

50

.
S

bl e i e

Monitior

Port

-4 3_
'u—
-

Controller
47~

L
A o
R
A
8%
S . - M.B
5 ©
=
™
e
3
.5 A, ¥
& U Do
0 S = XS
S &
‘S

US 2008/0189383 Al

Aug. 7, 2008 Sheet 3 of 10

Patent Application Publication

Lo L

_
| 3yoe) 18207
gr |
1BAIRS Bl
Micly, U3
M7 Butiaatibud

gry

Jelf)

IIE]

(SyN)ebri0iS

DRYIEY YOI

91

4%
ERER
[
2L/0E7)8I07
JAIBS 3l
Sl JUgii)
NYT 318400107

74

I

y Ol

US 2008/0189383 Al

(Sy)ebe03S
DRYIBIY JHOMIBN o1

- —{
I
&
; | - _
g |) -
A T [S DEY S FEREREDE N :
L |
= , | - "
g | ﬁ |
< aj=l|
o
Z 7]

ey o7 1|

i I

= gr | —— - N D - (4
m 13A43S 314 JBNIBS Ofl4
=
—
-
S
&
=
.ml N7 Buissauibug NYT 818404107
=
e
=
-

Patent Application Publication Aug. 7, 2008 Sheet 5 of 10 US 2008/0189383 Al

rrrrrrrrrrrrrrrrrr

vNode (Fife f{*"&-u j
Reguests

] ..'-.1..'\:'-'-":.'-.15-. N oy N

i gl ““‘fg 5 yc;‘g“em ¢ &*’F G}

11

P S .3...L4..,...;.@@1--.r.h-u--t.n.-.---rah-iee.n.mﬂ;nw.ra.h_@:-n-n-}-.nt-@:'-i-@*-:-'if‘-r:l-'--?'!"-'i“f.*"-'i‘*'-"---""-"'"""‘"5‘“"'"‘*'3'3'-""-*“'5“""-“{*""'"5"""- A T T

ﬁ iw 16 {Hgtributed (ache Moguis

rrr

¥

b "“i.'

": fm

",

1 +

L] L.

. S s e e e e e ol W b v e e LY ¥ R [e e e gy iy g iy g '

< - vrn\-eAnv:n#?niﬂat#lE}S 3&_‘}?}*#httnmrhivhﬁﬂ-lﬂ¢*ﬂ"*“‘*"‘""“‘“"““"*“"‘"""““"""
3

: RO MK srngid
§ ;

- f"p - 2 {}
At bl S LR EAL L LYY , - o

Coorginst 'ﬁ“{f {ibraries
wmed Comymunications || (Map, Member, |
ﬂ‘fﬁﬁ ager { {:Lﬁ’?} L frans sle.}

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrr

134 N 1 I8

Locai
SR

128

ibh T

FRI¥Can

- __q.i.g.:‘tqhqate@@niﬂt'ﬂl'illl.ll‘li"ﬂ':l.'lf

oy " fuilar e el defe’eie Tl whinladals - FafePule Lo "l Aymiaer Rler L st s

A R T N A R Y L R E Y T EEE RN NN R WV VR R R,

hﬁ.@hﬁf?.ﬁ.ﬁ..ﬁ'ia_.;iﬁ}.-'H'Jl-n_..liil'.r.ni.

TR A L AAYYNW NS AAT YRS ARNRYTT ARG F Ry TS

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

o Y LT al i el

! o
[
é
¥
%
§n
:
:
%

L £, *3-,...* ﬂ wr : *“% {"ﬁ{“‘ﬁf}ﬁw‘ r‘,i

)
' . - . . . ! e W AR W L [T I L 3
'-t--n-:n.-'@}-‘*.a----:a.:-'-ah-erhuva\'}aﬂ\'?.ﬂit‘-‘*-#?’fﬂ'?n**"**“‘*“"*"“*""“‘*"*"‘ AfMIVLBTWE AR LA

AN N R AR AN LT P FAANT ST FE P AR SCYT T ARG T P g F A il 4P rF Lo h Ty dddyhdyww
VG P T RGO AF PR LGP IPFN LA L L L L I FTIALRARGCPRTIN AL AR ST L LGB TN Al AR v v sl AN

ANV A NE AR N F S VRN AW AN N

114 £

L] %

NF&e, Sames

FIG. 5

AT T TN T T T = = a L - r o=

Patent Application Publication Aug. 7, 2008 Sheet 6 of 10 US 2008/0189383 Al

T e

oM w}gr Tm Layers -

+++++

..

