US 20070174411A1

a9y United States

12y Patent Application Publication (o) Pub. No.: US 2007/0174411 Al
Brokenshire et al. 43) Pub. Date: Jul. 26, 2007

(54) APPARATUS AND METHOD FOR (52) U.S. CL oo 709/213
EFFICIENT COMMUNICATION OF
PRODUCER/CONSUMER BUFFER STATUS
(57) ABSTRACT
(76) Inventors: Daniel A. Brokenshire, Round Rock,
TX (US); Charles R. Johns, Austin,

TX (US); Mark R. Nutter, Austin, TX An apparatus and method for efficient communication of
(US); Barry L. Minor, Austin, TX

producer/consumer bufller status are provided. With the

(US) apparatus and method, devices 1n a data processing system
Correspondence Address: notify each other of updates to head and tail pointers of a
IBM CORP. (WIP) shared bufler region when the devices perform operations on
c/o WALDER INTELLECTUAL PROPERTY the shared bufler region using signal notification channels of
LAW, P.C. the devices. Thus, when a producer device that produces
P.O. BOX 832745 data to the shared bufler region writes data to the shared

RICHARDSON, TX 735083 (US)

bufler region, an update to the head pointer 1s written to a
(21) Appl. No.: 11/340,453 signal notification channel of a consumer device. When a
consumer device reads data from the shared bufler region,

(22) Filed: Jan. 26, 2006 the consumer device writes a tail pointer update to a signal

o _ _ notification channel of the producer device. In addition,
Publication Classification : .
channels may operate 1 a blocking mode so that the

(51) Int. CI. corresponding device 1s kept 1n a low power state until an
GOo6l: 15/167 (2006.01) update 1s received over the channel.
410
WRITE
SPE
ATE
;Jg ElE AD (PRODUCER)
POINTER
- | PROCESSOR
WRITE
DATA TO |
SHARED LOCAL STORE READ DATA
BUFFER FROM SHARED
SHARED
BUFFER REGION
REGION SUEFER i
REGION
WRITE
| — : UPDATE
MFC EXTERNAL | 70 TAIL
DEVIGE 1 POINTER
416 (CONSUMER)
- 430
CHANNEL INTERFACE VEC-DMA —
418 OPERATION | 00
10 UPDATE 496
B PRODUCER CHANNEL HEAD 40
READ MEMORY MAPPED POINTER D
CHANNEL REGISTER(S)
417
COUNT 424 a3
TAIL READ TAIL
(415 UPDATE
420) TO TAIL
_ _| LHEAD \ POINTER

Patent Application Publication Jul. 26, 2007 Sheet 1 of 8 US 2007/0174411 Al

FIG. 14
(PRIOR ART)

TAIL
POINTER

120

-

130

140

——

110
HEAD

POINTER

FIG. IB
(PRIOR ART)

HEAD
POINTER
110

- L

140

130

‘——Y—
120
TAIL

140 POINTER

Patent Application Publication Jul. 26, 2007 Sheet 2 of 8 US 2007/0174411 Al

FIG. 24
(PRIOR ART) 250
SHARED MEMORY UPDATE HEAD
210 PRODUCER
MONITOR TAIL
HEAD
POINTER |
240
TAIL
P
POINTER MONITOR HEAD
CONSUMER
29() UPDATE TAIL
260
230
UPDATEHEAD
270
l;{]]gé Aif SHARED I—LOCAL MEMORY
() MEMORY REGION
210
230~ pRroDUCER

24()

I HEAD POINTER I
TAIL POINTER
I 220

260

MONITOR TAIL

Patent Application Publication Jul. 26, 2007 Sheet 3 of 8 US 2007/0174411 Al

300
FIG. 3
BROADBAND PROCESSOR ARCHITECTURE
320 322 324 326 328 330 332 334

SPU SPU SPU
340 392 304
S S S
363 369 370
MFC MFC MFC
399 361 362
BIU BIU BIU
380 392 394
3 ' i

B K B

L2
314" | CACHE - 397

R
L MIC BIC
12| e | 7
L 398
PPU 319
316

1 SHARED E)éLESHENséL
399 MEMORY DEVICES

Patent Application Publication Jul. 26, 2007 Sheet 4 of 8 US 2007/0174411 Al

410
WRITE - FIG. 4
UPDATE
0 HEAD (PRODUCER)
POINTER |
— | PROCESSOR
414
WRITE
DATA TO |
SHARED LOCAL STORE READ DATA
BUFFER FROM SHARED
SHARED
BUFFER REGION
REGION A !
| REGION
|
WRITE
| UPDATE
MFC EXTERNAL | 10 TAIL
DEVICE | POINTER
| 416 (CONSUMER)
| 430
HANNEL INTERFACE
- MFC-DMA [~ o
418 OPERATION | -
TO UPDATE | p
PRODUCER CHANNEL HEAD 426
READ MEMORY MAPPED POINTER 0
CHANNEL REGISTER(S)
417
COUNT 424 e
—— ..
415 UPDATE
420) TO TAIL

HEAD POINTER

Patent Application Publication Jul. 26, 2007 Sheet 5 of 8 US 2007/0174411 Al

510
WRITE - FIG. 5
UPDATE
10 TAIL (CONSUMER)
POINTER
— 1 PROCESSOR
- READ
| DATA
FROM
' | SHARED LOCAL STORE WRITE DATA
BUFFER TO SHARED
REGION SHARED BUFFER REGION

BUFFER
I REGION I
WRITE

'_'“ UPDATE
SMF EXTERNAL | TO HEAD
DEVICE | pPOINTER
216 (PRODUCER)
230
' | CHANNEL INTERFACE
218 MFC-DMA S%%ISQEE
| _ OPERATION i
PRODUCER CHANNEL TO UPDATE 240

917 UPDATE
020 TO HEAD

MEMORY MAPPED TAIL POINTER .
READ REGISTER(S)
CHANNEL 515
COUNT 224 519
II HEAD — . HEAD .
AL POINTER

Patent Application Publication Jul. 26, 2007 Sheet 6 of 8 US 2007/0174411 Al

READ CHANNEL
COUNT =
(CHANNELS
1 AND 2) (PRODUCER/CONSUMER) 510 FIG. 6
— | PROCESSOR
‘TNORHEEA%PDATE READ DATA
FROM SHARED

BUFFER REGION
(CHANNEL 1)

POINTER
(CHANNEL 1) LOCAL STORE
SHARE% I%liIFFER ——
WRITE DATA TO
SHARED BUFFER
REGION

(CHANNEL 2)
WRITE —_—
DATA TO SMF EXTERNAL
SHARED | 616 WRITE DEVICE
BUFFER — UPDATE TO | (CONSUMER/
REGION CHANNEL INTERFACE TAIL POINTER| | PRODUCER)
g(;HANNEL 618 ~ (CHANNEL 1) 630
I
) - MFC-DMA
| CHAENE“ MEMORY OPERATION TO LOCAL
l MAPPED REGISTER(S) POATE HEAD STORAGE
624 POINTER 626
| CHANNEL 2
! . TAIL () TAIL
I 515 READ UPDATETO | |
| 620 HEAD POINTER 617 626
(CHANNEL 1)
| — HEAD bl EAD
MFC-DMA _
CHANNEL 2 MEMORY OPERATION TO |
READ DATA MAPPED REGISTER(S) UPDATE HEAD WR%E;JEPADDATE
FROM SHARED | 625 POINTER 10 HEAT
BUFFER REGION (CHANNEL 2) CHANNEL 2
(CHANNEL 2) HEAD (
62/
632
TAIL —
UPDATE TO
TAIL POINTER

(CHANNEL 2)

Patent Application Publication Jul. 26, 2007 Sheet 7 of 8 US 2007/0174411 Al

FIG. 7

705 RECEIVE DATA TO BE WRITTEN
TO SHARED BUFFER REGION

710 WRITE RECEIVED DATA TO
SHARED BUFFER REGION

720 UPDATE HEAD POINTER FOR
SHARED BUFFER REGION

WRITE HEAD POINTER UPDATE
730~ DATA TO SIGNAL NOTIFICATION
CHANNEL OF CONSUMER DEVICE

PRODUCER'S
CHANNEL COUNT
IS ZERQ?

