a9y United States
12y Patent Application Publication o) Pub. No.: US 2007/0067046 Al

US 200700670460A1

Berg 43) Pub. Date: Mar. 22, 2007
(54) METHOD AND SYSTEM FOR (60) Provisional application No. 60/257,456, filed on Dec.
COMMUNICATING AN INFORMATION 21, 2000. Provisional application No. 60/257,456,
PACKET THROUGH MULTIPLE filed on Dec. 21, 2000. Provisional application No.
NETWORKS 60/257,456, filed on Dec. 21, 2000. Provisional appli-
cation No. 60/257,456, filed on Dec. 21, 2000. Pro-
(76) Inventor: Mitchell T. Berg, Kirkland, WA (US) visional application No. 60/257,456, filed on Dec. 21,
2000. Provisional application No. 60/257,456, filed
Correspondence Address: on Dec. 21, 2000.
SEED INTELLECTUAL PROPERTY LAW
GROUP PLLC Publication Classification
701 FIFTH AVE
SUITE 5400 (51) Inmt. CL.
SEATTLE, WA 98104 (US) GO5B 15/00 (2006.01)
(32) US. CL e s 700/1
(21) Appl. No.: 11/512,050
(22) Filed: Aug. 28, 2006 (57) ABSTRACT
Related U.S. Application Data
Through a first network, a first computing device receives an
(60) Division of application No. 09/873,018, filed on Jun. information packet originating from a client. In response to

1, 2001, and which 1s a continuation of application
No. 09/872,329, filed on Jun. 1, 2001.

Continuation of application No. 09/872,372, filed on
Jun. 1, 2001.

Continuation of application No. 09/872,332, filed on
Jun. 1, 2001.

Continuation of application No. 09/872,081, filed on
Jun. 1, 2001.

Continuation of application No. 11/2635,558, filed on
Nov. 1, 2005, which 1s a continuation of application
No. 09/872,376, filed on Jun. 1, 2001, now aban-
doned.

the information packet, the first computing device identifies
a computing device that stores a data structure of a connec-
tion with the client. When the 1dentified computing device 1s
the first computing device, the first computing device per-
forms an operation in response to the information packet.
When the identified computing device 1s a second comput-
ing device, the first computing device outputs the informa-
tion packet through a second network to the second com-
puting device, such that the output information packet
bypasses the first network. The second computing device
performs the operation in response to the information
packet.

Intermnet Cﬂﬁnectiﬂn to ISP

<

WAN Link

--

-- [o R R gL

i Redirector
i Device Sarver 1
. 3 "
| ¢ Intelligent Intelligent
: NIC NIC

1 Server 2 Server n
_—]
Intelligent intelligent
NIC REEENERN NIC
o Ty |

Synchronization Hub }

O LAN B Hub/Switch

|

e

e e B el S ol e ok i mle ok ml e o w aw le al e R R R R L R Ry B R N R O W - - - L P Y - -

SERVER FARM

(317 J0L])
Vi Ild

US 2007/0067046 Al

aoeLieu|

SHOMIEN

JOAST

¥oe3s j0dojoud | 1200

eoBLB)U

SHOM}ON

uoeolddy 1A
19%4008 ELTy

_ 1oy | 18A8T
¥oBIS [000j0ug | T

juejid

Uoleojiddy | jener
193008 188

JoAl0S

Patent Application Publication Mar. 22, 2007 Sheet 1 of 28

WiV WAANES

._

US 2007/0067046 Al

L {_uIenies . "¢ 16A16S 7 10A188

(17 Jo11g)
dl Il =

Patent Application Publication Mar. 22, 2007 Sheet 2 of 28

F
llllllll
i bl b b R L L R L L B B L Ll o L L LR LT LY ET T FT T T I T LT I R E Y L R L B LN Y g resesd et RArdE RS R Y PR AR AR TR R rT R R AR T RSP PR R A S R e T W T W B e e e e el ek e -y
- i

WHV4 ¥IANTS

US 2007/0067046 Al

qnH uoNyDZU0IYIUAS o
L [
| | | m
m JIN AR N R OIN JIN
| UELTET juebyjaiu webje) ||
| _
|] - B
| ulenies Z J0AI0S T o
, 10}001pay
_
m |
m i

LA A 4 3 b 4 J 2 J 3 ¥ 1 J R EFE TR T 2 L EF B F 5 -
..

HUITNYM

dS| 0) :o_ﬁmc.coo jsuIBlu)

Patent Application Publication Mar. 22, 2007 Sheet 3 of 28

lll

Y—
<
5 ,
m LV ER-ENY-EI _
S YOUMS/QNH 3 NV 0
N ,
— i i
N m |_
s M |
- | qnNH UOIDZIUOIYIUAS o
|
& -
= -
OIN OIN | OIN OIN OIN
_ Juebifisiu| yusbyjeiul | eBjieul | | | juabijeu] webjeul ||
B | | |
B m | P
| C » n » Mol HIN
i gJleAl8g ¥ JoAIeSg g JoAlag Z JoAleg | JOAIOS
YOUMS/GNH g NYT O m YOHMS/ANH ¥ NV ||©
W ! L et oy B B e e A SR &S aE At s P L aass REs AN e R s eRevesdersr rusenosanussuars reeavanemsennyease 4 m.
|

- gJlojnoy

v/ JOINOY

¢ Ild

(ZdS| “6'9) uoRoBeuUUs)) Jowe (1dS1 “69) uoROBUUOT) JoWSIU)

Patent Application Publication Mar. 22, 2007 Sheet 4 of 28

.............
..

UV ERSENYELRS |
. YOUMS /QnH g NV Q _

qNH UOIDZILUOIYIUAS .

