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(57) ABSTRACT

A method and system for analyzing time series data. In an
embodiment, a loop 1s executed and terminated upon a
specified maximum number of iterations of the loop being
performed or upon a difference between scores 1n successive
iterations of the loop not being greater than a specified
tolerance, wherein the score 1n each iteration is calculated as
function of an absolute value of a difference between respec-
tive cumulative probability values of first and second cumu-
lative probability distributions which are generated from
respectively first and second time series data sets. In an
embodiment, time series data 1s processed 1n a sequence of
time periods, wherein a combined cumulative probability
distribution 1s generated 1n each time period by combining
a cumulative probability distribution of new time series data
with previously combined cumulative probability distribu-
tion data according to a ratio of the number of new to
previous observed values.

NORMAL
-STATUS
DB

105

JUDGMENT

UNIT 130

DIAGNOSIS SYSTEM

10



Patent Application Publication  Jan. 10, 2008 Sheet 1 of 9 US 2008/0010330 Al

FIRST TIME SERIES
DATA SET

SECOND TIME
SERIES DATA SET

ACQUISITION
UNIT

NORMAL
-5 TATUS

100 DB
105
REPLICATION
UNIT 110
CALCULATION < > JUDGMENT
120

DISPLAY
UNIT 140

DIAGNOSIS SYSTEM

10

o I I.I l

DETECTION
RESULT

FIG. 1



Patent Application Publication  Jan. 10, 2008 Sheet 2 of 9 US 2008/0010330 Al

START
ACQUIRE TIME SERIES S200
DATA SETS

CREATE REPLICATED S210
DATA SETS

S220
CALCULATE SCORES
CALCULATE DIFFERENCE S230
BETWEEN SCORES

S240

1S

DIFFERENCE EQUAL
TO OR LESS THAN

REFERENCE
?

NO

YES

DISPLAY DETECTION S260
RESULT

FIG. 2




14S V1V({
S3ld4S FdINLL ANODSS

US 2008/0010330 Al

S3FHVNOS 40 ANS JHL
10 NOILLVZININIW

Jan. 10, 2008 Sheet 3 of 9

3

0L

13dS V1VQ
S3IH3S dNILL 1SHI3

SNLV1S TVINJON
ONILVOIAN] V1v{d

Patent Application Publication



Patent Application Publication  Jan. 10, 2008 Sheet 4 of 9 US 2008/0010330 Al

SECOND TIME SERIES

DATA SET
N
(REPRESENTATIVE),
— 11
o2
< 7 COMBINED GRAPH
O~
0
sl
OBSERVED VALUE
FIRST TIME SERIES
DATA SET
— 11 :
22 :
E =:-
e .
0. :

OBSERVED VALUE




US 2008/0010330 Al

Jan. 10, 2008 Sheet 5 of 9

Patent Application Publication

dMNTVA AdAddSH0
009 00§

1994V1
SISONOVIC

SNLVLS
TVINHON

NOILONN-
NOILNGIH1SId

=ALLV ININNDO

-

dMNTVA ALIdva0dd

g 44005
410

NOILVINO VO

g

NOILVINOIVO
NOILNAldL1SId
1VOldIdINSG

V.ivd d4.1vollid3ad
1544

D B A 4 A
AN

vY.1ivd dd1vollddd
aNQOO4S



Patent Application Publication  Jan. 10, 2008 Sheet 6 of 9 US 2008/0010330 Al

Z
O
=
l_
s
0
L]
AC
N
O

NUMBER OF TIMES 1000°



US 2008/0010330 Al

Jan. 10, 2008 Sheet 7 of 9

Patent Application Publication

ATVIWONY 4O JONIHHNDOD0 4O ALIMIgVd0dd

]
Z "9l
: INIVA A3AHISEO 40 AN m
C Oy $2 25 26 G2 €S L 8 TV LE € 0G5 €2 9 06 LZ 1€ 9 22 ¥ S LL vh S9 8L 09 Z €L S5 2L 8 :
m......:_........___________:::___:_ "
m TOHAAE &
. AV
“ TUHHU UL 8§ ¢
“ G0 Qo
" TUUU L, ™
“ e
_Eu
m 3'0 m
: 50 m
: F "

Uy SLLEE bbbt bbb bbbbbt bbbt bbb
(0¥1)00L 072] 0Ll



Patent Application Publication  Jan. 10, 2008 Sheet 8 of 9 US 2008/0010330 Al

START

ACQUIRE TIME SERIES S800
DATA SETS
CREATE REPLICATED S810
DATA SETS
COMBINE CUMULATIVE S820
PROBABILITY DISTRIBUTIONS
CALCULATE SCORE 5830
DISPLAY DETECTION S840
RESULT




Patent Application Publication  Jan. 10, 2008 Sheet 9 of 9 US 2008/0010330 Al

500
1080 1000
DISPLAY
1075 1082 1020
1040
GRAPHICS HOST RAM
CONTROLLER [ |CONTROLLER O
1030 1084

1095

CD-ROM
EF O

1050

1010
1/0 FLE@ELE — _
CHIP DRIVE

1070 1090

COMMUNICATION 1/ 0
I/ F CONTROLLER

OUTSIDE

FIG. 9



US 2008/0010330 Al

METHOD AND SYSTEM FOR DETECTING
DIFFERENCE BETWEEN PLURAL
OBSERVED RESULTS

FIELD OF THE INVENTION

[0001] The present invention relates to a method and
system for detecting a diflerence between a set of observed
results, and 1n particular, the present invention relates to a
method and system for statistically analyzing the difference
between time series data sets.

BACKGROUND OF THE INVENTION

[0002] Detecting and analyzing anomalies of dynamic
systems 1s an important technical challenge 1n various areas
in the manufacturing industry. For example, anomaly detec-
tion 1n a production line has been of particular importance,
and a lot of statistical techniques have been developed for
quality control purposes. However, most of the traditional
statistical quality control techniques are based on a strong
assumption ol multivariate normal distribution. Unless the
system of interest 1s relatively static and stationary, the
distribution of data i1s far from the normal distribution 1n
general. This 1s especially the case 1n the analysis of auto-
motives, where the system 1s highly dynamic and the defi-
nition of the normal state 1s not apparent. As a result, the
utility of such traditional approaches 1s quite limited 1n many
cases.

[0003] The following points may be considered on

anomaly detection and analysis of cars:

[0004] 1. From each component of an automobile, hun-
dreds of time series data are observed.

[0005] 2. The types of observed time series data can be
various; for example, the values could be discrete 1n some
variable, and be continuous 1n another.

[0006] 3. The intervals of observations (or sampling inter-
val) can be also various depending on the types of
observed values.

[0007] 4. The knowledge of individual engineers may be
incomplete; they may not always make a valid decision
based on experimental data.