NO

740

YES
PLACE PRODUCER

DISCONTINUE
OPERATION?

NO
750 DEVICE IN LOW POWER

OPERATIONAL STATE

NO

DISCONTINUE
OPERATION?

770 ygg

END

Patent Application Publication Jul. 26, 2007 Sheet 8 of 8 US 2007/0174411 Al

FIG. 8

820 UPDATE TAIL POINTER FOR
SHARED BUFFER REGION

810 READ DATA FROM
SHARED BUFFER REGION

WRITE TAIL POINTER UPDATE

830~{ DATA TO SIGNAL NOTIFICATION
CHANNEL OF PRODUGER DEVICE

CONSUMER'S
CHANNEL COUNT
S ZERO?

NO

840

YES
PLACE CONSUMER

a5 DEVICE IN LOW POWER DISCONTINUE ™ NO

: OPERATION?

OPERATIONAL STATE

YES 860

DISCONTINUE
OPERATION?

NO

US 2007/0174411 Al

APPARATUS AND METHOD FOR EFFICIENT
COMMUNICATION OF PRODUCER/CONSUMER
BUFFER STATUS

BACKGROUND

0001] 1. Technical Field

0002] The present application relates generally to an
improved data processing system. More specifically, the
present application 1s directed to an apparatus and method
for eflicient communication of producer/consumer bufler
status.

[0003] 2. Description of Related Art

[0004] In a data processing system, one processor or
device typically acts as a producer by placing data into a
shared bufller while another processor or device acts as a
consumer by reading and processing the data placed there by
the producer. For example, consider a data processing sys-
tem where a producer and a consumer, independently oper-
ating on processors or devices within the data processing
system, have access to a shared data bufler region. The
shared data bufler region may be located, for example, 1n
shared system or I/O memory and 1s commonly accessible
by both parties. In addition to the shared bufler region, two
state variables are shared between the producer and con-

sumer: a head pointer (or index) and a tail pointer (or index),
as shown 1n FIG. 1A.

[0005] FIG. 1A1s an exemplary diagram of a shared buffer
region 1n accordance with a prior art system. As shown in
FIG. 1A, the shared bufler region 100 has an associated tail
pointer 120 and head pointer 110. The head pointer 110
represents the next unused location in the shared bufler
region 100. The tail pointer 120 represents the last unproc-
essed data location in the shared builer region 100.

[0006] As a producer places data into the shared buffer
region 100, the producer increments the head pointer 110. In
this way, the producer indicates to consumers that new data
1s available for the consumers. Likewise, as the consumer
retrieves data from the shared bufler region 100, the con-
sumer increments the tail pomnter 120, thereby indicating
that data has been read from the shared bufier region 100.
The amount of data available 1n the shared bufler region 100
1s indicated by the difference between the head pointer 110
and tail pointer 120. This 1s referred to as the “active” data
region 140 1n the shared builer region 100. The portion of
the shared bufler region 100 that 1s behind the tail pointer
120 1s referred to as the “mactive” (or old) data region 130.
An empty shared bufler region 1s 1dentified by setting the
head pointer 110 and tail pointer 120 to the same location in
the shared bufler region 100.

[0007] When there is no constraint on the size of the
shared bufler region, 1.e. when there 1s an mfinite amount of
storage space available for the shared bufler region 100, the
head pointer 110 and tail pointer 120 may be incremented
indefinitely. However, in most systems, it 1s more realistic to
have only a fixed amount of storage space available for the
shared bufler region 100. In this case, it 1s possible to
reclaim the inactive region 130 by implementing what 1s
known as a circular first-in-first-out (FIFO) type shared
bufler region 100. This type of shared bufler region 1s
illustrated in FIG. 1B.

Jul. 26, 2007

[0008] As shown in FIG. 1B, the head pointer 110 and tail
pointer 120 are incremented as described above with regard
to FIG. 1A, however when the end of the shared bufler
region 100 1s encountered, the head and tail pointers 110 and
120 are permitted to wrap back to the beginning of the
shared bufler region 100. As with the shared bufler region
100 shown 1n FIG. 1A, the active data region 140 1s defined
as the portion of the shared bufler region 100 between the
head pointer 110 and tail pointer 120. However, with the
FIFO shared builer region, both the producer and consumer
must now account for the situation where the head pomter
110 has wrapped beyond the end of the shared builler reglon
100, 1.e. back to the beginning of the shared bufler region
100, but the tail pointer 120 has not wrapped.

[0009] This requires efficient communication of the cur-
rent values for the head and tail pointers 110 and 120 to both
the producer and the consumer. The consumer 1s primarily
concerned with monitoring updates to the head pointer 110
and the producer 1s primarily concerned with monitoring
updates to the tail pointer 120. Before a consumer can begin
processing, 1t must know that the head pointer 110 and tail
pomnter 120 point to different entries 1n the shared bufler
region 100. Likewise, before the producer can add data to
the shared bufler region 100, the producer must ensure that
the amount of data to be added will not overtlow the tail
pointer 120.

[0010] A simple implementation may involve storing the
state variables, 1.e. the head pointer 110 and tail pointer 120,
in shared system memory and momitoring these state vari-
ables remotely. FIG. 2A 1llustrates this exemplary imple-
mentation.

[0011] As shown in FIG. 2A a producer 250 performs
updates to the head pointer 210 1n shared memory 230 and
monitors the current state of tail pointer 220 in shared
memory 230 when writing data to the shared bufler region
240. Similarly, the consumer 260 updates the tail pointer 220
in shared memory 230 and monitors the current state of the
head pointer 210 1n shared memory 230 when reading data
from the shared bufler region 240.

[0012] The producer 250 and consumer 260 each perform
updates and monitoring of the head poimnter 210 and tail
pointer 220 1n shared memory 230 remotely. That 1s, the
head pointer 210 and tail pointer 220 are not located 1n a
memory local to the producer 250 or the consumer 260.
Thus, the producer 250 and consumer 260 must access these
pointers 210 and 220 via a bus or other communication
interface that 1s not local to the producer 250 or consumer
260. Typically, the producer 250 and consumer 260 poll the
remote shared memory 230 in order to obtain information
regarding the head and tail pointers 210 and 220. As a result,
this updating and monitoring requires additional resources,
¢.g., processor cycles, bus bandwidth, etc., within the system
to support these operations. Because of the need to utilized
additional system resources, this solution may be considered
too detrimental to overall system performance.

[0013] In an alternative approach, the head and tail point-
ers 210 and 220 are maintained 1n a memory or registers that
are local to either the producer 250 or the consumer 260 1n
order to 1mprove performance of that one party, 1.e. the
producer 250 or the consumer 260, to which the pointers 210
and 220 are made local. FIG. 2B illustrates such an alter-
native implementation in which the head pointer 210 and tail

US 2007/0174411 Al

pointer 220 are stored 1n a local memory region 270 to one
of the producer 250 and consumer 260 (in the depicted
example, the local memory region 270 1s local to the
consumer 260).

[0014] As shown in FIG. 2B, the head pointer 210 and tail
pointer 220 are stored 1n local memory region 270 that 1s
local to consumer 260. This local memory region 270 1is
separate from shared memory 230 and shared builer region
240. The producer 250 must remotely monitor, 1.e. poll, the
value of the tail pointer 220 1n order to determine the amount
ol free space remaining in the shared builer region 240. This
may lead to serious degradation of performance for the
producer, as the latency for reading remote locations can be
several orders of magnitude worse than for main shared
memory storage. Of course the situation could be reversed,
requiring that the consumer 260 remotely monitor the head
pointer 210 1n a local memory region local to the producer
250, for example.