1111111111111111111111111111111111111

- ':-";_---;...____ g f*‘-’f{‘?
BCAST Layer |

Connect
Layer

11111111111111111111111111111

I3 ag e T T T g iy -

UDP Conn .
o Lony &

i34

L E L A R

Mi]

e o ' .‘h.'u'l E L Lk Lo
— *‘*fgﬁ & ::?
:I'*ﬂ.;h':l"rtv
oo

#\“B.‘#

Message MIE 515 ds e "L
ﬁ;&. ?§§?faf';-~ EE}«; _ e k] g{ f f?;
delayed by (CBCAST | _§
ﬁ*ﬁffr { .;-5 -; ,,.a.;-ﬁf}g r}}&?ﬁ a"ﬁ

been regeived. J— Bt

AAAAA

Patent Application Publication Aug. 7, 2008 Sheet 7 of 10 US 2008/0189383 Al

: Upper La yer |
o (OSTOP) ;
160
) CM Upper Layer Interface
167
Request Handlers
166 168 170

- Prediction B Data Name
Manager Manager Manager

('172

Range
-120-
System
164 1/4
CM Lower Layer Interface
(148 —(- 146

" Broadcast " point-to-Point r P
| . : Data
L.C ommunications | I Commumca b’OﬂS |

FIG. 8

Patent Application Publication Aug. 7, 2008 Sheet 8 of 10 US 2008/0189383 Al

Local Compiiter Remote Computer

(1) Send Prediction Reguest

Include:

Name Info
Request Key

Request Number
Message Number

(2) Receive Prediction Request

fookup Name

(3) Send Prediction Response

include:
Same Request Key
Same Request Number
Message Numbper 1

| List of predictions
(4) Receive Prediction Response

Add List of Predictions to the
Name

FIG. 9

Patent Application Publication Aug. 7, 2008 Sheet 9 of 10 US 2008/0189383 Al

Local Computer Remote Computer

(1) Send Data Request

Incluge.
Name Info
Request Key / Request Number
Message Number 0

(2) Receive Dala Request

fookup Name

(3) Send Data Response

Same Reguest Key/Same

Request Number

Message Number 1

data information + {optionally) a list
of predictions

(4} Receive Data Response

Prepare for data
(5) Send Data

Same Reguest Key/Same
Request Number
Message Number 2

(6) Receive Data
[...) Send Data

(repeat until all data transterred
Same Requiest Key/Same
Reguest Number

Message Number incremented

FIG. 10

Patent Application Publication Aug. 7,2008 Sheet 10 of 10 US 2008/0189383 Al

Local Computer Remote Computer

(1) Send Forward Request

Name Info
Reguest Key / Request Number
Message Number 0

(2) Receive Forward Request
fookup Name

(3) Send Forward Response
Same Reguest KeysSame
Request Number
Message Number 1
data information + {(optionally) & list
of predictions

(4) Receive Forward Response
Decide if data should be sent

(5) Send Data Response
Same Request Key/Same
Request Number
Meassage Number 1
data information + (optionaily)
a list of pregictions

(7) Send Dala |
Same Request Key/Same (6) Receive Data Response

Request Number Prepare for data

Message Number 2
Mowe...

(...} Send Data |
(repeat until all data transferred) |.(8) Receive Data

Same Reguest Key/Same

Reguest Number
Message Number Incremented

/...) Receive Dala

FIG. 11

US 2008/0189383 Al

DISTRIBUTED CACHE BETWEEN SERVERS
OF A NETWORK

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The subject matter disclosed generally relates to the
field of network servers.

[0003] 2. Background Information

[0004] Computer networks typically include a plurality of
client computers that are linked to a number of servers
through a communication network. The servers may be
coupled to one or more mass storage systems, sometimes
referred to as a network attached storage (NAS). The network
attached storage 1s capable of storing a large number of files.
[0005] To open afile the client computer sends a file request
to the server. If the server cannot satisiy the file request it
retrieves the file from the NAS. Mass storage systems typi-
cally contain a large number of hard disk or optical drives.
Accessing data from a drive 1s relatively slow. To minimize
access time the retrieved file 1s typically stored 1n a cache
memory of the server. A subsequent request to the server for
the file can be satisfied by the server cache.

[0006] The size of the cache 1n each server 1s relatively
limited. Consequently, many file requests result in the access-
ing of the NAS, which 1s slow and decreases the useful band-
width of the network. It 1s therefore desirable to increase the
elfective cache of the servers 1n a network.

[0007] Inan article entitled “Eilicient Cooperative Caching
using Hints™, Prasenjit Sarkar and John Hartman, Department
of Computer Science, University of Arizona, Tuscon, the
authors discuss a concept referred to as cooperative caching.
In a cooperative caching scheme a server that recerves a file
request that 1t cannot fulfill seeks to have the request satistied
by the cache of another server. The server caches are effec-
tively combined to create one large cache that can be accessed
by each server.

[0008] The cooperative cache system includes a manager
that controls access to the cache. The manager locates {files
within the cache of a server(s) and controls the transfer of the
located files. The manager also insures cache coherency
between each server cache. The cache manager resides on a
separate server connected to the network. Having a separate
server mncreases the cost and complexity of implementing a
cooperative or distributive cache system. Additionally, the
manager server may become moperative thereby eliminating,
the cooperation between caches. It would be desirable to have
a cooperative cache system that did not require a central
manager(s). Such a system must also imsure cache coherency
and a transmission protocol that assures proper receipt of
transferred data.

