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(57) ABSTRACT

The present invention provides techniques for transmitting
at least one signal through an element of a classification
system. One or more input signals are received at the
clement. One or more functional components are extracted
from the one or more mput signals, and one or more
membership components are extracted from the one or more
input signals. An output signal 1s generated from the element
comprising a functional component and a membership com-
ponent that correspond to one or more functional compo-
nents and membership components from one or more input
signals.
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FIG. 9

RECEIVE ONE OR MORL INPUT SIGNALS AT AN ELEMENT

FXTRACT ONE OR MORE FUNCTIONAL COMPONENTS
FROM THt ONE OR MORE INPUT SIGNALS

EXTRACT ONE OR MORE MEMBERSHIP COMPONENTS
FROM THE ONE OR MORE INPUT SIGNALS

"STORE A FIRST AND SECOND INTERNAL VALUE TN THE ELENENT THAT ]
(REPRESENT ThE FUNCTIONAL AND MEMBERSHIP COMPONENTS OF THE ELEMENT
COMPARE THE FIRST AND SECOND TNTERNAL VALUES 10 THE
FUNCTIONAL AND MEMBERSHIP COMPONENTS OF THE INPUT SIGNALS

GENERATE AN QUIPUT SIGNAL FROM THE ELEMENT HAVING A PUNCTIONAL

COMPONENT AND A MEMBERSHIP COMPONENT THAT CORRESPOND 10 THE

ONE OR MORE FUNCTIONAL COMPONENTS AND MEMBERSHIP COMPONENTS
FROM THE SUBSET OF ONC OR MORE INPUT SIGRALS
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FiG., 10

FIG. 11

COMMUNICATE SIGNALYS HAVING A FUNCTION COMPONENT
AND A MEMBERSHIP COMPONENT FROM EACH OF A
PLURALITY OF SOURCE LLEMENTS 10 AT LEAST ONE

DESTINATION LLEMENT IN THE NEIWORK OF ELEMENTS

~ 1102

GENERATE A NEW SIGNAL AT EACH DESTINATION
ELEMENT COMPRISING A FUNCTHION COMPONENT AND A
MEMBERSHIP COMPONENT THAT ARL DEPENDENT ON ONE -~ 1104
OR MORE FUNCTIONAL COMPONENTS AND MEMBERSHIP
COMPONENTS COMMUNICATED FROM SOURCE ELEMENTES

REPLAT BLOCKS 1102~-1104 UNTIL ONE OR MORE FINAL
DESTINATION ELEMENTS ARE REACHED, WHERLIN A SOURCL LLEMENT
IN A NEXT SUBSEQUENT ITERATION IS A DESTINATION ELEMENT IN p 1106
A CURRENT HIERATION, AND A COMMURICATED SIGNAL IN THE NGXi
TERATION IS A NoW SIGNAL IN THE CURRENT ITERATION
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METHODS AND APPARATUS FOR
TRANSMITTING SIGNALS THROUGH NETWORK
ELEMENTS FOR CLASSIFICATION

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application i1s a continuation of U.S. applica-
tion Ser. No. 10/955,141 filed on Sep. 30, 2004, the disclo-

sure of which 1s imncorporated herein by reference.

FIELD OF THE INVENTION

[0002] This present invention is related to techniques for
transmitting and classifying signals 1n a classification system
and, more particularly, for transmitting signals through a
network of classifier elements with functional and member-
ship components for classification purposes.

BACKGROUND OF THE INVENTION

[0003] In practice, a classifier receives a set of measure-
ments or features as mput, and assigns a category or class to
this set. Thus, the classifier determines the mapping between
an input set and a class. There are several types of classifiers,
including those that learn, such as, for example, neural
classifiers, and those that do not learn, such as, for example,
rule-based expert systems. Classifier learning may be super-
vised or unsupervised. With regard to supervised learning,
classes are pre-determined, and the classifier 1s trained on a
set of mput data with known classes. With regard to unsu-
pervised learning, the classes are not pre-determined, but
emerge from the properties of the distribution of the inputs.

[0004] Neural classifiers are based on analogies of the
functions of neurons. Each neuron 1s composed of three key
structural components: a dendritic tree, a cell body, and an
axon. The dendritic tree receives connections from other
neurons at junctions called synapses. The activity of those
neurons connected to the dendritic tree can cause changes in
the electrical properties of the dendrite. The effect that any
one connection has on the electrical properties of the den-
drite depends on the properties of 1ts synapse. These changes
in electrical properties propagate to the cell body where they
are 1ntegrated. If the integrated voltage exceeds a threshold,
the neuron propagates an output signal along 1ts axon, which
makes connections to the dendrites of other neurons. Thus,
cach neuron receives multiple mputs, which have varying
cllects on the integrated voltage 1n the cell body according
to the “strength™ of 1ts synapses.

[0005] To mimic the characteristics of neurons, most neu-
ral classifiers treat an mput as a real valued vector, where
cach dimension of the vector corresponds to a single con-
nection ifrom another neural classifier. For each of these
inputs, there 1s a corresponding “weight,” which 1s analo-
gous to the strength of the synapse. This set of weights can
be represented as a weight vector. To mimic the integrative
properties of the cell body, neural classifiers perform a
welghted sum of its 1inputs, which 1s equivalent to perform-
ing a dot product of the mput and weight vectors. To mimic
the threshold controlling the output of the neuron, the
weilghted sum 1s mapped by a non-linear activation function,
such as a sigmoid. This mapped value 1s considered the
output of the neural classifier.

[0006] The weights used in the computation of the neural
classifier can be either fixed or modifiable. When the
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weights are modified, they are done so 1n accordance with a
learning rule, which specifies a general method for the
modification. A commonly used learning rule 1s Hebb’s rule,
which strengthens a weight 11 the source and destination
neural classifiers are concurrently active.

[0007] The model of a single neural classifier described
above 1s also known as a perceptron. The 1nput to a percep-
tron consists of an N-dimensional vector of real values,
which can be considered a point in the N-dimensional input
space. The perceptron multiplies the input by an N-dimen-
sional weight vector that it possesses. The weight vector
defines an (N-1)-dimensional hyperplane that 1s normal to
the weight vector and that divides the mput space nto two
regions. The perceptron generates a positive response 1i the
point corresponding to the mput vector lies on one side of
the hyperplane and generates a negative response if 1t lies on
the other. A positive response indicates that the input belongs
to a first class, and a negative response 1ndicates that input
belongs to a second class. Consequently, a perceptron 1s
usetul for classification problems that are linearly separable;
that 1s, where the regions of the imput space corresponding
to two separate classes can be separated by a hyperplane. An
input dimension 1s considered to contribute to the output 1f
its weighted value 1s of the same sign as the response. The
significance ol individual contributing input dimensions
increases as the magnitude of their weighted wvalues
increases. Typically, perceptrons are not used 1n 1solation,
but connected together in networks.

[0008] It 1s possible to use perceptrons to classify non-
linearly separable regions of the input space as a single class.
This requires constructing a “multi-layer” network, where
perceptrons 1n the first layer receive the inputs from the input
space and produce intermediate classifications. These inter-
mediate classifications are used as inputs to a subsequent
“layer.” The outputs of the second layer may be considered
the overall classification output or they can serve as mputs
to subsequent “layers.” The number of layers 1s a design
parameter, where two 1s the most common choice, as 1t has
been shown that a sufliciently large, two-layer network 1s
functionally equivalent to networks with more layers. The
connectivity in the network 1s typically fixed, which means
that the connections among classifiers 1n the network are not
created, destroyed, or reassigned during the operation of the
network.

[0009] As an example of network organization, a biologi-
cally mspired network having a hierarchical organization of
classifier maps 1s described. A classifier map 1s a two
dimensional array of classifiers. The input to such a network
1s usually one or more two dimensional arrays of sensors.
Biologically inspired examples of inputs include light detec-
tors arranged 1n the retina and touch sensors embedded 1n the
skin. Each map 1s responsible for classifying one or more
attributes of the input arrays. For example, the mitial map of
the visual system takes inputs indirectly from the retina and
classifies the existence and orientation of edges of the visual
scene. Each classifier only considers visual information 1n a
limited region of the input space. Furthermore, nearby
classifiers 1n the output map typically have overlapping
regions of interest that are also proximately positioned in the
input map. This property establishes a “topographic” map-
ping irom the retina to the iitial visual system map.

[0010] 'Typically, classifier maps serve as inputs to other
classifier maps. This enables the integration of information
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from lower maps and the identification of combinations of
attributes and relationships 1n the input space. Furthermore,
every classifier output of a hierarchical map can be consid-
ered a portion of the network output. Such outputs could be
used to generate a response or behavior that 1s predicated on
the existence of combinations of attributes 1n the input
space.