US 2007/0067046 Al

9 Janoy g J9]N0Y v 18]N0Y

QN Q\.N (ualOo woud) * (yuayd oy) @

(£4S! “°B'8) UoiOoBUUOY) JoUIB)U] (zdS) "6'9) uonOUUOY) JBLIBI] (L4S] 6'8) uojjPsuuo) JPwsiu|

Patent Application Publication Mar. 22, 2007 Sheet S of 28

US 2007/0067046 Al

Patent Application Publication Mar. 22, 2007 Sheet 6 of 28

l-"-' - b B2 Y —— " R -l S ol i A A e o Nl W W W R
L - e W et e g W el el [p—— - N --___#---h----- [e eg—— Y R L

N AR ELY ES

LR B 3 N R A L & L 4 N 1 B 3 L B]

YOUMS /qnH g NV Q -

P
ey ST RN N R R R

qnH UoYDZIU0IYIUAS o

e WY e W=

T T T R e B et L R

| 1 | "
_ - | B
) _ B
1 - | 0|
I | ﬂ i :
} . ! _-_ |
“ OIN OIN | oIN {1} - oN | oN ||
! JueBieju) wabyeuy | ebjeiuy | | § 1 | wabyeu] yusbiiew) | | 1 |
: | _ i) b
I B | HE
_ i Lk AR | | |
| SJoAieg pJoAles | € JOAISS : I gieaes | JOAIDS !
! | _. . | m
“ dnoup z uojjedyddy§ | n_:o._w_.cozm.:aa(“ m

Illlll'll lllllllIIIIIIJIIIIIIIIIIIIII - R T Y T T L 1

| YOUMS/GNH ¥ NV 0

ﬁ

T T o T B LN L LR

@ 9 v seinoy

UOHODULIOY) J8UIYU|

& Il

HOd | |
UOUAS

_ . 10SS2204d
$9559901 1 3joe}g jod0joid

i . . el
—l — e S

3INPO SSIY |

AINPON
O/1

US 2007/0067046 Al

A ———

X A AJOWBIN)0341Q

= i | UONBWLIOJU|

- | 4OB)G |000101d
.m |

v 9,

- sng D}o(]

~ Jeyng je)oed

5 uoijeulioju] $Se20.i4
o uoijeuwtojul Sunnoy

~ UOREULOU| 1B1S |
>

S s———
.,_m J[NPON hemmwophm JOSSI390.1 n— %.HQHH-QE

m O/1 . URN Buipiemioy | |

= . }IOMION

k> o _JO¥od | | '
= pieog urejn | Clevod e vwod [
N _ . DIN yudsIIay |
m . _

=

A

Y—

«

G e e e rmevesesmvenes 1

2 | WYVH¥3IAN3ES —

m i YoHMS/GNH g NV o —

=

— m "

& m

Wg “ qNH UOIDZIUOIYIUAS o
£2TTTLTTLL dI . | |vemrmea

QIN

JIN
jusbi|jajuj

Juebjjjeu)

P —— P TR L R TR

B R o A bl e e e A - - W o T - -

EECL'ECL'EC di -C J0AleS L'ETL'ETL'ETE dI °) J0AIDS

YoUMS /QnH v NV 0

g e E L e L R LR

- i e . e e nye - -

\/ JOINOY

Ve O L'EZL'ETLETL

1} J8AISS 03 3sanbay Jusjin

UOIJOBUUO0Y) JBLB)U)

Patent Application Publication Mar. 22, 2007 Sheet 8 of 28

.....
Al Rl L LD L T L P PR LD Y L L Ly Lyl DLl DALl PRy P e P Y 2 L R L PR AL DAL R S Y T L T T T Ty prseepspsr s T P R T L T RET e T L R T L P L R LR LR L R L R L L L L DL L Ll b bk bl b et i sttt ettt

NJMV4 ¥3AN3S - _ o

YOUMS/qQnH g NV

e ol . gl H-F----m—ﬁ

FY L 1 LR L R b R b i
=

US 2007/0067046 Al

qnH UOIDZIU0IYIUAS 0
£722'22222e d _ 1'222'222'T2T dI |

P -“---_.---.-'---—i-ll--l‘--#---—-hﬂ‘-

|

| JIN | DIN

_ Juabijjeiu; wabijaju

_ —L_ _ -
C'CZL'EZL'EZL dl T 0AIeS A V'€2L°ECL'ECL di -1 18AIDS

o e e - A e A A o S N ke s e e - A W =

o ommowl EEEE E aa

... =

\/ 19}N0oY

% W .%N..\N R XA R AN XA |

:Z 19AI8S 0] Jsanbay Jusl|o p\

HOI}OBUUDY) JOUWIA)U|

Patent Application Publication Mar. 22, 2007 Sheet 9 of 28

US 2007/0067046 Al

Patent Application Publication Mar. 22, 2007 Sheet 10 of 28

VING

Jafen
o208 |

uopesijddy }93008

108S98204d

3oels
|JO00}O0.1d

waysAg bupesadp

10SS920.1d Ulepy DIN Juasifaju]

pIeog ulep e 9Id

doaq «

. ._ommouo._n_ uto,.zm_z
_ eulbuz _
‘1 uopedyISse|d “.

mOa__"m._om
10SS920.1d

| 408S8204d
- Buipsemiog

awod L,

19NIRJ pIBMIO

Youis:

Jooed

doa(q

US 2007/0067046 Al

JoAe
19)O00S

“luopedisse|n

uoijesjddy }a)o08

waysAg Bupesado | 10SS990.
yeils DAREISTO e sodi:ei0d | | do1g
1000301 10SS9201d .
AIOWBIN |
10SS8904d |
Buipisemiod
10ss9304d utepy || | JIN EadHRIUL

45 A

pleog uiep

Patent Application Publication Mar. 22, 2007 Sheet 11 of 28

US 2007/0067046 Al

Patent Application Publication Mar. 22, 2007 Sheet 12 of 28

-7\ 3 |
191998

uojjed}|ddy 38208

wajsAg bunesado |

AlowaN

10S8S9904d Ulei\

pieog ulepy

10SS990.4d
¥oels
10203044

IIN IuSIeIu]

JOSS0201d NIOM}ON

VY Hod

~aujbuzy
uoijedyisse|d

sOd! ;810D -
lossadold | | |wd

10SS920.d
Buipiemio !

