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(57) ABSTRACT

A communication system. One embodiment includes at least
two functional blocks, wherein an first functional block
communicates with a second functional block by establish-
ing a connection, wherein a connection 1s a logical state 1n
which data may pass between the first functional block and
the second functional block. One embodiment includes a bus
coupled to each of the functional blocks and configured to
carry a plurality of signals. The plurality of signals includes
a connection 1dentifier that indicates a particular connection
that a data transier i1s part of, and a thread i1dentifier that
indicates a transaction stream that the data transter 1s part of.
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COMMUNICATIONS SYSTEM AND METHOD
WITH MULTILEVEL CONNECTION
IDENTIFICATION

RELATED APPLICATIONS

[0001] This application i1s a continuation application of

and claims the benefit of and incorporates in by reference the
tollowing U.S. application Ser. No. 10/789,942 filed Feb.

25, 2004, which 1s which 1s a continuation of U.S. Pat. No.
6,725,313 filed Nov. 21, 2000, which 1s a continuation of
U.S. Pat. No. 6,182,183 filed Nov. 13,1998,

FIELD OF THE INVENTION

[0002] The present invention relates to a communication
system to couple computing sub-systems.

BACKGROUND OF THE INVENTION

[0003] Electronic computing and communications sys-
tems continue to include greater numbers of features and to
increase 1 complexity. At the same time, electronic com-
puting and communications systems decrease in physical
s1ze-and cost per function. Rapid advances 1n semiconductor
technology such as four-layer deep-sub-micron complimen-
tary metal-oxide semiconductor (CMOS) technology, have
enabled true “system-on-a-chip” designs. These complex
designs may incorporate, for example, one or more proces-
sor cores, a digital signal processing (DSP) core, several
communications interfaces, and graphics support 1 appli-
cation-specific logic. In some systems, one or several of
these extremely complex chips must communicate with each
other and with other system components. Significant new
challenges arise in the integration, verification and testing of
such systems because eflicient communication must take
place between sub-systems on a single complex chip as well
as between chips on a system board. One benefit to having
an eflicient and flexible method for communication between
sub-systems and chips 1s that system components can be
reused 1n other systems with a mimimum of redesign.

[0004] One challenge in the integration, verification and
testing of modern electronic systems stems from the fact that
modern electronic systems 1n many application areas have
functionality, cost and form-factor requirements that man-
date the sharing of resources, such as memory, among
multiple functional blocks, where functional blocks can be
any entity that interfaces to a communication system. In
such systems, the functional blocks typically possess ditler-
ent performance characteristics and requirements, and the
communications system and shared resources must simul-
taneously satisty the total requirements. Key requirements
of typical functional blocks are bandwidth and latency
constraints that can vary over several orders of magnitude
between functional blocks. In order to simultaneously sat-
1s1y constraints that vary so widely, communications sys-
tems must provide high degrees of predictability.

[0005] Traditional approaches to the design of communi-
cations systems for modern, complex computer systems
have various strengths and weaknesses. An essential aspect
of such approaches 1s the communications interface that
various sub-systems present to one another. One approach 1s
to define customized point-to-point interfaces between a
sub-system and each peer with which it must communicate.
This customized approach oflers protocol simplicity, guar-
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anteed performance, and 1solation from dependencies on
unrelated sub-systems. Customized interfaces, however, are
by their nature intlexible. The addition of a new sub-system
with a different interface requires design rework.

[0006] A second approach is to define a system using
standardized interfaces. Many standardized interfaces are
based on pre-established computer bus protocols. The use of
computer buses allows flexibility 1n system design, since as
many different functional blocks may be connected together
as required by the system, as long as the bus has suflicient
performance. It 1s also necessary to allocate access to the bus
among various sub-systems. In the case of computer buses,
resource allocation 1s typically referred to as arbitration.

[0007] One disadvantage of computer buses i1s that each
sub-system or component connected to the bus 1s con-
strained to use the protocol of the bus. In some cases, this
limits the performance of the sub-system. For example, a
sub-system may be capable of handling multiple transaction
streams simultaneously, but the bus protocol 1s not capable
of fully supporting concurrent operations. In the case of a
sub-system handling multiple transaction streams where
cach transaction stream has ordering constraints, 1t 1S nec-
essary for the sub-system to 1dentily each increment of data
received or transmitted with a certain part of a certain data
stream to distinguish between streams and to preserve order
within a stream. This includes 1dentitying a sub-system that
1s a source ol a data transmission. Conventionally, such
identification 1s limited to a non-configurable hardware
identifier that 1s generated by a particular sub-system or
component.

[0008] Current bus systems provide limited capability to
preserve order 1n one transaction stream by supporting “split
transactions” 1 which data from one transaction may be
interleaved with data from another transaction in the same
stream. In such a bus, data 1s tagged as belonging to one
stream of data, so that it can be identified even 1f 1t arrives
out of order. This requires the receiving sub-system to
decode an arnving address to extract the identification
information.

[0009] Current bus systems do not support true concur-
rency ol operations for a sub-system that can process
multiple streams of transactions over a single interconnect,
such as a memory controller that handles access to a single
dynamic random access memory (DRAM) for several cli-
ents of the DRAM. A DRAM controller may require infor-
mation related to a source of an access request, a priority of
an access request, ordering requirements, etc. Current com-
munication systems do not provide for such imnformation to
be transmitted with data without placing an additional
burden on the sub-system to adapt to the existing protocol.

[0010] In order for many sub-systems to operate in con-
ventional systems using all of their capabilities, additional
knowledge must be designed into the sub-systems to provide
communication over existing communication systems. This
makes sub-systems more expensive and less flexible 1n the
event the sub-system 1s later required to communicate with
new sub-systems or components. Existing communication
approaches thus do not meet the requirements of today’s
large, complex electronics systems. Therefore, 1t 1s desirable
for a communications system and mechanism to allow
sub-systems of a large, complex electronics system to inter-

operate efhiciently regardless of their varying performance
characteristics and requirements.
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SUMMARY OF THE INVENTION

[0011] One embodiment of the present invention includes
a shared communications bus for providing tlexible com-
munication capability between electronic sub-systems. One
embodiment includes a protocol that allows for identifica-
tion of data transmissions at different levels of detail as
required by a particular sub-system without additional
knowledge being designed into the sub-system.

