a9y United States

US 20070159488A1

12y Patent Application Publication o) Pub. No.: US 2007/0159488 A1

Danskin et al.

43) Pub. Date: Jul. 12, 2007

(54) PARALLEL ARRAY ARCHITECTURE FOR A
GRAPHICS PROCESSOR

(75) Inventors: John M. Danskin, Providence, RI
(US); John S. Montrym, Los Altos
Hills, CA (US); John Erik Lindholm,
Saratoga, CA (US); Steven E. Molnar,
Chapel Hill, NC (US); Mark French,

Raleigh, NC (US)

Correspondence Address:
TOWNSEND AND TOWNSEND AND CREW

LLP
TWO EMBARCADERO CENTER
8TH FLOOR
SAN FRANCISCO, CA 94111-3834 (US)
(73) Assignee: NVIDIA Corporation, Santa Clara, CA
(US)

(21) 11/611,745

(22)

Appl. No.:
Filed: Dec. 15, 2006
Related U.S. Application Data

(60) Provisional application No. 60/752,265, filed on Dec.

Publication Classification

(51) Int. CL
GO6F 15/80 (2006.01)
€ TR OF T) I 345/505

(57) ABSTRACT

A vparallel array architecture for a graphics processor
includes a multithreaded core array including a plurality of
processing clusters, each processing cluster including at
least one processing core operable to execute a pixel shader
program that generates pixel data from coverage data; a
rasterizer configured to generate coverage data for each of a
plurality of pixels; and pixel distribution logic configured to
deliver the coverage data from the rasterizer to one of the
processing clusters 1n the multithreaded core array. The pixel
distribution logic selects one of the processing clusters to
which the coverage data for a first pixel 1s delivered based
at least 1n part on a location of the first pixel within an image
area. The processing clusters can be mapped directly to the
frame buflers partitions without a crossbar so that pixel data
1s delivered directly from the processing cluster to the
appropriate frame bufler partitions. Alternatively, a crossbar
coupled to each of the processing clusters 1s configured to
deliver pixel data from the processing clusters to a frame
bufler having a plurality of partitions. The crossbar 1s
configured such that pixel data generated by any one of the
processing clusters 1s deliverable to any one of the frame

19, 2005. bufler partitions.
200
cbAIA cPU |
T 102 >
STATE,
CMD
v GPU
FRONT 204 122
END
Y
SYSTEM o DATA - 208
MEMORY GDATA ASSEMBLER 202
104 . GDATA gl -8
» E MULTITHREAD
o CORE
M ARRAY
DATA’
208 G PIXEL |
—
! .*
SETUP EQs| “
(X,Y)
212
210 - lPRIM
PRIM COLOR
RASTERIZER ()(,Y)" ASSEMBLY
M4 .
- PDATA
F Y
PDATA’
.
FRAME

BUFFER

Tl 9o

Patent Application Publication Jul. 12,2007 Sheet 1 of 5 US 2007/0159488 Al

100
104 SYSTEM /
MEMORY » / 112

GRAPHICS SUBSYSTEM

102

122 124
CPU MEMORY
BRIDGE GRAPHICS
MEMORY

- 113
105

106

114 —
SYSTEM I/0
DISK BRIDGE
o\ C
120

121
NETWORK
ADAPTER 118

FIG. 1

Patent Application Publication Jul. 12,2007 Sheet 2 of 5 US 2007/0159488 Al

200
)
GDATA U | /
102 <
STATE,
CMD
GPU

FRONT 204 122
END

SYSTEM DATA - 206

MEMORY GDATA ASSEMBLER 202

/ /
/ /
/

104 GDATA

MULTITHREAD

CORE
ARRAY

210 - PRIM

COLOR
RASTERIZER (X.Y) | ASSEMBLY

PDATA’

FRAME
BUFFER | - 226

FIG. 2

GDATA’

Patent Application Publication Jul. 12,2007 Sheet 3 of 5 US 2007/0159488 Al
GDATA 202
4 . 302(0)
,;.,ff/f
PROCESSING 310(0)
CLUSTER O 14 TEXTURE |
| PIPELINE ‘
304
| ¢ +| CORE 0
GEOMETRY —>» CORE :
CONTROL |« INTERFACE .
208 »! CORE (M-1)
PIXEL ‘
CONTROL i 310(M-1)
- 306
» PROCESSING PIX
CLUSTER 1
T T 302(1)
PROCESSING
CLUSTER (N-1)
N 302(N-1)

EQS
(X,Y)

FIG. 5

402

Iﬂ'ﬂ!ﬂﬂ
o~ el
S lleln]e]e |
olrfoln|~]n] |
o~ lm]ele e
MGG EI RS
Copelelefele e

=

US 2007/0159488 Al

400

Patent Application Publication Jul. 12,2007 Sheet 4 of S
402

FIG. 4

Patent Application Publication Jul. 12,2007 Sheet 5 of 5 US 2007/0159488 Al

302(0) 302(1) 302(N-1)
f f f
PROCESSING PROCESSING PROCESSING
CLUSTER CLUSTER CLUSTER
0 1 N-1
FB | 902(0) FB L FB
PART PART 502N-1)_ | PART
0 502(1)- —_ 1 1 N-1
200
302(0) 302(1) 302(N-1)
PROCESSING PROCESSING PROCESSING
CLUSTER CLUSTER e CLUSTER
0 1 N-1
604
FB ff—f””BOZ(O) FB FB
PART PART e PART
0 602(1) — __ 1 B02(N-1) —__| B-1
600

FIG. 6

US 2007/0159488 Al

PARALLEL ARRAY ARCHITECTURE FOR A
GRAPHICS PROCESSOR

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] The present application claims the benefit of U.S.