SUMMARY OF THE INVENTION

[0015] In view of the above, it would be beneficial to have
an 1mproved mechanism for efficient communication of
shared bufler status between producers and consumers 1n a
data processing system. The illustrative embodiments pro-
vide such an improved mechanism by utilizing already
existing communication channels established with process-
ing elements of the data processing system to communicate
this shared bufler status information.

[0016] With the illustrative embodiments, synergistic pro-
cessor elements (SPEs) are provided in a data processing
system. The SPEs are a simple, yet highly optimized,
processor with a single instruction, multiple data (SIMD)
instruction set. The SPEs have a large register file, a high
speed local memory, and a channel interface that serves as
the primary communication pathway between an SPE and
external processors or devices.

[0017] The channel interface is a message passing inter-
face that overlaps input/output (I/O) with data processing
and minimizes power consumed by synchronization. The
channel facilities of the channel interface are accessed with
three types of mstructions: a read channel instruction, write
channel instruction, and read channel count instruction
which measures channel capacity. These channels may be
configured as blocking or non-blocking channels. Channels
that are defined as blocking channels cause the SPE to stall
when accessing a channel whose channel count 1s zero. In
this sense, the channel count indicates the number of out-
standing operations that can be 1ssued for that channel
without causing the SPE to stall. Aside from blocking on
channel access, an SPE program can monitor a variety of
channel events using SPE interrupt facilities.

[0018] The SPE channel interface supports two signal
notification channels, which may be used by the SPE to
receive signals originating from other processors or devices
in the system. The signal notification channels can be
programmed to operate 1 over-write mode. Over-write
mode 1s a mode 1n which the latest notification messages
written to the channel “overwrite” previous notification
messages written to the channel such that the processors
may access the most recent information written to the signal
notification channel. The over-write mode of the signal
communication channels 1s useful 1n a one-to-one commu-

Jul. 26, 2007

nications environment, or 1 a logical-OR communications
environment, such as 1 a many-to-one signaling environ-
ment.

[0019] With the illustrative embodiments, the producer,
running on an SPE, may read its signal notification chan-
nel(s) and operate 1 a blocking mode until the consumer
updates the tail pointer information written to the signal
notification channel(s). This provides a low-power, low-
bandwidth alternative to monitoring, 1.e. polling, a remote
memory or register location that 1s local to the consumer.
Further, this solution provides low latency responses for
real-time systems since the SPE 1s automatically awoken as
soon as data becomes available on the signal notification
channel(s).

[0020] In another illustrative embodiment, the producer
running on the SPE may use the processor’s event and
interrupt facilities to recerve asynchronous notification of
consumer’s completion. This solution may be of use 1n
environments where there 1s other work to be done by the
SPE and blocking on a channel 1s not an acceptable alter-
native.

[10021] Of course these illustrative embodiments may be
extended by reversing the roles and having the SPE program
act as a consumer, while an external processor or device acts
as a producer. In such a case, the producer would notify the
SPE of buller state updates by writing the head pointer to a
signal notification register. The embodiments may be turther
extended by having the SPE program operate as both a
consumer (receiving head pointer updates from an external
device or processor on a first signal notification channel, for
example) and as a producer (recerving tail pointer updates
from an external device or processor on a second signal
notification channel, for example).

[10022] In one illustrative embodiment, a method is pro-
vided 1n which an operation on a shared bufler region 1s
performed using a first device 1n a data processing system.
The method may further comprise writing a pointer update
to a signal notification channel associated with a second
device 1n the data processing system. The pointer update
may be an update to one of a head pointer or a tail pointer
of the shared bufler region. The method may further com-
prise updating a pointer stored in a local store of the second
device based on the pointer update. The signal notification
channel may be a memory mapped address region of a
shared memory of the data processing system.

[0023] The operation on the shared buffer region may be
a write operation for writing data to the shared bufler region.
The pomter update may be an update to a head pointer of the
shared bufler region.

[0024] Alternatively, the operation on the shared buffer
region may be a read operation for reading data from the
shared builer region. The pointer update may be an update
to a tail pointer of the shared bufler region.

[0025] The method may further comprise determining if
the shared builer region 1s full and placing the second device
in a low-power consumption waiting state waiting for a
predetermined amount of storage space to be freed in the
shared bufler region before additional data may be written to
the shared bufler region. Placing the second device 1n a
low-power consumption waiting state may comprise placing
the notification channel 1n a blocking mode of operation in

US 2007/0174411 Al

which the second device’s normal operation 1s blocked and
the second device waits 1n a low-power consumption state.

[0026] The operation may be a read operation for reading
data from the shared bufler region. The notification channel
may exit the blocking mode of operation 1n response to the
read operation.

10027] While in the blocking mode of operation, a channel
interface of the second device may periodically 1ssue a read
channel count instruction to the signal notification channel
to determine a count associated with the notification chan-
nel. If the count associated with the notification channel 1s
zero, then the notification channel may remain 1n a blocking
mode of operation. If the count associated with the notifi-
cation channel 1s non-zero, then the notification channel may
exit the blocking mode of operation. In response to the
notification channel exiting the blocking mode of operation,
the second device may be awoken by 1ssuing a read channel
instruction to the notification channel and returming results
of the read channel nstruction to the second device.

10028] The second device may be a synergistic processing
unit and the shared bufler region is part of the local store
associated with the synergistic processing unit. Writing a
pointer update may be performed using a channel interface
of a memory tlow control unit associated with the synergistic
processing unmt. Moreover, the first device and the second
device may be synergistic processing units of a multipro-
cessor system-on-a-chip.

[0029] In another illustrative embodiment, a computer
program product comprising a computer usable medium
having a computer readable program 1s provided. The com-
puter readable program, when executed on a computing
device, may cause the computing device to perform, using a
first device 1n the data processing system, an operation on a
shared buller region and write a pointer update to a signal
notification channel associated with a second device 1n the
data processing system. The pointer update may be an
update to one of a head pointer or a tail pointer of the shared
bufler region. The computer readable program may further
cause the computing device to update a pointer stored in a
local store of the second device based on the pointer update.
Moreover, the computer readable program may further cause
the computing device to perform the various operations
outlined above with regard to the method illustrative
embodiment.

[0030] In yet another illustrative embodiment, a system 1s
provided that comprises a first processor, a second processor
coupled to the first processor, and a local storage device
coupled to the second processor. The first processor may
perform an operation on a shared builer region of the local
storage device and may write a pointer update to a signal
notification channel associated with the second processor.
The pointer update may be an update to one of a head pointer
or a tail pointer of the shared bufler region. The second
processor may update a pointer stored 1n the local store of
the second processor based on the pointer update.

[0031] The operation on the shared buffer region may be
a write operation for writing data to the shared bufler region.
The pointer update may be an update to a head pointer of the
shared bufler region.

[0032] Alternatively, the operation on the shared buffer
region may be a read operation for reading data from the

Jul. 26, 2007

shared bufler region. The pointer update may be an update
to a tail pointer of the shared bufler region.

[0033] The second processor may determine if the shared
bufler region 1s full and may place itself 1n a low-power
consumption waiting state waiting for a predetermined
amount of storage space to be freed in the shared builler
region before additional data may be written to the shared
bufler region. The second processor may place 1tself 1n a
low-power consumption waiting state by placing the noti-
fication channel 1n a blocking mode of operation 1n which
the second processor’s normal operation 1s blocked and the
second processor waits 1n a low-power consumption state.

[0034] The operation may be a read operation for reading
data from the shared bufler region. The notification channel
may exit the blocking mode of operation 1n response to the
read operation. While 1n the blocking mode of operation, a
channel interface of the second processor may periodically
1ssue a read channel count instruction to the signal notifi-
cation channel to determine a count associated with the
notification channel. If the count associated with the noti-
fication channel 1s non-zero, then the notification channel
may exit the blocking mode of operation.