[0012] One embodiment of the invention includes several
functional blocks, including at least one nitiator functional
block and one target functional block. Some 1nitiator func-
tional blocks may also function as target functional blocks.
In one embodiment, the initiator functional block 1s coupled
to an 1nitiator nterface module and the target functional
block 1s coupled to a target interface module. The mitiator
functional block and the target functional block communi-
cate to their respective mterface modules and the interface
modules communicate with each other. The mitiator func-
tional block communicates with the target functional block
by establishing a connection, wherein a connection 1s a
logical state 1n which data may pass between the initiator
functional block and the target functional block.

[0013] One embodiment also includes a bus configured to
carry multiple signals, wherein the signals include a con-
nection 1dentifier signal that indicates a particular connec-
tion that a data transfer between an initiator functional block
and a target functional block 1s part of. The connection
identifier includes information about the connection, such as
which functional block 1s the source of a transmission, a
priority of a transier request, and transfer ordering informa-
tion. One embodiment also includes a thread identifier,
which provides a subset of the information provided by the
connection identifier. In one embodiment, the thread iden-
tifier 1s an 1dentifier of local scope that identifies transiers
between an interface module and a connected functional
block, where 1n some embodiments, an interface module
connects a functional block to a shared communications bus.

[0014] The connection identifier is a an identifier of global
scope that transfers information between intertace modules
or between functional blocks through their interface mod-
ules. Some functional blocks may require all the information
provided by the connection i1dentifier, while other functional

blocks may require only the subset of information provided
by the thread i1dentifier.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is a block diagram of one embodiment of a

complex electronics system according to the present inven-
tion.

0016] FIG. 2 1s an embodiment of an interface module.
0017] FIG. 3 1s an embodiment of an interface module.
0018] FIG. 4 is an embodiment of a communications bus.
0019]| FIG. 5 1s a timing diagram showing pipelined write
transfers.

[0020] FIG. 6 1s a timing diagram showing rejection of a
first pipelined write transfer and a successiul second write
transier

[0021] FIG. 7 is a timing diagram showing interleaving of
pipelined read and write transiers.
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10022] FIG. 8 is a timing diagram showing interleaved
connections to a single target.

10023] FIG. 9 is a timing diagram showing interleaved
connections from a single initiator.

[10024] FIG. 10 is a block diagram of one embodiment of
part of a computer system.

10025] FIG. 11 is one embodiment of a communications
bus.

[0026] FIG. 12 1s a block diagram of one embodiment of
part of a computer system.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

[0027] The present invention is a communications system
and method for allowing multiple functional blocks or
sub-systems of a complex electronics system to communi-
cate with each other through a shared communications
resource, such as a shared communications bus. In one
embodiment, a commumnications protocol allows multiple
functional block on a single semiconductor device to com-
municate to each other. In another embodiment, the com-
munications protocol may be used to allow multiple func-
tional blocks on different semiconductor devices to
communicate to each other through a shared ofl-chip com-
munications resource, such as a bus.

[0028] In one embodiment, the present invention 1s a
pipelined communications bus with separate command,
address, and data wires. Alternative embodiments include a
pipelined communications bus with multiplexed address,
data, and control signals. The former embodiment offers
higher performance and simpler control than the latter
embodiment at the expense of extra wires. The former
embodiment may be more appropriate for on-chip commu-
nications, where wires are relatively less expensive and
performance requirements are usually higher. The latter
embodiment offers higher per-wire transier efliciency,
because 1t shares the same wires among address and data
transiers. The latter embodiment may be more approprate
for chip-to-chip communications between semiconductor
devices, because package pins and board traces increase the
per signal cost, while total required communications perfor-
mance 1s usually lower.

10029] FIG. 1 1s a block diagram of a complex electronics
system 100. Shared communications bus 112 connects sub-
systems 102, 104, 106, 108, and 110. Sub-systems are
typically functional blocks including a interface module for
interfacing to a shared bus. Sub-systems may themselves
include one or more functional blocks and may or may not
include an integrated or physically separate interface mod-
ule. In one embodiment, the sub-systems connected by
communications bus 112 are separate ntegrated circuit
chips. Sub-system 104 1s an application specific integrated
circuit (ASIC) which, as 1s known, 1s an integrated circuit
designed to perform a particular function. Sub-system 106 1s
a dynamic random access memory (DRAM). Sub-system
108 1s an erasable, programmable, read only memory
(EPROM). Sub-system 110 1s a field programmable gate
array (FPGA). Sub-system 102 1s a fully custom integrated
circuit designed specifically to operate 1n system 100. Other
embodiments may contain additional sub-systems of the
same types as shown, or other types not shown. Other
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embodiments may also include fewer sub-systems than the
sub-systems shown in system 100. Integrated circuit 102
includes sub-systems 102A, 1028, 102C, 102D and 102E.
ASIC 104 includes functional blocks 101 A, 1048 and 104C.
FPGA 110 includes functional blocks 110A and 110B. A
functional block may be a particular block of logic that
performs a particular function. A functional block may also
be a memory component on an integrated circuit.

[0030] System 100 is an example of a system that may
consist ol one or more tegrated circuits or chips. A
functional block may be a logic block on an integrated
circuit such as, for example, functional block 102E, or a
functional block may also be an integrated circuit such as
tully custom integrated circuit 102 that implements a single
logic function.

[0031] Shared communications bus 112 provides a shared
communications bus between sub-systems of system 100.
Shared communication bus 114 provides a shared commu-
nications bus between sub-systems or functional blocks on
a single itegrated circuit. Some of the functional blocks
shown are connected to interface modules through which
they send and receive signals to and from shared commu-
nications bus 112 or shared communications bus 114. Inter-
connect 1135 1s a local point-to-point interconnect for con-
necting interface modules to functional blocks.

10032] Interface modules 120-127 are connected to vari-
ous functional blocks as shown. In this embodiment, inter-
face modules 120,122,123 and 124 are physically separated
from their connected functional block (A, B, C, E and F,
respectively). Interface modules 121, and 125-128 are essen-
tially part of their respective functional blocks or sub-
systems. Some functional blocks, such as 102D, do not
require a dedicated interface module. The arrangement of
sub-systems, functional blocks and interface modules 1s
flexible and 1s determined by the system designer.