Provisional Application No. 60/752,265, filed Dec. 19,
2005, which 1s incorporated herein by reference in 1ts
entirety for all purposes.

[0002] The present application 1s related to the following

commonly-assigned co-pending U.S. patent applications:
application Ser. No. 11/290,303, filed Nov. 29, 2005; appli-

cation Ser. No. 11/289,828, filed Nov. 29, 2003; and appli-
cation Ser. No. 11/311,993, filed Dec. 19, 2005, which are

incorporated in their entirety, herein, by reference for all
purposes.

BACKGROUND OF THE INVENTION

[0003] The present invention relates in general to graphics
processors, and 1n particular to a parallel array architecture
for a graphics processor.

[0004] Parallel processing techniques enhance throughput
of a processor or multiprocessor system when multiple
independent computations need to be performed. A compu-
tation can be divided into tasks that are defined by programs,
with each task being performed as a separate thread. (As
used herein, a “thread” refers generally to an instance of
execution of a particular program using particular input data,
and a “program” refers to a sequence of executable mstruc-
tions that produces result data from mput data.) Parallel
threads are executed simultaneously using different process-
ing engines inside the processor.

[0005] Numerous existing processor architectures support
parallel processing. The earliest such architectures used
multiple discrete processors networked together. More
recently, multiple processing cores have been fabricated on
a single chip. These cores are controlled 1n various ways. In
some 1nstances, known as multiple-instruction, multiple data
(MIMD) machines, each core independently fetches and
1ssues 1ts own 1nstructions to its own processing engine (or
engines). In other instances, known as single-instruction,
multiple-data (SIMD) machines, a core has a single instruc-
tion unit that issues the same instruction in parallel to
multiple processing engines, which execute the instruction
on different input operands. SIMD machines generally have
advantages 1n chip area (since only one instruction unit 1s
needed) and therefore cost; the downside 1s that parallelism
1s only available to the extent that multiple 1instances of the
same 1nstruction can be executed concurrently.

[0006] Conventional graphics processors use very wide
SIMD architectures to achieve high throughput 1n 1mage-
rendering applications. Such applications generally entail
executing the same programs (vertex shaders or pixel shad-
ers) on large numbers of objects (vertices or pixels). Since
cach object 1s processed independently of all others but
using the same sequence of operations, a SIMD architecture
provides considerable performance enhancement at reason-
able cost. Typically, a GPU includes one SIMD core that
executes vertex shader programs, and another SIMD core of
comparable size that executes pixel shader programs. In
high-end GPUs, multiple sets of SIMD cores are sometimes
provided to support an even higher degree of parallelism.

Jul. 12, 2007

[0007] These designs have several shortcomings. First, the
separate processing cores for vertex and shader programs are
separately designed and tested, often leading to at least some
duplication of eflort. Second, the division of the graphics
processing load between vertex operations and pixel opera-
tions varies greatly from one application to another. As 1s
known 1n the art, detail can be added to an 1image by using
many small primitives, which increases the load on the
vertex shader core, and/or by using complex texture-map-
ping and pixel shading operations, which increases the load
on the pixel shader core. In most cases, the loads are not
perfectly balanced, and one core or the other 1s underused.
For instance, 1n a pixel-intensive application, the pixel
shader core may run at maximum throughput while the
vertex core 1s 1dle, waiting for already-processed vertices to
move 1nto the pixel shader stage of the pipeline. Conversely,
in a vertex-intensive application, the vertex shader core may
run at maximum throughput while the pixel core 1s idle,
waiting for new vertices to be supplied. In either case, some
fraction of available processing cycles 1s eflectively wasted.

[0008] It would therefore be desirable to provide a graph-
ics processor that can adapt to varying loads on different

shaders while maintaining a high degree of parallelism.

BRIEF SUMMARY OF THE INVENTION

[0009] Embodiments of the present invention provide
graphics processors that use a scalable multithreaded core
array to execute vertex shader programs, geometry shader
programs, and/or pixel shader programs 1n any combination
during rendering operations. The core array includes a
number of multithreaded processing cores arranged 1n one or
more clusters, with cores in the same cluster being con-
trolled by a shared core interface.

[0010] In embodiments where a pixel shader program is to
be executed, the cluster or core i which the program 1s to
be executed 1s advantageously selected based on the location
of the pixel within the 1mage area. In one embodiment, the
screen 1s tiled, with each tile being assigned to one or
another of the processing clusters (or to a specific core
within a processing cluster). The tiles assigned to a given
processing cluster or core are advantageously scattered
across the screen to provide approximate load balancing.

[0011] In some embodiments, the processing core or clus-
ter includes a raster operations unit that integrates newly
generated pixel data with existing data in a frame builer. The
frame buller can be partitioned to match the number of
processing clusters, with each cluster writing all of 1ts data
to one partition. In other embodiments, the number of
partitions of the frame bufller need not match the number of
processing clusters in use. A crossbar or similar circuit
structure may provide a configurable coupling between the
processing clusters and the frame bufler partitions, so that
any processing cluster can be coupled to any frame butler
partitions; 1n some embodiments, the crossbar 1s omitted,
improving memory locality.