[0011] Such hierarchical networks of classifiers, however,
have a fundamental limitation. In F. Rosenblatt, “Principles
of Neurodynamics: Perceptrons and the Theory of Brian
Mechanisms,” Spartan Books, Washington D.C., 1962, this
limitation 1s illustrated with the following example. Con-
sider a hierarchical network, as described above, with out-
puts that respond to the four following attributes of a visual
scene: 1) the presence of a square, regardless of 1ts location
in the input space; 2) the presence of a triangle, regardless
of 1ts location 1n the iput space, 3) the presence of a visual
object 1n the top half of the image, regardless of the nature
of the object; and 4) the presence of a visual object in the
bottom half of the 1mage, regardless of the nature of the
object. In further augmenting Rosenblatt’s example, first
consider that the network has an 1initial map that recerves the
sensory imput and generates a topographic response to
fundamental attributes, like line segments, and projects to
the classifiers for the four attributes described above. Sec-
ond, consider that this network has an additional output layer
that generates a behavior when a square exists in the top of
the 1mage.

[0012] This example network would clearly respond prop-
erly 1n each of the four cases where a single object 1s present
in the 1mage. When a square 1s present in the top of the
image, the desired behavior would be generated because
both attributes of the input space are recognized. When the
square 1s 1n the bottom or when a triangle 1s present 1n either
the top or bottom of the image no behavior would be
generated because the two required attributes (“square” and
“top”) are not simultaneously recognized.

[0013] When two objects are presented to the network,
however, an erroneous response can occur. In particular,
when a triangle 1s present in the top of the image and a
square 1s present 1n the bottom, both attributes required for
the behavior will be simultaneously present and the behavior
will erroneously take place. For example in von der Mals-
burg et al., “The What and Why of Binding: The Modeler’s
Perspective,” Neuron, Vol. 24, 95-104, September 1999, 1t 1s
observed that the classical neural network “ . . . has no
flexible means of constructing higher-level symbols by
combining more elementary symbols,” and that “coactivat-
ing the elementary symbols leads to binding ambiguity when
more than one composite symbol 1s to be expressed.”

[0014] Rosenblatt’s example only illustrates one half of
the current problem, the “superposition catastrophe.” A
related problem 1s “component discrimination.” Component
discrimination mvolves responding to the attributes that 1)
were originally recognized in different maps or map loca-
tions, and 2) gave rise to a higher level classification that
predicates the response. Both the “superposition catastro-
phe” and “component discrimination” problems can be
illustrated with the following example.

[0015] Consider a system that takes as its input an elec-
tronic representation of an image of a natural scene that
includes a tulip amid blades of grass. The tulip will be of
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fixed size and orientation, but can exist anywhere in the
image. The task of the system 1s to change the color of the
image pixels representing the contours of the tlower. This
task 1s to be performed by a fixed network of classifiers,
called the decision subsystem, that classifies the various
attributes and patterns 1n the visual scene and controls the
pixel coloring action.

[0016] The decision subsystem has the following proper-
ties. It includes “edge” classifiers that respond to edge
information at each pixel location. It possesses “contour”
classifiers that respond to contours in the image derived
from topographically-registered, co-oriented, and co-linear
edge classifier responses. It has a “tulip™ classifier that takes
the outputs of contour classifiers as mputs and generates a
positive response when a tulip 1s present anywhere in the
image. The tulip classifier may exist within a complex,
multi-layer, fixed sub-network of classifiers. The decision
subsystem must then direct the coloring means to the precise
locations of contour information in the 1mage that contrib-
uted to tulip recogmition.

[0017] This example illustrates both the superposition
catastrophe and component discrimination problems. It
illustrates the component discrimination problem because 1t
possesses each of the three requirements: 1) the system must
respond to the locations of edge classifiers, 2) these edge
classifiers are recognized in different locations of the edge
classifier map, and 3) the edge classifiers contribute to
contour classifiers. It also illustrates the superposition catas-
trophe problem because the decision subsystem must
respond when an edge 1s recognized at a pixel location, the
edge 1s such that 1t contributed to a tulip classification, and
other edges corresponding to grass blades are also present.

[0018] This tulip contour coloring problem statement pre-
cludes common techmiques that alter the relationships
among image pixels and processing elements during the
course of tulip recognition and coloring response. Since
there 1s no means to interact with the natural scene, 1t 1s not
possible to pan a camera across the scene to translate the
pixel mformation for location constrained classification.
Furthermore, since the network 1s fixed, it 1s not possible to
use indirect addressing 1 a computer with random access
memory to perform operations, such as convolutions. Cre-
ating networks that could respond to every combination of
attributes would be 1ntractable.

[0019] There 1s one traditional approach that could, theo-
retically, solve the superposition catastrophe and component
discrimination problems, and our combined exemplar, the
tulip coloring problem. To be specific, networks of spiking
models of neurons can exploit spike timing differences to
modulate the eflects of lower level classifiers on higher level
classifiers. Spike models of neurons connected 1n a network
could create synchronized firing patterns that would perform
both classification and prevent higher level neurons from
responding to lower-level neurons that are sufliciently
unsynchronized. This would, for example, enable tulip con-
tour coloring classifiers to 1gnore contours emanating from
grass blades. Modeling classifier networks at this level of
timing resolution, using the temporal dynamics of neurons,
requires aggregations of spiking inputs produced by
ensembles of classifiers to replace a single classifier that
communicates and uses timing information at a higher level
ol abstraction. Modeling networks using spiking responses
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and the temporal dynamics of neurons would require many
orders of magnitude more computation and communication
than models at higher levels of abstraction. This would be
computationally tractable for only very small problems.

SUMMARY OF THE INVENTION

[0020] The present invention relates to the transmission of
signals through a network of classifier elements and, more
particularly, to the generation of a response or action that 1s
based on functionally related representations of attributes of
an 1nput space and 1s independent of non-functionally
related attributes. This 1s referred to as the “coherent sub-
strate response.” The present invention provides techniques
that establish functional relationships among classifiers in a
network. The embodiments of the invention also introduce a
novel “function/membership” classifier that enables highly

cllicient establishment of functional relationships across a
network.

[0021] For example, in one aspect of the invention, at least
one signal 1s transmitted through a element of a classifica-
tion system. One or more input signals are received at the
clement. One or more functional components are extracted
from the one or more mput signals, and one or more
membership components are extracted from the one or more
input signals. An output signal 1s generated from the element
comprising a functional component and a membership com-
ponent that correspond to one or more functional compo-
nents and membership components from one or more input
signals.

[10022] In an additional embodiment of the present inven-
tion, signals are transmitted i a network of elements.
Signals are communicated from each of a plurality of source
clements to at least one destination element 1n the network
of elements. Each signal comprises a functional component
and a membership component. A new signal 1s generated at
cach destination element comprising a functional compo-
nent and a membership component. These components are
dependent on one or more functional components and mem-
bership components communicated from one or more
respective source elements. The steps of communicating
signals and generating a new signal are repeated until one or
more final destination elements are reached. A given source
clement 1n a next subsequent 1teration comprises a destina-
tion element 1n a current iteration, and a communicated
signal 1 the next subsequent iteration comprises a new
signal 1n the current iteration.

[10023] Solving the coherent substrate response problem
involves establishing a coherent substrate and then gener-
ating a response or action. Advantageously, the embodi-
ments of the present invention solve the problem by creating,
a coherent substrate of classifiers. Further, the embodiments
of the present invention preserve the sparse connectivity of
traditional classification networks while performing
extremely complex classification tasks dependent on the
outputs of all the other classifiers 1n the network. The
embodiments also enable the computation of multiple, 1nde-
pendent classifications in parallel within the same network.

10024] Further advantages include the enablement of the
formation ol consistent subsets of classifiers (classification
sub-networks) subject to the constraints imposed by the
network designer or a selif-organizing process. The embodi-
ments of the present mvention also enable competition
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among self-consistent classification sub-networks, which
can be used to form the basis of the classification network
output or response.

[0025] These and other objects, features, and advantages
of the present invention will become apparent from the
following detailed description of illustrative embodiments
thereof, which 1s to be read in connection with the accom-

panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[10026] FIGS. la-1le are diagrams illustrating a current
pulse and the eflect of incoming pulses on a period of a
receiving element, according to a first embodiment of the
present 1nvention;

[0027] FIG. 2 i1s a diagram illustrating a relationship
between an 1iteration number and a time interval, according
to a first embodiment of the present imnvention;

[10028] FIG. 3 1s a diagram illustrating a weighting func-

tion for integration ol inputs, according to a first embodi-
ment of the present invention;

10029] FIG. 4 1s a diagram 1illustrating interacting classifier
clements, according to a second embodiment of the present
invention;

[0030] FIG. 5 1s a diagram illustrating a phase-locking
phenomenon of classifier elements, according to a second
embodiment of the present invention;

[0031] FIG. 6 1s a graph illustrating a phase update func-
tion, according to a second embodiment of the present
invention;

10032] FIG. 7 1s a chart illustrating integrate-and-fire
model synchronization, according to a third embodiment of
the present invention;

10033] FIG. 8 1s a diagram illustrating a division of inputs
into an FM element, according to an embodiment of the
present 1nvention;

10034] FIG. 9 i1s a flow diagram illustrating a signal
transmission methodology through a classifier element of a
classification system, according to an embodiment of the
present 1nvention;