US 2007/0067046 Al

Patent Application Publication Mar. 22, 2007 Sheet 13 of 28

UONBWIo|
oouewlouad
J08[qQ %® uoyed|day

MOI|S

SUOJ08UU0Y) 19008 Bulus)sh

uoneziiin Ndd

sjuswaldinbay Auowepy

ai (108[gQ 10) uoyesyddy
gl uoneslddy A

SSaJppY di 109Iq0

sseippe d| 3 al aw_ao mopeys _ . -
‘sadue)su] 198lq0
ai 199[q0 ,

a[e0g ol | UOREZIUOCIYIUAS 8Jels

| AOWSIN ol|qelieAy _
SUOROBUUOD dOL J9qUINN o]elS Wie+ IBAIegS
uoneziinn Ndo | o |

nised

Alowd|\ DIN!

NNV ¥IANITS

US 2007/0067046 Al

e o s e W W N e ol e e sl il o - A R A A e - -

1,°]4 SECl'tll td)
00S techeeleet

oGt G'ECL'ECLEC)
00% EECLLTLEC

osy SEZVETLEZL
00S €EZLETLETL

00t B AR AR AA! | 00Y L'ECL'EZL e t 00V AR X ARTAl
Ud dOL# di 1 U0 dOL# dl 'UD 4D1# di
9IqE.l e1¥IS -€ JINI e|qel 8je}s :¢ OINI |

8|qeL e3vIS 1 DIN

G'EZLEZLEZL dl :E 1oAI0S B €'EZL'EZL°EZL dl :Z JoAleS

L'SZL°EZ1L°EZL dl ‘| J8AIes

YOHMS /QNH ¥ NV o

r---‘.‘-_--.----"-------vit*'_--.-'------'*'-.-&tﬁﬁ--4*.-1‘#-‘.

nllm
ll

19)n0Y

L'€ZL'EZL 2L _ | 4 A

'} JOAIDS 0] }3senbay Jusll)

UOROBUUOY) JoLIB)U}

Patent Application Publication Mar. 22, 2007 Sheet 14 of 28

a-.-.-l-—.-----ﬁ‘--‘*---‘*.-’---- FY R TR RN L RN L L

- ol A

B A W N v s g B W g w

o e e A S e e

US 2007/0067046 Al

Patent Application Publication Mar. 22, 2007 Sheet 15 of 28

10SS9201d }IOMI}ON

UoiBZIUOJYOUAS

uoljoeuuo)
UONRZIUOIYIUAS

. : pealy} piemio .
. uofPeuus)
8 NV . r . - —

. pessy| souejeg
_

pealy| HOB}S |000j0id

=l
_-__-'_-'_-_L

10SS890.4d
}oe}s j09030.4d

§ Ol sodi

JIN Juabijjajui

~ uojjed}jddy JoAleg

pieog uiepn

UO[JI8UUDY)

| yeuseiu

V NY)

Patent Application Publication Mar. 22, 2007 Sheet 16 of 28

Drop Packet

Drop Packet

No

Local Table Match?

US 2007/0067046 A1l
{P Packet
Arrives At
Balance
~ Tiwead
is Packet checksum
verified?
Yes
Parse Request;
Choose Best Server;
Make server connection;
Remove Temporary Tabile
Entry
(see Figures 10a-C)
Yes Yes

Temporary Table Yes “Is Packet TCP Flag
Match? PUSH?
No
No
Pass pointer to connection
andpoint & packet to
Forward Table Packet; Forward -

Match? Packet via Forward
Port (ses Figure 8b)

Pass pointer to
connaction
endpoint & packet
to Protoco! Stack
Thread

No

Add Entry to Temporary table,
TGP SYN & es Create connection endpoint; Pass
Listening_socket Table pointer to connection endpoint &
Match? packet to Protocol Stack Thread ;
(see Figures 10a-c)
No
Drop Packet

FIG. 94

Patent Application Publication Mar. 22, 2007 Sheet 17 of 28 US 2007/0067046 Al

No

Is Packet Encapsulated

Orop Packel Header Checksum valid?

No
Is Packet addressed to

Drop Packet Searver?

Yes

Unpack and setup connection
. andpoint; send verification packet;
drop packet ‘

Search Forward-Connect Table
for connection endpoint; Unpack;
endpoint & packet to Protocol
Stack Tlwvead

Search Temporary Table for
Yes connection endpoint; Delets table

entry; delete connection endpoint;
drop packet

FIG. 9B

Patent Application Publication Mar. 22, 2007 Sheet 18 of 28 US 2007/0067046 Al

IP Packet
Arrives At
Synchronization
Thread

Yes | Remove Server Row
from State Table: drop

packet

Is Packet UDP?

No

Add new State Table |
Drop Packet entry;:Updato State Update State Table;
Table; drop packet drop packet |

FIG. 9C

US 2007/0067046 Al

Patent Application Publication Mar. 22, 2007 Sheet 19 of 28

uornedriddy o NIeJ $S201
11E011AAY O T llll.mlﬂmlm.l 193519t d d

AOV/HSNd

uonednddy woly gv 13308 $S2004

-!lllIlllliiili-lliiiliti!ltiitil!-ir11!!111Ililliillllllillllllilll!iillliilltllliiilliilllllllIII-lllllillllilllillilillllllilIt-ri1l|iititlillilrliflllltill!li|litill1Ili:liliilii!ilitili-llll lll

uonedl[ddy 0], «———— 19y08J $S9001] t——————

—— ‘ LSANOTA TYNIORIO

(1 201, 998) UOPOSUUOY) [BOOT INEIN
(4 [800]) J9AIDG 1S9y UTULINA(]
(TN 10 213009) 159nbay asied

Vol “Old (HSNd) LSANOTY
_ 19%0B] SS9001d MY 3y

SOV/NAS

yutodpua 91ea1))

peaiyj yoeys | peasyy
|020}01d :SOdi aouejeg :SOdI

uonedi|ddy

193008 JOAIDS

AT

N N0y,
pajejnsdeouy

guod

NId/AOV/HS(1d

D T T L B e e e R R P RSP ppEpEpEpSEepReE PP pEpeppepepppepaprpspp SRR SRR ST AR S A RS S S LR S L S I e b Ll Dbl db ol e o bbbl dd