[0012] The following detailed description together with
the accompanying drawings will provide a better under-
standing of the nature and advantages of the present inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 1s a block diagram of a computer system
according to an embodiment of the present invention;

US 2007/0159488 Al

[0014] FIG. 2 1s a block diagram of a rendering pipeline
that can be implemented 1n a graphics processor according,
to an embodiment of the present invention;

[0015] FIG. 3 1s a block diagram of a multithreaded core

array for a graphics processor according to an embodiment
of the present invention;

10016] FIG. 4 illustrates one possible tiling of an image
area mto a number of tiles according to an embodiment of
the present mnvention;

10017] FIG. 5 is a simplified block diagram illustrating a

coupling between processing clusters and a frame buller
according to an embodiment of the present invention; and

[0018] FIG. 6 is a simplified block diagram illustrating a
coupling between processing clusters and a frame buller
according to another embodiment of the present invention.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

System Overview

[0019] FIG. 11s a block diagram of a computer system 100
according to an embodiment of the present invention. Com-
puter system 100 includes a central processing unit (CPU)
102 and a system memory 104 communicating via a bus path
that includes a memory bridge 105. Memory bridge 105 1s
connected via a bus path 106 to an I/O (anput/output) bridge
107. I/O bridge 107 receives user mput from one or more
user mput devices 108 (e.g., keyboard, mouse) and forwards
the mnput to CPU 102 via bus 106 and memory bridge 105.
Visual output 1s provided on a pixel based display device 110
(e.g., a conventional CRT or LCD based monitor) operating
under control of a graphics subsystem 112 coupled to
memory bridge 105 via a bus 113. A system disk 114 1s also
connected to I/O bridge 107. A switch 116 provides con-
nections between 1/0 bridge 107 and other components such
as a network adapter 118 and various add-in cards 120, 121.
Other components (not explicitly shown), including USB or
other port connections, CD drives, DVD drives, and the like,
may also be connected to I/O bridge 107. Bus connections
among the various components may be implemented using
bus protocols such as PCI (Peripheral Component Intercon-
nect), PCI Express (PCI-E), AGP (Accelerated Graphics
Port), HyperTransport, or any other bus protocol(s), and
connections between different devices may use different
protocols as 1s known 1n the art.

[0020] Graphics processing subsystem 112 includes a
graphics processing unit (GPU) 122 and a graphics memory
124, which may be implemented, e.g., using one or more
integrated circuit devices such as programmable processors,
application specific integrated circuits (ASICs), and memory
devices. GPU 122 may be configured to perform various
tasks related to generating pixel data from graphics data
supplied by CPU 102 and/or system memory 104 wvia
memory bridge 105 and bus 113, interacting with graphics
memory 124 to store and update pixel data, and the like. For
example, GPU 122 may generate pixel data from 2-D or 3-D
scene data provided by various programs executing on CPU
102. GPU 122 may also store pixel data received wvia
memory bridge 105 to graphics memory 124 with or without
turther processing. GPU 122 also includes a scanout module
configured to deliver pixel data from graphics memory 124
to display device 110.

Jul. 12, 2007

[0021] CPU 102 operates as the master processor of
system 100, controlling and coordinating operations of other
system components. In particular, CPU 102 1ssues com-
mands that control the operation of GPU 122. In some
embodiments, CPU 102 writes a stream of commands for
GPU 122 to a command bufler, which may be 1n system
memory 104, graphics memory 124, or another storage
location accessible to both CPU 102 and GPU 122. GPU 122
reads the command stream from the command builer and
executes commands asynchronously with operation of CPU
102. The commands may include conventional rendering
commands for generating images as well as general-purpose
computation commands that enable applications executing
on CPU 102 to leverage the computational power of GPU
122 for data processing that may be unrelated to image
generation.

[10022] It will be appreciated that the system shown herein
1s 1llustrative and that variations and modifications are
possible. The bus topology, including the number and
arrangement of bridges, may be modified as desired. For
instance, 1 some embodiments, system memory 104 is
connected to CPU 102 directly rather than through a bridge,
and other devices communicate with system memory 104
via memory bridge 105 and CPU 102. In other alternative
topologies, graphics subsystem 112 1s connected to I/O
bridge 107 rather than to memory bridge 105. In still other
embodiments, I/O bridge 107 and memory bridge 1035 might
be mtegrated into a single chip. The particular components
shown herein are optional; for instance, any number of
add-in cards or peripheral devices might be supported. In
some embodiments, switch 116 1s eliminated, and network
adapter 118 and add-in cards 120, 121 connect directly to
I/O bridge 107.

[0023] The connection of GPU 122 to the rest of system
100 may also be varied. In some embodiments, graphics
system 112 1s implemented as an add-in card that can be
inserted mto an expansion slot of system 100. In other
embodiments, a GPU 1s integrated on a single chip with a
bus bridge, such as memory bridge 105 or I/O bridge 107.

10024] A GPU may be provided with any amount of local
graphics memory, including no local memory, and may use
local memory and system memory in any combination. For
instance, 1 a unified memory architecture (UMA) embodi-
ment, no dedicated graphics memory device 1s provided, and
the GPU uses system memory exclusively or almost exclu-
sively. In UMA embodiments, the GPU may be integrated
into a bus bridge chip or provided as a discrete chip with a
high-speed bus (e.g., PCI-E) connecting the GPU to the

bridge chip and system memory.

[0025] Itis also to be understood that any number of GPUs
may be included in a system, e.g., by including multiple
GPUs on a single graphics card or by connecting multiple
graphics cards to bus 113. Multiple GPUs may be operated
in parallel to generate images for the same display device or
for different display devices.

[0026] In addition, GPUs embodying aspects of the
present nvention may be incorporated into a variety of
devices, including general purpose computer systems, video

game consoles and other special purpose computer systems,
DVD players, handheld devices such as mobile phones or

personal digital assistants, and so on.