[0033] In one embodiment there are four fundamental
types of functional blocks. The four fundamental types are
initiator, target, bridge, and snooping blocks. A typical target
1s a memory device, a typical initiator 1s a central processing
unit (CPU). A typical bridge might connect shared commu-
nications buses 112 and 114. Functional blocks all commu-
nicate with one another via shared communications bus 112
or shared communications bus 114 and the protocol of one
embodiment. Initiator and target functional blocks may
communicate a shared communications bus through inter-
face modules. An 1nitiator functional block may communi-
cate with a shared communications bus through an nitiator
interface module and a target functional block may com-
municate with a shared communications bus through a target
interface module.

[0034] An initiator interface module issues and receives
read and write requests to and from functional blocks other
than the one with which 1t 1s associated. In one embodiment,

an 1nitiator interface module 1s typically connected to a
CPU, a digital signal processing (DSP) core, or a direct
memory access (DMA) engine.

[0035] FIG. 2 is a block diagram of an embodiment of an
initiator interface module 800. Initiator interface module

800 includes clock generator 802, data flow block 806,
arbitrator block 804, address/command decode block 808,

configuration registers 810, and synchronizer 812. Initiator
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interface module 800 1s connected to a shared communica-
tions bus 814 and to an initiator functional block 816. In one
embodiment, shared communications bus 814 1s a shared
communications bus that connects sub-systems, as bus 112

does 1n FIG. 1.

[0036] Clock generator 802 1s used to perform clock
division when initiator functional block 816 runs synchro-
nously with respect to shared communications bus 814 but
at a different frequencies. When mnitiator functional block
816 runs asynchronously with respect to communications
bus 814, clock generator 802 1s not used, but synchronizer
812 1s used. Arbitrator block 804 performs arbitration for
access to shared communications bus 814. In one embodi-
ment, a multi-level arbitration scheme i1s used wherein
arbitrator module 804 includes logic circuits that manage
pre-allocated bandwidth aspects of first level arbitration and
also logic that manages second level arbitration. Data tlow
block 806 includes data tlow first-in-first-out (FIFO) buflers
between shared communications bus 814 and nitiator func-
tional block 816, 1n addition to control logic associated with
managing a transaction between shared communications bus
814 and initiator functional block 816. The FIFO buflers
stage both the address and data bits transferred between
shared communications bus 814 and initiator functional
block 816. In one embodiment, shared communications bus
814 implements a memory mapped protocol. Specific details
of an underlying computer bus protocol are not significant to
the invention, provided that the underlying computer bus
protocol supports some operation concurrency. A preferred
embodiment of a bus protocol for use with the present
invention 1s one that supports retry transactions or split
transactions, because these protocols provide a mechanism
to deliver operation concurrency by interrupting a multi-
cycle transaction to allow transiers belonging to other unre-
lated transactlons to take place. These protocols allow for
higher transter efliciencies because independent transactions
may use the bus while an 1mitiator waits for a long latency
target to return data that has been previously requested by an
initiator.

[0037] Address/command decode block 808 decodes an
address on shared communications bus 814 to determine 1f
a write 1s to be performed to registers associated with
initiator functional block 816. Address/command decode
block 808 also decodes incoming commands. Configuration
registers 810 store bits that determine the state of module
800, including bandwidth allocation and client address base.
One register 810 stores an 1dentification (ID) which 1s a set
of bits uniquely 1dentifying 1mitiator functional block 816.

10038] FIG. 3 is a block diagram of an embodiment of a
target interface module 900. Target interface module 900 1s
connected to shared communications bus 914 and to target
functional block 918. Target interface module 900 1ncludes
clock generator 902, data flow block 906, address/command
decode block 908, synchronizer 912, and state registers in
state control block 916. Blocks of target interface module
900 that are named similarly to blocks of 1nitiator module
800 function 1n substantially the same way as explained with
respect to mitiator block 800. State registers and state
control block 916 include registers that store, for example,
client address base and an 1dentifier for target functional

block 918.

[0039] In one embodiment, an initiator functional block
such as mitiator functional block 816 may also act as a target
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functional block 1n that i1t has the capability to respond to
signals from other functional blocks or sub-systems as well
as to 1mitiate actions by sending signals to other functional
blocks or sub-system.

[0040] FIG. 4 1s a block diagram of a part of a computer
system 1000 according to one embodiment. FIG. 4 1s useful
in 1llustrating multilevel connection identification. System
1000 includes initiator functional block 1002, which 1s
connected to mitiator mnterface module 1004 by interconnect
1010. Initiator interface module 1004 1s connected to target
interface module 1006 by shared communications bus 1012.
Target mterface module 1006 1s connected to target func-
tional block 1008 by an interconnect 1010. Typically, shared
communications bus 1012 1s analogous to shared commu-
nications bus 112 of FIG. 1 or to shared communications bus
114 of FIG. 1. Interconnects 1010 are typically analogous to
interconnect 115 of FIG. 1 in that they connect functional
blocks to interface modules and are point-to-point, rather
than shared, interconnects. Interconnects 1010 are typically
physically shorter than shared communications bus 1012
because of their local nature. As will be explained more fully
below, system 1000 uses two different levels of connection
identification depending upon the requirements of a particu-
lar functional block. “Global” connection identification
information 1s sent on shared communications bus 1012,
while “local” connection information, or thread identifica-
tion information, 1s sent 1n interconnects 1010.