US 2007/0067046 Al

LSHNOME TYNIOTIO parensdesuy

A[qe . PIeALIOg 0} PPV
‘20UdI2J21 9qe], Arerodwia 2% - —
Jurodpus UOIIIUUOD JAOWDY (€0%0 2dAL) 3OV

dnjag uonouuo)
8 Hod - . B)g(J UoI}dauuo)) paje[nsdeduy

(1 2In31,] 995) UOIDAUUO,) PIeMIO,] BN *———

peasyl pJemiod wody,,

LSANOAYA

}o3oRJ $S9201]

401 914 ISVINAS

jurodpus 918917

- peasyL ¥oels

j020}014 :SOd!

aoduejeg :SOdi

Patent Application Publication Mar. 22, 2007 Sheet 20 of 28

US 2007/0067046 Al

Patent Application Publication Mar. 22, 2007 Sheet 21 of 28

JOT Ild

uonealiddy | 1owoeg $59901 -
o UOIIRULIOIU] |
uoneordd
A S _ V —— 10308 J S59901 - e yordUf —
4° woneuuoyuy NI4/3IOV/HSNd NAPIOV/HSNG

LA L L L L L] R L L LI I LALITI I IR]l T XII1IJTI " JOYRFYTIEY] LA Ll Il R Ll I Y L Y Y Y Ll L T T I ey '.‘..l:l..ll.l.l.'t..lﬂ..l:l.l.." LL 3 X RN F L ey _I__I:I_'_I_.I_I_I.I.".‘.Il_i.l_'ul""l_"‘ R Gwerm g R ol '.I.'..I_._I__Irl_I:l_.-l__l__lI_._I._l_._I;l:.l_.I_'.l..'l.-._l.l.-_l_l_l_.l._l_.l_-.l_.l_.l_.l.l._ ''''''''''''''''''

UL pamomyoy dnjag
uonoduuo)) parensdesuy

jurodpus 238210

yoedun

UOT)BULIOJU]

UOI}02UU0)) CoRIInoD

pae[nsdecusy

i

uoijedijddy
}9)008 JOAISS

pealyy yoes
 |020j01d :§0Od!

peaiy)

piemiod :gOdi

Patent Application Publication Mar. 22, 2007 Sheet 22 of 28 US 2007/0067046 Al

Ethernet Encapsulation Header | F 1 G 1 1 A
i 4r)
Address - Address 0x007
6 6 2

ipOS Encapsulation Header

Source Dest. |
4 2 1- 1

4 2 2
ipOS Connection Inf.ormation (UDP) F [G 1 1 B
sow [0 FIG. 11C
4 2

ipOS Connection Information (TCF")

rG. 117

4 2 | 140
ipOS TCP Connection Packet (Type=0x01; Protocol=0x01)

| Ethernet Encap. | ipOSEncap. | ... | :
Type =0x007 TCP ipOS Connection information
14 16 146 FIG [11F

ipOS UDP Connection Packet (Typé=0x01; Protocol=0x02)

Ethernet E). OS Encap. > InOS Connectior
TYDa a0 UDP1pOS Connection | FTI(X [[F

14 16 ' 6
ipOS TCP Packet (Type=0x02; Protocol=ox01) 111G 11G

Ethernet Encap. | 1pOS Encap.
Type =0x007 IPITCP Packet

14 16 - 40 + Data
ipOS UDP Packet (Type=0x02; Protocol=0x02) F] G 1 1 H
Ethernet Encap. ipOS Encap. |

14 16 28 + Data

ipOS Endpoint Migration Acknowledgement Packet (Type=0x03)

Ethernet Encap.
Header F[G 1 1 [

14 16

Patent Application Publication Mar. 22, 2007 Sheet 23 of 28 US 2007/0067046 Al

Forward Table

Local/Forward-Connect/Temporary Table |

Relerence to Connection tndpomt

ource 1P £
ource Yort
Destination 1P Address .

ndpoint Rererence

Server State Table

P,

. | Jescription -
erver TP AQAress Sever
2 {_onnections : AL -1 onr_lectlons

Viain boara (. PU

\ Avaliable memory Jnused memory on Main oarc

No [Availble Bandwidth | Umnised Bandwidth Capacity

- Listening Sockets Table

— Ky [Fed | Dechpton
‘ roGes

1) e
o
A
il
—
L
~

| Applica'-tiohﬁ iInformation Table - _ .
—Rey [WeW [Deseripfion
Yes [ProcesID | Application identification

\ dTocess memory requirementis | Memory required to run application
P’rocess CPU Utilization Measure of application CPU utilization

ii

URL Map Table , o
s.ey Jescription

Jniversal Resource Locator

ol associated server

-%
w
Ay

ﬁﬁ

Cookie Map Table

cy Jescription
yokie 1L —ookie Identinication tag

P AdC ? address 01 assoclated sCrver

FIG. 12

er ood -

Tommﬂom._n_ﬂwﬂm 10003044

US 2007/0067046 Al

pEaly] oelg |000104d _

. 8oUBIB}SY 103008 |
julodpug ucRosUUOD ’

2 s B EANSm Juiodpu3 uoRoSLLOD

uoljewloju| . yox00g [*

10Ae] 19208

uopesijddy 103908

WV pieog ulepp

Patent Application Publication Mar. 22, 2007 Sheet 24 of 28

US 2007/0067046 Al

Z JIN3Iuabyeyy || | | I OIN Juabijjajuj
Alowaw HINi |) - Alowaw JIN}
| g jujodpug | ¢ jujodpus
= UOJJOBUUOD [ef==rremmasmecrm e ecnccer s teabeboentenctved cacansaen—d LUOJIBUUOY)
pejesBiiy MaN
% |
g
I
.m | _ V jujodpug | Zwilocpul | JuI0dpU3
h UONOBUUOD . :o_ﬂwﬂ:oo uojoBUUOD
5 |
—
7 . _
g
R
g
o .
> “
> | VIBYO0S ¢ | 18008
= — e _ |
-
5 laAe"] j9y00g - _ | J9AeT 19008
= |
E (s)uoneo)ddy 1900 (s)uoneoyddy 9008 ﬁ
.M —]
o . _
.lw - Zpieog uep B | pleog ujely |
> | | _ _ | |
=) - ¢ 19AI0S _ |l JOAISS
= TS)
=
.