BRIEF SUMMARY OF THE INVENTION

[0009] A distributed cache system. The system includes a
distributed cache module which resides 1n a first server that

has a cache. The distributed cache module requests and
retrieves a file block located 1n a cache of a second server.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 1s a hardware schematic of a network;
[0011] FIG. 2 1s a hardware schematic of a server 1n the
network:;

[0012] FIG. 3 i1s a schematic showing a pair of servers

having a distributed cache;

Aug. 7, 2008

[0013] FIG. 4 1s a schematic showing a file block being
transferred from a cache of one server to another server;

[0014] FIG. 5 1s a software schematic of a server in the
network;
[0015] FIG. 6 1s a software schematic of a coordinated

communications manager of the server;
[0016] FIG. 7 1s an illustration of messages being transmit-
ted between servers of the network;

[0017] FIG. 81sasoftware schematic of a cache manager of
the server;
[0018] FIG.91sadiagram showing a prediction transaction

between servers of the network:

[0019] FIG. 10 1s a diagram showing a data transaction
between servers of the network;

[0020] FIG. 11 1s a diagram showing a forward data trans-
action between servers of the network.

DETAILED DESCRIPTION

[0021] Daisclosed 1s a distributed cache module that allows
for a distributed cache between multiple servers of a network
without using a cache manager. The distributed cache module
transmits each message with a logical timestamp. The distrib-
uted cache module of a server that receives the message will
delay forwarding of the message to, for example, a client
computer, 1 preceding timestamps are not recerved. This
isures a correct order of timestamped messages without
requiring a central manager to allocate and control the trans-
mission of the messages within the network. Each distributed
cache module will request and possibly retrieve data from the
cache of another server in response to a file request for the
data. The data of a file may be accessed by a plurality of
servers joined 1n a file context.

[0022] Referring to the drawings more particularly by ret-
erence numbers, FIG. 1 shows a communication network 10.
The network 10 may include a plurality of servers 12 that are
coupled to a plurality of client computers 14. The servers 12
may also be coupled to a network attached storage 16 (NAS).
The NAS 16 may include one or more mass storage systems
18 coupled to the network by a NAS controller 20. By way of
example, each mass storage system 18 may include a plurality
of mass storage devices such as hard disk drives (not shown).
The NAS controller 20 controls the flow of information
between the servers 12 and the mass storage systems 18.

[0023] The network 10 may include routers, hubs, etc. (not
shown) that allow information to be transferred between the
client computers 14, servers 12 and NAS 16. The network
may be, or include, a local area network (LAN), a metropoli-
tan area network (MAN), or a wide area network (WAN). By
way of example, the network 10 may be the Internet.

[0024] FIG. 2 shows an embodiment of a server 12. The
server 12 includes a network input/output (I/0) interface 30
that 1s coupled to a bus 32. The network I/O interface 30 1s
coupled to the network 10. By way of example, the I/O
interface 30 may include electrical circuits and software that
operate Ethernet communication protocol. The I/0 nterface
30 may include bufifer memory 34 that temporarily stores
information transceived with the network.

[0025] The server 12 includes a processor 36, random
access memory (RAM) 38 and a mass storage device 40 that
are all coupled to the bus 32. Access to memory 38 may be
controlled by a direct memory access (DMA) controller 42.
The server 12 may also include cache memory 44. The cache
may be a portion of memory 38 allocated to caching. The

US 2008/0189383 Al

cache 44 may include control logic, maps, etc. (not shown)
required to access the contents of this block(s) of memory.
[0026] The server 12 may also have a monitor 46 with an
accompanying interface port 48 and a keyboard/mouse 50
with a corresponding 1nterface port 52.

[0027] As shown in FIG. 3, the network servers 12A and
12B operate to combine the caches 44 of each server 12 into
a collective distributed cache 44'. The distributed cache 44
allows any of the client computers 14 to quickly access infor-
mation within the cache 44' without having to retrieve such
information from the NAS 16.

[0028] By way of example, server 12A may retrieve file
blocks A, C and D from the NAS 16. Server 12B may retrieve
file blocks B and E. File blocks A, C and D are stored within
the cache 44 A of server 12A. File blocks B and E are stored
within the cache 44B of server 12B. A client may request {ile
block E. As shown 1n FIG. 4, imnstead of having to retrieve file
block E from the NAS 16, the server 12 A can retrieve the file
from server 12B. The server 12A then provides the data block
to the requesting client. The server 12B can provide file block
E 1n less time than the NAS 16, which must access mass
storage devices such as hard disk drives.

[0029] FIG. 5 shows the various soitware modules operated
by each server 12. Each server 12 typically includes an oper-
ating system 100 that 1s linked to a plurality of applications
102. The operating system 100 that typically 1ssues and
accepts two types of commands, administration 104 and file
[/0 106. Administration request can mount, unmount file
systems, collect statistics, etc. File I/O requests include
access to specific file data. The requests may be retrieved
from memory by a virtual file system (VFS) 108.