[0041] FIG. 5 is a block diagram of one embodiment of a
shared communications bus 1012. Shared communications
bus 1012 1s shown connected to entities A, B, C, D and E,
which may be interface modules, functional blocks, or a
combination of both. Shared communications bus 1012 is
composed of a set of wires. Data wires 230 provide direct,
high efliciency transport of data traflic between functional
blocks on shared communications bus 1012. In one embodi-
ment, shared communications bus 1012 supports a bus
protocol that 1s a framed, time division multiplexed, fully
pipelined, fixed latency communication protocol using sepa-
rate address, data and connection identification wires. The
bus protocol supports fine grained interleaving of transters
to enable high operation concurrency, and uses retry trans-
actions to efhiciently implement read transactions from target
devices with long or variable latency. Details of the arbitra-
tion method used to access shared communications bus 1012
are not required to understand the present mvention. The
delay from when an initiator functional block drives the
command and address until the target functional block
drives the response 1s known as the latency of shared
communications bus 1012. The bus protocol supports arbi-
tration among many initiator functional blocks and target
tfunctional blocks for access to the bus. In the embodiment
shown, arbitration for access to shared communications bus
1012 1s performed by an initiator interface module, such as
module 1004 of FIG. 4. In other embodiments, arbitration 1s
performed by functional blocks directly, or by a combination
ol mterface modules and functional blocks. In one embodi-
ment, a bus grant lasts for one pipelined bus cycle. The
protocol does not forbid a single functional block from
becoming a bus owner for consecutive bus cycles, but does
require that the functional block successiully win arbitration
on consecutive cycles to earn the right.

[0042] Shared communications bus 1012 includes sepa-
rate address, data, and control wires. Other embodiments

Apr. 26, 2007

may include multiplexed address, data, and control signals
that share a wire or wires. Such an embodiment would
provide high per-wire transfer efliciency because wires are
shared among address and data transfers. A non-multiplexed
embodiment of shared communications bus 1012 may be
more appropriate for communication between functional
blocks on a single integrated circuit chip because wires are
relatively inexpensive and performance requirements are
usually higher on a single integrated circuit chip.

10043] Clock line 220 is a global signal wire that provides
a time reference signal to which all other shared communi-
cations bus 1012 signals are synchronized. Reset line 222 1s
a global signal wire that forces each connected functional
block into a default state from which system configuration
may begin. Command line 224 carries a multi-bit signal
driven by an mitiator bus owner. In various embodiments,
the multi-bit command signal may convey various types of
information. For example, a command signal may indicate a
transier type, information regarding duration of a connec-
tion, and expected initiator and target behavior during the
connection. In one embodiment, the command signal
includes one or more bits indicating the beginning and end
of a connection. In one embodiment, for example, one bit
may 1ndicate the status of a connection. If the bit 1s zero, the
current transfer is the final transfer 1n the connection. After
the receipt of a zero connection status bit, the next receipt of
a connection status bit that 1s a logic one indicates that the
transfer 1s the first in a newly opened connection. Each
subsequently received one connection status bit then indi-
cates that the connection 1s still open.

10044] Supported transfer types in this embodiment
include, but are not limited to read and write transiers.
Address lines 228 carry a multi-bit signal driven by an
initiator bus owner to specily the address of the object to be
read or written during the current transier. Response lines
232 carry a multi-bit signal driven by a target to indicate the
status of the current transfer. Supported responses include,
but are not limited to the following responses. A NULL
response indicates that the current transier 1s to be aborted,
presumably because the address does not select any target.
A data valid and accepted (DVA) response indicates, 1n the
case of a read, that the target 1s returming requested data on
data lines 230. In the case of a write, a DVA response
indicates that the target 1s accepting the provided data from
data lines 230. A BUSY response indicates that the selected
target has a resource contlict and cannot service the current
request. In this case an mitiator should reattempt the transier
again later. A RETRY response indicates that the selected
target could not deliver the requested read data 1n time, but
promises to do so at a later time. In this case an 1nitiator must
reattempt the transfer at a later time.

[0045] Connection identifier (CONNID) lines 226 carry a

multi-bit signal driven by an initiator bus owner to indicate
which connection the current transier 1s part of. A connec-
tion 1s a logical state, established by an mnitiator, in which
data may pass between the mnitiator and an associated target.
The CONNID typically transmits information including the
identity of the functional block mmitiating the transfer and
ordering information regarding an order in which the trans-
fer must be processed. In one embodiment, the information
conveyed by the CONNID includes imnformation regarding
the priority of the transfer with respect to other transfers. In
one embodiment the CONNID 1s a eight-bit code. An
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initiator interface module sends a unique CONNID along
with an 1nitial address transier of a connection. Later trans-
fers associated with this connection (for example, data
transiers) also provide the CONNID value so both sender
and receiver (as well as any device monitoring transiers on
shared communications bus 1012) can unambiguously 1den-
tify transiers associated with the connection. One advantage
of using a CONNID 1s that transiers belonging to different
transactions can be interleaved arbitrarily between multiple
devices on a per cycle basis. In one embodiment, shared
communications bus 1012 mmplements a fully pipelined
protocol that requires strict control over transaction ordering,
in order to guarantee proper system operation. Without the
use of a CONNID, ordering constraints within a particular
transaction may be violated because transfers associated
with a particular connection are not 1dentified.

[0046] Because a first command may be rejected by a
BUSY response while a later command 1s already 1n flight,
it 1s essential to provide mechanisms that allow full control
over which commands complete. If such control 1s not
present, ambiguous system behavior can result. For instance,
if a single 1nitiator interface module 1ssues a sequence of
dependent read and write commands, a busy response to one
of the commands could result 1n later commands returning
the wrong data. One solution to such problems 1s to avoid
overlapping dependent commands. This solution, however,
increases the latency of every dependent command 1n order
to ensure proper results. The present invention uses a
CONNID signal, 1n part, to allow overlapping of dependent
commands. Therefore, use of a CONNID improves system
performance and efliciency. Another benefit of the CONNID
of the present nvention 1s that communication system
predictability 1s enhanced because 1t allows a shared func-
tional block to respond to requests based upon quality of
service guarantees that may vary between connections. For
example, data requested to operate a computer display
cannot tolerate unpredictable delay because delay causes the
display to flicker. Therefore, the CONNID may be used to
prioritize data requests from a display controller so that
requests from the display controller to a common resource
are serviced belfore other requests. The present invention
also allows for flexible reconfiguration of the CONNID to
retune system performance.