US 2007/0067046 Al

OIN Juabijjeju)

w P

| P

| Ay

“ 0

_ \ a4 pieog uiep

M , _ F.... - R

w \ Tm— wewAoideq soOdy |
/

OIN sueBieiu) | |
T

piBOg UIep\

OIN Juabijjeu

o -l S S A A S A A A - e O R

lIopoN 198[q0 |
jueuodwo?) $Od|

LR R B L N) F A SR R R R R Y ey S
Rt EE R R R T IR TR A S ST USRS RS SRR R R SRS BT RSy e w i PR W P A U D BN e W I e W e B e A A o o A A e g e I W A MU W A g o e O e Il O A AP N i oy A A I A e i i e g O A O A e A I w R A w w

Patent Application Publication Mar. 22, 2007 Sheet 26 of 28

US 2007/0067046 Al

Patent Application Publication Mar. 22, 2007 Sheet 27 of 28

Z OIN Juebjjje3u]

Sodi

| lepoN |
108(q0
jusuoduwion
sod _
| 75589013 MaN
- We)SAg
bunelsd §0559004d

NV Ple0g UIeAl |

| JOAI0S _ -

L JIN Jusbjjjaju]

SOd

+
- .. — - . _ M — |.—_-. _-l i.
=]

109l00 |
jusuodwon

sod!

| §$800i1d

- WBISAS
Bunesad

S888990.1d

NV pieog uiep

A1 Old

Z JOA188Q

¢ OIN jJuabljjajul

_ _ K
7 sod .

|l I9AI9S

L OIN JueBI|[o3U|

US 2007/0067046 Al

| |

sod

180

|opop 328[q0

| |6PO 199(q0 |
Jusuoduwon sod)

E 5685880014 _
WYY pieog uiep WV pieog uiepy

jusuodwon sOd}

Patent Application Publication Mar. 22, 2007 Sheet 28 of 28

US 2007/0067046 Al

METHOD AND SYSTEM FOR COMMUNICATING
AN INFORMATION PACKET THROUGH
MULTIPLE NETWORKS

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] This application is a divisional of U.S. patent
application Ser. No. 09/873,018, filed Jun. 1, 2001, now
pending; and a continuation of U.S. patent application Ser.
No. 09/872,329, filed Jun. 1, 2001, now pending; U.S. patent
application Ser. No. 09/872,372, filed Jun. 1, 2001, now
pending; U.S. patent application Ser. No. 09/872,332, filed
Jun. 1, 2001, now pending; U.S. patent application Ser. No.
09/872,081, filed Jun. 1, 2001, now pending; and U.S. patent
application Ser. No. 11/265,558, filed Nov. 1, 2005, now
pending, which 1s a continuation of Ser. No. 09/872,376,
filed Jun. 1, 2001, now abandoned. All of the above appli-
cations claim the benefit under 35 U.S.C. § 119(e) of U.S.
Provisional Patent Application No. 60/257,456, filed Dec.
21, 2000, and are incorporated herein by reference 1n their
entirety.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] This description relates in general to information
processing systems, and in particular to a server farm
information processing system and method of operation.

0004] 2. Description of the Related Art

0005] A software application can be deployed through a
global computer network, such as an Internet Protocol (“IP”)
global computer network (e.g., the Internet or an 1ntranet).
Such applications include IP socket-based software appli-
cations (e.g., web site application or Internet gaming site
application). For deploying an application through a global
computer network, a client computer system (“client”) com-
municates with at least one server computer system (“‘server)
through the global computer network.

[0006] Accordingly, the server stores and executes the
deployed application, which 1s used by the client through the
global computer network. In such a manner, one or more
applications can be deployed by the server through the
global computer network. If the application (or group of
applications) 1s large, or 1s used by a large number of clients,

then a group of servers (“server farm”) stores and executes
the application.

[0007] A conventional server farm is coupled through a
flow switch to the global computer network (and, accord-
ingly, to clients that are coupled to the global computer
network). Through the tlow switch, a client and the server
farm communicate packets of information (“information
packets”) to one another. As a conduit between clients and
the server farm, the tlow switch has various shortcomings
which reduce the overall performance and efliciency of
deploying software applications with the server farm
through the global computer network.

[0008] Accordingly, a need has arisen for a server farm
information processing system and method of operation, 1n
which overall performance and efliciency are enhanced of
deploying soitware applications with a server farm through
a global computer network.

Mar. 22, 2007

BRIEF SUMMARY OF THE INVENTION

[0009] According to a first embodiment, through a first
network, a first computing device received an information
packet originating from a client. In response to the infor-
mation packet, the first computing device i1dentifies a com-
puting device that stores a data structure of a connection
with the client. When the 1dentified computing device 1s the
first computing device, the first computing device performs
an operation in response to the information packet. When the
identified computing device 1s a second computing device,
the first computing device outputs the immformation packet
through a second network to the second computing device,
such that the output information packet bypasses the first
network. The second computing device performs the opera-
tion 1n response to the information packet.

[0010] According to a second embodiment, through a first
local area network, a first computing device receives an
information packet from a global computer network.
Through a second local area network, 1n response to at least
the information packet and a state of at least one of the first
computing device and a second computing device, the first
computing device selectively outputs the information packet
to the second computing device, such that the output infor-
mation packet bypasses the first local area network.

[0011] A principal advantage of these embodiments is that
various shortcomings ol previous techniques are overcome.