[0008] Heretofore, a typical approach to anomaly detec-
tion and analysis 1s limit-check or its variant, where an
observed value 1s compared to a threshold (or reference)
value that has been predetermined using some algorithm.
Based on limit-check, a rule-based system 1s often imple-
mented, which enables, at least in principle, making a
decision on a detected fault, based on a rule that “if a certain
kind of observed value 1s larger than a predetermined
reference value, a user 1s informed of an occurrence of
anomaly”. However, 1n highly dynamic systems such as an
automobile, the trend of a variable can be greatly changed
over time. Thus 1t 1s diflicult to determine the reference value
of a varniable for detecting anomalies. While experienced
engineers may be able to make a decision on the state of the
system based on such complicated numerical data, 1t 1s
unrealistic to assume that enough manpower of experienced
engineers 1s available 1n every phase and place of anomaly
detection. In addition, the knowledge of experienced engi-
neers 1s oiten hard to translate to specific mathematical rules
used 1n the limit-check routine. To summarize, the applica-
bility of limit-check 1n combination with partial human
knowledge 1s seriously limited 1in general. Accordingly, it
there 1s an anomaly detection method that works more
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cllectively than limit-check, or complementally functions 1n
addition to the limit-check, time and eflort for an anomaly
diagnosis will be greatly reduced.

[0009] Generally, test experiments are performed on a
certain round basis. For example, 1n a case of an automobile,
one experimental round can be one lap of a test course. This
experimental round 1s referred as a run. When an automobile
goes round the test course n-times, observed values of n
runs, that 1s, n time series data sets of each kind of observed
values are obtaimned. In general, 1t 1s diflicult to make test
conditions 1n all the runs exactly the same since the com-
plexity of the system 1s too high to completely control their
values. The time series data sets 1n imndividual runs may be
different from one another more or less. In conventional
techniques, 1t 1s hard to handle such fluctuations 1n experi-
mental conditions, so that a substantial status of a diagnosis
target cannot be appropriately characterized 1n many cases.
[0010] In addition, the tendency of variations in observed
values are greatly different among types of observed values.
Moreover, since the number of variables of the system 1s
very large, considering all combinations of the variable 1s
computationally prohibitive.

SUMMARY OF THE INVENTION

[0011] The present invention provides a method for ana-
lyzing time series data for each observation variable of a
plurality of observation variables through execution of a
program by a processor of an information processing appa-
ratus that comprises a display unit, said method comprising
performing for each observation variable:

[0012] acquiring an initial first time series data set con-
sisting of a first plurality of first observed values over a first
period of time, followed by generating an 1nitial first cumu-
lative probability distribution from the 1nitial first time series
data set, said nitial first time series data set being designated
as a previous first time series data set;

[0013] acquiring an 1initial second time series data set
consisting of a second plurality of second observed or
computed values over a second period of time, followed by
generating an 1nitial second cumulative probability distri-
bution from the initial second time series data set, said 1nitial
second time series data set being designated as a previous
second time series data set:;

[0014] calculating an 1nitial score as a function of an
absolute value of a diflerence between respective cumulative
probability values of the generated initial first cumulative
probability distribution and the generated imitial second
cumulative probability distribution, said initial score being
designated as a previous score;

[0015] performing operations on the previous first time
series data set, including: generating a next first time series
data set by adding newly-obtained first observed values at
first additional times to the previous first time series data set,
followed by generating a next first cumulative probabaility
distribution from the next first time series data set;

[0016] performing operations on the previous second time
series data set, including: generating a next second time
series data set by adding newly-obtained second observed or
computed values at second additional times to the previous
second time series data set, followed by generating a next
second cumulative probability distribution from the next
second time series data set;

[0017] calculating a next score as said function of an
absolute value of a difference between respective cumulative
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probability values of the generated next first cumulative
probability distribution and the generated next second cumu-
lative probability distribution;

[0018] ascertaining whether a condition exists,

[0019] wherein the condition 1s that the next score has
been calculated a specified maximum number of times
equal to at least 1 or an absolute value of a diflerence
between the next score and the previous score 1s not
greater than a specified tolerance, and

[0020] wherein 1f said ascertaining ascertains that the
condition exists then outputting the next score as a
detection result to the display unit, otherwise setting the
previous first time series data set equal to the next first
time series data set, setting the previous second time
series data set equal to the next second time series data
set, setting the previous score equal to the next score,
and again executing said performing operations on the
previous lirst time series data set, said performing
operations on the previous second time series data set,
said calculating the next score, and said ascertaining.

[0021] The present invention provides a method for ana-
lyzing time series data for each observation variable of a
plurality of observation variables through execution of a
program by a processor ol an information processing appa-
ratus that comprises a display unit, said method comprising,
for each observation variable, processing time series data for

an ordered sequence of time periods 1, 2, . . ., J such that
J 1s at least 3,
[0022] whereimn said processing for time period 1 com-

prises acquiring a new time series data set 1 having N,
observed values for the time period 1 and generating a {first
cumulative probabaility distribution (Pcomb,1) from the new
time series data set 1, and

[0023] wherein said processing for time period j =2, 3, .
. ., J) comprises the steps of:

[0024] (a) acquiring a new time series data set 1 having NI
observed values for the time period j;

[0025] (b) generating a new cumulative probability distri-
bution (Pnew,)) from the new time series data set j;

[0026] (c) generating a combined cumulative probability
distribution (Pcomb.j) equal to p*Pnew,j+(1-[ )*Pcomb,j-1,
wherein =N,/(N,+N,), and wherein N,=(3—-1)*Nj,;

[0027] (d) computing a score equal to the difference of
Pcombj and Pcomb,j-1; and

[0028] (e) outputting the score as a detection result to the
display unat.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] For a more complete understanding of the present
invention and the advantage thereot, reference 1s now made
to the following description taken 1n conjunction with the

accompanying drawings.

[0030] FIG. 1 shows a functional structure of a diagnosis
system.
[0031] FIG. 2 shows a flowchart of a process 1n which the

diagnosis system creates a detection result of anomaly.
[0032] FIG. 3 1s a conceptual diagram of a process 1n
which a first time series data set to be diagnosed 1s compared
with a second time series data set indicating a normal status.
[0033] FIG. 4 shows an example of a process 1n which a
score 1s calculated on the basis of an original time series data
set istead of a replicated data set.

[0034] FIG. 5 shows an example of a calculation process
of a score D.
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[0035] FIG. 6 shows a process 1n which scores D converge
with an increase in the number of repetition times of
sampling with replacement.

[0036] FIG. 7 shows an example of a screen on which a
display unit displays a detection result.

[0037] FIG. 8 shows a flowchart of a process of displaying
a detection result of anomaly 1n a modified example of this
embodiment.