US 2007/0159488 Al

Rendering Pipeline Overview

[10027] FIG. 2 1s a block diagram of a rendering pipeline
200 that can be mmplemented in GPU 122 of FIG. 1
according to an embodiment of the present invention. In this
embodiment, rendering pipeline 200 1s implemented using
an architecture 1n which any applicable vertex shader pro-
grams, geometry shader programs, and pixel shader pro-
grams are executed using the same parallel-processing hard-

ware, referred to herein as a “multithreaded core array”202.
Multithreaded core array 202 1s described further below.

0028]| In addition to multithreaded core array 202, ren-
dering pipeline 200 includes a front end 204 and data
assembler 206, a setup module 208, a rasterizer 210, a color
assembly module 212, and a raster operations module (ROP)
214, cach of which can be implemented using conventional
integrated circuit technologies or other technologies.

[0029] Front end 204 receives state information (STATE),
rendering commands (CMD), and geometry data (GDATA),
¢.g., from CPU 102 of FIG. 1. In some embodiments, rather
than providing geometry data directly, CPU 102 provides
references to locations 1n system memory 104 at which
geometry data 1s stored; data assembler 206 retrieves the
data from system memory 104. The state information, ren-
dering commands, and geometry data may be of a generally
conventional nature and may be used to define the desired
rendered 1mage or images, including geometry, lighting,

shading, texture, motion, and/or camera parameters for a
scene.

[0030] In one embodiment, the geometry data includes a
number of object definitions for objects (e.g., a table, a chair,
a person or animal) that may be present 1n the scene. Objects
are advantageously modeled as groups of primitives (e.g.,
points, lines, triangles and/or other polygons) that are
defined by reference to their vertices. For each vertex, a
position 1s specified in an object coordinate system, repre-
senting the position of the vertex relative to the object being
modeled. In addition to a position, each vertex may have
vartous other attributes associated with 1t. In general,
attributes of a vertex may include any property that is
specified on a per-vertex basis; for instance, mm some
embodiments, the vertex attributes include scalar or vector
attributes used to determine qualities such as the color,
texture, transparency, lighting, shading, and animation of the
vertex and 1ts associated geometric primitives.

[0031] Primitives, as already noted, are generally defined
by reference to their vertices, and a single vertex can be
included in any number of primitives. In some embodi-
ments, each vertex 1s assigned an 1ndex (which may be any
unique 1dentifier), and a primitive 1s defined by providing an
ordered list of indices for the vertices making up that
primitive. Other techniques for defining primitives (includ-
ing conventional techniques such as triangle strips or fans)
may also be used.

[0032] The state information and rendering commands
define processing parameters and actions for various stages
of rendering pipeline 200. Front end 204 directs the state
information and rendering commands via a control path (not
explicitly shown) to other components of rendering pipeline
200. As 1s known 1n the art, these components may respond
to received state information by storing or updating values
in various control registers that are accessed during process-
ing and may respond to rendering commands by processing
data received 1n the pipeline.

Jul. 12, 2007

[0033] Front end 204 directs the geometry data to data
assembler 206. Data assembler 206 formats the geometry
data and prepares 1t for delivery to a geometry module 218
in multithreaded core array 202.

[0034] Geometry module 218 directs programmable pro-
cessing engines (not explicitly shown) in multithreaded core
array 202 to execute vertex and/or geometry shader pro-
grams on the vertex data, with the programs being selected
in response to the state iformation provided by front end
204. The vertex and/or geometry shader programs can be
specified by the rendering application as 1s known 1n the art,
and different shader programs can be applied to different
vertices and/or primitives. The shader program(s) to be used
can be stored 1n system memory or graphics memory and
identified to multithreaded core array 202 via suitable ren-
dering commands and state information as 1s known 1n the
art. In some embodiments, vertex shader and/or geometry
shader programs can be executed 1n multiple passes, with
different processing operations being performed during each
pass. Each vertex and/or geometry shader program deter-
mines the number of passes and the operations to be per-
formed during each pass. Vertex and/or geometry shader
programs can implement algorithms using a wide range of
mathematical and logical operations on vertices and other
data, and the programs can include conditional or branching
execution paths and direct and indirect memory accesses.

[0035] Vertex shader programs and geometry shader pro-
grams can be used to implement a variety of visual eflects,
including lighting and shading eflects. For instance, 1n a
simple embodiment, a vertex program transforms a vertex
from 1ts 3D object coordinate system to a 3D clip space or
world space coordinate system. This transformation defines
the relative positions of different objects 1n the scene. In one
embodiment, the transformation can be programmed by
including, 1n the rendering commands and/or data defining
cach object, a transformation matrix for converting from the
object coordinate system of that object to clip space coor-
dinates. The vertex shader program applies this transforma-
tion matrix to each vertex of the primitives making up an
object. More complex vertex shader programs can be used
to implement a variety of visual eflects, including lighting
and shading, procedural geometry, and animation opera-
tions. Numerous examples of such per-vertex operations are
known 1n the art, and a detailed description 1s omitted as not
being critical to understanding the present invention.

[0036] Geometry shader programs differ from vertex
shader programs 1n that geometry shader programs operate
on primitives (groups of vertices) rather than individual
vertices. Thus, 1n some 1stances, a geometry program may
create new vertices and/or remove vertices or primitives
from the set of objects being processed. In some embodi-
ments, passes through a vertex shader program and a geom-

etry shader program can be alternated to process the geom-
etry data.

[0037] Insome embodiments, vertex shader programs and
geometry shader programs are executed using the same
programmable processing engines in multithreaded core
array 202. Thus, at certain times, a given processing engine
may operate as a vertex shader, receiving and executing
vertex program instructions, and at other times the same
processing engine may operate as a geometry shader, receiv-
ing and executing geometry program instructions. The pro-

US 2007/0159488 Al

cessing engines can be multithreaded, and different threads
executing different types of shader programs may be 1n flight
concurrently in multithreaded core array 202.