[0035] These and other features and advantages of the
present ivention will be described 1, or will become
apparent to those of ordinary skill in the art 1n view of, the
following detailed description of the exemplary embodi-
ments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] The novel features believed characteristic of the
invention are set forth 1n the appended claims. The mnvention
itself, however, as well as a preferred mode of use, further
objectives and advantages thereof, will best be understood
by reference to the following detailed description of an
illustrative embodiment when read in conjunction with the
accompanying drawings, wherein:

[0037] FIG. 1A1s an exemplary diagram of a shared buffer
region 1n accordance with a known mechanism;

[0038] FIG. 1B is an exemplary diagram of a FIFO shared
bufler region in accordance with a known mechanism;

[0039] FIG. 2A i1s an exemplary diagram illustrating a
mechanism for storing head and tail pointers 1n a shared
memory in accordance with a known mechanism;

[0040] FIG. 2B 1s an exemplary diagram illustrating an
alternative implementation in which the head pointer and tail
pointer are stored 1n a local memory region that 1s local to
a consumer 1n accordance with a known mechanism:;

10041] FIG. 3 is an exemplary block diagram of a data
processing system in which aspects of the illustrative
embodiments may be implemented;

10042] FIG. 4 is an exemplary block diagram illustrating
an interaction between a producer and a consumer with
regard to updating state information for a shared bufler
region 1n accordance with one 1illustrative embodiment
where a process running on a SPE operates as a producer;

10043] FIG. 5 is an exemplary block diagram illustrating
an interaction between a producer and a consumer with
regard to updating state information for a shared bufler

US 2007/0174411 Al

region 1n accordance with one 1illustrative embodiment
where a process running on a SPE operates as a consumer;

10044] FIG. 6 is an exemplary block diagram illustrating
an interaction between a producer and a consumer with
regard to updating state information for a shared bufler
region 1n accordance with one illustrative embodiment
where a process running on a SPE operates as both a
producer and a consumer;

10045] FIG. 7 1s a flowchart outlining an exemplary opera-
tion of an 1illustrative embodiment in which a process
running on a SPE operates as a producer; and

10046] FIG. 8 1s a flowchart outlining an exemplary opera-
tion of an 1illustrative embodiment 1n which a process
running on a SPE operates as a consumer.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

L1l

[0047] The following is intended to provide a detailed
description of illustrative embodiments and should not be
taken to be limiting of the invention itself. Rather, any
number ol variations may fall within the scope of the
invention defined 1n the claims following the description.

10048] FIG. 3 is an exemplary block diagram of a data
processing system 1n which aspects of the present invention
may be implemented. The exemplary data processing sys-
tem shown in FIG. 3 1s an example of the Cell Broadband
Engine (CBE) data processing system. While the CBE will
be used 1n the description of the preferred embodiments of
the present mvention, the present imnvention 1s not limited to
such, as will be readily apparent to those of ordinary skill 1n
the art upon reading the following description.

[0049] As shown in FIG. 3, the CBE 300 includes a power
processor element (PPE) 310 having a processor (PPU) 316
and 1ts L1 and L2 caches 312 and 314, and multiple
synergistic processor elements (SPEs) 320-334 that each has
its own synergistic processor unit (SPU) 340-354, memory
flow control 355-362, local memory or store (LLS) 363-370,
and bus interface umt (BIU unit) 380-394 which may be, for
example, a combination direct memory access (DMA),
memory management unit (MMU), and bus interface unit. A
high bandwidth imnternal element interconnect bus (E1B) 396,
a bus interface controller (BIC) 397, and a memory interface
controller (MIC) 398 are also provided.

[0050] The CBE 300 may be a system-on-a-chip such that

cach of the elements depicted in FIG. 3 may be provided on
a single microprocessor chip. Moreover, the CBE 300 1s a
heterogeneous processing environment in which each of the
SPUs may receive different instructions from each of the
other SPUs 1n the system. Moreover, the instruction set for
the SPUs 1s different from that of the PPU, e.g., the PPU may
execute Reduced Instruction Set Computer (RISC) based
instructions while the SPU execute vectorized instructions.

[0051] The SPEs 320-334 are coupled to each other and to
the L2 cache 314 via the EIB 396. In addition, the SPEs
320-334 are coupled to MIC 398 and BIC 397 via the EIB
196. The MIC 398 provides a communication interface to
shared memory 399. The BIC 397 provides a communica-
tion interface between the CBE 300 and other external buses
and devices.

Jul. 26, 2007

[0052] The PPE 310 is a dual threaded PPE 310. The
combination of this dual threaded PPE 310 and the eight
SPEs 320-334 makes the CBE 300 capable of handling 10
simultaneous threads and over 128 outstanding memory
requests. The PPE 310 acts as a controller for the other eight
SPEs 320-334 which handle most of the computational
workload. The PPE 310 may be used to run conventional
operating systems while the SPEs 320-334 perform vector-
1zed tloating point code execution, for example.

[0053] The SPEs 320-334 comprise a synergistic process-
ing unit (SPU) 340-354, memory tlow control units 355-362,
local memory or store 363-370, and an interface unit 380-
394. The local memory or store 363-370, in one exemplary
embodiment, comprises a 256 KB instruction and data
memory which 1s visible to the PPE 310 and can be
addressed directly by software.

[0054] The PPE 310 may load the SPEs 320-334 with

small programs or threads, chaining the SPEs together to
handle each step in a complex operation. For example, a
set-top box incorporating the CBE 300 may load programs
for reading a DVD, video and audio decoding, and display,
and the data would be passed off from SPE to SPE until 1t
finally ended up on the output display. At 4 GHz, each SPE
320-334 gives a theoretical 32 GFLOPS of performance

with the PPE 310 having a similar level of performance.

[0055] The memory flow control units (MFCs) 355-362
serve as an intertace for an SPU to the rest of the system and
other elements. The MFCs 3355-362 provide the primary
mechanism for data transfer, protection, and synchronization
between main storage and the local storages 363-370. There
1s logically an MFC for each SPU in a processor. Some
implementations can share resources ol a single MFC
between multiple SPUs. In such a case, all the facilities and
commands defined for the MFC must appear independent to
soltware for each SPU. The eflects of sharing an MFC are
limited to implementation-dependent facilities and com-
mands.

[0056] The MFC units 355-362 provide a channel inter-
face and channel interface facilities through which the SPEs
320-334 may communicate with other SPEs, the PPE 310,
and other devices coupled to the EIB 396. The channel
interface 1s a message passing interface that overlaps 1/0
with data processing and minimizes power consumed by
synchronization. The channel facilities of the channel inter-
face provide a read channel and a write channel and may be
accessed by a read channel instruction, a write channel
instruction, and read channel count instruction which mea-
sures channel capacity. These channels may be configured as
blocking or non-blocking channels. Channels that are
defined as blocking channels cause the corresponding SPE
320-334 to stall when accessing a channel whose channel
count 1s zero. In this sense, the channel count indicates the
number of outstanding operations that can be 1ssued for that
channel without causing the SPE 320-334 to stall. Aside
from blocking on channel access, the channel facilities may
monitor a variety of channel events using channel interface
event and interrupt facilities.

[0057] The SPE’s channel interface supports two signal
notification channels, which may be used by the SPE 320-
334 to receive signals originating from other processors,
e.g., other SPE’s, or devices 1n the system, which will be
collectively referred to as external devices. The signal

US 2007/0174411 Al

notification channels can be programmed to operate in
over-write mode. Over-write mode 1s a mode i which the
latest notification messages written to the channel “over-
write” previous notification messages written to the channel
such that the processors of the SPEs 320-334 may access the
most recent information written to the signal notification
channel. The over-write mode of the signal communication
channels 1s useful 1n a one-to-one communications environ-
ment, or 1n a logical-OR communications environment, such
as 1n a many-to-one signaling environment.

|0058] The channels themselves are essentially memory
mapped address regions of shared memory 399. That 1s,
when a channel 1s establish, an address region of the shared
memory 399 1s allocated for use 1n storing the data that 1s to
be passed on the channel between the SPE and the external
device, e.g., another SPE or other type of device in the
system. Thus, when a channel 1s “written to” this means that
the data 1s written to the memory mapped address region of
shared memory 399 allocated for that channel, 1.¢. a register
in the shared memory 399. Similarly, when a channel 1s
“read,” this means that the data stored in the memory
mapped address region of the shared memory 399 allocated
to the channel 1s read. When the channel 1s 1n “overwrite”
mode, this means that the data in the mapped address region
tor the channel 1s overwritten with new data when new data
1s written to the channel.