[0038] FIG. 9 shows an example of a hardware configu-
ration of an iformation processing apparatus functioning as
the diagnosis system in this embodiment or the modified
example.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

[0039] Hereinatter, the present invention will be described
by using an embodiment of the present invention. However,
the following embodiment does not limit the present inven-
tion according to the scope of claims, and all the combina-
tions of features described in the embodiment are not always
required for solving means of the invention.

[0040] FIG. 1 shows a functional configuration of a diag-
nosis system 10. The diagnosis system 10 includes an
acquisition unit 100, a normal-status database (DB) 105, a
replication unit 110, a calculation unit 120, a judgment unit
130 and a display unit 140. The acquisition unit 100 acquires
a first time series data set from outside for each observation
variable of a plurality of observation variables, and acquires
a second time series data set based on data 1n the normal-
status DB 105. The first time series data set includes a
plurality of observed values obtained by observing a certain
observation target over time, and 1s to be used for detecting
anomalies of the observation target. The second time series
data set for each observation variable includes a plurality of
observed values obtained by observing another observation
target over time on a period diflerent from the first data set.
The normal-status DB 105 stores at least one time series data
set obtained as the result of an observation of the observation
target 1n 1ts normal status.

[0041] In a case where the normal-status DB 105 stores a
plurality of time series data sets, the acquisition unit 100
may acquire any one of the time series data sets as the
second time series data set, or may acquire, as the second
time series data set, the time series data set obtained for the
observation period of the time length closest to that of the
observation period of the first time series data set. Alterna-
tively, the acquisition unit 100 may create a new time series
data set, and acquire the new data set as the second time
series data set. To be more precise, 1n a case where a time
series data set 1s regarded as a vector of observed values, the
new time series data set 1s the one minimizing the sum of the
squares of the inter-vector distances between the new time
series data set and each time series data set obtained from the
observation target 1n a normal status.

[0042] The replication unit 110 creates a first replicated
data set that 1s a replica of the first time series data set, by
repeatedly sampling a plurality of observed values with
replacement from the first time series data set. The replica-
tion unit 110 may create the first replicated data set by
repeatedly sampling, with replacement, observed values of
the number greater than that of observed values included 1n
the first time series data set. Then, the replication unit 110
may create a second replicated data set that 1s a replica of the
second time series data set, by repeatedly sampling a plu-
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rality of observed values with replacement from the second
time series data set. Instead, the replication unit 110 may
create the first replicated data set by directly using the first
replicated data set without change, and may create the
second replicated data set by repeatedly sampling a plurality

of observed values with replacement from the second time
series data set.

[0043] The calculation umt 120 calculates a score for each
observation variable, said score indicating the difference
between the first time series data set and the second time
series data set, on the basis of the difterence between a
probability value 1n the cumulative probability distribution
of the first replicated data set, and a probability value in the
cumulative probability distribution of the second replicated
data set, with respect to the same kind of observed values.
Each kind of observed value pertains to a diflerent obser-
vation variable of the plurality of observation variables.
Then, the calculation unit 120 outputs the score for each
observation variable to the display unit 140. The second
replicated data set needs to include only at least a part of the
second time series data set. The second replicated data set
may be the second time series data set as 1t 1s, or may be a
replicated data set that the replication unit 110 creates by
repeatedly sampling observed values with replacement from
the second time series data set. In addition, any kind of score
may be emploved as long as the score 1s based on the
difference between a probability value 1n the cumulative
probability distribution of the first replicated data set, and a
probability value 1n the cumulative probability distribution
of the second replicated data set, with respect to the
observed values for the same observation variable. Accord-
ingly, the score may be the maximum value of the difference
between the cumulative probability values of the observed
values for each observation varniable, or may be a value
based on the mean or the sum of the absolute value of the
difference between the cumulative probability values of the
observed values for each observation variable. The score
thus calculated indicates the difference between the first time
series data set and the second time series data set for each
observation varniable. In a case where the second time series
data set 1s a time series data set representing data 1n a normal
status, this score indicates a degree of anomaly occurring 1n
an observation variable.

[0044] The judgment unit 130 judges whether or not the
score has converged on a predetermined value as a result of
repeated sampling with replacement. Specifically, 1n a case
where the replication unit 110 sequentially creates a plurality
of replicated data sets of each of the first time series data set
and the second time series data set with an increase of the
number of times of sampling, the updated replicated data
sets are sequentially supplied to the calculation unit 120. In
this case, the calculation unit 120 recalculates the score
every time the replicated data 1s updated. Then, the judgment
unit 130 judges whether or not the difference between a
previous score and a current score 1s equal to or less than a
predetermined reference value. Here, the previous score 1s
based on the difference between the probability value 1n the
cumulative probability distribution of a previously-created
first replicated data set, and the probability value i1n the
cumulative probability distribution of a previously-created
second replicated data set, with respect to the same obser-
vation variable. Then, the current score i1s based on the
difference between the probability value 1n the cumulative
probability distribution of a currently-created first replicated
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data set, and the probability value in the cumulative prob-
ability distribution of a currently-created second replicated
data set, with respect to the same observation variable. On
condition that this difference between the scores 1s equal to
or less than the reference value, the judgment unit 130
outputs the current score to the display unit 140. Instead,
regardless of the result of a convergence judgment, the
calculation unit 120 may output a calculated score when the
number of times of sampling reaches a specified number of
times equal to at least 2.

[0045] All the foregoing units perform the same process-
ing as the above for each observation variable. Specifically,
the acquisition unit 100 acquires a first time series data set
and a second time series data set corresponding to each
observation variable. The replication unit 110 creates a {first
replicated data set and a second replicated data set corre-
sponding to each observation variable. In addition, the
calculation unit 120 calculates a score corresponding to each
observation variable. Then, the display unit 140 displays
information indicating the observation variables, and the
respective scores 1n association with each other i descend-
ing order of the calculated scores. This allows a user to
casily recognize a place with a strong probability that
anomaly occurs, or a combination of places where anomaly
occurs. In order to further facilitate the anomaly detection,
the calculation unit 120 may calculate an 1ndex indicating a
relationship among plural kinds of observation variables,
and the display unit 140 may display the index together with
the above information and score. For a method for calcu-
lating such an index, see a reference to Tsuyoshi Ide and
Keisuke Inoue, “Knowledge Discovery from Heterogeneous
Dynamic Systems using Change-Point Correlations™ 1n Pro-
ceedings of 2005 SIAM International Conference on Data

Mining, Apr. 21-23, 2005, pp. 571-576.

[0046] FIG. 2 shows a flowchart of processing 1n which
the diagnosis system 10 creates a result of anomaly detec-
tion. The acquisition unit 100 acquires the first time series
data set and the second time series data set (S200). FIG. 3
shows an outline of a method for acquiring the second time
series data set.