[0038] After the vertex and/or geometry shader programs
have executed, geometry module 218 passes the processed
geometry data (GDATA") to setup module 208. Setup mod-
ule 208, which may be of generally conventional design,
generates edge equations from the clip space or screen space
coordinates of each primitive; the edge equations are advan-
tageously usable to determine whether a point 1n screen
space 1s 1side or outside the primitive.

[10039] Setup module 208 provides each primitive (PRIM)

to rasterizer 210. Rasterizer 210, which may be of generally
conventional design, determines which (if any) pixels are
covered by the primitive, e.g., using conventional scan-
conversion algorithms. As used herein, a “pixel” (or “Irag-
ment”) refers generally to a region 1n 2-D screen space for
which a single color value is to be determined; the number
and arrangement of pixels can be a configurable parameter
of rendering pipeline 200 and might or might not be corre-
lated with the screen resolution of a particular display
device. As 1s known 1n the art, pixel color may be sampled
at multiple locations within the pixel (e.g., using conven-
tional supersampling or multisampling techniques), and in
some embodiments, supersampling or multisampling 1s
handled within the pixel shader.

[0040] After determining which pixels are covered by a
primitive, rasterizer 210 provides the primitive (PRIM),
along with a list of screen coordmates (X,Y) of the pixels
covered by the primitive, to a color assembly module 212.
Color assembly module 212 associates the primitives and
coverage information received from rasterizer 210 with
attributes (e.g., color components, texture coordinates, sur-
face normals) of the vertices of the primitive and generates
plane equations (or other suitable equations) defining some
or all of the attributes as a function of position in screen
coordinate space.

[0041] These attribute equations are advantageously
usable 1n a pixel shader program to interpolate a value for
the attribute at any location within the primitive; conven-
tional techniques can be used to generate the equations. For
instance, in one embodiment, color assembly module 212
generates coellicients A, B, and C for a plane equation of the
form U=Ax+By+C for each attribute U.

10042] Color assembly module 212 provides the attribute
equations (EQS, which may include e.g., the plane-equation
coellicients A, B and C for each primitive that covers at least
one pixel and a list of screen coordinates (X,Y) of the
covered pixels to a pixel module 224 in multithreaded core
array 202. Pixel module 224 directs programmable process-
ing engines (not explicitly shown) in multithreaded core
array 202 to execute one or more pixel shader programs on
cach pixel covered by the primitive, with the program(s)
being selected in response to the state information provided
by front end 204. As with vertex shader programs and
geometry shader programs, rendering applications can
specily the pixel shader program to be used for any given set
of pixels. Pixel shader programs can be used to implement
a variety of visual eflects, including lighting and shading
cllects, reflections, texture blending, procedural texture gen-
eration, and so on. Numerous examples of such per-pixel
operations are known 1n the art and a detailed description 1s

Jul. 12, 2007

omitted as not being critical to understanding the present
invention. Pixel shader programs can implement algorithms
using a wide range of mathematical and logical operations
on pixels and other data, and the programs can include
conditional or branching execution paths and direct and
indirect memory accesses.

[0043] Pixel shader programs are advantageously
executed 1n multithreaded core array 202 using the same
programmable processing engines that also execute the
vertex and/or geometry shader programs. Thus, at certain
times, a given processing engine may operate as a vertex
shader, recerving and executing vertex program instructions;
at other times the same processing engine may operates as
a geometry shader, receiving and executing geometry pro-
gram 1nstructions; and at still other times the same process-
Ing engine may operate as a pixel shader, receiving and
executing pixel shader program instructions. It will be
appreciated that the multithreaded core array can provide
natural load-balancing between pixel and vertex processing;:
where the application 1s geometry intensive (e.g., many
small primitives), a larger fraction of the processing cycles
in multithreaded core array 202 will tend to be devoted to
vertex and/or geometry shaders, and where the application 1s
pixel intensive (e.g., fewer and larger primitives shaded
using complex pixel shader programs with multiple textures
and the like), a larger fraction of the processing cycles will
tend to be devoted to pixel shaders.

[0044] Once processing for a pixel or group of pixels is
complete, pixel module 224 provides the processed pixels
(PDATA) to ROP 214. ROP 214, which may be of generally
conventional design, integrates the pixel values received
from pixel module 224 with pixels of the image under
construction in frame bufler 226, which may be located, e.g.,
in graphics memory 124. In some embodiments, ROP 214
can mask pixels or blend new pixels with pixels previously
written to the rendered 1mage. Depth buflers, alpha buflers,
and stencil buflers can also be used to determine the con-
tribution (1f any) of each incoming pixel to the rendered
image. Pixel data PDATA' corresponding to the appropriate
combination of each mmcoming pixel value and any previ-
ously stored pixel value 1s written back to frame builer 226.
Once the mmage 1s complete, frame bufler 226 can be
scanned out to a display device and/or subjected to further
processing.

[0045] It will be appreciated that the rendering pipeline
described herein 1s 1llustrative and that variations and modi-
fications are possible. The pipeline may include different
units from those shown and the sequence of processing
events may be varied from that described herein. For
instance, in some embodiments, rasterization may be per-
formed 1n stages, with a “coarse” rasterizer that processes
the entire screen 1n blocks (e.g., 16x16 pixels) to determine
which, 1f any, blocks the triangle covers (or partially covers),
followed by a “fine” rasterizer that processes the individual
pixels within any block that 1s determined to be at least
partially covered. In one such embodiment, the fine raster-
izer 1s contained within pixel module 224. In another
embodiment, some operations conventionally performed by

a ROP may be performed within pixel module 224 belore
the pixel data 1s forwarded to ROP 214.