For example, a principal advantage of these embodiments 1s
that overall performance and efliciency are enhanced of
deploying software applications with a server farm through
a global computer network.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

10012] FIG. 1A is a block diagram of a conventional
system for processing information with client and server
computer systems that communicate with one another
through an Internet Protocol (*IP”) global computer net-
work.

[0013] FIG. 1B is a block diagram of a conventional

system for processing information with a server farm and a
client computer system that communicate with one another
through a global computer network with IP socket-based
applications.

[0014] FIG. 2A 1s a block diagram of a system for pro-
cessing nformation with a server farm, according to a {first
illustrative embodiment.

[0015] FIG. 2B 1s a block diagram of a system for pro-

cessing 1nformation with a server farm, according to a
second 1illustrative embodiment.

[0016] FIG. 2C 1s a block diagram of a system for pro-
cessing information with a server farm, according to a third
illustrative embodiment.

[0017] FIG. 2D is a block diagram of a system for pro-

cessing information with a server farm, according to a fourth
illustrative embodiment.

[0018] FIG. 3 is a block diagram of an intelligent network
interface controller (“iNIC”) circuitry and main board cir-
cuitry of a server of a server farm, according to the 1llus-
trative embodiments.

US 2007/0067046 Al

[0019] FIG. 4A 1s a block diagram of a system for pro-
cessing 1nformation with a server farm, according to an
illustrative embodiment 1 which a first server forwards
packets for processing by a second server.

[0020] FIG. 4B is a block diagram of the system of FIG.,
4A, according to an 1illustrative embodiment in which the
second server processes packets without forwarding to the
first server.

[0021] FIG. 5A is a block diagram of the iNIC and main

board circuitry of FIG. 3, according to an 1illustrative
embodiment in which the i1INIC processes information
received and output through a Port A.

10022] FIG. 5B 1s a block diagram of the iNIC and main

board circuitry of FIG. 3, according to an 1illustrative
embodiment in which the i1INIC processes information
received through a Port B.

10023] FIG. 5C 1s a block diagram of the iNIC and main
board circuitry of FIG. 3, according to an 1illustrative
embodiment in which the i1INIC processes information
received and output through a Synch Port.

10024] FIG. 6 1s a conceptual illustration of information
stored 1n a memory of the representative iINIC of FIG. 3.

[10025] FIG. 7 is a block diagram of a system for process-
ing 1nformation with a server farm, according to an 1llus-
trative embodiment 1n which three servers perform load-
balancing of client requests.

10026] FIG. 8 1s a data flow diagram of process threads
executed by the representative iINIC of FIG. 3.

[0027] FIG. 9A 1s a flowchart of a balance thread of FIG.
8.

[10028] FIG. 9B is a flowchart of a forward thread of FIG.
8.

[10029] FIG. 9C is a flowchart of a synchronization thread
of FIG. 8.

[0030] FIG. 10A 1s a sequence diagram of steps for
establishing a local connection between a client and a server,
according to the illustrative embodiments.

[0031] FIG. 10B 1s a sequence diagram of steps for
establishing a forwarded connection between a client and a
server, according to the illustrative embodiments.

10032] FIG. 10C 1s a sequence diagram of steps for
processing a forwarded connection with a server, according,
to the illustrative embodiments.

10033] FIG. 11A 1s a conceptual illustration of a conven-
tional Ethernet encapsulation header.

[0034] FIG. 11B 1s a conceptual illustration of an 1ipOS

encapsulation header, according to the illustrative embodi-
ments.

10035] FIG. 11C 1s a conceptual illustration of ipOS con-
nection information for migration of a UDP connection
endpoint, according to the illustrative embodiments.

10036] FIG. 11D is a conceptual illustration of 1pOS
connection information for migration of a TCP connection
endpoint, according to the illustrative embodiments.

Mar. 22, 2007

[0037] FIG. 11E is a conceptual illustration of an 1ipOS
TCP connection endpoint packet, according to the 1illustra-
tive embodiments.

[0038] FIG. 11F 1s a conceptual illustration of an ipOS
UDP connection endpoint packet, according to the illustra-
tive embodiments.

10039] FIG. 11G is a conceptual illustration of a packet
having a TCP/IP payload, according to the illustrative
embodiments.

10040] FIG. 11H is a conceptual illustration of a packet
having a UDP/IP payload, according to the illustrative
embodiments.

[0041] FIG. 111 is a conceptual illustration of a connection
endpoint migration acknowledgement packet, according to
the 1llustrative embodiments.

10042] FIG. 12 1s a conceptual illustration of tables stored
by a server’s INIC memory, according to the illustrative
embodiments.

10043] FIG. 13 is a block diagram of the iNIC and main
board circuitry of FIG. 3, according to the illustrative
embodiments 1 which a socket application is related to a
socket and i1ts associated connection endpoint.

[0044] FIG. 14 1s a block diagram of servers within a
server farm, according to an illustrative embodiment 1n
which the servers establish sockets and associated connec-

tion endpoints for a local connection and a forwarded
connection.

10045] FIG. 15 1s a block diagram of a server farm
including a deployment workstation for deploying applica-
tion processes and associated software component objects to
servers within the server farm, according to the illustrative
embodiments.

[0046] FIG. 16 1s a block diagram of servers within a
server farm, according to an illustrative embodiment 1n
which a first server selectively spawns an application pro-
cess that 1s stored by a second server.

10047] FIG. 17 1s a block diagram of servers within a
server farm, according to an illustrative embodiment 1n
which a first server selectively spawns an object that 1s
stored by a second server.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

10048] FIG. 1A is a block diagram of a conventional
system for processing information with a client computer
system (“‘client”) and server computer system (“server’”) that
communicate (e.g., recerve and output information) with one
another through an Internet Protocol (“IP”) global computer
network (e.g., the Internet or an intranet). For clarity, FIG.
1A shows only a single client and a single server, although
multiple clients and multiple servers are connected to the IP
network. In FIG. 1A, the client 15 a representative one of the
multiple clients, and the server 1s a representative one of the
multiple servers.