[0047] FIG. 3 1s a conceptual diagram of a process 1n
which a first time series data set to be diagnosed 1s compared
with second time series data sets each representing a normal
status of an observation variable. In a case where the
normal-status DB 105 stores four time series data sets each
representing the normal status as shown to the right upper
side 1n FIG. 3, 1t 1s desirable to create one second time series
data set by using these four sets, and then to compare the first
time series data set with the second time series data set thus
created. For example, 1n a case where a time series data set
1s regarded as a vector of observed values, the acquisition
unmit 100 may create a new time series data set that minimizes
the sum of the squares of the inter-vector distances between
the new time series data set and each of these four time series
data sets. The following describes a specific example of this
creating method.

[0048] In order to explain the creating method in a gen-
eralized manner, 1t 1s assumed that the normal-status DB 105
stores m time series of each observation variable 1, and that
each time series is expressed as a column vector x,\””, where
r 1s an iteger value from 1 to m and specifies a diflerent
experimental run, wherein the integer i indicates the i”
observation variable. Each time series x1(r) includes p dii-
ferent time points so that x,” is a p-dimensional vector. Note




US 2008/0010330 Al

that the numbers of observed values included 1n the respec-
tive time series data sets are often different from one another
for each observation variable. This results from a diflerence
in the observation period or the observation intervals. In this
embodiment, the acquisition unit 100 executes preprocess-
ing so that each time series data set would include p
observed values. Specifically, the acquisition unit 100 inter-
polates a lacking observed value on the basis of observed
values obtained before and after the lacking observed value,

or excludes an unnecessary observed value.

[0049] Instead of handling each of the m time series
separately, the present invention finds a representative vec-
tor w1 having p values therein, wherein ui maintains the
essential features of the m time series (m>1). In accordance
with the above definition, the set m time series for the 1-th
variable each representing the normal status i1s expressed as
the following p-by-m matrix shown 1n Equation 1.

H.x)=|ix "V ..., x| Equation 1

A time series data set 1s created as a second time series data
set, namely the p dimensional vector u,. Here, a normaliza-

tion condition u,’u,=1 is assumed, where the superscript *

denotes the transposition. Thus, u,’ is the transpose of u..
One natural principle for finding u, 1s to minimize the sum
of squares error function between the extracted representa-
tive vector u, and the original m time series. Since x,
amounts to projecting (u,’x,"”) on the one-dimensional
space spanned by u, the sum-oif-squares error function is
defined 1n the following Equation 2:

Equation 2
r (r[2
X up — x|

Ew) =) Ilwux"
=1

[0050] The second time series data set to be determined 1s
u1 that mimimizes the above sum of the squares. The fol-
lowing Equation 3 shows a derivation process.

m Equation 3
C— : T (7 ("))
w; = argmin } ||[(e x; e — x|

i =1

i

T
= argmjnz [—(m: 2 +_1:m xfr}]

i —=1

i

T
= argmaxlu’ > x7x"7 u

i

=1

= argmax[u’ H, HE-T ]

i

When the constraint u,’u,=1=1 is incorporated into the
above equation by using a Lagrangian coeflicient A, this
problem becomes an eigenvalue problem shown 1n an Equa-
tion 4. What 1s to be determined 1s an eigenvector u,
corresponding to the maximum eigenvalue A. In short, the
procedure 1s exactly to find the maximum left-singular
vector of a matrix H. For more detailed descriptions of the
singular value decomposition, Refer to Japanese translated
version of “Linear Algebra and Its Applications,” written by
Gilbert Strang, published by Sangyo-Tosho, 1978, {for
example.

[0051] In addition, such a feature extraction method 1s
called the Karhunen-Loeve transform, or the like (for
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example, refer to Ishi1 Kemichiro, et. al., “Pattern Ninshiki
(Pattern Recognition),” Ohmusha, 1998). Equation 3 i1s now
reduced to the eigen equation as

HH u=hu, Equation 4

wherein H,” is a transposed matrix of H,. The representative
p-dimensional vector u, for observation variable 11s found as
the eigenvector corresponding to the maximum eigenvalue
A. Mathematically, this 1s the same as performing the sin-
gular value decomposition (SVD) for H, and taking the
leading left singular vector. When the size of the matrix 1s
large, several techniques to reduce the computational cost
are available. As the result 1t 1s known 1n the field of data
mining that SVD can be executed at the same calculation
cost as that of other indexing methods such as the discrete
Fourier transform, the wavelet transformation and the piece-

TJ 1

wise aggregate approximation (For example, refer to E.
Keogh, K. Chakrabarti, M. J. Pazzani, S. Mehrotra, “Dimen-
sionality reduction for fast similarity search in large time-
series databases,” Knowledge and Information Systems, 3
(2001) 263-286)) In other words, by executing the SVD
according to such an algorithm, the acquisition unit 100 can
ciliciently solve the eigenvalue problem shown 1n the equa-
tion 4, and thereby can efliciently create a new second time
series data set that minimizes the sum of the squares of
differences between the second time series data set and each

of the time series data sets stored 1n the normal-status DB
105.

[0052] Returning to FIG. 2, the replication unit 110 creates
the first replicated data set and the second replicated data set
by repeatedly sampling with replacement a predetermined
number of times (S210). For example, this predetermined
number of times may be equal to the number of observed
values, or an integral multiple of a predetermined integer,
such as 2, of the number of observed values. For detailed
descriptions of a method for creating a replicated data set by

repeated sampling with replacement, refer to A. C. Davison,
D. V. Hinkley, “Bootstrap Methods and Their Application,”

Cambridge Umversity Press (Oct. 28, 1997).

[0053] Adter calculating the cumulative probability distri-
bution of the first time series data set and the cumulative
probability distribution of the second time series data set, the
calculation unit 120 calculates a score indicating the difler-
ence between the first time series data set and the second
time series data set on the basis of the difference between the
cumulative probability value 1n the cumulative probability
distribution of the first time series data set, and the cumu-
lative probability value i the cumulative probability distri-
bution of the second time series data set with respect to the
same observation variable (S220). For each observation
variable, the cumulative probability distribution may be
calculated by any method known by a person of ordinary
skill 1n the art. For example, the cumulative probability
distribution may be calculated for an observation variable by
expressing the first or second {first time series data set as a
frequency distribution 1n the form of a probability density
function 1n the observation variable, followed by integrating
the probabaility density function from the lowest value of the
observation variable to successively higher values of the
observation variable to obtain the cumulative probability
distribution normalized to a range of O to 1.

[0054] For the purpose of increasing efliciency in the
calculation processing, the calculation unit 120 may exclude
a predetermined range of observed values by assuming that
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the probability distribution 1n the predetermined range 1s not
likely to vary, and then may calculate the difference between
the probability value in the cumulative probability distribu-
tion of the first time series data set, and the probability value
in the cumulative probability distribution of the second time
series data set with respect to the same observation variable.
For example, in a case where it 1s obvious that values for a
semi-discrete variable within a certain range are continuous
values, the calculation unit 120 may exclude the values
within the range, and then may calculate the score.