[0059] The channel interface facilities include facilities
for monitoring the memory mapped address region of the
shared memory 399 that 1s allocated to the channels being
maintained by the channel interface. When new data 1s made
available 1n the memory mapped address region, the channel
interface facilities may “wake up” the processor of the SPE
by generating an appropriate “wake up” message that 1s sent
to the processor. In this way, the process may remain 1n a low
power state until a “wake up” message 1s received. This
mechanism 1s referred to as a blocking mode channel
operation. Alternatively, the availability of new data in the
memory mapped address region may cause the channel
interface facilities to generate an event or interrupt that is
received and processed by an event or interrupt handler

running on the processor of the corresponding SPE.

[0060] More information regarding the Cell Broadband
Engine may be found at the IBM DeveloperWorks website.
Specifically, the Cell Broadband Engine architecture docu-
ment “Cell Broadband Engine Architecture V1.0 1s avail-
able at www-128.1bm.com/developerworks/power/cell/,
which 1s hereby incorporated by reference.

[0061] Using the broadband engine described in FIG. 3 as
the basis for a data processing system in which an 1llustrative
embodiment may be implemented, 1t can be seen that a
shared bufler region may reside, for example, in the shared
memory 399 accessible via the memory interface controller
398, or 1n a local store 363-370 associated with a SPE
320-334. This shared butler region may be used to pass data
between SPEs 320-334 so as to perform complex process-
ing. Thus, 1t 1s necessary for the SPEs 320-334 that share the
shared bufler region to be able to access information regard-
ing the head and tail pointers for the shared builer region.

[0062] As mentioned above, one mechanism for maintain-
ing the head and tail pointers for a shared buliler region 1s to
have the head and tail pointers stored 1n a local storage that
1s local to one of the consumer or the producer (see FIG. 2B).

Jul. 26, 2007

Thus, 1n one exemplary embodiment of the present inven-
tion, the head and tail pointers are stored 1n a local memory
363-370 associated with an SPE 320-334. For example, 1n
an operation mmvolving two SPEs, e.g., SPE 320 and SPE
330, one of the SPEs, e.g., SPE 320, may run a program or
thread that operates as a consumer of data produced by a
program or thread running on the other SPE, e.g., SPE 330.
The head and tail pointers for the shared bufler region that
stores this data may be stored in the local memory 363
associated with the SPE 320, which 1s acting as a consumer,
for example (although 1t could easily as well be stored 1n the
local memory 368 associated with SPE 330). The SPE 320
would update the tail pointer as that SPE 320 reads and
processes data from the shared bufler region. The SPE 330
would update the head pointer as that SPE 330 generates
data and writes that data to the shared builer region.

[0063] The SPEs 320 and 330 communicate the current
status of the head and tail pointers for the shared builer
region via signal notification channels provided by the MFC
units 355-362. With the illustrative embodiment, the pro-
ducer, running on SPE 330, may read 1ts signal notification
channel(s) and may operate 1 a blocking mode until the
consumer, running on SPE 320, updates the tail pointer
information written to the signal notification channel(s). The
blocking mode may be used so as to ensure that overflows
of the shared bufler region are not encountered. That 1s, as
long as the shared builer region 1s not full, the producer may
continue writing data and updating the head pointer even
though the tail pointer 1s not modified. However when the
producer detects that the shared butler region 1s full (or may
become full by writing some number of bytes to 1t), such as
by looking at the head and tail pointer values, then the
producer needs to wait for the desired amount of free space
to become available 1n the shared bufler region. With the
illustrative embodiments, this “waiting” may be facilitated
by the producer blocking the SPE’s operation by reading the
signal notification channel and waiting in a low-power state
for the consumer to update the tail pointer.

[0064] In writing to a notification channel, the producer
may use a write channel instruction that writes to a memory
mapped address region, or register, associated with the
channel of the consumer. The producer may read data from
the channel by using a read channel instruction that 1s
directed to a memory mapped address region, or register,
associated with the producer’s signal notification channel.
Similarly, the consumer may use a write channel 1nstruction
to write to the memory mapped address region, or register,
associated with the producer’s signal notification channel
and a read channel istruction to read from a memory
mapped address region, or register, associated with the
consumer’s signal notification channel.

[0065] The signal notification channels of the producer
and/or consumer may operate in a blocking mode by using
the read channel count instruction. The channel interface of
the SPE may periodically 1ssue the read channel count
instruction to the appropriate memory mapped address
regions, or registers, associated with the channels to thereby
determine 1f there 1s any data to be retrieved from these
memory mapped address regions. I the count 1s zero, then
the channel interface of the SPE leaves the processor of the
producer/consumer SPE 1n a low power state, 1.e. a “sleep”
state. If the count 1s other than zero, then the channel
interface may “wake up” the processor of the producer/

US 2007/0174411 Al

consumer SPE by i1ssuing a read channel instruction to the
memory mapped address region for the channel and return-

ing the results of the read channel instruction to the proces-
sor of the SPE.

L1

[0066] The “low power state” or “sleep” state 1s managed
entirely by hardware. The hardware takes advantage of the
blocked state of a SPE channel by reducing power consump-
tion, and ramps the power back up when an external
processor or device writes data to the SPE channel. Pro-
grams implemented on traditional CPUs implement a “high
power’ busy-poll alternative. While a SPU program may
likewise busy-poll by 1ssuing “read channel count” instruc-
tions until data 1s available (channel count >0), such busy-
poll loops burn power and require more code than a simple
“read channel” instruction as used with the illustrative
embodiments.

[0067] 'This mechanism of using the signal notification
channel(s) provides a low-power, low-bandwidth alternative
to monitoring, 1.e. polling, a remote memory or register
location that 1s local to the consumer/producer. Further, this
solution provides low latency responses for real-time sys-
tems since the SPEs 320 and 330 are automatically awoken
as soon as data becomes available on the signal notification
channel(s).

[0068] In another illustrative embodiment, the producer,
running on the SPE 330, may use the channel interface’s
event and interrupt facilities to receive asynchronous noti-
fication of the consumer’s completion of processing of data
from the shared bufler region. That 1s, for example, the
consumer may generate an interrupt or event when the
consumer completes reading and processing of a portion of
data from the shared bufler region. This event or interrupt
may be directed to the event or interrupt facilities of the
processor 350 associated with the producer’s SPE 330.

[0069] Each SPE is capable of receiving notification on a
set of external events. An SPE program can mask or unmask
a set of events, and then monitor event status (such as by
reading channel O or polling 1ts channel count) or can choose
to branch to an asynchronous interrupt handler when an
event 1s recerved. SPEs can enable or disable interrupts by
executing the IRETE/IRETD 1nstructions. If asynchronous
interrupts are enabled and an unmasked event occurs (e.g.
data present in a signal notification channel), then the SPE
hardware (a) disables interrupts, (b) saves the current pro-
gram counter, and (c¢) branches to interrupt dispatch code,
which 1s fixed at local store ofiset 0. The program’s interrupt
handler may then read the external event status and proceed
to handle the event. The CBEA document incorporated
above discusses these operations further under the “SPU
Event Facility” section of the document.

[0070] As mentioned above, the event and interrupt facili-
ties may include an event or interrupt handler which per-
forms special processing of the event or interrupt. Such
event or interrupt handlers are generally known 1n the art and
thus, a detailed explanation of event/interrupt handlers 1s not
provided herein. However, SPU interrupts allow user-mode
programs to directly access interrupt facilities. Many CPUs
expose this function only to supervisor/OS code, which
typically requires several layers of system calls to access. By
having access to interrupt facilities, SPU applications pro-
grammers are able to improve the real-time response of their
programs, and can use programming techniques that would

Jul. 26, 2007

not normally be available to them. This solution may be of
use 1 environments where there 1s other work to be done by
the SPE and blocking on a channel 1s not acceptable.