10049] Conventionally, clients and servers communicate
with one another through the IP network according to either
the Transmission Control Protocol (*TCP”) or User Data-
gram Protocol (“UDP”). In FIG. 1A, a server makes 1its

US 2007/0067046 Al

socket application (or “socket-based application™) available
through the IP network and waits for a client to establish a
connection with the server through a specified IP address
and TCP port (e.g., through a listening socket). For example,
a server executing a World Wide Web application has a
listening socket associated with an assigned 32-bit IP
address on the standard TCP port 80 for a World Wide Web

server application.

[0050] After accepting a connection from a requesting
client, the server creates (or “establishes” or “forms™) a
client specific socket. The socket (created by the server)
represents the server’s connection for the sending (and
receiving) information to (and from) the specific client.
Conventionally, in response to creation of a socket, the
server (with its operating system (“OS”’) kernel) allocates (or
“establishes™ or “forms™) a data structure (of the connection
with the client) to store client-to-server protocol specific
connection information. This data structure 1s referred to as
a socket connection endpoint (or “connection endpoint™).

[0051] Information within the connection endpoint varies
according to the type of connection established (e.g., TCP or
UDP). For UDP and TCP types of connections, the connec-
tion endpoint information includes the client’s and server’s
respective 32-bit IP addresses, the client application’s and
server application’s respective 16-bit TCP connection ports,
a pointer reference to a socket structure, and IP options such
as Time to Live (“TTL”) and Type of Service (*TOS”).
Additionally, for a TCP type of connection, the connection
endpoint information includes a group of send and receive
sequence numbers (including start, current, and acknowl-
edgement sequence numbers of the server and client) and
variables for timing individual sent packets. In various
embodiments, the connection endpoint information includes
additional suitable information.

[0052] The client performs similar operations. With a
socket layer (which manages sockets), the client (with a
client application) creates a connection endpoint of a speci-
fied type (e.g., UDP or TCP) and attempts a connection to a
server’s listening socket. For example, with a conventional
web browser (e.g., Netscape Navigator or Microsoit Internet
Explorer), the client opens a TCP type of connection end-
point and attempts connection through an IP network to a
web server through the web server’s advertised IP address
on the standard web service TCP port 80. After establishing
a successiul connection, the client and server are operable to
send (and receive) mformation to (and from) one another
through the associated socket connection.

[0053] With read and write calls to the socket layer, the
client and server are operable to send and receive informa-
tion at the application level. The client and server commu-
nicate with one another through IP packets sent through the
IP network. Accordingly, before sending information from
an application through the IP network (in response to a
suitable connection endpoint), the computer system (e.g.,
client or server) encapsulates such information according to
the IP protocol. Also, in response to receiving information
from a network interface, the computer system (in response
to a suitable connection endpoint) directs such information
to an associated application.

[0054] As shown in FIG. 1A, the client and server have
respective protocol stacks, which process IP packets (sent
and received) and manage connection endpoint information.

Mar. 22, 2007

With the protocol stack, the computer system (a) adds
transport specific information before sending information to
the network interface and (b) removes transport specific
information before alerting an application of the receipt of
information from the network interface. Conventionally, the
protocol stack 1s part of the OS and executes i kernel mode.

[0055] The protocol stack includes a series of routines
(e.g., software 1nstructions) to process a packet in accor-
dance with one or more network protocols such as HI'TP,
Ethernet, IP, TCP or UDP. In response to receiving a packet
from the IP network, the network interface sends the packet
through 1ts associated device driver to the protocol stack’s
routines. For example, in response to receiving an IP packet,
the computer system (with its protocol stack) verifies the IP
packet according to the packet’s checksum algorithm and
then moves the packet up the protocol stack for additional
processing 1n accordance with a network protocol.

[0056] At each level of the protocol stack processing, the
computer system reads, processes and removes a header
from the packet. At the end of protocol stack processing, the
final result 1s information that the computer system stores 1n
a destination socket queue. In response to information 1n the
destination socket queue, the computer system (with 1ts OS)
initiates a soltware interrupt to the destination application,
alerting the destination application that such information has
been received.

[0057] For sending information through the network inter-
face to the IP network, the computer system (with the socket
application) outputs such information (which has been
formed according to software mstructions of the socket
application) to the protocol stack along with a reference to
a suitable connection endpoint. Then, the computer system
(with the connection endpoint) moves the information down
the protocol stack for additional processing in accordance
with a network protocol. At various levels of the protocol
stack processing, the computer system forms a packet by
supplementing the nformation with TCP or UDP header
information, IP header information, link layer header infor-
mation (e.g., Ethernet), and calculation of packet check-
sums. After forming the packet, the computer system outputs
the packet to a device driver output queue of the network
interface.

DESCRIPTION OF CONVENTIONAL FLOW
SWITCH ARCHITECTURE

[0058] FIG. 1B is a block diagram of a conventional

system for processing information with a group of servers
(“server farm™) and a client that communicate with one
another through a global computer network with IP socket-
based applications. In this example, a server farm (including
n servers, where n 1s an integer number) stores the applica-
tions to be deployed. Server farms are useful for deploying
soltware applications (e.g., web site application or Internet
gaming site application) for use through a global computer
network.

[0059] As shown in FIG. 1B, each of the n servers is

connected to a flow switch at egress ports of the flow switch.
At an 1gress port of the tlow switch, 1t 1s coupled through
a router to the IP network.

[0060] In the example of FIG. 1B, a client connects to a
server’s application by connecting to the entire server farm

US 2007/0067046 Al

through a single IP address. The IP address 1s associated with
the ingress port of the flow switch. Typically, the client
obtains the IP address by sending a Uniform Resource
Locator (“URL”) to a Domain Name System (“DNS”"). DNS
1s a set of special servers deployed on the IP network, with
responsibility for translating a URL into an associated IP
address. Alternatively, 1f a client has already received the IP
address, the client 1s able to connect to the server farm
without relying on the DNS.