[0046] Further, multiple instances of some or all of the
modules described herein may be operated 1n parallel. In one

US 2007/0159488 Al

such embodiment, multithreaded core array 202 includes
two or more geometry modules 218 and an equal number of
pixel modules 224 that operate in parallel. Each geometry
module and pixel module jointly controls a diflerent subset
of the processing engines 1 multithreaded core array 202.

Multithreaded Core Array Configuration

0047] In one embodiment, multithreaded core array 202
provides a highly parallel architecture that supports concur-
rent execution of a large number of instances ol vertex,
geometry, and/or pixel shader programs in various combi-
nations. FIG. 3 1s a block diagram of multithreaded core
array 202 according to an embodiment of the present inven-
tion.

[0048] In this embodiment, multithreaded core array 202
includes some number (N) ol processing clusters 302.
Herein, multiple instances of like objects are denoted with
reference numbers 1dentifying the object and parenthetical
numbers identifying the instance where needed. Any number
N (e.g., 1, 4, 8, or any other number) of processing clusters
may be provided. In FIG. 3, one processing cluster 302 1s
shown 1n detail; 1t 1s to be understood that other processing
clusters 302 can be of similar or 1dentical design.

[0049] Each processing cluster 302 includes a geometry
controller 304 (1implementing geometry module 218 of FIG.
2) and a pixel controller 306 (1mplementing pixel module
224 of F1G. 2). Geometry controller 304 and pixel controller
306 each communicate with a core interface 308. Core
interface 308 controls a number (A) of cores 310 that include
the processing engines of multithreaded core array 202. Any
number M (e.g., 1, 2, 4 or any other number) of cores 310
may be connected to a single core interface. Each core 310
1s advantageously implemented as a multithreaded execu-
tion core capable of supporting a large number (e.g., 100 or
more) of concurrent execution threads (where the term
“thread” refers to an 1instance of a particular program execut-
ing on a particular set of mput data), including a combina-
tion of vertex threads, geometry threads, and pixel threads.
In one embodiment, each core 310 implements a P-way
SIMD architecture to execute P threads in parallel, where P
1s an arbitrary integer (e.g., 8, 16, 32) and 1s capable of
managing a number G (e.g. 18, 24, etc.) of groups of P
threads concurrently. A detailed description of core 310 can
be found 1 U.S. Provisional Application No. 60/752,265,
filed Dec. 19, 2005, which 1s incorporated herein by refer-
ence 1n its entirety for all purposes.

[0050] Core interface 308 also controls a texture pipeline
314 that 1s shared among cores 310. Texture pipeline 314,
which may be of generally conventional design, advanta-
geously includes logic circuits configured to recerve texture
coordinates, to fetch texture data corresponding to the tex-
ture coordinates from memory, and to filter the texture data
according to various algorithms. Conventional filtering algo-
rithms including bilinear and trilinear filtering may be used.
When a core 310 encounters a texture instruction in one of
its threads, it provides the texture coordinates to texture
pipeline 314 via core interface 308. Texture pipeline 314
processes the texture instruction and returns the result to the
corec 310 via core interface 308. Texture processing by
pipeline 314 may consume a significant number of clock
cycles, and while a thread 1s waiting for the texture result,
core 310 advantageously continues to execute other threads.

[0051] In operation, data assembler 206 (FIG. 2) provides
geometry data GDATA to processing clusters 302. In one

Jul. 12, 2007

embodiment, data assembler 206 divides the incoming
stream of geometry data into portions and selects, e.g., based
on availability of execution resources, which of processing
clusters 302 1s to receive the next portion of the geometry
data. That portion 1s delivered to geometry controller 304 1n
the selected processing cluster 302.

[0052] Geometry controller 304 forwards the received
data to core interface 308, which loads the vertex data into
a core 310, then instructs core 310 to launch the appropriate
vertex shader program. Upon completion of the vertex
shader program, core interface 308 signals geometry con-
troller 304. If a geometry shader program 1s to be executed,
geometry controller 304 instructs core interface 308 to
launch the geometry shader program. In some embodiments,
the processed vertex data 1s returned to geometry controller
304 upon completion of the vertex shader program, and
geometry controller 304 instructs core interface 308 to
reload the data before executing the geometry shader pro-
gram. After completion of the vertex shader program and/or
geometry shader program, geometry controller 304 provides

the processed geometry data (GDATA') to setup module 208
of FIG. 2.

[0053] At the pixel stage, color assembly module 212
(FIG. 2) provides attribute equations EQS for a primitive
and pixel coordinates (X,Y) of pixels covered by the primi-
tive to processing clusters 302. In one embodiment, color
assembly module 212 divides the mcoming stream of cov-
crage data into portions and selects, e.g., based on avail-
ability of execution resources or the location of the primitive
in screen coordinates, which of processing clusters 302 1s to
receive the next portion of the data. That portion 1s delivered
to pixel controller 306 1n the selected processing cluster 302.

[0054] Pixel controller 306 delivers the data to core inter-
face 308, which loads the pixel data into a core 310, then
instructs the core 310 to launch the pixel shader program.
Where core 310 1s multithreaded, pixel shader programs,
geometry shader programs, and vertex shader programs can
all be executed concurrently in the same core 310. Upon
completion of the pixel shader program, core interface 308
delivers the processed pixel data to pixel controller 306,

which forwards the pixel data PDATA to ROP unit 214 (FIG.
2).