[0030] The server 12 may operate a distributed cache mod-
ule 112 that 1s linked to a network file system (NSF) module
114. The NSF 114 provides an interface to the network 10.
The distributed cache module 112 processes requests from
the virtual file system 108 to determine 11 the requests can be
satisfied by the server cache, or the cache of another server
within a distributed cache.

[0031] The distributed cache module 112 may include a
virtual/node (Vnode) layer 116 that provides an interface with
the virtual file system 108. By way of example, the Vnode
layer 116 can be constructed to interface with either an oper-
ating system sold by Sun Microsystems, Inc. under the trade-
mark SOLARIS, or Microsoft, Inc. under the trademarks
WINDOWS NT and WINDOWS 2000. By way of example,

Table I provides a list of requests that can be made through the
Vnode layer 116 adapted to run with the SOLARIS platform.

TABLE 1

Request Description

Checks access to a given Vnode
Increments the map count
Close a file

Compare two Vnodes

Create a file

Decrement the map count
Frees a page from a Vnode
Dump kernel debug data
Prepare for a kernel dump
Handle file and record locks
Write dirty pages for a Vnode
Get the attributes for a Vnode
Read file data into a page

Get access control attributes
Free resources for a Vnode

Vop__access()
Vop__addmap()
Vop__close()
Vop__emp()
Vop__create()
Vop__delmap()
Vop__dispose()
Vop__ dump()
Vop__dumpctl()
Vop__frlock()
Vop__fsync()
Vop__getattr()
Vop__getpage()
Vop__getsecattr()
Vop__1nactive()

Aug. 7, 2008

TABLE I-continued

Request Description

Vop__1octl() Handle IO control requests for a Vnode

Vop_ fid() Get unique file ID for a Vnode

Vop__link() Create a link to the Vnode

Vop__lookup() Translate a given path/filename to a Vnode

Vop__map() Map file ranges into memory pages

Vop__ mkdir() Create a directory

Vop__open() Open a file

Vop__pageio() Handle swap file access requests

Vop__pathconi() Establishes file system parameters

Vop__poll() Handle requests for the poll() system
function

Write a file page

Map a file range to memory pages

Read a directory

Follow a link

Gets a real Vnode from a supplied Vnode
Delete a file

Rename a file

Remove a directory

Sets write lock for a write operation
Clears a write lock

Vop__putpage()
Vop__read()
Vop__readdir()
Vop__readlink()
Vop__realvp()
Vop__remove()
Vop_ rename()
Vop__rmdir()
Vop__rwlock()
Vop__rwunlock()

Vop__seek() Seek within a file
Vop__setattr() Sets attributes for a Vnode
Vop__setfl() Sets file locks on the Vnode

Set access control list attributes
Shared lock support

Frees space for a Vnode

Create a symbolic link between
two path/files

Vop__setsevattr()

Vop__shrlock()
Vop__space()
Vop__symlink()

[0032] The Vnode layer 116 may pass a request from the
virtual file system 108 directly to a file system driver (FSD)
layer 118, or to a cache manager (CM) layer 120 through an
operating system (OS) top layer 122. The CM layer 120 may
be linked to a cache layer 124 used to retrieve and store data
within the server cache 44. The CM layer 120 1s also linked to
a coordinated communications manager (CCM) layer 126
that can control the transfer of information with the other
servers 12 in the distributed cache. The CM layer 120 may be
linked to the FSD layer 118 by a FSD connect layer 128. The
distributed cache module 112 may further include a uniform

datagram protocol (UDP) connect layer 130 that 1s directly
linked to a TCP/IP layer 132.

[0033] NT/2000 based systems typically generate two
types of request mechanisms. The first1s a fast I/O request, the
second 1s an I/O request packet (IRP). Fast I/O requests are
synchronous call-return mechanisms intended to access
cached file blocks. IRP requests are asynchronous, send
request and go to sleep, request mechanisms. Fast 1/O
requests are optional for NT/2000 based systems. IRP
requests are formatted by the Vnode layer 116 into module
cache request packets (MCRPs) that are sent to the CM layer
120. Information located 1n cache, either directly 1n the server
cache, or within the distributed cache, 1s transferred to a
kernel buifer and a TRUE indication 1s provided back through
the Vnode layer to the virtual file system 108. If the informa-
tion 1s not within cache, the Vnode layer reformats the IRP
requests mto module file request packets (MFRPs) that are

linked to the FSD layer 118.

[0034] Fast I/O requests are formatted by the Vnode layer
116 1nto module cache request packets (MCRPs) that are sent
to the CM layer 120. Information located 1n cache, either
directly 1n the server cache, or within the distributed cache, 1s
transierred to a user butler and a TRUE indication 1s provided
back to the virtual file manager 108. If the information 1s not

US 2008/0189383 Al

within cache the virtual file manager recerves a FALSE 1ndi-
cation and then generates an IRP request.