[0035] FIG. 10 1s a diagram illustrating a network of FM

classifiers, according to an embodiment of the present inven-
tion;

10036] FIG. 11 is a flow diagram illustrating a signal
transmission methodology in a network of classifier ele-
ments, according to an embodiment of the present invention;

10037] FIG. 12 1s a diagram illustrating a result of a
classification method, according to an embodiment of the
present 1nvention;

[0038] FIG. 13 is a diagram illustrating a result of syn-
chronization between two networks, according to an
embodiment of the present invention;

[0039] FIG. 14 1s a diagram 1llustrating synchronization of
pulses, according to an embodiment of the present
invention;
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[0040] FIG. 15 is a diagram illustrating an evolution of
active elements 1n an mput layer of a phase model, according
to an embodiment of the present invention;

[0041] FIG. 16 is diagrams illustrating a role of feedback

in a phase model, according to an embodiment of the present
invention;

10042] FIG. 17 is diagrams illustrating synchronization
without function/membership wvalues, according to an
embodiment of the present invention;

10043] FIG. 18 is a diagram illustrating a coherent sub-
strate problem, according to an embodiment of the present
invention;

10044] FIG. 19 1s a flow diagram illustrating a coherent
substrate interface methodology, according to an embodi-
ment of the present invention; and

10045] FIG. 20 1s a diagram illustrating an illustrative
hardware implementation of a computing system 1n accor-
dance with which one or more components/methodologies
of the present invention may be implemented, according to
an embodiment of the present invention.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

L1
=y

ERRED

10046] The following description will illustrate the inven-
tion using an exemplary data processing system architecture.
It should be understood, however, that the invention 1s not
limited to use with any particular system architecture. The
invention 1s mstead more generally applicable to any clas-
sification system in which 1t 1s desirable to perform signal
transmission and classification through machine learning
and pattern recognition.

10047] As will be illustrated in detail below, the present
invention introduces techniques for transmitting and classi-
tying signals 1n a classification system and, more particu-
larly, for transmitting signals through a network of elements
with functional and membership components for classifica-
tion purposes.

10048] The embodiments of the present invention com-
prise the following key components: a set of input values, a
set of classifiers, a network configuration for the classifiers,
a means to produce a response or action, and possibly a
target apparatus to apply the action. A classifier may be
referred to herein as a classifier element or simply an
clement. There are many potential embodiments for each of
these components, some of which must be tailored to the
intended class of applications.

[0049] In order to solve the problems described above,
particularly those 1illustrated in the tulip classifier example,
a means for maintaining the implicit relationships between
the attributes of a stimulus 1s required as those attributes are
decomposed and classified by distributed maps. This implies
a feedforward signaling of relationships that exist in the
input. Solving the discrimination problem further requires a
means for establishing a relationship among components
that contribute to a classification. This implies a feedback
signaling of relationships from the classifier to the compo-
nent classifiers. Finally, this feediorward and feedback sig-
naling would only be useful for binding attributes together
if inputs with different signals are treated differently and
unrelated attributes do not share common signals.
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[0050] Conceptually, this feedforward and feedback sig-
naling eflectively partitions the network 1mto unambiguous
classifier subnetworks, where the members of each classifier
subnetwork share “functional relationships™ with each other.
Functionally related classifiers signal that they are related to
cach other and their classifications are consistent with each
other. Their classifications are consistent if the weighted
inputs to a classifier from other classifiers 1n the same
subnetwork contribute to the classifier’s output. Two clas-
sifiers have a simple functional relationship to each other 1f
they share a direct connection, the response of one contrib-
utes to the response of the other for the specific input pattern,
and they both signal that they are related to each other. Two
classifiers have a complex functional relationship 1t there 1s
no direct connection between them, but there 1s a chain of
simple functional relationships that transitively connect
them for the specific input pattern. To have a functional
ellect, classifiers that do not have a simple or complex
functional relationship to the classifiers generating the
response of the system must have a diminished or negligible
cllect on the response of the system.

[0051] The conceptual foundation of the function/mem-
bership classifier 1s conditional classification. Like other
classifiers using vectors of real values as inputs, conditional
classifiers determine the extent that an input belongs to one
class or its complement. Traditional, non-conditional clas-
sifiers, like a perceptron, perform the classification based on
all dimensions of their input vectors and each nput 1s treated
as having equal significance to the weighted sum used for
classification.

[0052] In contrast, conditional classifiers independently
modulate the significance of each dimension of the input
vector, prior to performing the weighted sum, according to
a predicate applied to each mput dimension. The predicate
that will be used 1n the function/membership classifier 1s a
dynamic measure of the extent that a classifier acting as an
input to another classifier shares a functional relationship
with the other classifier. Thus, 1t 1s as though each input
dimension has two weights applied to 1t, the conventional
weight, such as one 1n a perceptron, and a modulating
weight, whose strength 1s a function of a dynamic measure
of the functional relationship between the mput and receiv-
ing classifiers.

[0053] The function/membership classifier (referred to
herein as “FM classifier”), 1s similar in 1ts core character-
istics to a perceptron. Like a perceptron, 1t performs a
weilghted sum of its “functional” mputs and maps this value
to 1ts “functional output” using a non-linear activation
function. The “functional” mnputs are those that pertain to the
function of the classifier, which 1s classification. A scalar
value or a product of a scalar value and a computed value
may be applied to each of the functional mputs.

[0054] The FM classifier differs from the perceptron in the
information 1t communicates to other FM classifiers. In
addition to the functional information the perceptron con-
veys, the FM classifier also conveys “membership” infor-
mation. Consequently, each FM classifier input dimension,
in the nominal case, has two attributes, a functional value
and a membership value. Each FM classifier also produces
an output with these two attributes.

[0055] The membership value produced by an FM classi-
fier 1s that classifier’s “membership value.” This value 1s
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typically imtialized to a unique or rare, randomly generated
value within a prescribed range. The difference between an
input dimension’s membership value and that of the receiv-
ing classifier 1s a measure of the “functional relationship™
between the classifier corresponding to the mput dimension
and the receiving classifier.

[0056] The membership value differences are used for two
key purposes. The first 1s to modulate the eflect of the
functional value of an mput dimension. Typically, the more
similar the membership values, the larger the eflect. Con-
versely, the larger the difference, the smaller the effect. Thus,
the eflect two mmput dimensions with the same functional
value have on the functional output of the classifier will vary
if their corresponding membership values differ from the
membership value of the receiving classifier by different
amounts. An input dimension with a sufliciently large mem-
bership value diflerence can render the receiving classifier
“blind” to the functional value of that dimension.

[0057] The second use is to alter the membership value of
the receiving classifier. This 1s typically done by making the
membership value of the receiving classifier more similar to
the membership values of its input dimensions weighted by
their significance. The significance of each input dimension
1s a function of both the functional value and the member-
ship value difference for that dimension.

[0058] Three classifier embodiments of the present inven-
tion are disclosed. The first and preferred embodiment
implements the functional and membership values as the
amplitude and the timing of discrete pulses. The second
embodiment uses the amplitude and the continuous phase of
an oscillator to implement the FM values. In both the first
and second embodiments the update equations for the mem-
bership value (timing, phase) are a function of the difference
between the membership value of a classifier element and
that of the mput signal provided by another classifier ele-
ment. The third embodiment implements the functional
value as the average number of discrete pulses generated by
a spiking element over a small window of time, and the
membership value by the timing of those pulses. In contrast
with the first two embodiments, the third embodiment does
not utilize the membership difference between receiving
clements and input elements to compute the receiving ele-
ment membership value, and thus 1s qualitatively different.

[0059] In the first embodiment of the classifier element,
timing 1nformation of signals processed by the element 1s
modeled mathematically as follows. The output of a classi-
fier element 1s denoted by S;(t), where j 1s an index indicat-
ing the specific element. It 1s assumed that S.(t) 1s con-
structed from two classes of waveforms. One 1s pulsatile and
nearly periodic, and the other i1s nearly constant within the
period of the pulsatile wavetorm. The underlying reason for
modeling the signals 1n this way 1s that the model 1s intended
to represent the aggregate behavior of a collection of neu-
rons, and the eflect this collection has on another collection
of neurons. Though the preferred embodiment 1s described
with reference to these two classes of wavetorms, the
analysis technique can be extended to multiple classes of
wavelorms 1n the spirit of this invention.

[0060] When S.(t) 1s represented as a nearly constant
value, the amplitude of the signal will be interpreted as the
functional value of the classifier and the signal will be
interpreted to be without a membership value. When S.(t) 1s
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represented as a pulsatile wavetform, the amplitude of the
pulses will be interpreted as the functional value of the
classifier element, and the timing of the pulses can be

interpreted as the membership value of the classifier ele-
ment.

[0061] This embodiment of the classifier element consists
ol a computer program which proceeds 1n 1terative steps that
correspond to a time interval of a fixed duration. The
duration between pulses emitted by an element 1s not fixed.
In each iterative step the eflect of the iputs to a classifier
clement that arrive within the corresponding time interval 1s
computed. S.(t) may be characterized for each iterative step
with an estimate that has both pulsatile and constant wave-
form components, as represented in FIGS. 1a-1e.