[0055] This calculated score may be a score known as a
Kolmogorov-Smirnov (KS) statistic (hereinafter, referred to
as a score D). To be more precise, the KS statistic indicates
the maximum absolute value of the diflerence between the
probability value 1n the cumulative probability distribution
of the first replicated data set, and the probability value in the
cumulative probability distribution of the second replicated
data set, with respect to each of the observed values. The KS
statistic takes a value within a range of O to 1, 1.e., takes 0
1f no diflerence exists, and takes 1 1f the absolute value of the
difference 1s the maximum. Equation 5 shows a definition of
the score D, where the subscripts N and T represent the
normal and the target data. By using the KS statistic, it 1s
possible to appropnately recognize a substantial status varia-
tion even when an observation period 1s changed due to a
change 1n an observation environment; an observed value
becomes the predetermined multiple of 1ts usual value due to
a change in certain conditions; or a value 1s observed by
adding a predetermined oflset value to (by subtracting the
oflset value from) an observed value.

|Formula 5]

D; = max|Fy(x) — Fr(x)| Equation 3

[0056] FIG. 4 shows an example of the process for cal-
culating a score D on the basis of an original time series data
set instead of a replicated data set. By referring to FIG. 4, a
problem 1n a case of comparison using the original time
series data set instead of the replicated data set 1s pointed
out, and eflectiveness using the replicated data set 1is
explained. The left-upper part of FIG. 4 shows a graph
indicating a cumulative probability distribution of a second
time series data set in a solid line. The left-lower part of FIG.
4 shows a graph indicating a cumulative probability distri-
bution of a first time series data set 1n a dotted line. In these
cumulative probability distributions, observed values vary
uncontinuously around the central part of the graph. Spe-
cifically, the probability that an observed value obtained
from an observation target takes a certain value 1s very high,
and the probability that the observed value takes a different
value 1s very low, though it may happen sometimes. Suppose
that, when obtained observed values take a certain value in
a concentrated manner as described above, the observed
value 1s called a semi-discrete observed value, and that a
variable to which the semi-discrete observed value 1s
assigned 1s called a semi-discrete vanable.

[0057] A large number of semi-discrete observed values
are observed from an observation target such as an automo-
bile. For example, only discrete values can be inherently
obtained from the gear position and the shift position.
Moreover, like an accelerator opening degree, there 1s also
an observed value that 1s more likely to take O (when not
pressing down on the accelerator) or 100 (when pressing,
down on the accelerator completely) 1n light of usual usage

Jan. 10, 2008

thereof. In addition, there 1s a case where observed values
that are inherently continuous values become semi-discrete
due to limited resolution. An example of this case is that the
performance of a thermometer only allows a temperature to
be measured with accuracy of 1° C. Smoothing and resam-
pling processing or inclusion of noise may cause such
semi-discrete variables not to be completely discrete.

[0058] It should be noted that, although the automobile 1s
illustrated as observation target in this embodiment, this
embodiment can be also effectively applied to any observa-
tion target other than the automobile as long as such semi-
discrete observed value are observed from the observation
target. For instance, as the observed value, the diagnosis
system 10 may observe an economical index such as a gross
domestic product, a price of a stock or a bond. In this case,
it 1s possible to detect anomaly occurring in an organization,
such as a nation state or a company, which 1s an observation
target.

[0059] The right part of FI1G. 4 shows a graph 1n which the
graph (a solid line) of the cumulative probability distribution
of the second time series data set overlaps the graph (a
dotted line) of the cumulative probabaility distribution of the
first time series data set. The lines of the first and second
time series data sets are almost 1dentical. However, as shown
in the central part of the graph, there 1s a slight difference 1n
the observed values that are observed as discrete values.
Since such a difference often results from the foregoing
noise, the difterence should not be detected as a substantial
difference between the first time series data set and the
second time series data set. Nevertheless, when the difler-
ence between the cumulative probability distribution of the
first time series data set, and the cumulative probability
distribution of the second time series data set 1s evaluated by
using the score D that 1s the KS statistic, the difference
becomes very significant.

[0060] In contrast, in this embodiment, the calculation unit
120 calculates the KS statistic indicating the difference
between the first replicated data set and the second repli-
cated data set instead of the first time series data set and the
second time series data set. Each of the replicated data sets
1s obtained by repeatedly sampling observed values with
replacement from the corresponding time series data set.
When the number of times of resampling 1s set to be
sufliciently large, the cumulative probability distribution 1s
smoothed, and the part of a gradient o 1s excluded. As a
result, only a substantial feature in the probability distribu-

tion can be sampled.

[0061] FIG. S shows an example of the process for cal-
culating a score D. The calculation unit 120 creates a
probability distribution of a first replicated data set, and a
probability distribution of a second replicated data set. IT
cach of the replicated data sets 1s expressed as changes of
observed values with the passage of time, probability dis-
tributions are each expressed as a set of probability values
cach corresponding to an observed value, and each indicat-
ing the probability of obtaining the observed value. Then,
the calculation unit 120 creates a cumulative probability
distribution of each of the probability distributions. A cumu-
lative probability distribution 1s expressed as a cumulative
value of the probability that each observation variable takes
on a value less than or equal to a certain value. Thereafter,
the calculation unit 120 calculates, as the score D, the
maximum value of the difference between a probability
value 1n the cumulative probability distribution of the first
replicated data set, and a probability value 1in the cumulative
probability distribution of the second replicated data set,
with respect to the same observation variable.
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[0062] Returning to FIG. 2, the judgment unit 130 calcu-
lates the difference between scores, one of which has been
created 1n S220 1n the previous execution of S210 to S240,
and the other of which has been created in S220 1n the

current execution ol S210 to S240 (5230). Then, on condi-
tion that the calculated diflerence 1s not equal to or less than

a predetermined reference value (5240: NO) which 1s a
specified tolerance, the judgment unit 130 causes the pro-
cessing to return to S210. To be more precise, the replication
unit 110 repeatedly performs sampling of observed values
with replacement by increasing the number of times of
repetition, and creates a new replicated data set by adding
newly sampled observed values to the replicated data set
created in the previous execution. This processing of S210
to S240 1s repeated until the difference calculated 1 S230
becomes equal to or less than the reference value.

[0063] On condition that the difference between the scores
converges to the reference value or below (S240: YES), the
calculation unit 120 outputs the currently-calculated score to
the display unit 140 (S250). After that, the display unit 140
displays the calculated score as a detection result of the
difference between the first time series data set and the
second time series data set (S260). Alternatively, on condi-
tion that the score exceeds a predetermined threshold value
(for example, 0.4), the display unit 140 may notily a user of
the observation variable corresponding to the score. The
foregoing processing may be repeatedly preformed for each
observation variable of the plurality of observation vari-
ables, and the display unit 140 may display a list of detection
results of all of the observation variables.