[0071] Of course these embodiments may be extended by
reversing the roles and having the SPE 330 act as a con-
sumer, while the SPE 320 or other device external to the
consumer acts as a producer. In such a case, the producer
would notify the SPE 330 of bufler state updates by writing
the head pointer to a signal notification channel of the SPE
330. The embodiments may be further extended by having
the programs or threads running on the SPEs 320 and 330
operate as both a consumer (receiving head pointer updates
from an external device or processor on a first signal
notification channel, for example) and as a producer (receiv-
ing tail pointer updates from an external device or processor
on a second signal notification channel, for example).

[0072] FIG. 4 is an exemplary block diagram illustrating
an 1nteraction between a producer and a consumer with
regard to updating state information for a shared bufler
region in accordance with one exemplary embodiment of the
present invention where a process running on a SPE operates
as a producer. As shown 1n FIG. 4, a SPE 410, operating as
a producer of data to the shared builer region 422 of the local
store 414, includes a processor 412, the local store 414, and
a memory flow control unit (MFC) 416. The MFC unit 416
includes a channel interface 418 and 1ts associated channel
interface facilities. The channel interface 418 further
includes producer channel memory mapped register(s) 424
which store, among other things, a current state of the head

pointer 415 and tail pointer 420 of the shared bufler region
422.

[0073] In writing data to the shared buffer region 422, the
SPE 410 also updates the head pointer 415 for the shared
bufler region 422 and imnforms the consumer, external device
430, of these updates by performing a memory tlow control
direct memory access (MFC-DMA) “put” request to a
memory mapped register or portion of a local storage 426,
c.g., the head pointer register 419, associated with the
consumer device 430.

[0074] The external device 430, which 1s any device that
1s “external” to the SPE 410 including other SPEs or devices
coupled to the system bus, reads data from the shared bufler
region 422 and, in response to the reading of data, updates
a tail pointer 417 of the shared bufler region 422 in the local
storage 426 of the external device 430. If the external device
1s another SPE, the tail pointer 417 may be written to a
channel interface of the consumer SPE. In order to update
the tail pointer 420 on the producer SPE 410, the external
device 430 writes tail pointer update data to the tail pointer
417 1n the consumer local storage 426 and performs a
channel write operation to the producer channel memory
mapped register(s) 424 indicating an update to the tail
pointer.

[0075] In response to performing the channel write opera-
tion, the channel count for the producer channel memory
mapped register(s) 424 1s incremented. Each SPU channel 1s
coniigured for the purpose of either read or write. Each SPU
channel has a capacity, or channel count, which indicates the
number of outstanding read or write operations that may be
performed against that channel. Further, each channel can be
configured as either blocking or non-blocking. A blocking
channel will stall the SPU when there i1s no remaining

US 2007/0174411 Al

capacity (e.g. the channel count 1s 0), while operations
targeting a non-blocking channel always return immediately
(in other words these channels always have a channel count
of at least 1). The signal notification channels are configured
as blocking. When there 1s data available in the signal
notification channels, the count 1s 1 and reads are returned
immediately. When there 1s no data present, the count is
zero, and the reads will block the SPU until data becomes
available.

[0076] The channel interface 418 of the producer SPE 410
periodically sends a read channel count instruction to the
producer channel memory mapped register(s) 424 which
determines the current count of the producer channel
memory mapped register(s) 424. If this count 1s zero, the
processor 412 1s placed 1n a low power “sleep” state. It this
count 1s other than zero, then-the channel interface 418
sends a read channel instruction to read the tail pointer
update data from the tail pointer register 417 1n the con-
sumer’s local storage 426. The tail pointer update data may
be used to update the tail pointer register 420 in the producer
channel memory mapped register(s) 424. It should be noted
that by using the read channel count instruction of the
channel interface 418, the processor 412 may be kept 1n a
low power “sleep” state until the consumer, 1.e. external
device 430, updates the tail pointer reglster 417 indicating
that i1t has read data from the shared bufler region 422 and
thus, additional data may be written to the shared bufler
region 422.

[0077] A copy (not shown) of the updated tail pointer 420
may be stored 1n the local store 414 of the producer SPE 410.

The producer SPE 410 may reference this copy as long as
there 1s suflicient space available 1n the shared bufler region
422. The producer SPE 410 may only update 1ts local copy
of the tail pointer 417 1n the local store 414 when 1t detects
that there 1s not suflicient space available in the shared bufler
region 422.

[0078] Pseudo-code for waiting for space to become avail-
able may be implemented on the SPU as follows:

void wait__space(int nbytes)

{
while (space() < nbytes)
tail = spu__readch(3);

[0079] This example uses signal notification 1 (CH3) to
receive tail pointer updates from the consumer. This code
will block on the channel read when no data 1s available in
that channel. However 1f there 1s already data present in the
channel, then the “read channel” instruction will return
immediately. Thus, the producer only blocks when (a) there
1s not suflicient space available 1n the shared bufler region
and (b) the consumer has not already updated the tail pointer.

[0080] It should be noted that there 1s no requirement that
the external device 430 be another SPE or have channel
interface facilities such as channel interface 418. The con-
sumer may be any kind of processor or device that may
consume data written to shared buller region 422. From the
producer SPE’s perspective, all of the devices, whether
SPEs or not, are treated the same. The producer SPE 410

Jul. 26, 2007

issues an MFC-DMA “put” command to write the head
pointer 415 to the external memory or register location
associated with the external device 430. From the SPE
producer’s point of view, the particulars of how the con-
sumer waits for head pointer updates (and whether 1t blocks,
polls, etc.) do not matter to the operation of the producer.

[0081] Similar mechanisms may be employed when the
SPE operates as a consumer and the external device operates
as a producer of data to the shared bufller region. FIG. 5 1s
an exemplary block diagram illustrating an interaction
between a producer and a consumer with regard to updating
state mnformation for a shared bufler region 1n accordance
with one 1llustrative embodiment where a process running
on a SPE operates as a consumer. As shown i FIG. 5,
external device 530 writes data to the shared bufler region
522 via the channel interface 518 and, 1n so doing, also
updates the head pointer 515 for the shared builer region 522
in 1ts local storage 526. In order to update the head pointer
520 on the consumer SPE 510, the external device 530
writes the head pointer update data to the head pointer
register 515 of local storage 526 and performs a write
channel operation to the head pointer register 520 of the
consumer channel memory mapped register(s) 524 indicat-
ing the update to the head pointer 515.

[0082] The channel interface 518 of the SPE 510, operat-

ing as a consumer, periodically sends a read channel count
instruction to the consumer channel memory mapped reg-
ister(s) 524 to determine the count for the head pointer
channel. If the count 1s zero, the processor 312 1s maintained
in a low power “‘sleep” state. If the count 1s other than zero,
then the channel interface 518 sends a read channel 1nstruc-
tion to the consumer channel memory mapped register(s)
524 to thereby obtain the head pointer update data from the
local storage 526 of the external device 330. This 1 turn
causes the processor 512 to read data from the shared builer
region 522 and update the tail pointer 517 by writing the tail
pointer update data to consumer channel memory mapped
register(s) 524. The external device 530 may be mnformed of
the update to the tail pointer 517 by way of an MFC-DMA
“put” command 1n a similar manner as previously described

above with regard to the update to the head pointer 1n FIG.
4.

[0083] The external device 530 receives the notification of
the update to the tail pointer 517, may update its local copy
of the tail pomter 519, and may write data to the shared
bufler region 522 based on the updated tail pointer. If the
external device 530 1s another SPE having similar channel
interface facilities and local store, a similar operation as
described above in FIG. 4 may be followed by external
device 530 to thereby update a local copy of the head and tail
pointers and perform write operations to the shared bufler
region 322.