[0062] Referring initially to FIG. 1a, a diagram illustrates
a current pulse, as denoted by A along time t. Incoming
pulses are shown in dashed lines denoted by B and C. FIG.
15 1llustrates several incoming pulses with arrows repre-
senting their times.

[0063] Let S.(t) be parameterized by y, T, and p, and
defined over the iteration time intervals indexed by n:

Sj,n(r)=ﬁ le.,.nP(IJ T_rj:.n)_l_ﬁEpj Rl

where P(.) describes the pulsatile component, T, , denotes
the reference time of the pulsatile component (which 1s
nominally the center of the pulse), y. €(0,1) denotes the
amplitude of the pulsatile component, and p; ,€(0,1) denotes
the amplitude ot the constant component. The values [3, and
3, are arbitrary constants.

[0064] The pulsatile component P(t,T) 1s a pulse-shaped
function of time defined relative to T and varies from zero
to one. It 1s assumed that each classifier element j has a
natural period T, describing the time required for puts to
propagate through the classifier element and generate the
output signal S;(t). This signal also gates and shapes the
contribution of imcoming signals for the creation of a sub-
sequent pulse. As shown in FIG. 1¢, a diagram 1illustrates a
modulation of the amplitude of each arrow representing
incoming pulses by the pulse shape of the receiving element.
Inputs are weighted according to their temporal proximity
with the classifier element’s reference time. In this way,
within the time interval of an 1terative step, mputs arriving
near the reference time of the element have maximal eflect,
whereas the eflect withers for arriving times away from the
reference time.

[0065] Formally, any function that satisfies the following
requirement 1s a candidate for modeling P(t,T): for each
classifier element j at interval n, there exists 0 a such that

T.
0<6< EJ and [t —=T;,| >6=20< P, T;,) <=,

where 0=e<l1 1s an arbitrary limiting value to be chosen as
a parameter. For example, choosing e=0 implies that for an
arrival time sufliciently distant form the reference time, the
cllect of the mput will be null. For analytical and compu-
tational reasons, the following models P(t,T):

P(1.T)= E—(t—T)EHEUZ
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The index n enumerates successive intervals, as 1llustrated 1in
more detail in FIG. 2. For each classifier element j, the n™
interval 1s:

L, ¥
Tj,n—l + 3, Tj,n + 3)

Note that y; | can equal zero in this model, indicating that no
pulse occurred within time interval n. In this case, the
interval cannot be defined relative to the pulse reference
time and 1s therefore defined relative to the previous refer-
ence time:

The means for computing the signal parameters for the
classifier elements will now be presented.

[0066] Referring now to FIG. 1d, a diagram illustrates a
current pulse and a net time shown by a heavy arrow.
Connections from a source classifier element to a destination
clement possess a weight which 1s used to multiply an mput
signal from a source element. The following constraints are
imposed on the weights. Let w; . _ be the weight of the i
input to the i™ classifier element during the n™ interval. Let
N be the total number of 1nputs received by this element. A
welght vector 1s defined as consisting of the weights of the
inputs for any interval n as follows: W, =(w;: ,..., w

, Wi n)- Lhe weight vectors are mitialized such that they
have unit norm, |W. |=1V},n, and are uniformly distributed
on the surface of the N-dimensional hyper-sphere of radius
1. (A hyper-sphere 1s a generalization of a sphere, and in N
dimensions 1s the locus of points that are equidistant from

the center of the sphere).

1,],1°

[0067] All classifier elements are assumed to generate
spontaneous noise under quiescent conditions; that 1s,
S.(t)=q under quiescent conditions, where q 1s a global value
that represents the level of the spontaneous noise. In S, (1)
of equation (1), this corresponds to setting v; =0 and p; =q.
Synapses adapt to this quescent signal by eflectively sub-
tracting 1t from the input signal.

[0068] FIGS. 1a-1e are referred to in order to understand
the eflect that input signals can have on a classifier element.
Referring now to FIG. 1e, a diagram illustrates the change
ol a period or interval duration of the receiving element after
the affect of the incoming signals. Further, FIG. 2 illustrates
the relation between the iteration number and the corre-
sponding time interval.

[0069] For each classifier element j, the intrinsic interval
duration T; represents the interval duration when the classi-
fier element 1s not aflected by other signals. Initially, this
duration 1s randomly selected 1n a range such that for every
other classifier element 1 that 1s connected to element 3, there
will always be precisely zero or one reference time
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T T iopo U
E,mi = -1 + 35 5.n + 3

regardless of the interval adjusting effects of the inputs to
classifier element j. For this preferred embodiment, T, was
chosen to fall between 23 and 27 milliseconds, and the
iteration time step was 16.67 milliseconds. The contribution
i m—jn 0f @ pulse m; from classifier element 1 to pulse n of

classifier element j 1s zero, unless the following condition 1s
satisfied:

J j
AL jm; € |Tjn-1+ 5 Tjn + —),

in which case
'be,mf—}j,n — szfm(gi,mi (I) - QJP(I:' Tj,ﬂ)fﬂr

This reduces to the following expression with the proper
choice of constants:

2

T .- T )
+ﬁi,m1‘ — 4

(it
wi,mf—}j,n: ijE,mE‘E 20

The value of T;  1s computed as a tunction of the amplitude
and timing of pulses received from the set of inputs. Since
the nearly constant component of the time-shifting inputs
does not influence 1. , the contribution of the timing of a

pulse m from classifier element i to T.  can then be defined
as:

lp TSi,miﬁ* ] ,11=1p im—=j.n wij pi,rni
where wTSi,mi—:-j,n 1s used to weight the time difference
between the mput pulse and the windowing pulse in the
computation of T; . This weighting process 1s illustrated in

FIG. 3. For any pulse n of classitier element j, T,  , can now
be described as tollows.

(Tin+7;, if vjn=0
L= TS
Tine1 =< > Wl inTim = Tin) |
Tin+ = +7;, otherwise

.

Note that the timing of the pulse 1s aflected by the term
(T, m, j.n)» Which 1s the difference ot the membership values
of the mput signal and the receiving element. The pulse
shape of the receiving element has been used to adjust the
contribution of the inputs, which 1s why this embodiment
exhibits the operation of an FM classifier element.

[0070] In addressing the computation of y, ., and p, .,
1.¢., the functional components of the signal, the notion of
classes of inputs, such that one class of mputs affects the
functional component and the timing information, and
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another class aflfects the timing information and the func-
tional component 1n a different manner must be mtroduced.
For instance, a class called ‘feed-forward” mnputs aflect
timing and generates the functional component of the signal,
while a second class called ‘feedback’ mputs aflects the
timing information, but only modulates the pulsatile com-
ponent of the functional value by means of a “feedback
gain” factor. Thus, for computation of y, ., and p. _,, the
total functional 1nput 1s defined as

TF
'ub_,r',n — Z wi,miﬁj,n

iefF

and the feedback gain i1s defined as

BG
(1 _ wmm)z wi,?ﬂj—}j,ﬂ
BC BC icFb
l’bj"” - w.l’;:”_l + FB

max

where ¢ _ " is the maximum total feedback input mea-

sured for minicolumn j as an autoregressive average of
teedback mput totals that exceed the current maximum, and

Y. " is chosen to be the minimum desired feedback gain.

[0071] Then, the amplitudes of the pulsatile and constant
components are computed as:

r‘ Yin+tl = ﬂ'(lﬂTi ' BE:- &, 18)
T P it die FF.pim >q
X £in+l =0

( Yintl = 0 _
< E otherwise
Pjn+l = TW 5, @, B)

where o(x,0.,,)=(1+e"**"P)~! i5 a sigmoid function param-
cterized by a and {3. In the embodiment:

where {___ " is the maximum total functional input mea-

sured for minicolumn j as an autoregressive average of
functional 1mput totals that exceed the current maximum.

[0072] Inthe second embodiment of the classifier element,
the amplitude and phase of an oscillator are used to 1mple-
ment the FM values. Thus, interactions between elements
are not represented 1n terms of signal timing, but 1n terms of
the phase of the signals, which 1n contrast with the previous
embodiment are constantly compared and updated. Each FM
clement 1s an oscillator with the following variables:

[0073] Phase: 6(t)e[0,2m)
[0074] Frequency: T(t)
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[0075] T

IT1ax ]

Natural Frequency: t,€[T

[0076] Amplitude: p(t)e[0,1]

The amplitude p can be considered to be the functional

value of the classification. The phase 0 of the classifier
clement 1s considered to be its membership value. The
relationship between the phase of the input element and
that of the receiving element plays a role in the com-
putation of the output as follows.

[0077] Referring now to FIG. 4, a diagram illustrates a
first classifier element interacting with a second classifier
clement. Classifier elements interact with each other by
communicating their phase and amplitude. Each element
then adjusts 1ts own phase, amplitude and period based on its
previous state and all the mputs 1t receives.