[0064] FIG. 6 shows a process 1n which scores D converge
as the number of times of repeated sampling with replace-
ment increases. In a graph shown 1n FIG. 6, the x-axis shows
kinds of observed values, the z-axis shows the number of
times of repeated sampling with replacement by indicating,
how many times larger than the number of observed values
in the first time series data set and/or the second time series
data set, and the y-axis shows the score D. By referring to
FIG. 6, 1t 1s found that the score D of any observation
variable hardly varies, when the number of repetition times
exceeds about a 10-fold higher number than the number of
observed values in the first time series data set and the
second time series data set. Accordingly, 1t 1s understood that
the number of repetition times of the processing shown in
S210 to S240 1s on the order of a several 10-fold higher
number than the number of observed values. Alternatively,
instead of the processing shown in FIG. §, the replication
unit 110 may repeatedly perform sampling with replacement
the approximate several 10-fold higher number of times than
the number of observed values in advance, and then the
calculation unit 120 may calculate the score D only once by
using the replicated data sets thus created. As shown 1n FIG.
6, 1t 1s understood that a sufliciently reliable score can be
calculated by repeatedly sampling with replacement the
approximate several 10-fold higher number of times than the
number of observed values.

[0065] FIG. 7 shows an example of a screen 700 on which
a detection result 1s displayed by the display unit 140. On the
screen 700, the display unit 140 displays mformation indi-
cating plural, observation variables and scores, such as KS
statistics, calculated from the respective observation vari-
ables 1n descending order of the calculated score. In a bar
chart of FIG. 7, the observed values having the larger scores
are displayed from the left-hand side 1n descending order. To
be more precise, the display unit 140 shows a KS statistic of
an observed value by using the length of a bar 710 1n the bar
chart, in association with an identification number 8 indi-
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cating the observation variable. Moreover, next to this bar on
the right side, the display unit 140 shows a KS statistic of an
observed value by using the length of a bar 720 in the bar
chart, 1n association with an identification number 12 indi-
cating the observation variable. The KS statistics become
smaller 1n order of the 1dentification numbers 8, 12, 55, 13,
2, 60, ..., from the left side to the right side 1n the graph.
Thus, with the display of the display unit 140, a user can
recognize places 1 each of which there 1s a strong possi-
bility that anomaly occurs, and the descending order of the
possibilities. As a result, an automobile engineer can prop-
erly know components that should be diagnosed in detail
preferentially, and the priority order, and then can work for
a countermeasure against the anomaly more ethliciently than
otherwise.

[0066] FIG. 8 shows a flowchart of a real-time process for
displaying a detection result of anomaly in a modified
example of this embodiment. In this modified example,
descriptions will be provided for an example of a process 1n
which scores, such as the foregoing KS statistics, are
dynamically updated by using observed values sequentially
obtained while an observation target 1s being observed. In
this modified example, even 1n a case where a new score 1s
calculated every time an observed value 1s added to a time
series data set, the new score 1s not calculated by using all
the observed values from the beginning 1n every execution.
Instead, the modified example aims to calculate the new
score more efliciently by using a calculation result in the
previous execution.

[0067] The acquisition unit 100 sequentially observes the
observation target, and sequentially adds a time series data
set 1ncluding newly-obtained observed values to a time
series data set including previously-obtained observed val-
ues. Thereby, the acquisition unit acquires a new first time
series data set (S800) with a fixed window of length N1. In
other words, the acquisition unit 100 acquires a new {irst
series data set including N1. data points in every execution
of S800. Then, the replication unit 110 creates a replicated
data set of the time series data set including only the
newly-obtained observed values, out of the acquired first
time series data set (S8 10).

[0068] Note that there 1s a trade-off between the time
resolution and the precision of the score. Specifically, for a
smaller the window size, the time resolution of the real-time
anomaly detection system will get better, while statistical
errors for estimating the cumulative probabaility distribution
will get larger, since the number of the data points within the
window gets smaller. To handle this trade-off, the calculation
unmt 120 creates a cumulative probability distribution based
on the replicated data set of the first time series data set, by
combining a cumulative probability distribution based on
the replicated data set of the time series data set including
the newly-obtained observed value, with a cumulative prob-
ability distribution based on a replicated data set of the time
series data set including the previously-obtained observed

values (5820).

[0069] This combining 1s carried out according to a ratio
of the number of newly-obtained observed values to the
number of previously-obtained observed wvalues. For
example, a cumulative probability value of observation
variable 1s calculated as a weighted average by using the
numbers of newly-obtained and previously-obtained
observed values as the weighting factors, respectively. One
example 1s provided hereafter. Suppose that the previously-
calculated cumulative probability value and the newly-
calculated cumulative probability value of a certain obser-
vation variable are 0.4 and 0.5, respectively, and that the
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numbers of previously-obtained observed values and newly-
obtained observed values are 9000 and 1000, respectively. In
this case, the average thereof 1s calculated by weighting
according to a ratio between the numbers of observed values
9:1, and thereby the probability value 0.41 1s computed.
Putting formally, 11 the D-scores of the previously observed
data and the newly observed data are S, and S, , respectively,
the resulting score S 1s written as BS,+(1-p) S,, where p 1s
a real number within O through 1, representing a discounting
factor. One natural choice for the discounting factor 1is
N,(N,;+N,), where N, 1s the window size (the number of
data points) of the previously observed data.

[0070] Thereafter, the calculation unit 120 calculates a
score such as a KS statistic indicating the difference between
the combined cumulative probability distribution, and the
previously-created cumulative probability distribution of the
second replicated data set (S830). The calculated score 1s
displayed as a detection result of the difference between the
first time series data set and the second time series data set
(S840). If the diagnosis system 10 continues to obtain
observed values, the diagnosis system 10 causes the pro-
cessing to return to S800, and subsequently updates the
score.

[0071] According to this foregoing modified example, 1t 1s
possible to recognize the status of an observation target in
real time during the observation thereof. In addition, the
score indicating the difference can be calculated quickly by
using the previous calculation result.

[0072] The preceding discussion of FIG. 8 describes a
method for analyzing time series data for each observation
variable of a plurality of observation variables through
execution of a program by a processor of an nformation
processing apparatus that comprises a display unit. The
method comprises, for each observation variable, processing
time series data for an ordered sequence of time periods 1,
2, ..., Jsuch that J 1s at least 3.

[0073] Processing the time series data for time period 1
comprises acquiring a new time series data set 1 having N,
observed values for the time period 1 and generating a first
cumulative probability distribution (Pcomb,1) from the new
time series data set 1.