[0047] FIG. 6 is a timing diagram of a pipelined write
transaction consisting ol two write transfers on shared
communications bus 1012. Reference may also be made to
FIG. 5. A single pipelined bus transier, as shown in FIG. 6,
includes an arbitration cycle (not shown), followed by a
command/address/CONNID (CMD 324/ADDR 328/CON-
NID 326) cycle (referred to as a request, or REQ cycle), and
completed by a DATA 330/RESP 342 cycle (referred to as a
response, or RESP cycle). In one embodiment, the number
of cycles between a REQ cycle and a RESP cycle 1s chosen
at system implementation time based upon the operating
frequency and module latencies to optimize system pertor-
mance. The REQ-RESP latency, 1n one embodiment, 1s two
cycles and 1s labeled above the DATA 330 signal line on
FIG. 6. Therefore, a complete transier time includes four
shared communications bus 1012 cycles, arbitration,
request, delay and response.

[0048] 'Two transfers are shown in FIG. 6. On cycle 1,
mitiator E drives REQ fields 340 to request a WRITE

transier to address ADDREO0. This process 1s referred to as
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issuing the transfer request. In one embodiment, a single
target 1s selected to receive the write data by decoding an
external address portion of ADDREO(. On cycle 3 (a REQ-
RESP latency later), mmtiator E drives write data DATAEQ
on the DATA wires; simultaneously, the selected target A
drives RESP wires 342 with the DVA code, indicating that
A accepts the write data. By the end of cycle 3, target A has
acquired the write data, and 1mitiator E detects that target A
was able to accept the write data; and the transter has thus
completed successtully.

[0049] Meanwhile (i.e. still in cycle 3), initiator E issues
a pipelined WRITE transfer (address ADDRE1) to target A.
The write data and target response for this transfer both
occur on cycle 5, where the transfer completes successtully.
Proper operation of many systems and sub-systems rely on
the proper ordering of related transiers. Thus, proper system

1Y 1

operation may require that the cycle 3 WRITE complete
alter the cycle 1 WRITE transfer. In FIG. 6, the CONNID
field conveys crucial information about the origin of the
transier that can be used to enforce proper ordering. A
preferred embodiment of ordering restrictions 1s that the
initiator and target collaborate to ensure proper ordering,
even during pipelined transfers. This 1s important, because
transfer pipelining reduces the total latency of a set of
transfers (perhaps a single transaction), thus improving

system performance (by reducing latency and increasing
usable bandwidth).

[0050] According to the algorithm of one embodiment:

[0051] 1. An initiator may issue a transfer Y: a) if
transfer Y 1s the oldest, non-1ssued, non-retired transfer
among the set of transier requests 1t has with matching
CONNID, or b) 1t all of the older non-retired transfers
with matching CONNID are currently 1ssued to the
same target as transfer Y. I 1ssued under this provision,
transier Y 1s considered pipelined with the older non-
retired transiers.

[0052] 2. A target that responds to a transfer X in such
a way that the initiator might not retire the transier must
respond BUSY to all later transfers with the same

CONNID as transfer X that are pipelined with X.

[0053] Note that an older transfer Y that is issued after a
newer transier X with matching CONNID 1s not considered
pipelined with X, even 11 Y Issues before X completes. This
situation 1s illustrated 1n FIG. 7. If target A has a resource
contlict that temporarily prevents 1t from accepting DATAEQ
associated with the WRITE ADDREO from cycle 1, then A
responds BUSY. Step 2 of the foregoing algorithm requires
that A also reject (using BUSY) any other pipelined transiers
from the same CONNID (1n this case, CONNID 1), since the
initiator cannot possibly know about the resource contlict
until after the REQ-RESP latency has passed. Thus, target A
must BUSY the WRITE ADDRE1 that 1s 1ssued 1n cycle 3,
because it has the same CONNID and was 1ssued before the
initiator could interpret the BUSY response to the first write
transfer, and 1s thus a pipelined transter. Furthermore, the
second attempt (1ssued 1n cycle 4) of the WRITE ADDRE0
transter 1s allowed to complete because 1t 1s not a pipelined
transfer, even though it overlaps the cycle 3 WRITE

ADDRE1 transter.

[0054] Note that target A determines that the cycle 4 write
1s not pipelined with any earlier transfers because of when
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it occurs and which CONNID 1t presents, and not because of
cither the CMD nor the ADDR wvalues. Step 1 of the
algorithm guarantees that an imtiator will only issue a
transfer that 1s the oldest non-1ssued, non-retired transter
within a given connection. Thus, once the first WRITE
ADDREDO receives the BUSY response 1n cycle 3, 1t 1s no
longer 1ssued, and so 1t becomes the only CONNID=1
transfer eligible for issue. It 1s therefore impossible for a
properly operating initiator to 1ssue a pipelined transfer in
cycle 4, given that an mnitial cycle 1 transfer received a

BUSY response and the REQ-RESP latency 1s two cycles.

[0055] One embodiment of the initiator maintains a time-
ordered queue consisting of the desired transfers within a
given CONNID. Each transfer 1s marked as non-1ssued and
non-retired as they are entered into the queue. It 1s further
marked as pipelined if the immediately older entry in the
queue 1s non-retired and addresses the same target; other-
wise, the new transier 1s marked non-pipelined. Each time a
transfer 1ssues 1t 1s marked as i1ssued. When a transier
completes (1.¢., when the RESP cycle 1s finished) the transfer
1s marked non-1ssued. It the transier completes successiully,
it 1s marked as retired and may be deleted from the queue.
IT the transier does not complete successtully, 1t will typi-
cally be re-attempted, and thus can go back into arbitration
for re-1ssue. If the transter does not complete successtully,
and 1t will not be re-attempted, then 1t should not be marked
as retired until the next transter, 1f 1t exists, 1s not marked as
issued. This restriction prevents the imitiator logic from
issuing out of order. As the oldest non-Retired transfer
1ssues, 1t 1s marked as 1ssued. This allows the second-oldest
non-retired transier to arbitrate to i1ssue until the older
transier completes (and 1s thus marked as non-i1ssued), 11 it
1s marked as pipelined.