[0084] FIG. 6 is an exemplary block diagram illustrating
an interaction between a producer and a consumer with
regard to updating state information for a shared bufler
region 1n accordance with one exemplary embodiment of the
present invention where a process running on a SPE operates
as both a producer and a consumer. As shown in FIG. 6, the
primary difference between this embodiment and the previ-
ous embodiments described 1n FIGS. 4 and 3 1s that there are
separate channels allocated to the SPE 410 that are provided
for updates to the head pointer and the tail pointer. That 1is,

US 2007/0174411 Al

a first channel, e.g., SPE channel 1 memory mapped regis-
ter(s) 624, 1s provided to which the SPE 610 writes updates
to the head pointer and a second channel, e.g., SPE channel
2 memory mapped register(s) 625, 1s provided to which the
SPE 610 writes updates to the tail pointer. Thus, the first
channel 1s used when the SPE 610 1s operating 1n a producer
role and the second channel 1s used when the SPE 610 1s
operating 1n a consumer role.

[0085] Since the SPE 610 may operate as both producer
and consumer, the SPE 610 may read and write data to the
shared bufler region 622. When the SPE 610 writes data to
the shared bufler region 622 as a producer, the channel
interface 618 writes head pointer update data to the head
pointer register 615 1n the channel 1 memory mapped
address region 624 and may notily the external device 630
of the update by way of a MFC-DMA “put” instruction, for
example. When the SPE 610 reads data from the shared
bufler region 622 as a consumer, the SPE 610 may write tail
pointer update data to the tail pointer register 627 in the
channel 2 memory mapped address region 627. Similarly,
the update to the tail pointer may be notified to the external
device 630 by way of a MFC-DMA ““put” instruction to the
tail pointer storage location 617, for example.

[0086] The external device 630 may update the head
pointer 626 and tail pointer 617 1n local storage 626 based
on operations performed by the external device 630 to either
store or read data from the shared bufler region 622. The
external device 630 may notify the SPE 610 of updates to the
head and tail pointers using write channel instructions to
respective ones of channel 1 and channel 2 memory mapped

register(s) 624 and 625.

[0087] When the SPE 610 receives an update to the tail
pointer 620 via the SPE channel 1 memory mapped address
region 624, the SPE 610 may update a copy of the tail
pointer 1 local store 614. When the SPE 610 receives an
update to the head pointer 632 via the SPE channel 2
memory mapped address region 625, the SPE 610 may
update a local copy of the head pointer 1n local store 614.
The receipt of such updates may cause the processor 612 to
exit a low power “sleep” state if the processor 612 were 1n
such a “sleep” state 1n a similar manner as described above.
Thus, the SPE 610 may write head and tail pointer updates
to the signal notification channels and receive updates to
head and tail pointers via these signal notification channels.
Since the broadband engine architecture allows for two
signal notification channels for each SPE or external device,
the SPEs or external devices may use these signal notifica-
tion channels 1n the manner described above to facilitate
notification of head and tail pointer updates for a shared
butler region.

10088] FIG. 7 1s a flowchart outlining an exemplary opera-
tion of the present invention in which a process running on
a SPE operates as a producer. It will be understood that each
block, and combination of blocks, of the flowchart 1llustra-
tion 1n FIG. 7, and the flowchart illustrations in subsequent
figures described hereafter, can be implemented by com-
puter program 1nstructions. These computer program
instructions may be provided to a processor or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions which execute on the processor or
other programmable data processing apparatus create means
for implementing the functions specified in the tlowchart

Jul. 26, 2007

block or blocks. These computer program instructions may
also be stored 1n a computer-readable memory or storage
medium that can direct a processor or other programmable
data processing apparatus to function 1n a particular manner,
such that the instructions stored in the computer-readable
memory or storage medium produce an article of manufac-
ture including mstruction means which implement the func-
tions specified in the tlowchart block or blocks.

[0089] Accordingly, blocks of the flowchart illustrations
support combinations of means for performing the specified
functions, combinations of steps for performing the speci-
fied functions and program instruction means for performing
the specified functions. It will also be understood that each
block of the flowchart illustrations, and combinations of
blocks in the flowchart illustrations, can be implemented by
special purpose hardware-based computer systems which
perform the specified functions or steps, or by combinations
of special purpose hardware and computer instructions.

[0090] As shown in FIG. 7, the operation starts by receiv-
ing data from the processor of the producer for writing to the
shared bufler region (step 705). The received data 1s written
to the shared bufler region (step 710). A head pointer for the
shared bufler region 1s then updated (step 720). The head
pointer update data 1s written to a signal notification channel
of a consumer device (step 730). A determination 1s then
made as to whether the current count on the producer’s
signal notification channel 1s zero (step 740). If so, the
producer 1s placed 1 a low power operational mode or
“sleep” state (step 750). If the producer 1s not to be placed
in a low power operation mode, a determination 1s then
made as to whether the operation should be discontinued
(step 760). This may involve tearing down the channel
between the producer and the consumer, or other events that
cause the producer/consumer relationship to be discontin-
ued. If not, the operation returns to step 705 and the
operation 1s repeated. If the producer 1s placed i a low
power operation mode, a determination i1s made as to
whether the operation should be discontinued (step 770). IT
not, the operation returns to step 740. I the operation 1s to
be discontinued from either of step 760 or step 770, the
operation terminates.

[0091] FIG. 8 is a flowchart outlining an exemplary opera-
tion of the present invention in which a process running on
a SPE operates as a consumer. As shown i FIG. 8, the
operation starts by reading data from the shared builler
region (step 810). A tail pointer for the shared bufler region
1s then updated (step 820). The tail pointer update data 1s
written to a signal notification channel of a producer device
(step 830). A determination 1s then made as to whether the
current count on the consumer’s signal notification channel
1s zero (step 840). I so, the consumer 1s placed 1n a low
power operational mode or “sleep” state (step 850).

[0092] If the consumer i1s not to be placed in a low power
operation mode, a determination 1s then made as to whether
the operation should be discontinued (step 860). This may
involve tearing down the channel between the producer and
the consumer, or other events that cause the producer/
consumer relationship to be discontinued. If not, the opera-
tion returns to step 810 and the operation 1s repeated. If the
consumer 1s placed i a low power operation mode, a
determination 1s made as to whether the operation should be
discontinued (step 870). I not, the operation returns to step

US 2007/0174411 Al

840. If the operation 1s to be discontinued from either of step
860 or step 870, the operation terminates.

10093] It should be appreciated that the operations out-
lined 1n FIGS. 7 and 8 may also be used in conjunction 1n
a single apparatus. For example, an SPE that operates as
both a consumer and a producer may perform the above
operations outlined 1n FIGS. 7 and 8 1n substantially parallel
so as to both produce data for writing to the shared builer
region and read data from the shared builer region.

[0094] Thus, the present invention provides a mechanism
for notitying devices, such as synergistic processing ele-
ments, of updates to head and tail pointers of a shared bufler
region. The mechanism of the present invention avoids the
overhead and bus congestion of polling head and tail point-
ers by providing mechanisms for writing updates to signal
notification channels of the devices and using channel
interface facilities of the devices to update the head and tail
pointers. Moreover, the present invention allows a device to
remain 1 a low power “sleep” state until an update to the
head or tail pointer 1s received from an external device at
which time the device 1s awoken so that it may perform
processing to either produce data to or consume data from
the shared builer region. This greatly decreases the power
consumption of the system as a whole.

[0095] It is important to note that while the present inven-
tion has been described 1n the context of a fully functioning,
data processing system, those of ordinary skill 1n the art will
appreciate that the processes of the present invention are
capable of being distributed 1in the form of a computer
readable medium of instructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media, such as a tloppy disk, a hard
disk drive, a RAM, CD-ROMSs, DVD-ROMSs, and transmis-
sion-type media, such as digital and analog communications
links, wired or wireless communications links using trans-
mission forms, such as, for example, radio frequency and
light wave transmissions. The computer readable media may
take the form of coded formats that are decoded for actual
use 1n a particular data processing system.