[0078] Referring now to FIG. 5, a diagram 1llustrates a
phase-lock phenomenon, according to an embodiment of the
present imnvention. The desired behavior of a collection of
connected classifier elements 1s to achieve the phase-lock.
Initially there 1s a wide variability in the phases of all the
classifier elements. After phase-lock, the classifier elements
possess an 1dentical phase.

[0079] The final phase-lock 1s a consequence of the man-
ner in which the phase, amplitude and period updates are
carried out. Each unit adjusts its phase based on its current
period and the centroid of the incoming phases. The period
1s adjusted based on this phase change and a relaxation to 1ts
natural period. The amplitude 1s adjusted based on an
adaptation term and a combination of incoming amplitudes
weilghted according to their phase coincidence.

[0080] The following are equations that describe the evo-
lution of the three vanables p(t), 0(t) and ©(t) for each unat:

where p.'(p.") is the amplitude of the i-th unit in the input
(upper) layer, 6." is the phase, T." the period, p,~ is the
amplitude of the 1-th receptor unit, winiO 1s the connection
strength between the j-th receptor unit and the 1-th input unit,
w; °Z0 is the strength of the connection between the j-th

unit of the upper layer and the 1-th unit of the mput layer, o
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is a monotonic function of its input, 6, =6,"-8,", and ®()
1s defined as:

Bx) = {sin()fx) if |x|<2x/y

0if x| =27/

The objective 1s to create an “attraction™ zone for similar
phases, and a “repulsion” zone for more distant phases, up
to a limiat (27t/y 1n this case) above which phase diflerences
are 1rrelevant.

[0081] Referring now to FIG. 6, a diagram 1illustrates a
phase update function, according to a second embodiment of
the present invention. As shown, as an alternative, the
function can be defined as ®(x)=sin(yx)e P 2-1" such
that the parameters allow for only one positive peak. The

horizontal axis of FIG. 6 1s measured in radians where v=3.0
and 3=10.0.

[0082] Note that the output of the receiving element is
affected by the term 0,;"=0."-0,, which is the difference of
the membership values of the input signal and the receiving,
clement. The phase of the receiving element has been used
to adjust the contribution of the inputs, which 1s why this
embodiment exhibits the operation of an FM classifier
clement.

|0083] The nature of the coupling between two classifier
clements possessing different phases 1s examined, according
to the set of equations described above. It 1s assumed that the
periods of the two classifier elements are close to each other.
It 1s 1important to create a distance measure between two
phases, for example, 0,, and 0,. The reason for this being
that the interaction between two classifier elements 1s a
function of this distance measure.

[0084] Let 0,, be the difference between two phases, such
that 0,,=0,-0,. Note that 0,, 1s a circular vanable, 1.c.
0,,=(0,-0,)mod 2m. The proper numerical handling of a
circular variable implies several steps of logic. Instead, for
computational ease, the quantity sin(0,,) 1s used as a mea-
sure of the distance between two phases. The sin function 1s
well-behaved and does not exhibit discontinuities. In addi-
tion to using the sin function, the distance between two
phases 1s weighed by a windowing function of the distance,
which could be defined either 1n a piece-wise manner or a
continuous manner. The rationale for doing this 1s to reduce
the effect of inputs that large phase differences have on the
target phase. In this way, the target phase moves towards the
“centroid” of the incoming phases, weighted by their syn-
aptic weights and their amplitudes, as well as being propor-
tional to the target amplitude, such that inactive elements do
not lock-in. In the absence of input, the classifier element
tends to evolve according to 1ts own period.

[0085] The notion of membership function can now be
formally defined. For two elements to be phase-locked the
average phase diflerence between them 1s required to remain
constant over a small time window. More precisely, 0, ,(t)=
0,()-0, ()], ~*"~O where n is a small integer (e.g., 5) and

T=(T,; 1s the average natural period of the ensemble of
clements. In other words, the elements are phase-locked if
their mnstantaneous phase difference remains constant after a
tew complete cycles, which will discard phase coincidences.
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Hence, two or more phase-locked elements are considered to
have the same membership value, as long as their phase
difference 1s within a specified range. The precise range
chosen 1s a parameter that depends upon the implementa-
tion. In this embodiment, the range for the phase difference
was chosen to be 0.1 radians. In a more general setting,
however, a range will not be required and a fuzzy member-
ship function can be constructed for phase-locked elements
as 0=m=0/2n=1, so that the formalism of fuzzy set theory
can be applied to construct relationships between all the
phase-locked elements.

[0086] In the third embodiment of the classification ele-
ment, a model that does not require the comparison of the
incoming membership value with the receiving element’s
own membership value 1s used. The method operates as
follows:

[0087] An input layer consisting of receptors measures
some property of the input.

[0088] A layer (layer a) of integrate-and-fire model
neurons receives inputs from the receptor layer, whose
membrane potentials, in absence of other classes of
iputs, are described by:

Vil(O=-g Vi (O)+cl()+€,(0)

where g 1s a leakage term, I. 1s the corresponding receptor
iput value, K 1s a proportionality factor (usually the
inverse of the capacitance), and €. 1s a stochastic pro-
cess with zero temporal average. When the membrane
potential reaches a specified threshold, the neuron fires
a spike and 1ts membrane potential 1s reset to 1ts resting
value, so that if V. (1)2V, =s.7(1)=1, V. (1)=V oth-
erwise s.°(t)=1.

[0089] A layer (layer b) of integrate-and-fire model
neurons receives spiking mput from the previous layer,
such that:

Vi) = —gVEW0 +py web (e —s3(0) + &0
/

[0090] where u is a constant and w;; =0 is the strength
of the connection between unit 1 1n layer a and unit 1 1n
layer b. Notice that the intensity of the spikes 1s
uniform for all elements 1 layer a, and their eflect on

the receiving element 1s only modulated by the weights.

[0091] A set of reciprocal connections exist between
layer b and layer a, such that wijbaio and Wijb%O §il
Wijbab-o. The effect of these feedback connections (here-

after termed resetting) on layer a 1s different from the
ellect of layer a connections on layer b. This resetting
ellect 1s described as follows: whenever the total reset-
ting 1mput 1into an element of layer a reaches a specified
threshold, the element resets 1ts membrane potential as
if 1t had just spiked,

WS = s50) = Fiy = Vi) = Va,
J
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where 1 and F,, are constant and s;°(t) is defined as in
layer a.

10092] Referring now to FIG. 7, diagrams illustrate syn-
chronization in the integrate-and-fire model, according to a
third embodiment of the present invention. By virtue of the
resetting feedback, elements in layers a and b that are
reciprocally connected display synchronicity of their spiking
activity, therefore labeling them without the need of a
connectivity trace-back. The top panel represents the histo-
gram ol spiking activity in the input layer without feedback,
and the bottom panel represents the histogram of spiking
activity 1n the input layer with feedback.

10093] Conceptually, FM classifiers are more general than
the prior description suggests. An FM classifier can receive
input information from other classifiers, sensors, control
signals, and signals used for other purposes. Some of these
signals will have both functional and membership values.
Others may have one or the other. For example, sensors may
not have membership information. As described above,
some 1nput information will be used for computing classi-
fication or functional relationships. However, some infor-
mation might be used for other purposes, such as learning.
Furthermore, the role that each mput dimension has for
computing the functional and membership values of the
receiving classifier may vary. For example, feedforward and
teedback mput mnformation may have diflerent eflects on the
output values and function of the classifier. Thus, FM
classifiers can be far more complex than the Perceptron-
based description above.

10094] FM classifiers can be used within a network to
establish a coherent substrate of functionally related
attribute representations. A network, in this case, refers to a
possibly large set of FM classifiers, where the outputs of a
subset of classifiers are used as input dimensions of others.
Classifiers within these networks can be densely or sparsely
interconnected. They may have highly structured patterns of
connectivity, like hierarchical maps, or they may be random.
By modulating the effects of functional inputs according to
differences 1n membership values, the membership values of
FM classifiers in these networks will tend to converge 1f
there 1s a functional relationship. If there 1s no functional
relationship, the membership values will evolve indepen-
dently. As mentioned above, input dimensions with suil-
ciently disparate membership values will be 1gnored by the
receiving classifiers.

[0095] The mechanisms described in the previous para-
graph for evolving and using membership values will lead to
one or more subnetworks of classifiers with similar mem-
bership values. These subnetworks will, for the most part, be
tfunctionally independent of each other. By adding additional
mechanisms, such as making the membership values more
dissimilar 1f a particular input dimension 1s not contributing
to the classifier output, it 1s possible to achieve stronger
partitioning of the network into subnetworks, where each
subnetwork 1s functionally independent of the others, but
where each of the classifiers within a single subnetwork 1s
functionally related to others in that subnetwork.

10096] Conceptually, the coherent substrate creation pro-
cess lirst assigns each classifier to its own network partition
or subnetwork. Then, through a cooperative process it
merges functionally related partitions together until con-
straints or a lack of functional related activity limits the
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extent of the mergers. In this way, the partitions assign
membership labels to their classifiers, so that 1t 1s possible to
read out those labels and 1dentily all the classifiers of any
given functionally related partition.