[0074] Processing the time series data for time period
(=2, 3, . . ., J) comprises the steps of:

[0075] (a) acquiring a new time series data set ] having N,
observed values for the time period j;

[0076] (b) generating a new cumulative probability distri-
bution (Pnew,)) from the new time series data set j;

[0077] (c¢) generating a combined cumulative probability
distribution (Pcomb.j) equal to p*Pnew,j+(1— )*Pcomb,j-1,
wherein p=N,/(N,+N,), and wherein N,=(1-1)*N,;

[0078] (d) computing a score of Pcomb,j-Pcomb,j—1; and
[0079] (e) outputting the score as a detection result to the
display unit.

[0080] In one embodiment, N,=1. In another embodiment,
N,>1.

[0081] Processing the time series data for the time periods

1, 2, ..., ] 1s performed 1n real time.

[0082] FIG. 9 shows an example of a hardware configu-
ration of an information processing apparatus 500 function-
ing as the diagnosis system 10 1n this embodiment or the
modified example. The information processing apparatus
500 1includes a CPU peripheral unit, an mnput/output unit and
a legacy input/output unit. The CPU peripheral unit includes
a CPU 1000, a RAM 1020 and a graphics controller 1075,
all of which are mutually connected to one another via a host
controller 1082. The input/output unit includes a communi-

cation interface 1030, a hard disk drive 1040 and a CD-
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ROM drive 1060, all of which are connected to the host
controller 1082 via an nput/output controller 1084. The
legacy mput/output unit includes a ROM 1010, a flexible
disk drive 1050 and an mput/output chip 1070, all of which

are connected to the iput/output controller 1084.

[0083] The host controller 1082 mutually connects the
RAM 1020 to the CPU 1000 and the graphics controller
1075, both of which access the RAM 1020 at a high transfer
rate. The CPU 1000 1s operated based on programs stored in
the ROM 1010 and the RAM 1020, and controls each of the
components. The graphics controller 1075 obtains image
data generated by the CPU 1000 or the like 1 a frame butler
provided 1n the RAM 1020, and causes the obtained image
data to be displayed on a display device 1080. In place of
this, the graphics controller 1075 may internally include a
frame bufler 1n which the image data generated by the CPU

1000 or the like 1s stored.

[0084] The input/output controller 1084 connects the host
controller 1082 to the communication interface 1030, the
hard disk drive 1040 and the CD-ROM drive 1060, all of
which are high-speed mput/output devices. The communi-
cation interface 1030 communicates with an external device
via a network. In the hard disk drive 1040, programs and
data to be used by the information processing apparatus 500
are stored. The CD-ROM drive 1060 reads a program or data
from a CD-ROM 1095, and provides the read-out program

or data to the RAM 1020 or the hard disk 1040.

[0085] Moreover, the mput/output controller 1084 1s con-
nected to relatively low-speed input/output devices such as
the ROM 1010, the flexible disk drive 1050 and the input/
output chip 1070. In the ROM 1010, stored are programs
such as a boot program executed by the CPU 1000 at a
start-up time of the information processing apparatus 300
and a program depending on hardware of the information
processing apparatus 500. The flexible disk drive 1050 reads
a program or data from a flexible disk 1090, and provides the
read-out program or data to the RAM 1020 or the hard disk
drive 1040 via the mput/output chip 1070. The mput/output
chip 1070 1s connected to the flexible disk drive 1050 and
various kinds of mput/output devices, for example, through
a parallel port, a serial port, a keyboard port, a mouse port

and the like.

[0086] A program to be provided to the mformation pro-
cessing apparatus 500 1s provided by a user with the program
stored 1n a storage medium such as the flexible disk 1090,
the CD-ROM 1095 and an IC card. The program 1s read
from the storage medium wvia the mput/output chip 1070
and/or the input/output controller 1084, and 1s 1nstalled and
executed on the mformation processing apparatus 500. An
operation that the program causes the information process-
ing apparatus 500 or the like to execute, 1s 1dentical to the
operation of the diagnosis system 10 described by referring
to FIGS. 1 to 8. Therelfore, the description thereof 1s omitted
here.

[0087] The program described above may be stored 1n an
external storage medium. As the storage medium, any one of
the following mediums may used: an optical storing medium
such as a DVD and a PD; a magneto-optic storing medium
such as an MD; a tape medium; and a semiconductor
memory such as an IC card, in addition to the flexible disk
1090 and the CD-ROM 1095. Alternatively, the program
may be provided to the information processing apparatus
500 via a network, by using, as a storage medium, a storage
device such as a hard disk and a RAM, provided in a server
system connected to a private communication network or the
internet. A storage medium with the program stored thereon
1s a computer program product.
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[0088] As has been described 1n this embodiment herein-
above, according to the diagnosis system 10, it 1s possible to
detect anomaly occurring 1n an observation target by using
plural kinds of observed values exhaustively without fully
having knowledge of behavior of the observed values in
advance. Moreover, a score indicating anomaly 1s calculated
by repeatedly sampling observed values with replacement
from a time series data set. As a result, the substantial status
of the observation target can be diagnosed by excluding a
slight difference between the observed values caused by a
difference in an observation environment. This makes 1t
possible to achieve an anomaly detection method that etfec-
tively functions instead of the conventional limit check, or
complementally functions in addition to the limit check.
[0089] According to the present invention, 1t 1s possible to
detect anomalies occurring in an observation target with
high accuracy.

[0090] Heremabove, the present invention has been
described by using the embodiment. However, the technical
scope of the present mvention 1s not limited to the above-
described embodiment. It 1s obvious to one skilled in the art
that various modifications and improvements may be made
to the embodiment. Moreover, it 1s also obvious from the
scope of the present invention that thus modified and
improved embodiments are included in the technical scope
of the present invention.

What 1s claimed 1s:

1. A method for analyzing time series data for each
observation variable of a plurality of observation vaniables
through execution of a program by a processor of an
information processing apparatus that comprises a display
unit, said method comprising performing for each observa-
tion variable:

acquiring an imtial first time series data set consisting of
a first plurality of first observed values over a first
period of time, followed by generating an initial first
cumulative probability distribution from the 1nitial first
time series data set, said 1nitial first time series data set
being designated as a previous {irst time series data set;

acquiring an initial second time series data set consisting
of a second plurality of second observed or computed
values over a second period of time, followed by
generating an initial second cumulative probability
distribution from the 1nitial second time series data set,
said 1nitial second time series data set being designated
as a previous second time series data set;

calculating an initial score as a function of an absolute
value of a difference between respective cumulative
probability values of the generated iitial first cumus-
lative probability distribution and the generated 1nitial
second cumulative probabaility distribution, said initial
score being designated as a previous score;

performing operations on the previous first time series
data set, including: generating a next first time series
data set by adding newly-obtained first observed values
at first additional times to the previous first time series
data set, followed by generating a next first cumulative
probability distribution from the next first time series
data set;

performing operations on the previous second time series
data set, including: generating a next second time series
data set by adding newly-obtained second observed or
computed values at second additional times to the
previous second time series data set, followed by
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generating a next second cumulative probability distri-
bution from the next second time series data set;

calculating a next score as said function of an absolute
value of a difference between respective cumulative
probability values of the generated next first cumulative
probability distribution and the generated next second
cumulative probability distribution;

ascertaining whether a condition exists,

wherein the condition 1s that the next score has been
calculated a specified maximum number of times
equal to at least 1 or an absolute value of a difference
between the next score and the previous score 1s not
greater than a specified tolerance, and

wherein 1f said ascertaining ascertains that the condi-
tion exists then outputting the next score as a detec-
tion result to the display unit, otherwise setting the
previous lirst time series data set equal to the next
first time series data set, setting the previous second
time series data set equal to the next second time
series data set, setting the previous score equal to the
next score, and again executing said performing
operations on the previous first time series data set,
said performing operations on the previous second
time series data set, said calculating the next score,
and said ascertaining.