[0035] Tables II and III summarize the structure of various
I/0 requests from the Vnode layer 116 formatted as MCRP
and MFRP, respectively.

TABLE Il
Field Description
Type Always set to MCRP
Size Byte size of structure
I/O Request Type Defines type of request-
Process ID The process mitiating the request
Request ID Unique ID for this request (response must have

same [D).

Unique sub ID for request (response must have

same sub ID).

(Out) Response To be filled in by the Cache Manager (O indicates a

Code NO-EITOr response).

(Out) New lock ID Returned lock ID

(Out) Cache data® Pointer to the cached data block

(Out) Cache data len The number of bytes in the cache data block, or the
number of bytes transferred

Request sub ID

[/O Volume ID Volume identifier

[/O Filename Fully qualified path name for file

[/O File Type Indicates whether a normal file or a directory.

I/O Location Byte start location in file

[/O Length Byte length of block

[/O Lock ID The ID for the request.

[/O Wait TRUE if the caller can wait for the data. If FALSE,
and the data 1s not in the distributed cache, an error
must be returned. If TRUE, the Cache Manager
may request data blocks from the FSD interface.

[/O Buffer* Data buifer address

TABLE 111

Field Description

Type Always set to MEFRP

Size Byte size of structure

Request ID Unique ID for this request (response must have

same [D).
Requestor 1D Set to either VNODE or CACHE

(Out) Response To be filled in by the FSD Interface layer (O
Code indicates a no-error response).

FS valid TRUE 1f the system specific info 1s valid in the FS
Union (1.e. Windows IRP).

S Union Pointer to the Windows IRP block. Note *** for
non-wWindows implantations, this will point to the
system specific structure which is applicable.

[/O valid TRUE 1f the I/O fields are valid (only used if a

system specific structure wasn’t attached).
[/O Request Type See MCRP I/O Request types (above).

[/O Volume ID Volume 1dentifier

[/O Filename Fully qualified path name for file

[/O File Type Indicates whether a normal file or a directory.

I/O Location Byte start location in file

[/O Length Byte length of block

I/O Lock ID The ID for the request.

I/O Process ID The process ID making the request

[/O Buifer* Data buffer address

[0036] FIG. 6 shows an embodiment of a CCM layer 126.

The CCM layer 126 includes a context layer 140 that i1s
coupled to a connect layer 142 and a UDP/TLI/TDI layer 144
by a point to point (P2P) layer 146, or a broadcast (Bcast)
layer 148. The UDP/TLI/TDI layer 144 provides an interface
to the network communications stack. The context layer 140
maintains groups of servers within a “context”. Servers are
typically grouped into a coalition that can share distributed
cache. Fach server can join and leave a context within the

Aug. 7, 2008

coalition. By way of example, a context may be access to a
particular data file. Each server in a context has requested or
will request access to the file.

[0037] TheP2Player 146 allows dedicated communication
between two servers. The following Table IV lists the point to

point transactions that can be performed by the CM 120 and
CCM 126 layers.

TABLE IV

The source 1s attempting to discover information
relating to a file from the destination

Prediction Request

Data Request The source 1s attempting to retrieve a copy of the
file’s data from the destination.
Data Demand The source 1s attempting to retrieve the original of

the file’s data from the destination.
The source 1s attempting to send the original of the
file’s data to the destination.

Forward Request

[0038] The Bcast layer 148 allows for a more distributed
communication between the servers. The Bcast transactions
are 1ssued when the Vnode layer 116 1ssues a MRCP packet
with a file open complete, file open create or file close
Opcode. The Bcast layer 148 may generate two types of

messages; a causal broadcast (CBCAST), or an absolute
broadcast (ABCAST).

[0039] CBCAST adds alogical timestamp to each message
transmitted 1n a grven process to msure that the messages are
delivered 1n a correct order. The logical timestamp 1s a means
of insuring orderly processing of messages without a central
manager. The logical timestamp 1s a vector timestamp not a
true stamp of time. The vector time stamp 1ncludes an “n”
vector array, where n 1s the number of servers 1n a context.
When a context 1s first created the time stamp 1s cleared to all
zeroes. The first server that sends a message 1n the process
increments 1ts variable stamp. The incremented timestamp 1s
sent with the message. Upon receipt of the message the server
will retrieve the timestamp and determine whether each pre-
ceding timestamp has been received. If not, the message 1s

maintained in butler and delayed.

[0040] FIG. 7 provides an example of the use of the logical
timestamp. There are three servers in the group, the vector
array 1s therefore (X, y, z). The first server M1 sends amessage
with the timestamp (1.0.0). The second server M2 receives
the message and sends a second message with timestamp
(1.1.0). The third server M3 receives the first and second
messages and sends a message with the timestamp (1.1.1).
The first server M1 does not receive the message from the
second server M2 until after receiving the message from the
third server M3. The first server M1 will delay the third
message M(1.1.1) until receiving the second message M(1.1.
0) because the server M1 did not receive all preceding times-
tamps. The logical timestamp 1nsures an orderly processing,
of messages without the need for a network manager.