[0097] It is now possible to describe the use of a coherent
substrate of functionally related attribute representations to
generate a response or action. The primary requirement 1s
that there exist a means coupled to a response or action that
can acquire a membership value of a functionally related
subnetwork and then generate an output based on outputs of
the classifier network that have been modulated by the
differences between their membership values and the mem-
bership value of the subnetwork of interest. The simplest
means for performing this role 1s an FM classifier.

[0098] Thus far, three embodiments of an FM classifier
clement have been described. A network organization of
pulse-timing elements 1s now described that allows these
clements to form a coherent substrate. There are two 1mpor-
tant 1ssues that must be addressed in the creation of net-
works: the ability to treat inputs as arising from subsets or
classes of sources, and the ability to learn the weights of
connections.

[0099] Referring now to FIG. 8, a diagram illustrates a
division of mputs 1 an FM element into two different
subsets, according to an embodiment of the present mnven-
tion. In order to create flexible networks that can be used for
a variety of tasks, the notion of classes of inputs 1s intro-
duced. Each mdividual input belongs to an input class. For
instance, this embodiment uses two input classes: FF or
“feedforward,” and FB or “feedback.” As will be shown
below, mputs within a given class have the same computa-
tional role within the receiving classifier. Furthermore,
inputs within different classes perform different computa-
tional roles. Thus, feedforward and feedback inputs are
treated differently by the recerving classifier.

[0100] Referring now to FIG. 9, a flow diagram illustrates
a signal transmitting methodology through an element of a
classification system, according to an embodiment of the
present mvention. In block 902, one or more 1mput signals
are received at the element. In block 904, one or more
functional components are extracted from the one or more
input signals. In block 906, one or more membership com-
ponents are extracted from the one or more 1nput signals. In
block 908 a first and second internal value are stored 1n the
clement representing the functional and membership com-
ponents of the element. The first and second internal values
correspond to the functional and membership components of
the mput signals. In block 910, the internal values are
compared to the functional and membership components of
the mput signals. In block 912, a subset of the iput signals
are selected based on this comparison. Finally, in block 914,
an output signal 1s generated from the element having a
functional component and membership component. The
functional component and the membership component cor-
respond to the one or more functional components and
membership components from the subset of the one or more
input signals.

[0101] Referring now to FIG. 10, a diagram illustrates a
network of classification elements, according to an embodi-
ment of the present invention. Each element 1s represented
by 1ts functional value F and membership value M. Feed-
forward connections are shown 1n solid lines, and feedback
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connections are shown 1n dashed lines. Within each map, the
classifier element receives feed-forward connections from
lower-level maps and feedback connections from higher
level maps. A key aspect of this mmvention i1s that the
receiving element 1s capable of differentiating between
different subsets of 1nputs that i1t receives. Traditional clas-
sifiers such as neural networks do not make such a distinc-
tion. For instance, one can design an FM element such that
the feed-forward connections aflect both the amplitude and
timing of the output pulses, whereas the feedback connec-
tions ailect only the timing of the output pulses. With such
a choice of the connectivity pattern, one can create hierar-
chical maps that are able to functionally relate attributes 1n
low-level maps with attributes 1n higher-level maps. Alter-
nate connectivity patterns and eflects can be used as well
within the scope of this invention, such as having the
teedback connections aflect both the functional value and
the membership values, but in a different manner than
teed-forward connections do.

10102] Referring now to FIG. 11, a flow diagram illus-
trates a signal transmission methodology in a network of
clements, according to an embodiment of the present inven-
tion. In block 1102, signals from each of a plurality of source
clements are communicated to at least one destination
clement 1n the network of elements. Each signal comprises
a functional component and a membership component. In
block 1104, a new signal 1s generated at each destination
clement comprising a functional component and a member-
ship component that are dependent on the one or more
functional components and membership components com-
municated from the one or more respective source elements.
Finally, in block 1106, the steps of communicating and
generating are repeated until one or more final destination
clements are reached. A given source element 1n a next
subsequent iteration comprises the destination element 1n a
current iteration, and a communicated signal in the next

subsequent 1teration comprises the new signal 1n the current
iteration.

10103] Referring to now to FIG. 12, a diagram illustrates
the result of applying the classification method, according to
an embodiment of the present invention. The details of the
connectivity pattern between the hierarchical maps used 1n
the preferred embodiment of the network will now be
described. At the lowest lhuerarchy level there are two maps,
termed V1L and V1R and consist of maps of FM classifiers
that receive mputs from a 2D array of image sensors. Each
clement of the array of image sensors stores the pixel values
of the image that 1s presented to the system. The size of the
image array 1s 1 row by 2 columns. Each pixel consists of
values 1n the range [0,1].

10104] V1L and VIR, of size 10x10 elements, receive
connections from the image layer such that every image
pixel 1s connected to every element of V1L and VI1R. In
other words, there 1s all-to-all connectivity. Within the maps
V1L and V1R there are local lateral excitatory and inhibitory
connections of fixed weight, where the weights are selected
to sample a Laplacian of Gaussian kernel of radius 10 pixels.
The maps V1L and V1R establish connections with the
second hierarchy level map, termed V2, whose size 1s 10x10
clements. Fach element of V1L 1s connected to every
element of V2, and the same 1s true of V1R. Thus there 1s
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all-to-all connectivity between the first and second hierarchy
levels. V1L and V1R connect to V2 with connections that

are labeled “teed-torward”.

[0105] Within V2, there are local lateral excitatory and
inhibitory connections of fixed weight, where the weights
are selected to sample a Laplacian of Gaussian kernel of
radius 10 pixels. V2 connects with both V1L and VIR with
connections that are labeled “feedback™. Each element of V2
1s connected to every element of V1L and VIR through
teedback connections.

[0106] A second issue is that of learning the weights of
connections. A mechanism 1s described that can be used to
perform modification of the synaptic weights. Hebb’s rule 1s
used, which states that units that fire together wire together.
This rule 1s applied 1n two phases: weight adjustment,
followed by weight normalization. In the weight adjustment
phase, the weight w;; connecting a pre-synaptic element, 1,
with amplitude p; to a post-synaptic element, j, with ampli-
tude p; 1s moditied as follows:

new old
Wy =W A0

Let there be N synapses made onto the element j. Let

N

S

1=1

be the sum of the incident synaptic weights. During the
second phase of weight normalization, the weight 1s changed
as follows:

This procedure may be applied to the synaptic weights of
specific connection classes. For instance, the synaptic
weights of feedforward connections can be modified,
whereas the synaptic weights of feedback connections can
remain fixed. Various such combinations can be employed
for diferent classes. Furthermore, one 1s not restricted to
using Hebb’s rule, and alternate mechanisms can be
employed for changing the weights.

[0107] The above mechanism implies that learning is
constantly taking place during the computation. Learning
may be restricted to take place only 1n the presence of a
learning signal, A. This modifies the Hebbian rule as fol-
lows:

new__ old

A learning signal can be denived from the inputs, or a
comparison between the output value of the classifier ele-
ment and the outputs of 1ts neighbors. For instance, 11 the
output value of the classifier element 1s high, while the
outputs of 1ts neighbors are high, the learning signal 1s a
strong positive. On the other hand, if the output value of the
classifier element 1s high, while the outputs of its neighbors
are low, the learning signal 1s strong negative, indicating that
the weights must be decreased. It 1s understood that various
such combinations of the learning signals may be applied to
modily synaptic learning.

+Aap,p.
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[0108] By applying the network connectivity pattern as
described above to a network of pulse timing FM elements,
the following behavior 1s observed. The FM elements that
are functionally related become synchronmized with each
other. In other words, the firing patterns of a pair of
functionally related elements have a fixed relationship with
cach other, consisting of a fixed time delay.

[0109] The result of implementing the synchronization of
timing 1s shown in FIGS. 12, 13 and 14. The training of the
teed-forward connections 1s done following a self-organized
algorithm described 1n the prior art, and the tramning of the
teedback connections 1s done with a simple Hebbian algo-
rithm, as described 1n the section on learning mechanisms.

[0110] Referring now to FIG. 13, a diagram illustrates the
result of achueving synchronization between two networks,
according to an embodiment of the present invention. The
response to the inputs 1s topographically organized 1n all the
arrays; when an input 1s presented, the corresponding areas
of V1L and V1R that classity the mput are synchronized
with the area of V2 that classifies the V1L and V1R nput.
This 1s represented by the bright links between the elements
in each array. The areas of V1L and V1R that are not part of
the classification are desynchronized, whereas the area of V2
that 1s not part of the classification 1s synchronized within
itsellf but with a large phase lag with respect to the main
classification area.

[0111] Referring now to FIG. 14, a diagram illustrates a
pulsatile component of all the elements. The synchronized
clements line up pertectly with the timing of the pulse, and
the remaining elements of V2, though synchronized, are
lagging them.

[0112] In this embodiment, the phase-amplitude FM clas-
sifier elements are connected 1n a network using hierarchical
maps as previously described in the synchronization of
timing embodiment. These phase-amplitude FM classifier
clements achieve the state of a coherent substrate through
the mechanism ol phase-locking, which results when the
mathematical model described 1n the amplitude-phase FM
clement embodiment 1s applied.