2. The method of claim 1, wheremn upon the next score
having been calculated only once, said ascertaining ascer-
tains that the condition does not exist.

3. The method of claim 1, wheremn upon the next score
having been calculated a fewer number of times than the
specifled maximum number of times, said ascertaining
ascertains that the condition exists.

4. The method of claim 1, wheremn upon the next score
having been calculated the specified maximum number of
times and the absolute value of the difference between the
next score and the previous score being greater than the
specified tolerance, said ascertaining ascertains that the
condition exists.

5. The method of claim 1, wherein the specified maximum
number of times 1s 1, and wherein the number of newly-
obtained first observed values and the number of newly-
obtained second observed values each comprise more than a
10-fold higher number than both the number of first
observed values of the first plurality of first observed values
and the number of second observed values of the second
plurality of second observed values.

6. The method of claim 1,

wherein said function of the absolute value of the differ-
ence between respective cumulative probability values
of the generated imitial first cumulative probability
distribution and the generated initial second cumulative
probability distribution 1s a maximum value of the
absolute value of the difference between the respective
cumulative probability values of the generated initial
first cumulative probability distribution and the gener-
ated 1nitial second cumulative probability distribution,
and

wherein said function of the absolute value of the difler-
ence between respective cumulative probability values
of the generated next first cumulative probabaility dis-
tribution and the generated next second cumulative
probability distribution 1s a maximum value of the
difference between the respective cumulative probabil-
ity values of the generated next first cumulative prob-
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ability distribution and the generated next second
cumulative probability distribution.

7. The method of claim 1,

wherein said function of the absolute value of the difler-

ence between respective cumulative probability values
of the generated mnitial first cumulative probability
distribution and the generated initial second cumulative
probability distribution 1s an average value of or a
summation of the absolute value of the difference
between the respective cumulative probability values
of the generated initial first cumulative probability
distribution and the generated initial second cumulative
probability distribution, and

wherein said function of the absolute value of the differ-

ence between respective cumulative probability values
of the generated next first cumulative probability dis-
tribution and the generated next second cumulative
probability distribution 1s an average value of or a
summation of the difference between the respective
cumulative probability values of the generated next first
cumulative probability distribution and the generated
next second cumulative probability distribution.

8. The method of claim 1, wherein the second plurality of
second observed or computed values of the initial second
time series data set 1s a vector u representing m time series,
wherein m 1s at least 2, and wherein said acquiring the nitial
second time series data set comprises:

providing the m time series, wherein time series r of the

m time series is denoted as a p-dimensional vector x*”
(r=1, 2, . . ., m) ol p observed values respectively
corresponding to p different times, and wherein p 1s at
least 2; and

computing the vector u as a vector that minimizes a sum

of squares over r from r=1 to r=m ol inter-vector
distances between u and x”.

9. The method of claim 8, wherein said computing the
vector u comprises solving an eigenvalue equation (HH?)
u=Au for the maximum eigenvalue A and its associated
cigenvector u, wherein H 1s a p-by-m matrix expressed as
H=[x", x* ..., x"] and wherein H” is a transposed
matrix of H.

10. The method of claim 1, wherein the first period of time
1s unequal to the second period of time, and wherein the
number of first observed values of the first plurality of first
observed values 1s unequal to the number of second
observed values of the second plurality of second observed
values.

11. The method of claim 1, wherein the method comprises
displaying on the display unit a bar chart of the detection
result versus observation variable, wherein the observation
variable 1s ordered on the bar chart in descending order of
the detection result.

12. The method of claim 1, wherein the method comprises
displaying on the display unit a three-dimensional bar chart
in which the next score 1s plotted as a function of observa-
tion variable and number of calculations of the next score.
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13. A computer program product, comprising a computer
usable storage medium having a computer readable program
stored thereon, wherein the program when executed on a
processor of the mformation processing apparatus performs
the method of claim 1.

14. A system comprising a processor and a computer
readable memory unit coupled to the processor, said
memory unit containing a program that when executed by
the processor implement the method of claim 1, wherein the
system comprises the information processing apparatus, and
wherein the information processing apparatus comprises the
processor and the computer readable memory unat.

15. A method for analyzing time series data for each
observation variable of a plurality of observation variables
through execution of a program by a processor of an
information processing apparatus that comprises a display
unit, said method comprising, for each observation vanable,
processing time series data for an ordered sequence of time
pertods 1, 2, . . ., J such that J 1s at least 3,

wherein said processing for time period 1 comprises

acquiring a new time series data set 1 having NI
observed values for the time period 1 and generating a
first cumulative probability distribution (Pcomb,])
from the new time series data set 1, and

wherein said processing for time period 1 =2, 3, ..., I)

comprises the steps of:

(a) acquiring a new time series data set 1 having N,

observed values for the time period j;
(b) generating a new cumulative probability distribution
(Pnew,1) from the new time series data set j;
(c) generating a combined cumulative probability distri-
bution (Pcomb,j) equal to 3*Pnew,j+(1-p)*Pcomb,j-1,
wherein =N,/(N,+N,), and wherein N,=(-1)*N,;

(d) computing a score equal to the difference of Pcomb,j

and Pcomb,j—1; and

(¢) outputting the score as a detection result to the display

unit.

16. The method of claim 15, wherein N,=1.

17. The method of claim 15, wherein N,>1.

18. The method of claim 15, wherein said processing the
time series data for the time periods 1, 2, . . ., J1s performed
in real time.

19. A computer program product, comprising a computer
usable storage medium having a computer readable program
stored thereon, wherein the program when executed on a
processor of the mformation processing apparatus performs
the method of claim 15.

20. A system comprising a processor and a computer
readable memory umt coupled to the processor, said
memory unit containing a program that when executed by
the processor implement the method of claim 135, wherein
the system comprises the information processing apparatus,
and wherein the information processing apparatus comprises
the processor and the computer readable memory unit.
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