[0041] The ABCAST protocol msures that all destination
servers receive messages in the same order when joining or
leaving a context. The ABCAST resides on top of the
CBCAST protocol. The ABCAST protocol includes a cookie
that 1s passed between servers. By way of example, the cookie
may be assigned to the server with the lowest ID 1n a context.
That server may maintain the cookie until 1t leaves the con-
text.

[0042] A server with a cookie can 1ssue an ABCAST mes-
sage by adding a context member ID to the message. A server
without the cookie must request the cookie or wait for the

US 2008/0189383 Al

present owner to pass the cookie. Only the current owner of
the cookie can broadcast an ABCAST message.

[0043] The context modules of the servers allow a server to
jo01n a context, without the need for a network manager. The
joimng server sends an ABCAST message to join a context.
By way of example, the joining server may send a join mes-
sage alter recerving a file request from a client computer for a
file.

[0044] Belfore joining a coalition the server attempts to
cither allocate or obtain a member ID. The server sends a
ConnectAcquirelD message that contains an allocated mem-
ber ID. The message includes a common header which 1s the
ID of the root context or coalition. The message may also
include a member ID field and a character string.

[0045] The server also mitiates a timer. The timer 1nsures
that the server does not wait indefinitely for a response. IT
there 1s no response the server retains the self selected mem-
ber ID. Alternatively, the member ID selected by the server
may be used by another server but 1n another context. The
other server will return a NACK message but without a sug-
gested ID for the transmitting server. The transmitting server
will then try a new member ID. If the other server 1s 1n the
same context it will respond with a NACK message and a
suggested member ID.

[0046] As yet another alternative, the server with the lowest
member 1D 1n the context sends an ACK return message with
a view. The view contains the member IDs for all other mem-
bers 1n the context. Since each server 1n a context knows all
the other servers in the context, only one server need respond.
Thejoining server will then transmit a join ABCAST message
to join the context. The server takes a member 1D that 1s one
number higher than the highest member ID 1n use. Table V
shows the various messages for context messages.

Aug. 7, 2008

Message Type Description

DATA (Broadcast) Sends the actual user data message to
all members

REQUEST NACK (Broadcast) Sent to all members to request a
NACK if the message has not been recerved.

NACK (Direct) Sent by a member 1f a message number has
not been recerved.

[0048] The FBCAST protocol includes a header with the

following fields:

Header Value Description

Member ID sending the message

The message number for this message

The service type (ABCAST, CBCANT, etc) for this
message.

Flags Various flags attached to this message

Source Member
Message number
Service type

[0049] The flag field includes the following flags:
FBCAST
[0050] FLAG_NORMAL—A normal message

FLAG_CONTROL

[0051] FLAG_NEWSEQUENCE—Start of a new
FBCAST sequence
FLAG_RETRANS—This message 1s a retransmission of

another message

TABLE 'V

Message type Description

JoinRequest This 1s used to indicate a request to join a context.

JoinRequestAck This 1s sent 1n response to the join request. If sent, it also
contains a list of member nodes already members of the
context.

JoinRequestNack If a node has a reason to prevent the requesting node from
joining.

Join This 1s sent as a notification by a node that it has joined the
context.

Leave This 1s used to indicate that a node is leaving the context.

User data This 1s used to denote that the message contents are for an
upper layer application.

ContextlAcquirelD Used to acquire a context ID.

ContextACcquirelD NACK Used to indicate the requested ID is already in use, and if

possible, to give the actual ID to use.

Update request Sent to a node to request an update to its list of known
contexts (1.e. contexts for which it 1s a member). This is sent
when a node has been detected as having “bounced™.

Update ACK Response sent with list of contexts.

[0047] The CBCAST and ABCAST broadcast may be [0052]

transmitted and received 1n accordance with a first 1n first out
broadcast (FBCAST) protocol. FBCAST creates an order for
transmitting messages between servers. The FBCAST proto-

col includes the following messages:

FBCAST 1s performed by a sublayer within the
BCAST LAYER 148. FBCAST holds a transmitted message

within a queue until a timer expires. When the timer expires
FBCAST will remove the message 11 another message has

been sent or a REQUEST NACK has been previously trans-

US 2008/0189383 Al

mitted. I another message has not been receirved then
FBCAST sends a REQUEST NACK.

[0053] When a message 1s received the FBCAST removes
the header and determines whether the message 1s 1n order or
the start of a new sequence. If the message 1s 1n order,

FBCAST forwards the message to the proper protocol engine.

If the recerved message 1s not 1n order the message 1s stored 1n
a queue and a timer 1s set. IT a subsequent message 1s recerved
that creates a proper sequence, the messages are forwarded. IT
the timer expires, FBCAST sends a NACK message to the
transmitting server and resets the timer. FBCAST continues
this process until 1t recerves a message(s) that creates a proper
sequence or the transmitting server discontinues transmis-
S1011.