[0096] The description of the present invention has been
presented for purposes of illustration and description, and 1s
not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will
be apparent to those of ordinary skill in the art. The
embodiment was chosen and described in order to best
explain the principles of the mvention, the practical appli-
cation, and to enable others of ordinary skill 1n the art to
understand the invention for various embodiments with
vartous modifications as are suited to the particular use
contemplated.

What i1s claimed 1s:
1. A method, 1n a data processing system, comprising:

performing, using a first device i1n the data processing
system, an operation on a shared bufler region;

writing a pointer update to a signal notification channel
associated with a second device 1n the data processing
system, wherein the pointer update 1s an update to one
of a head pointer or a tail pointer of the shared bufler
region; and

Jul. 26, 2007

updating a pointer stored 1n a local store of the second

device based on the pointer update.

2. The method of claim 1, wherein the operation on the
shared bufler region 1s a write operation for writing data to
the shared bufler region, and wherein the pointer update 1s
an update to a head pointer of the shared bufler region.

3. The method of claim 1, wherein the operation on the
shared buller region 1s a read operation for reading data from
the shared builler region, and wherein the pointer update 1s
an update to a tail pointer of the shared bufler region.

4. The method of claim 1, wherein the signal notification
channel 1s a memory mapped address region of a shared
memory of the data processing system.

5. The method of claim 1, further comprising:

determiming if the shared bufler region 1s full; and

placing the second device in a low-power consumption
walting state waiting for a predetermined amount of
storage space to be freed in the shared bufler region
before additional data may be written to the shared
bufler region.

6. The method of claim 5, wherein placing the second
device 1n a low-power consumption waiting state comprises
placing the notification channel 1n a blocking mode of
operation 1n which the second device’s normal operation 1s
blocked and the second device waits 1n a low-power con-
sumption state.

7. The method of claim 6, wherein the operation 1s a read
operation for reading data from the shared bufler region, and
wherein the notification channel exits the blocking mode of
operation 1n response to the read operation.

8. The method of claim 6, wherein while in the blocking
mode of operation, a channel interface of the second device
periodically 1ssues a read channel count instruction to the
signal notification channel to determine a count associated
with the notification channel.

9. The method of claim 8, wherein i1 the count associated
with the notification channel 1s zero, then the notification
channel remains 1n a blocking mode of operation.

10. The method of claim 8, wherein 1f the count associated
with the notification channel 1s non-zero, then the notifica-
tion channel exits the blocking mode of operation.

11. The method of claim 10, wherein, 1n response to the
notification channel exiting the blocking mode of operation,
the second device 1s awoken by 1ssuing a read channel
instruction to the notification channel and returning results
of the read channel instruction to the second device.

12. The method of claim 1, wherein the second device 1s
a synergistic processing unit and the shared bufler region 1s
part of the local store associated with the synergistic pro-
cessing unit.

13. The method of claim 12, wherein writing a pointer
update 1s performed using a channel interface of a memory
flow control unit associated with the synergistic processing
unit.

14. The method of claim 1, wherein the first device and
the second device are synergistic processing units of a
multiprocessor system-on-a-chip.

15. A computer program product comprising a computer
usable medium having a computer readable program,
wherein the computer readable program, when executed on
a computing device, causes the computing device to:

perform, using a first device 1n the data processing sys-
tem, an operation on a shared bufler region;

US 2007/0174411 Al

write a pointer update to a signal noftification channel
associated with a second device 1n the data processing
system, wherein the pointer update 1s an update to one
of a head pointer or a tail pointer of the shared bufler
region; and

update a pointer stored in a local store of the second

device based on the pointer update.

16. The computer program product of claim 15, wherein
the operation on the shared buller region 1s a write operation
for writing data to the shared bufler region, and wherein the
pointer update 1s an update to a head pointer of the shared
butler region.

17. The computer program product of claim 15, wherein
the operation on the shared bufler region 1s a read operation
for reading data from the shared bufler region, and wherein
the pointer update 1s an update to a tail pointer of the shared
builer region.

18. The computer program product of claim 15, wherein
the signal notification channel 1s a memory mapped address
region ol a shared memory of the data processing system.

19. The computer program product of claim 15, wherein
the computer readable program further causes the computing,
device to:

.

determine if the shared bu

er region 1s full; and

place the second device 1mn a low-power consumption
waiting state waiting for a predetermined amount of
storage space to be freed i the shared bufller region
before additional data may be written to the shared
builer region.

20. The computer program product of claim 19, wherein
the computer readable program causes the computing device
to place the second device mm a low-power consumption
waiting state by placing the notification channel 1n a block-
ing mode of operation in which the second device’s normal
operation 1s blocked and the second device waits 1n a
low-power consumption state.

21. The computer program product of claim 20, wherein
the operation 1s a read operation for reading data from the
shared bufler region, and wherein the notification channel
exits the blocking mode of operation 1n response to the read
operation.

22. The computer program product of claim 20, wherein
while 1n the blocking mode of operation, a channel interface
ol the second device periodically 1ssues a read channel count
istruction to the signal notification channel to determine a
count associated with the notification channel.

23. The computer program product of claim 22, wherein
it the count associated with the notification channel 1s zero,
then the notification channel remains 1n a blocking mode of
operation.

24. The computer program product of claim 22, wherein
i the count associated with the notification channel 1is
non-zero, then the notification channel exits the blocking
mode of operation.

25. The computer program product of claim 24, wherein,
in response to the notification channel exiting the blocking
mode of operation, the second device 1s awoken by 1ssuing
a read channel instruction to the notification channel and
returning results of the read channel instruction to the
second device.

10

Jul. 26, 2007

26. The computer program product of claim 135, wherein
the second device 1s a synergistic processing unit and the
shared bufler region 1s part of the local store associated with
the synergistic processing unit.

277. The computer program product of claim 26, wherein
the computer readable program causes the computing device
to write a pointer update by using a channel interface of a

memory tlow control unit associated with the synergistic
processing unit.

28. The computer program product of claim 15, wherein
the first device and the second device are synergistic pro-
cessing units of a multiprocessor system-on-a-chip.

29. A system, comprising:
a first processor;
a second processor coupled to the first processor; and

a local storage device coupled to the second processor,
wherein the first processor performs an operation on a
shared bufller region of the local storage device and
writes a pointer update to a signal notification channel
associated with the second processor, wherein the
pointer update 1s an update to one of a head pointer or
a tail pointer of the shared bufler region, and wherein
the second processor updates a pointer stored in the
local store of the second processor based on the pointer
update.

30. The system of claim 29, wherein the operation on the
shared bufler region 1s a write operation for writing data to
the shared bufler region, and wherein the pointer update 1s
an update to a head pointer of the shared bufler region.

31. The system of claim 29, wherein the operation on the
shared bufler region 1s a read operation for reading data from
the shared buller region, and wherein the pointer update 1s
an update to a tail pointer of the shared bufler region.

32. The system of claim 29, wherein the second processor
determines if the shared bufler region 1s full and places itself
in a low-power consumption waiting state waiting for a
predetermined amount of storage space to be freed in the
shared buller region before additional data may be written to
the shared builer region.

33. The system of claim 32, wherein the second processor
places itself 1n a low-power consumption waiting state by
placing the notification channel 1 a blocking mode of
operation 1n which the second processor’s normal operation
1s blocked and the second processor waits in a low-power
consumption state.

34. The system of claim 33, wherein the operation 1s a
read operation for reading data from the shared bufler
region, and wherein the notification channel exits the block-
ing mode of operation 1in response to the read operation.

35. The system of claim 33, wherein while 1n the blocking,
mode of operation, a channel interface of the second pro-
cessor periodically 1ssues a read channel count 1nstruction to
the signal notification channel to determine a count associ-
ated with the notification channel, and wherein if the count
associated with the notification channel 1s non-zero, then the
notification channel exits the blocking mode of operation.

	Front Page
	Drawings
	Specification
	Claims