[0113] Referring now to FIG. 15, a diagram illustrates an
evolution of active elements in the mput layer of the phase
model. The mechanism of phase-locking implies that two
amplitude-phase FM elements which share a functional
relationship with each other are phase-locked. Thus, by
observing whether two amplitude-phase FM elements are 1n
phase-lock, it may be determined whether they are func-
tionally related. FIG. 15 shows how the active elements of
the input layer coalesce into clusters of coherent phase
evolution. The vertical axis represents phase (0, 2m) and the
horizontal axis represents time. The system settles 1n the
locked state after a transient of a few total rotations.

[0114] For simplicity, each input unit is connected to only
one receptor element. Only a sparse population of these
receptor elements 1s active during the presentation of a
stimulus (p(p'>0)=0.2 in the example of the figure). The
connectivity between the mput layer and the upper layer 1s
sparse and random (p(W>0)=0.3 1n the example), whereas
teedback connections are strictly reciprocal, so that wijFB::-O

iff w,,7F>0.

[0115] Alternatively, it 1s possible to utilize a different
setup for the feedback architecture that attains the same
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result. Instead of resorting to precise reciprocity, the feed-
back connectivity can be established by a simple Hebbian
learning mechanism, such that the update equation during
training is dw;;" “xp,'p;", with the net result that only units
that are connected by feed-forward connections, and there-
fore tend to be activated together, will have significant
teedback connections.

[0116] Referring now to FIG. 16, the role of feedback in

the phase model 1s 1llustrated, according to an embodiment
of the present invention. The top leit panel represents the
phase evolution of active elements of the input layer and the
bottom left panel represents the elements of the second layer
when there 1s no feedback. The right panels show the
corresponding evolution when the feedback 1s present. The
second layer displays phase clusters in correspondence with
the mput layer. FIG. 16 shows an ensemble of 100 input
units sparsely connected to 100 units 1n the second layer,
with the feedback connectivity pattern described in the
previous section; for simplicity, only the mput layer units are
shown.

[0117] Referring now to FIG. 17, synchronization without
function/membership values i1s 1illustrated. The top panel
represents the activity of the input layer i the integrate-
and-fire network model, when there 1s not feedback from the
second layer. The bottom panel shows the effect of including
teedback. Synchronization i1s enforced to the expense of a
reduction in the overall level of activity. The vertical axis
represents an arbitrary ranking of the umts. The horizontal
axis 1s time. The presence of a dash represents the occur-
rence of a spike 1in the corresponding unit. Feedback creates
phase-lock 1n both layers.

[0118] Thus far, the manner in which a coherent substrate
of FM classifier elements can be obtained has been
described. A method to utilize the mnformation in the coher-
ent substrate to achieve a desired response 1s now described.
The coherent substrate will consist of a set of hierarchical
maps such that all the functionally related classifier elements
share a coherent membership value. With reference to the
scenar1o described in the background, all the functionally
related classifier elements that participate 1n the formation of
the “tulip” object have a coherent membership value. This
could be achieved for instance by using the phase-locking
embodiment. The remaining task 1s to direct the contour-
coloring means to the right locations.

[0119] FIG. 18 shows a schematic of the result after
applying the synchromization of timing embodiment. This
result 1s shown for three hierarchy levels, with level 1 being
the most detailed representation and level 3 being the most
abstract. FIG. 18 shows that the synchronization of timing
embodiment has succeeded 1n identifying regions within the
different maps that are related through synchronization
across hierarchy levels. For instance, the dark region 1n
hierarchy level 3 i1s synchronized with the dark regions of
hierarchy levels 2 and 3. However, having this solution to
the coherent substrate method does not necessarily mean
that that right action will be taken.

[0120] A general method whereby a system responsible
for taking action 1s able to interface with the coherent
substrate 1s now presented. An associative map 1s needed,
which 1s able to recognize regions of interest in the highest
map, at the highest level of abstraction. Suppose the region
of interest 1s the dotted region, outlined 1n bold at the highest



US 2008/0071712 Al

level. Due to the formation of a coherent substrate, this
region 1s related to other attributes at lower levels, also
outlined 1n bold. The label of the region of interest at the
highest hierarchy level action unit 1s passed as a key or index
to the action unit. The action unit then uses this key to
identily those regions at the lower level maps that share this
common key.

[0121] The precise details of operation are explained with
reference to FIG. 19. Suppose that each classifier element
consists of amplitude and a pulse time, 1n such a way that
amplitude corresponds to the functional value and pulse time
to the membership value. Processing elements exchange
amplitude and timing information, and compute their own
amplitude and pulse time based on their inputs. There are

re-entrant connections between maps, termed V1, V2 and I'T,
as shown 1n FIG. 19.

10122] Edge classifiers have “feedforward” connections to
contour classifiers, and contour classifiers have feedforward
connections to the tulip classifier. Similarly, the tulip rec-
ognizer has feedback connections to the contour classifiers
and the contour classifiers have feedback connections to the
edge classifiers. Feedforward connections are used for com-
puting both functional and membership values of the receiv-
ing classifier. Whereas, feedback connections affect only the
membership values. Consider, in addition, an array of FM
classifiers, where each 1s coupled to a means for coloring a
single pixel of the image. Each of these FM classifiers
receives mputs from edges that are topographically regis-
tered with the pixel the FM classifier colors through the
coloring means. In addition, each FM classifier receives
multiple mputs from the tulip recognizer. The balance of
edge and tulip mnputs 1s such that both edge recognition and
tulip recognition 1s required for the FM classifiers to produce
a positive functional value. Such a system 1s suflicient to
solve the problem.

10123] The process by which the above system solves the
pixel coloring problem 1s described as follows. When a tulip
does not exist 1n the 1image, the FM classifiers do not have
enough input information to exceed their threshold for
producing the positive functional output that 1s necessary to
cause the pixel coloring means to act. Therefore, no pixels
are colored. When a tulip 1s present in the image, there must
be edge information for an FM classifier to produce a
positive output and that edge information must be function-
ally related to the FM classifier. This will happen when the
edge and tulip classifiers are functionally related to each
other. The edge classifiers that do not contribute to the tulip
recognition will not have a functional relationship with the
tulip classifier and they will have a different membership
value. In contrast, those edge classifiers that do contribute to
the tulip classifier will be functionally related and have the
same membership value. Thus, only the FM classifiers that
are topographically registered with the edge classifiers that
contributed to the tulip classifier will produce an output
suitable to cause the coloring means to act.

|0124] The associative maps described in FIGS. 8 and 10
can be formed through a self-organized learning process.
This organization i1s based on the frequency of occurrence of
different stimuli to the system. Each map within the hierar-
chy 1s self-organizing. For instance, at the lowest level of the
hierarchy, the classifier elements organize themselves based
on their response to lines of different orientation. The net
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result 1s an orientation map like the one found 1n the area V1
of the human visual cortex. Similar processes operate 1n the
maps at different hierarchy levels.

[0125] The recognition of categories at the highest hier-
archy level, say I'T 1s done as follows. I'T can be decomposed
into two maps such that the first map computes the magni-
tude of the Fourier transform of the mnput from the preceding,
level, which consists of contours. Thus the magnitude Fou-
rier Transform map contains frequency spectrum informa-
tion related to contours anywhere 1n the input image. There
1s sullicient information 1n the magnitude Fourier Transform
map to detect different types of shapes, such as circle,
square, and tulip. The second map within IT 15 a “tulip-
recognizer’’, which signals the presence of a tulip. This can
be done 1n a hard-coded fashion, by examining the magni-
tude Fourier Transform map, and imposing constraints on
the various elements on the map.

[0126] Another candidate for a solution to the tulip rec-
ognition problem at the level of IT 1s described as follows.
I'T can be decomposed into two levels, where the first level
consists of a set of maps such that each one 1s capable of
recognizing a tulip of fixed size and orientation at a fixed
location within an 1image. For instance, one map within this
set can detect a tulip whose center 1s at 1mage location
consisting of the tenth row and tenth column. This detection
process can be hard-coded. The second level IT map per-
forms an “OR” operation on the outputs of the first level I'T
maps, such that 11 at least one first level I'T map signals the
presence ol a tulip, the output of the second level IT map 1s
a “1”, indicating the presence of a tulip anywhere within the
image.

[0127] The map at the IT level shows that the system has
characterized an object 1n the scene to be a tuhp This
characterization 1s based strictly on the amplitudes, 1.e. the
functional values of the elements that form the category
“tulip”. Let S+ be the synchronized pulse times of these
clements that represent the category “tulip” 1n a particular
input 1mage. Due to re-entrant feedback connections with
the lower layers, the features in V1 and V2 that contributed
to the flower also get synchronized with the same pulse time,

S,

[0128] Consider next a sub-system designed to respond to
the presence of the desired object, say the colonng means
that colors the contours of the tulip. First, a gate 1s needed,

which 1nitiates the coloring behavior, since 1t 1s desirable for
this behavior to occur only when a flower 1s 1dentified. In
addition, information is provided about the synchronization
time S+ to the gate. The gate recerves mputs from each of the
clements of the IT map. The gate produces two outputs. If
at least one of the mputs from the I'T map signals the
presence of a desired category, say “tulip”, the first output of
the gate 1s a “1”” indicating that a response needs to be taken.
Furthermore, when the first output of the gate 1s a “17, 1ts
second output 1s the pulse time of the desired category 1n IT,
termed S, the synchronization time or the reference pulse
time.