[0056] An embodiment of the target implementation
maintains a time-ordered queue whose depth matches the
REQ-RESP latency. The queue operates ofl of the bus clock,
and the oldest entry 1n the queue 1s retired on each bus cycle;
simultaneously, a new entry 1s added to the queue on each
bus cycle. The CONNID from the current REQ phase 1s
copied into the new queue entry. In addition, if the current
REQ phase contains a valid transfer that selects the target
(via the External Address), then “first” and “busy” fields 1n
the new queue entry may be set; otherwise, the first and busy
bits are cleared. The first bit will be set 1f the current transier
will receive a BUSY response (due to a resource contlict)
and no earlier transier 1n the queue has the same CONNID
and has 1ts first bit set. The first bit implies that the current
transier 1s the first of a set of potentially-pipelined transters
that will need to be BUSY d to enforce ordering. The busy
bit 1s set if etther the target has a resource contlict or one of
the earlier transfers 1n the queue has the same CONNID and
has the first bit set. This logic enforces the REQ-RESP
pipeline latency, ensuring that the target accepts no pipelined
transters until the 1mitiator can react to the BUSY response
to the transier marked first.

[0057] Application of the algorithm to the initiators and
targets 1n the communication system provides the ability to
pipeline transfers (which increases per-connection band-
width and reduces total transaction latency) while maintain-
ing transaction ordering. The algorithm therefore facilitates
high per-connection performance. The fundamental inter-
leaved structure of the pipelined bus allows for high system
performance, because multiple logical transactions may
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overlap one another, thus allowing sustained system band-
width that exceeds the peak per-connection bandwidths. For
instance, FIG. 8 demonstrates a system configuration in
which mitiator E needs to transier data to target A on every
other bus cycle, while 1mitiator D requests data from target
B on every other bus cycle. Since the communication system
supports fine interleaving (per bus cycle), the transactions
are composed of individual transters that 1ssue at the natural
data rate of the functional blocks; this reduces bullering
requirements in the functional blocks, and thus reduces
system cost. The total system bandwidth 1n this example 1s
twice the peak bandwidth of any of the functional blocks,
and thus high system performance 1s realized.

|0058] The present invention adds additional system-level
improvements 1n the area of efliciency and predictability.
First, the connection 1dentifier allows the target to be selec-
tive 1n which requests 1t must reject to preserve in-order
operation. The system only need guarantee ordering among
transiers with the same CONNID, so the target must reject
(using BUSY) only pipelined transfers. This means that the
target may accept transiers presented with other CONNID
values even while rejecting a particular CONNID. This
situation 1s presented 1 FIG. 9, which adds an interleaved
read transfer from 1nitiator D to the pipelined write transier
of FIG. 7. All four transfers 1n FIG. 9 select target A, and A
has a resource contlict that prevents successiul completion
of the WRITE ADDREQO that 1ssues in cycle 1. While the
rejection of the first write prevents A from accepting any
other transiers from CONNID 1 until cycle 4, A may accept
the unrelated READ ADDRDO request of cycle 2 11 A has
suflicient resources. Thus, overall system elliciency 1s
increased, since fewer bus cycles are wasted (as would be
the case 1f target A could not distinguish between connec-
tions).

[0059] Second, in one embodiment the connection iden-
tifier allows the target to choose which requests 1t rejects.
The target may associate meanings such as transier priority
to the CONNID values, and therefore decide which requests
to act upon based upon a combination of the CONNID value
and the internal state of the target. For instance, a target
might have separate queues for storing transfer requests of
different priorities. Referring to FIG. 9, the target might have
a queue for low priority requests (which present with an odd
CONNID) and a queue for high priority requests (which
present with an even CONNID). Thus, the CONNID 1
WRITE ADDREO request of cycle 1 would be rejected 11 the
low-priority queue were full, whereas the CONNID 2
READ ADDRDO transfer could be completed successiully
based upon available high-priority queue resources. Such
differences 1n transier priorities are very common 1n highly-
integrated electronic systems, and the ability for the target to
deliver higher quality of service to higher prionty transfer
requests adds significantly to the overall predictability of the
system.

[0060] As FIG. 9 implies, the algorithm described above
allows a target to actively satisly transier requests from
multiple CONNID values at the same time. Thus, there may
be multiple logical transactions in flight to and/or from the
same target, provided that they have separate CONNID
values. Thus, the present invention supports multiple con-
nections per target functional block.

[0061] Additionally, an initiator may require the ability to
present multiple transactions to the communications system
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at the same time. Such a capability 1s very useful for mitiator
such as direct memory access (DMA) devices, which trans-
fer data between two targets. In such an application, the
DMA mitiator would present a read transaction using a {irst
CONNID to a first target that 1s the source of the data, and
furthermore present a write transaction using a second
CONNID to a second target that 1s the data destination. At
the transfer level, the read and write transfers could be
interleaved. This reduces the amount of data storage in the
DMA mitiator, thus reducing system cost. Such an arrange-
ment 1s shown in FIG. 10, where initiator E interleaves
pipelined read transiers from target A with pipelined write
transiers to target B. Thus, the present invention supports
multiple connections per initiator functional block.

[0062] The control structures required to support imple-
mentation of the present invention, as described above with
respect to the algorithm, are simple and require much less
area than the data buflering area associated with traditional
protocols that do not provide eflicient fine interleaving of
transiers. Thus, the present invention minimizes communi-
cation system area and complexity, while delivering high
performance and flexibility.

[0063] Finally, the CONNID values that are associated
with particular mitiator transactions should typically be
chosen to provide useful information such as transier pri-
orities but also to minimize implementation cost. It 1s useful
to choose the specific CONNID values at system design
time, so the values can be guaranteed to be unique and can
be ordered to simplily comparison and other operations.
Furthermore, it 1s frequently useful to be able to change the
CONNID values during operation of the communications
system so as to alter the performance and predictability
aspects ol the system. Preferred implementations of the
present mvention enable flexible system configuration by
storing the CONNID values in ROM or RAM resources of
the Tunctional blocks, so they may be readily re-configured
at either system build time or system run time.

[0064] FIG. 11 shows an interconnect 1010, which 1s a
point-to-point interconnect as shown in FIG. 4. Interconnect
1010 includes additional signals as compared to the protocol
described with reference to FIG. 5. As will be explained

below, some of the additional signals are particularly usetul

as signals sent over point-to-point interconnects such as
interconnects 1010. The protocol of interconnect 1010 con-

trols point-to-point transfers between a master entity 1102
and a slave entity 1104 over a dedicated (non-shared)
interconnect. Referring to FIG. 4, a master entity may be, for
example, mitiator functional block 1002 or target interface
module 1006. A slave entity may be, for example, mitiator
interface module 1004 or target functional block 1008.