[0055] It will be appreciated that the multithreaded core
array described herein 1s illustrative and that variations and
modifications are possible. Any number of processing clus-
ters may be provided, and each processing cluster may
include any number of cores. In some embodiments, shaders
of certain types may be restricted to executing in certain
processing clusters or 1n certain cores; for mnstance, geom-
etry shaders might be restricted to executing 1n core 310(0)
of each processing cluster. Such design choices may be
driven by considerations of hardware size and complexity
versus performance, as 1s known 1n the art. A shared texture
pipeline 1s also optional; in some embodiments, each core
might have 1ts own texture pipeline or might leverage
general-purpose functional units to perform texture compu-
tations.

[0056] Data to be processed can be distributed to the
processing clusters 1in various ways. In one embodiment, the
data assembler (or other source of geometry data) and color
assembly module (or other source of pixel-shader input data)
receive information indicating the availability of processing,

US 2007/0159488 Al

clusters or individual cores to handle additional threads of
various types and select a destination processing cluster or
core for each thread. In another embodiment, mput data i1s
forwarded from one processing cluster to the next until a
processing cluster with capacity to process the data accepts
it. In still another embodiment, processing clusters are
selected based on properties of the input data, such as the
screen coordinates of pixels to be processed.

[0057] The multithreaded core array can also be leveraged
to perform general-purpose computations that might or
might not be related to rendering 1mages. In one embodi-
ment, any computation that can be expressed 1n a data-
parallel decomposition can be handled by the multithreaded
core array as an array of threads executing in a single core.
Results of such computations can be written to the frame
bufler and read back into system memory.

Allocation of Pixel Shader Work

[0058] In accordance with an embodiment of the present
ivention, pixels to be processed by a pixel shader program
are directed to a processing cluster 302 (FIG. 3) based on the
position of the pixels within the image area. For example,
the 1mage area can be divided into a number of tiles. Each
tile 1s associated with one of the processing clusters 302 in
such a way that the tiles associated with one cluster are
scattered across the 1mage area (1.e., at least some of the tiles
associated with one processing cluster are not contiguous
with one another).

[0059] FIG. 4 illustrates one possible tiling of an image
arca 400 into a large number of tiles 402 according to an
embodiment of the present mmvention. Each tile 402 might
be, e.g., 16x16 pixels or any other convement size. In this
embodiment, multithreaded core array 202 of FIG. 3
includes eight processing clusters 302(0) through 302(7).
Each tile 402 1n FIG. 4 contains a number 1 (O through 7)
indicating which processing core 302(i) processes pixels 1n
that tile. As can be seen 1n FIG. 4, each processing cluster
302 1s assigned an equal (or nearly equal) number of tiles
402 within image area 400, and the tiles assigned to each
cluster 302 are not contiguous with each other. It 1s expected
that for many graphics applications, distributing work 1n this
manner will provide approximate load balancing among the
processing clusters 302. Suitable pixel distribution logic can

be included 1n rendering pipeline 200, e.g., 1n color assem-
bly module 212 of FIG. 2.

[0060] It will be appreciated that the tiling shown in FIG.
4 1s 1illustrative and that vaniations and modifications are
possible. The tiles may be of any size. In some embodi-
ments, the size and number of tiles 1s configurable, with tile
s1ze being chosen based on application characteristics such
as whether a multisampling mode 1s 1n use. The arrangement
of tiles assigned to each processing cluster can vary as
desired.

[0061] Tiles may be assigned to any number of processing
clusters, up to the total number that are present 1n a particular
GPU. In some embodiments, tiles are assigned to fewer than
all of the processing clusters. Thus, a GPU can render
images using only some of 1ts processing clusters to process
pixel threads. As long as at least one processing cluster 1s
available, the GPU will be able to render images, albeit at
reduced throughput. Running with some clusters disabled
from processing pixel threads may be useful, e.g., for

Jul. 12, 2007

operating 1n a reduced-power mode (some cores or clusters
can be powered down while others operate), for determining
minimum performance requirements (without requiring the
availability of different GPUs), and/or for providing toler-
ance against defects in one or another of the cores.

[0062] Insome alternative embodiments, tiles are assigned
to particular cores 310 rather than to processing clusters 302.

il

Pixel Shader Coupling to Frame Bultler

[0063] In some embodiments, rather than the centralized
ROP 214 suggested i FIG. 2, each pixel controller 306 1n
FIG. 3 includes 1ts own ROP that communicates pixels to
frame bufler 226 of FIG. 2. In such embodiments, a coupling
from processing clusters 302 to the frame builer 1s provided.

[0064] In one embodiment with N processing clusters,
frame builer 226 1s partitioned 1nto N partitions. Each cluster
302 is coupled to a diflerent one of the N partitions.

[0065] FIG. 5 is a simplified block diagram illustrating a
coupling between processing clusters 302 and a frame bufler
500 according to an embodiment of the present invention. It
1s to be understood that frame bufler 226 of FIG. 2 might
include multiple frame buflers 500, where each frame buller
500 stores a specified quantity on a per-pixel basis for the
same 1mage. For mstance, 1n one embodiment, frame builer
226 includes a Z bufler; color component buflers (e.g., for
red, green and blue color components); and a transparency
(alpha) bufler. It 1s to be understood that any number of
frame buflers 500 may be provided and that “pixel” as used
herein refers to sampling locations within the 1image, which
might or might not correspond to the number of active pixels
in a given display device. For simplicity, only one frame
buffer 500 1s shown; 1t 1s to be understood that the same
partitioning can be applied to each frame bufler for an
image.