[0054] Referring back to FIG. 6, the connect layer 142
creates connections to each server 1 a context and detects
when servers do not respond. The connect layer 142 can
locate servers within a context with various addressing
schemes and tables. The assignment of member IDs can be
performed by the connect layer 142. The connect layer 142
may prepend a header to each message. Table VI 1s an
example of fields that may be 1n the header.

TABLE VI
Header Field Description
Version Protocol version (always 0x0001).
Message Type The type of message being sent.
Message Flags Individual flags to control the protocol
Coalition ID Identifies coalition to which member belongs.
Destination The Connect ID the message is destined for
Member ID

Source Member ID The Connect ID the message was sent from

Message ID The ID number for this message (O means “no 1D”
and 1s used for ACK and NACK messages only)

Protocol This defines the protocol layer the message
1s from and to.
Member TB Value The “tie breaker” value for the sending computer

Ack Along with Message type 1s used to refine
actual message.

Coalition name Textual name for the coalition. Not i1n all messages.

TimeStamp Time when message was sent. This only appears
in Query messages.
[0055] The connect layer 142 may also send various mes-

sages. Table VII 1s an example of the message that can be sent
by the connect layer.

TABLE VII

Message Type Description

Normal Data

A normal DATA message, sent by upper layer protocols/apps

Aug. 7, 2008

[0056] FIG. 8 shows an embodiment of a CM layer 120.
The CM layer 120 may include an upper layer interface layer
160 and a request handler layer 162 that provide an interface
with the OS interface layer 122 of the distributed cache mod-
ule 112. The CM layer 120 may further have a lower interface
layer 164 that provides an interface to the P2P 146 and Bcast
148 layers of the CCM layer 126.

[0057] The CM layer may include a prediction manager

166. The prediction manager 166 contains predictions on the
possible location of information requested from the virtual
file system 108. The predictions may include the location of a
file’s range of blocks within the distributed cache. In the
example shown 1n FIGS. 3 and 4, server 12A would contain a
prediction that file block E 1s located at server 12B. Server
12A would then generate a point to point transaction to
retrieve file block E from server 12B.

[0058] The CM layer 120 may include a data manager 168
that moves data between the caches of the distributed cache.
To provide a more efficient means of locating and retrieving
cached information the CM layer 120 may include a name
manager 170, a range system 172 and a block system 174.

[0059] Each file is represented by a name structure entry.
The entry may be indexed by a key that 1s produced by
compressing the filename. By way of example, compression
may be utilized with a CRC32 technique. The keys are stored
in a hash key table that 1s managed by the name manager 170.
Each name entry has pointers to anumber of range entries that
are managed by the range system 172. Each range entry
includes pointers to a list of data blocks that are managed by
the block system 174. The blocks contain the actual data
stored 1n the cache 44.

[0060] FIG. 9 shows a transaction diagram of a prediction
request from one server to another server. The prediction
request can be sent if one server has information that the other
server was the last to contain the desired file. Alternatively,
the server may sequentially query one or more servers for
predictions.

[0061] FIG. 10 shows the transier of data between servers.
FIG. 11 shows the forwarding of data between servers. No
ACK messages are used to send the data in either transaction.
Forwarding data 1s typically performed when the cache of one
server 1s Tull. Forwarding the data empties some of the serv-
er’s cache to allow further use of the local cache.

Discovery Sent at startup to test a member ID. Machines will respond with
Discovery ACK or NACK messages.
Discovery ACK An acknowledgement that the ID test was successful. This 1s ONLY

sent at 1nitial startup, to allow the starting Connect entity to build its
member list. This message also contains a complete list of known

members.

Discovery NACK An ack of the Discovery message which indicates the ID was 1n use.

This message also contains a complete list of known members.

Test ID Test 1f an ID number 1s in use.

ID NACK The tested ID number was 1n use.

Query A message sent to query the condition of the site/station.
Query ACK An acknowledgement for the Query message.

ID Claim Used to claim a specific 1D

ID Claim NACK If ID already in use after claim process initiated.
Shutdown A node sends this when it 1s shutting down.

US 2008/0189383 Al

[0062] Referring to FIGS. 1 and 3, each server may include
a coalition management console (CMC) agent 180 that can
receive messages and commands from a CMC station 182
connected to the network 10. The CMC station 182 may
transmit configuration parameters to the CMC agents 180.
The configuration parameters may define which servers 12
are located 1n various coalitions. The CMC agent 180 may
provide a hostname for mapping functions by the connect
layer 142 of the CCM layer 126.