[0065] Signals shown in FIG. 11 are labeled with signal

names. In addition, some signal names are followed by a
notation or notations in parentheses or brackets. The nota-

tions are as follows:

[0066] (I) The signal is optional and is independently
coniigurable

[0067] (A) The signal must be configured together with
signals having similar notations

[0068] (AI) The signal 1s independently configurable if
(A) interface modules exist [#] Maximum signal width
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[0069] The clock signal is the clock of a connected func-
tional block. The command (Cmd) signal indicates the type
of transfer on the interconnect. Commands can be issued
independent of data. The address (Addr) signal 1s typically
an 1ndication of a particular resource that an mnitiator func-
tional block wishes to access. Request Accept (RegAccept)
1s a handshake signal whereby slave 1104 allows master
1102 to release Cmd, Addr and DataOut from one transier
and reuse them for another transter. If slave 1104 1s busy and
cannot participate 1n a requested transier, master 1102 must
continue to present Cmd, Addr and DataOut. DataOut 1s data
sent from a master to a slave, typically in a write transfer.
Dataln typically carries read data.

[0070] Response (Resp) and Dataln are signals sent from
slave 1104 to master 1102. Resp indicates that a transfer
request that was received by slave 1104 has been serviced.
Response accept (RespAccept) 1s a handshake signal used to
indicate whether the master allows the slave to release Resp
and Dataln.

[0071] Signals Clock, Cmd, Addr, DataOut, ReqAccept,
Resp, Dataln, and Resp Accept, in one embodiment, make up
a basic set of interface module signals. For some functional
blocks, the basic set may be adequate for commumnication

purposes.

[0072] In other embodiments, some or all of the remaining
signals of bus 1012 may be used. In one embodiment, Width
1s a three-bit signal that indicates a width of a transfer and
1s useful in a connection that includes transiers of variable
width. Burst 1s a multibit signal that allow individual com-
mands to be associated within a connection. Burst provides
an 1indication of the nature of future transfers, such as how
many there will be and any address patterns to be expected.
Burst has a standard end marker. Some bits of the Burst field
are reserved for user-defined fields, so that a connection may
be 1gnorant of some specific protocol details within a
connection.

[0073] Interrupt and error signals are an important part of
most computer systems. Interrupt and error signals gener-
ated by mitiator or target functional blocks are shown, but
the description of their functionality 1s dependent upon the
nature of a particular functional block and 1s not important
to understanding the invention.

[0074] Request Thread Identifier (ReqThreadlD), in one
embodiment, 1s a four-bit signal that provides the thread
number associated with a current transaction intended for
slave 1104. All commands executed with a particular thread
ID must execute 1n order with respect to one another, but
they may execute out of order with respect to commands
from other threads. Response Thread Identifier
(RespThreadlD) provides a thread number associated with a
current response. Because responses 1n a thread may return
out of order with respect to other threads, RespThreadID 1s
necessary to identity which thread’s command 1s being
responded to. In one embodiment, ReqThreadlD and
RespThreadlD are optional signals, but 1f one 1s used, both
must be used.

[0075] Request Thread Busy (ReqThreadBusy) allows the
slave to indicate to the master that it cannot take any new
requests associated with certain threads. In one embodiment,
the ReqThreadBusy signal 1s a vector having one signal per
thread, and a signal asserted indicates that the associated
thread 1s busy.
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[0076] Response Thread Busy (RespThreadBusy) allows
the master to indicate to the slave that 1t cannot take any
responses (e.g., on reads) associated with certain threads.
The RespThreadBusy signal 1s a vector having one signal

per thread, and a signal asserted indicates that the associated
thread 1s busy.

[0077] Request Connection Identifier (ReqConnID) pro-
vides the CONNID associated with the current transaction
intended for the slave. CONNIDs provide a mechanism by
which a system entity may associate particular transactions
with the system enftity. One use of the CONNID 1s in
establishing request priority among various 1nitiators.
Another use 1s 1n associating actions or data transfers with
initiator 1dentity rather than the address presented with the
transaction request.

[0078] The embodiment of FIG. 11 provides end-to-end
connection identification with CONNID as well as point-to-
point, or more local identification with Thread ID. A Thread
ID 1s an identifier of local scope that simply i1dentifies
transiers between the interface module and its connected
functional block. In contrast, the CONNID 1s an 1dentifier of
global scope that 1dentifies transfers between two interface
modules (and, 1 required, their connected functional

blocks).

[0079] A Thread ID should be small enough to directly
index tables within the connected interface module and
functional block. In contrast, there are usually more CON-
NIDs 1n a system than any one interface module 1s prepared
to simultaneously accept. Using a CONNID 1n place of a
Thread ID requires expensive matching logic 1n the interface
module to associate a returned CONNID with specific
requests or buller entries.

[0080] Using a networking analogy, the Thread ID is a
level-2 (data link layer) concept, whereas the CONNID 1s
more like a level-3 (transport/session layer) concept. Some
tfunctional blocks only operate at level-2, so 1t 1s undesirable
to burden the functional block or its interface module with
the expense of dealing with level-3 resources. Alternatively,
some functional blocks need the features of level-3 connec-
tions, so 1n this case 1t 1s practical to pass the CONNID
through to the functional block.

[0081] Referring to FIG. 4, a CONNID 1s required to be
unique when transierred between interface modules 1004
and 1006 on shared communications bus 1012. The CON-
NID may be sent over a local interconnect, such as inter-
connect 1010. In many cases, however, it 1s much more
ellicient to use only Thread ID between a functional block
and its interface module. For example imitiator functional
block 1002 may not require all the information provided by
the CONNID. Also, 1n some systems, multiple 1dentical
initiator functional blocks 1002 may exist with the same
CONNID so that a particular target functional block 1008
receiving a transier will not know which connection 1t 1s
actually part of unless logic 1n mitiator interface module
1004 translates the “local” CONNID to a unique “‘global”
CONNID. The design and implementation of such a trans-
lation functionality in an interface module 1s complicated
and expensive. In such cases, the CONNID may be sent
between 1nterface modules over shared communications bus
1012 while the Thread ID 1s sent between a functional block
and an 1nterface module.