10129] The gate supplies this information to a topographic
motor map (IMM) of size 10x10 elements that provides
motor commands to the coloring means. The TMM 1s such
that the activation of one of its elements elicits the execution
ol a motor program that makes instructs the coloring means
to access a particular position 1n the visual field. The spatial
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layout of the TMM 1s co-registered with visual field, such
that nearby elements 1 the TMM correspond to motor
programs for accessing nearby positions in the visual field.
The TMM also receives connections from V1, the lowest
hierarchy level, through an identity map, where the weights
of all the connections are 1. The processing units in TMM
simply detect a coincidence of synchronization times
between the input from V1 and the second mput from the
gate, S.. In other words, each unit in TMM responds
strongly if the timing of its input from V1 matches the
reference synchronization time S-.. Once such a TMM has
been created, the coloring means accesses the locations
provided by the TMM, thereby coloring the pixels indicated
by these locations. This action constitutes a solution to the
stated problem of changing the color of 1mage pixels rep-
resenting the contours of the tulip.

[0130] Though this embodiment has been described in
terms of the synchronization of timing embodiment, the
description 1s i1dentical for the phase-locking embodiment,
except that phase-locking of phases 1s used instead of
synchronization of pulse times as a means for determining
the functional relationships.

[0131] The method described in this embodiment enables
the formation of a coherent substrate based on functionally
related attributes of an input space for the generation of
appropriate responses. Furthermore, and by design, the
capabilities of this invention mimic those of the cortex of the
brain. It 1s, therefore, a critical stepping stone toward the
development of technology with the capabilities of the
human brain.

[0132] Referring now to FIG. 20, a block diagram illus-
trates an illustrative hardware implementation of a comput-
ing system in accordance with which one or more compo-
nents/methodologies of the mvention may be implemented,
according to an embodiment of the present invention. As
shown, the computer system may be implemented in accor-
dance with a processor 2010, a memory 2012, I/O devices
2014, and a network interface 2016, coupled via a computer
bus 2018 or alternate connection arrangement.

[0133] It 1s to be appreciated that the term “processor” as
used herein 1s intended to include any processing device,
such as, for example, one that includes a CPU (central
processing unit) and/or other processing circuitry. It 1s also
to be understood that the term “processor” may refer to more
than one processing device and that various elements asso-
ciated with a processing device may be shared by other
processing devices.

[0134] The term “memory” as used herein is intended to
include memory associated with a processor or CPU, such
as, for example, RAM, ROM, a fixed memory device (e.g.,
hard drive), a removable memory device (e.g., diskette),
flash memory, etc.

[0135] In addition, the phrase “input/output devices” or
“I/O devices” as used herein i1s intended to include, for

example, one or more mnput devices (e.g., keyboard, mouse,
etc.) for entering data to the processing unit, and/or one or

more output devices (e.g., speaker, display, etc.) for present-
ing results associated with the processing unit.

[0136] Still further, the phrase “network interface™ as used
herein 1s 1ntended to include, for example, one or more
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transceivers to permit the computer system to communicate
with another computer system via an appropriate commu-
nications protocol.

[0137] Software components including instructions or
code for performing the methodologies described herein
may be stored in one or more of the associated memory
devices (e.g., ROM, fixed or removable memory) and, when
ready to be utilized, loaded in part or 1n whole (e.g., mto

RAM) and executed by a CPU.

[0138] Although illustrative embodiments of the present
invention have been described herein with reference to the
accompanying drawings, 1t 1s to be understood that the
invention 1s not limited to those precise embodiments, and
that various other changes and modifications may be made
by one skilled 1n the art without departing from the scope of
spirit of the invention.

What 1s claimed 1s:
1. A method of transmitting at least one signal through an
clement of a classification system comprising the steps of:

receiving one or more mput signals relating to an 1image
at the element;

extracting one or more functional components from the
one or more mput signals, wherein the one or more
functional components correspond to a classification

type,

extracting one or more membership components from the
one or more mput signals, wherein the one or more
membership components correspond to a relationship
measure between the one or more nput signals and the
element; and

generating an output signal for image mapping from the
clement comprising a functional component and a
membership component that correspond to one or more
of the functional components and membership compo-
nents from the one or more input signals, wherein the
one or more membership components from the one or
more mput signals modulate an effect of the one or
more functional components from the one or more
input signals on the generation of the output signal, and
wherein the one or more membership components of
the one or more input signals alter the membership
component of the output signal.

2. The method of claim 1, further comprising the step of
storing in the element a first internal value representing a
functional component of the element and a second internal
value representing a membership component of the element.

3. The method of claim 1, wherein the step of generating
an output signal further comprises the step of:

selecting an arbitrary subset of the one or more input

signals comprising one or more functional components
and membership components to which the functional

component and membership component of the output
signal correspond.

4. The method of claim 1, wherein the step of generating
an output signal further comprises the step of modifying the
output signal through a learning mechanism corresponding
to a subset of the one or more mnput signals.

5. The method of claim 1, wherein the step of generating,
an output signal further comprises the step of computing a
non-linear function of a weighted sum of a subset of the one
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or more functional components of the one or more 1put
signals 1n generating the functional component of the output
signal.

8. The method of claim 1, wherein, in the step of gener-
ating an output signal, the membership component of the
output signal comprises a reference time.

9. The method of claim 1, wherein, in the step of gener-
ating an output signal, each membership component of the
one or more mput signals are represented 1n a plurality of
dimensions.

10. The method of claim 1, wherein, 1n the step of
generating an output signal, the membership component 1s
represented by a circular variable.

11. The method of claim 1, wherein, in the step of
generating an output signal, the membership component 1s
represented by a phase.

12. The method of claim 1, wherein, 1n the step of
receiving one or more input signals, the one or more input
signals comprise at least one feedforward signal and at least
one feedback signal.

13. A method of transmitting signals in a network of
clements comprising the steps of:

communicating signals relating to an 1mage from each of
one or more source elements to at least one destination
element 1n the network of elements, wherein each
signal comprises a functional component and a mem-
bership component;

generating a new signal for 1image mapping at each
destination element comprising a functional component
and a membership component that correspond to one or
more functional components and membership compo-
nents communicated from one or more respective
source elements, wherein the membership components
from the one or more respective source elements modu-
late an effect of the functional components from the one
or more respective source elements on the generation of
the new signal, and wherein the membership compo-
nents of the one or more respective source elements
alter the membership component of the new signal; and

repeating the steps of communicating signals and gener-
ating a new signal until one or more final destination
clements are reached, wherein a given source element
in a next subsequent 1teration comprises the destination
element 1n a current iteration, and a communicated
signal 1n the next subsequent iteration comprises the
new signal in the current iteration.

14. The method of claim 13, wherein the step of gener-
ating a new signal comprises the step of comparing the
membership component of the at least one destination
clement with the membership component of the one or more
source elements when the connections between the at least
one destination element and the one or more source elements
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.

comprise at least two connection types that produce different
cllects on the functional and membership components of the
at least one destination element.

15. The method of claiam 13, wherein, 1n the step of
communicating signals, the one or more source elements
and at least one destination element each comprise a sub-
network of elements extracting different features from an
input network.

16. The method of claim 13, wherein the step of repeating
the steps ol communicating signals further comprises the
step of communicating signals through a hierarchy of sub-
networks where lower sub-networks extract local features,
and higher sub-networks extract global features.

17. The method of claim 13, wherein the step of repeating
the steps of communicating signals further comprises the
steps of:

activating a decision-making sub-network by the presence
of one or more global features; and

comparing functional and membership components of
higher and lower sub-networks, such that only those
clements 1n the lower sub-networks with a high func-
tional component and a membership component similar
to the membership component of one or more global
features 1n the higher sub-network are selected to be
acted upon.

18. Apparatus for transmitting at least one signal through

an element of a classification system, comprising:

a memory; and

at least one processor coupled to the memory and opera-
tive to: (1) recerve one or more 1mput signals relating to
an 1mage at the element; (1) extract one or more
functional components from the one or more input
signals, wherein the one or more functional compo-
nents correspond to a classification type; (111) extract
one or more membership components from the one or
more 1mput signals, wherein the one or more member-
ship components correspond to a relationship measure
between the one or more input signals and the element;
and (1v) generate an output signal for image mapping
from the element comprising a functional component
and a membership component that correspond to one or
more functional components and membership compo-
nents from the one or more input signals, wherein the
one or more membership components from the one or
more mput signals modulate an effect of the one or
more functional components from the one or more
input signals on the generation of the output signal, and
wherein the one or more membership components of
the one or more input signals alter the membership
component of the output signal.
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