[0066] Frame buffer 500 is partitioned (physically or logi-
cally) into N partitions 502, with each partition being large
enough to store the data for at least 1/N of the pixels 1n the
image. Each of the N processing clusters 302 1s coupled to
one of the N partitions 502. Thus, processing cluster 302(0)
stores all of its output pixel data in partition 502(0), pro-
cessing cluster 302(1) 1n partition 502(1) and so on. It should
be noted that to the extent that tiles processed by a given
processing cluster 302 are not contiguous, the data 1n a given
frame bufler partition 502 will be from non-contiguous tiles.
The display (scanout) logic advantageously observes the
correct display ordering of the data when accessing frame
bufler 500; 1n particular, it 1s not required that partitions be
read out sequentially.

[0067] As noted above, in some embodiments, fewer than
all of processing cores 302 might be used to generate pixels.
In the embodiment shown 1n FIG. 5, only processing cluster
302(0) provides pixels to frame bufler partition 502(0).
Accordingly, 1t processing cluster 302(0) 1s not operated to
generate pixels, frame bufler partition 502(0) will not be
used. The image area can be retiled or tiles can be reassigned
among processing clusters 302(1) through 302(IN-1) such
that the area 1s divided among N-1 processing clusters. In
some embodiments, the sampling resolution might need to
be reduced, e.g., 1I frame bufler partitions 502(1) through
502(N-1) do not provide enough space to store all of the
pixel data for the image at the original sampling resolution.
In embodiments where the partitions are logical rather than

US 2007/0159488 Al

physical, frame builer 500 can be repartitioned to match the
number of processing clusters 302 available.

[0068] In an alternative embodiment, each processing
cluster can access multiple frame butler partitions. FIG. 6 1s
a stmplified block diagram illustrating a coupling between
processing clusters 302 and a frame bufler 600 according to
an embodiment of the present invention. It 1s to be under-
stood that frame bufler 226 of FIG. 2 might include multiple
frame buflers 600, where each frame buffer 600 stores a
specified quantity on a per-pixel basis for the same 1mage as
described above with reference to frame bufler 500. It 1s to
be understood that any number of frame buflers 600 may be
provided. For simplicity, only one frame builer 600 1s
shown; 1t 1s to be understood that the partitioning can be
applied to each frame builer for an 1mage.

[0069] Frame buffer 600 is partitioned (physically or logi-
cally) into a number B of partitions 602, where B might be
equal to or different from the number N of processing
clusters 302. Processing clusters 302 are coupled to parti-
tions 602 via a crossbar 604. Each cluster 302 can write pixel
data to any one (or more) of the B partitions 602.

[0070] In this embodiment, crossbar 604 is configurable,
allowing the coupling of processing clusters 302 to frame
butler partitions 602 to be modified as desired. For example,
as noted above, in some embodiments, fewer than all of
processing cores 302 might be used to generate pixels. In the
embodiment shown in FIG. 6, 1f processing core 302(0) 1s
disabled, crossbar 604 can be reconfigured so that all frame
builer partitions 602 are still accessible to one or another of
processing cores 302. The display (scanout) logic 1s advan-
tageously configurable such that the frame bufler data 1s
correctly scanned out regardless of the configuration of
crossbar 604 or the assignment of tiles to processing cores

302.

[0071] Where multiple frame buffers are present (e.g., Z,
color, alpha, etc.), each frame bufller may be partitioned nto
B partitions in the manner described. In some embodiments,
the number of partitions 1s not the same for all frame buflers;
for mstance, a Z buller might have more or fewer partitions
than a color buifler.

Further Embodiments

[0072] While the invention has been described with
respect to specific embodiments, one skilled 1n the art waill
recognize that numerous modifications are possible. Thus,
although the invention has been described with respect to

Jul. 12, 2007

specific embodiments, 1t will be appreciated that the mnven-
tion 1s intended to cover all modifications and equivalents
within the scope of the following claims.

What 1s claimed 1s:
1. A graphics processor comprising:

a multithreaded core array including a plurality of pro-
cessing clusters, each processing cluster including at
least one processing core operable to execute a pixel
shader program that generates pixel data from coverage

data;

a rasterizer configured to generate coverage data for each
of a plurality of pixels; and

pixel distribution logic configured to deliver the coverage
data from the rasterizer to one of the processing clusters
in the multithreaded core array,

wherein the pixel distribution logic selects the one of the
processing clusters to which the coverage data for a
first pixel 1s delivered based at least in part on a location
of the first pixel within an 1image area.

2. The graphics processor of claim 1 wherein the 1image
area 1s divided into a plurality of tiles, each tile being
assigned to one of the processing clusters, and wherein the
pixel distribution logic selects the one of the processing
clusters based on a determination as to which of the plurality
of tiles 1includes the first pixel.

3. The graphics processor of claim 2 wherein at least two
of the plurality of tiles are assigned to each of the processing
clusters, wherein for each processing cluster, the tiles
assigned thereto are not contiguous with each other.

4. The graphics processor of claim 1 wherein each of the
processing clusters 1s configured to deliver pixel data to a
respective one ol a plurality of partitions of a frame bufler.

5. The graphics processor of claim 1 further comprising a
crossbar coupled to each of the processing clusters and
configured to deliver pixel data from the processing clusters
to a frame bufler having a plurality of partitions.

6. The graphics processor of claim 5 wherein the crossbar
1s configured such that pixel data generated by any one of the
processing clusters 1s deliverable to any one of the frame
bufler partitions.

7. The graphics processor of claim 1 wherein each pro-
cessing core 1s also operable to execute vertex shader
programs and geometry shader programs.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