[0063] In operation, the user may request a file through an
application. The request filters to the Vnode layer 116 which
formats the request into a MRCP packet that 1s forwarded to
the CM manager 120. Using the name manager 170 and the
range system 172 the CM layer 120 determines if the
requested data 1s 1n cache. If the requested data 1s not 1n cache
then the prediction manager layer 166 determines whether
there 1s a prediction that the requested data 1s located 1n the
cache of another server. If the data 1s located 1n another cache
of the distributed cache then the servers enter the transaction
shown 1n FIG. 10 to obtain the data from the remote server.
[0064] If the prediction manager does not contain a predic-
tion regarding the request, the CM layer 120 may conduct the
transaction shown in FIG. 9 to obtain a prediction from
another server. It the request cannot be satisfied by any cache
within the coalition of servers then the distributed cache mod-
ule provides a FALSE indication to the virtual file system 108.
The virtual file manager then generates a IRP request which s
reformatted by the Vnode layer 116 into a MERP packet. The
MFRP packet is processed by the NFS 114 and TCP/IP 132 (af
applicable) layers to retrieve the requested file, or portions
thereot, from the NAS 16.

[0065] The network may contain a rogue computer that
does not contain a distributed cache module. Consequently,
the rogue computer may have dirty data within 1ts cache that
1s different than the data within the NAS. To prevent the
reading of invalid data, the distributed cache module 112 may
verily a file within the NAS before reading it. If the date and
time of a file within the NAS 16 matches the date and time of
the cached data, the distributed cache knows that the cache
data is valid. If the dates and/or times don’t match, the cached
data 1s flushed from the distributed cache.

[0066] The CM layer includes a write-through cache pro-
cess. A server that writes new data into 1ts cache sends a
notification of the new data to the other servers 1n a context.
For example, referring to FIG. 3, if the user of server 12A
changes file block A, server 12 A sends a notification to server
12B that block A contains new data.

[0067] While certain exemplary embodiments have been
described and shown in the accompanying drawings, 1t 1s to
be understood that such embodiments are merely 1llustrative
of and not restrictive on the broad invention, and that this
invention not be limited to the specific constructions and
arrangements shown and described, since various other modi-
fications may occur to those ordinarily skilled 1n the art.

1. A distributed cache system that includes a first server that
has a first cache and a second server that has a second cache,
comprising;

a first distributed cache module that resides in the first
server and transiers a message and a logical timestamp;
and,

a second distributed cache module that resides 1n the sec-
ond server and receives the message, said second dis-
tributed cache module delays a transier of the message 11
said second server has not recerved all preceding logical
timestamps.

2. The system of claim 1, wherein said first distributed

cache module has a cookie.

3. The system of claim 1, wherein said first and second
distributed cache modules each have a unique member ID 1n
a context.

Aug. 7, 2008

4. The system of claim 1, wherein said first distributed
cache module assigns 1ts own unique member 1D.

5. The system of claim 1, wherein said first distributed
cache module contains a prediction of a location of data 1n
said second cache of said second server.

6. The system of claim 1, wherein said logical timestamp
includes an n array where n 1s equal to a number of servers 1n
a file context.

7. A network, comprising:

a first server that includes a first cache and a first distributed
cache module, said first distributed cache module trans-
fers a message and a logical timestamp; and,

a second server that includes a second cache and a second
distributed cache module, said second distributed cache
module recerves the message and delays the transfer of
the message 11 said second server has not received all
preceding logical timestamps.

8. The network of claim 7, wherein said first distributed

cache module has a cookie.

9. The network of claim 7, wherein said first and second
distributed cache modules each have a unique member ID for
a context.

10. The network of claim 7, wherein said first distributed
cache module assigned its own unmique member ID.

11. The network of claim 7, wherein said first distributed
cache module contains a prediction of a location of data 1n
said second cache of said second server.

12. The network of claim 7, wherein said logical timestamp
includes an n array where n 1s equal to a number of servers 1n
a context.

13. The network of claim 7, further comprising a rogue
server and a network attached storage, said first and second
distributed cache modules verity a file before transferring a
file from said network attached storage.

14. The network of claim 7, wherein said first cache
includes a first file block and said second cache includes a
second file block, said first distributed cache module requests
and retrieves said second file block from said second cache.

15. A method for transferring a message between a first
server that has a first cache and a second server that has a
second cache, comprising;

transmitting a message and a logical timestamp from the
first server;

recerving the message at the second server;

determining whether the second server has recerved all
preceding logical timestamps; and,

delaying a transfer of the message 11 the second server has
not recerved all preceding logical timestamps.

16. The method of claim 15, wherein the first server has a

cookie.

17. The method of claim 15, further comprising transmit-
ting from the first server a message with a self assigned
member ID to enter a context.

18. The method of claim 17, further comprising transmit-
ting from the second server to the first server a NACK mes-
sage with a suggested member ID.

19. The method of claim 17, further comprising transmit-
ting from the second server an ACK message and member IDs
for every server 1n a context.

20. The method of claim 15, wherein the second server
requests and retrieves a data file block located in the first
cache of the first server.

21-52. (canceled)

	Front Page
	Drawings
	Specification
	Claims