[0082] In the case of an initiator functional block, a
one-to-one static correspondence may exist between Thread
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ID and CONNID. For example 1f the Thread ID 1s 17, a
single CONNID 1s mapped for a particular interface module,
solving the problem of multiple, 1dentical functional blocks.

[0083] In the case of a target functional block, there is a
one-to-one dynamic correspondence between a Thread ID
and a CONNID. If a target functional block supports two
simultaneous threads, the target interface module acquires
the CONNID of an open connection and associates 1t with a
thread as needed. For example, a target interface module

receives a CONNID of “7”, and then maps CONNID 7 to
thread 0. Thereafter, all transters with CONNID 7 are

associated with thread 0 until connection 7 1s closed.

[0084] Referring to FIG. 12, an example of a use of Thread
ID, consider a series of identical direct memory access
(DMA) engines 1n a system. In FIG. 12, elements 1202 are
identical DMA engines, each connected to an initiator inter-
face module 1204. Initiator interface modules 1204 are
connected to shared communications bus 1212. Target inter-
face module 1206 1s also connected to shared communica-
tions bus 1212 and transmits data from bus 1212 to DRAM
controller 1208, which 1s a target functional block. Target
interface module 1206 1s connected to DRAM controller
1208 by interconnect 1214. DRAM controller 1208 controls
access to DRAM 1213.

[0085] A DMA a engine 1s an example of an initiator
functional block that also functions as a target functional
block. When the DMA engine 1s programmed by software,
it acts as a target. Thereafter, the DMA engine 1s an initiator.
Because a DMA engine performs both read and write
operations, two connections can be associated with a single
DMA engine. If some buflering 1s available 1n the DMA
engine, read and write operations may be decoupled so that
both types of operations can be performed concurrently. A
read may occur from a long latency storage device which
requires the read data to be buflered on the DMA engine
betfore a write operatlon writes the data. In one embodiment,
cach of DMA engines 1202 uses a Thread 1D to identify the
read stream and a different Thread ID to i1dentify the write
stream. The DMA engine does not require more information,
such as what other functional block participates 1n a trans-
action. Therefore, a CONNID is not required to be sent from
the DMA engine 1202 to a connected interface module 1204.
Mapping of a Thread ID to a CONNID occurs in the

interface module 1204.

[0086] Inone embodiment, each initiator interface module
1204 maps a unique CONNID to each of two Thread IDs
from a connected DMA engine 1202. Each of DMA engines
1202 use a single bit, for example, Thread ID of FIG. 11, to
distinguish between 1ts two threads. For each transfer over
shared communications bus a unique CONNID 1s sent to
target interface module 1206. The CONNID may include
priority information, for example, assigning high priority to
requests for graphics data. The high prionty graphics data
request 1s immediately serviced by DRAM controller 1208
while lower priority request may be required to wait.

[0087] Because intelligence is designed into the interface
modules and the communications protocols, less intelligence
1s required of the functional block such as the DRAM
controller 1208 and the DMA engines 1202. This has the
advantage of making functional blocks more portable or
reusable as systems evolve. For example, a DMA engine
used for a high priority application may be switched with a
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DMA engine used for a lower priority application simply by
changing their respective connected interface modules.

[0088] In one embodiment, target and initiator interface
modules are programmed at the transistor level so that their
precise function, including their CONNID assignment, 1s
fixed at power-up. In another embodiment, the design of
interface modules 1s in RAM so that the mterface module 1s
a reprogrammable resource. In this case, the mterface mod-
ule 1s reprogrammed, imncluding reassignment of CONNIDs,
by software.

[0089] The present invention has been described in terms
of specific embodiments. For example, embodiments of the
present invention have been shown as systems of particular
configurations, including communications buses using par-
ticular protocols. One of ordmnary skill in the art waill
recognize that modifications may be made without departing,
from the spirit and scope of the invention as set forth in the
claims. For example, the present may be used in systems
employing shared commumnications structures other than
buses, such as rings, cross-bars, or meshes.

What 1s claimed 1is:

1. A communication system comprising: at least two
functional blocks, wherein a first functional block commu-
nicates with a second functional block by establishing a
connection, wherein the connection 1s a logical state 1n
which data may pass between the first functional block and
the second functional block; and a communication medium
configured to carry a plurality of signals between interface
modules; an 1mtiator functional block configured to send
transfer requests having a thread idenftifier to indicate a
transaction stream that a data transfer 1s part of; an mitiator
interface module coupled to the communication medium,
and coupled to recerve the mitiator functional block transfer
requests, said imitiator interface module mapping a recerved

Apr. 26, 2007

thread i1dentifier to a connection 1dentifier, said connection
identifier configured to be sent with a transier request from
the 1nitiator interface module over the communication
medium, the connection identifier comprising a multi-bit
value that encodes information including a transier priority,
a transfer order, and a functional block that originated the
transier, the connection identifier 1s one of a plurality of
connection 1dentifiers associated with the initiator functional
block; a target interface module coupled to the communi-
cation medium, and coupled to a target functional block.
2. A communication system comprising: at least two
functional blocks, wherein a first functional block commu-
nicates with a second functional block by establishing a
connection, wherein the connection 1s a logical state 1n
which data may pass between the first functional block and
the second functional block; and a communication medium
configured to carry a plurality of signals between interface
modules; an mitiator interface module coupled to the com-
munication medium, and coupled to an initiator functional
block; a target interface module coupled to the communi-
cation medium to receive transier requests having a con-
nection 1dentifier, said received connection identifier having,
been previously configured to be sent with a transier request
from the 1nmitiator interface module over the communication
medium, the connection identifier comprising a multi-bit
value that encodes information including a transier priority,
a transfer order, and a functional block that originated the
transier, the connection identifier 1s one of a plurality of
connection identifiers associated with the mitiator functional
block, said target interface module mapping a recerved
connection 1dentifier to a thread identifier to indicate a
transaction stream that a data transfer 1s part of; and a target
functional block coupled to the target interface module to
receive transier requests having the thread identifier.
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