[0061] All communications between a server (of the server
farm) and a client are directed through the flow switch. The
flow switch helps to balance client request loads on servers
within the server farm (“server farm load-balancing™) by
selecting a server to handle a particular client’s connection.
Accordingly, the flow switch (a) maps packets from the flow
switch’s ingress port to the selected server through a suitable
one of the flow switch’s egress ports, (b) maps packets from
the selected server to the particular client, and (c¢) performs
vartous administrative operations. In processing a packet
that 1s communicated between a server and a client, the
conventional flow switch performs a range of operations,
which may include network address translation (“NAT™),
checksum calculation, and TCP sequence number rewriting

(““T'CP splicing™).

Description of Improved Architecture

[0062] FIG. 2A 1s a block diagram of a system for pro-
cessing mmformation with a server farm, according to a first
illustrative embodiment. As shown 1n FIG. 2A, the server
tarm 1ncludes a redirector device and n servers for deploying
socket-based applications. In the example of FIG. 2A, the
hardware configurations of the redirector device and servers
are substantially identical to one another, so that at least one
of the servers 1s configurable to perform the same types of
operations as the redirector device.

[0063] The redirector device and the servers are coupled to
one another through a LAN A hub/switch (e.g., conventional
Layer 2/3 switch), a LAN B hub/switch, and a synchroni-
zation hub, which are part of the server farm. As shown 1n
FIG. 2A, the LAN A hub/switch 1s coupled through a router
and a suitable WAN to an IP network service provider
(“ISP”) for communication with the IP network. In an
alternative embodiment, LAN A hub/switch 1s directly con-
nected to the ISP, and other alternative embodiments are
possible for connecting LAN A hub/switch to the IP net-
work. Accordingly, each of the n servers and the redirector
device 1s coupled to the IP network through the LAN A
hub/switch and the router, without interposing a flow switch
between the router and the servers (nor between the router

and the redirector device). The router 1s coupled to the LAN
A hub/switch through a suitable LAN or WAN link.

[0064] Each of the n servers and the redirector device
includes intelligent network interface controller (“iNIC”)
circuitry, as shown in FIG. 2A. Within the server farm, each
of the n servers and the redirector device (with its respective
1INIC) has a respective 1P address that 1s advertised to clients
through the IP network. The redirector device and the
servers communicate with one another through the iINICs, 1n
order to operate together in a cooperative manner as a
distributed system. A primary objective of such a coopera-
tive distributed system 1s to achieve server farm load-
balancing (e.g., of handling client connections), efliciently

Mar. 22, 2007

communicating packets from clients directly to socket appli-
cations, reducing packet manipulations, and increasing the

cllective use of server farm resources (e.g., by the load-
balancing of server application processes and of associated
soltware component objects).

[0065] Unlike the system of FIG. 1B, in the system of FIG.
2A, a client connects to a server farm application by
obtaining and connecting to a server’s IP address, instead of
a flow switch’s IP address. In the illustrative embodiments,
the servers’ respective IP addresses are advertised to clients
in one of multiple possible ways. For example, according to
a first techmque, if multiple servers deploy a single appli-
cation under a single URL, the DNS advertises IP addresses
of those servers in a round-robin manner (e.g., one IP
address at a time, alternating in a rotational manner). For
example, 1f two servers deploy a web site application under
a single URL (e.g., www.mysite.com), the DNS advertises
the two servers’ respective IP addresses (1n association with
the web site’s URL) 1 round-robin manner.

[0066] According to a second technique, if multiple serv-
ers deploy a single application under a single URL, the DNS
advertises the redirector device’s IP address (1n association
with the web site’s URL). In that manner, a client iitially
communicates with the redirector device. In response to the
redirector device recerving a connection request from a
client, the redirector device selects a server (in a round-robin
manner among the servers that deploy the application) and
outputs the selected server’s IP address to the client.

[0067] As the network bandwidth of the IP network, local
area networks (“LLANs”), wide area networks (“WANs”),
and IP network connections through ISPs increases at rate
faster than the increase in computing capabilities of servers,
the resulting disparity 1n performance effectively shifts the
performance bottleneck from (a) the capacity of a network
to carry iformation to (b) the capacity of server farms to
process client application requests (e.g., IP packets).
Accordingly, individual servers in the server farm experi-
ence a vast increase 1n the rate of packets received and sent.
Under such conditions, with the network interface and
protocol stack, each server’s performance becomes increas-
ingly tied to the processing of such packets.

[0068] Conventionally, as discussed hereinabove in con-
nection with FIG. 1A, the protocol stack 1s part of the OS,
and OS overhead 1s 1increased 1n response to processing of
more packets, so that fewer CPU cycles remain available for
user-level applications. In that situation, individual server
elliciency 1s decreased in response to increases in CPU
contention, bus traflic contention, and memory tratlic. By
comparison, 1n the illustrative embodiments, the protocol
stack 1s part of the 1NIC 1nstead of the OS, so the server farm
operates more elliciently 1in processing client application
requests.

[0069] As shown in FIG. 2A and FIG. 3, each iNIC has a
first port (“Port A”) connected to LAN A (through LAN A
hub/switch) for receiving (and sending) IP packets to (and
from) clients through the IP network. Also, each 1NIC has a
second port (“Port B”) connected to LAN B (through LAN
B hub/switch) for recerving (and sending) IP packets to (and
from) other 1NICs in the server farm. Moreover, each 1NIC
has a third port (*Synch Port”) connected to a synchroniza-
tion hub (which operates as a local area network) for

US 2007/0067046 Al

receiving (and sending) state information (e.g., number of
TCP connections) to (and from) other iNICs 1n the server
farm.

[0070] The architecture of FIG. 2A provides for scalability
of bandwidth connections to the server farm. The scalability
1s achievable in various ways, as discussed for example 1n
connection with FIGS. 2B, 2C and 2D. For example, in an
alternative embodiment, each iINIC has a fourth port (“Port

C”) for receiving (and sending) IP packets to (and from)
clients through the IP network.

[0071] FIG. 2B is a block diagram of a system for pro-
cessing i1nformation with a server farm, according to a
second 1llustrative embodiment. FIG. 2B shows a situation
where server farm bandwidth 1s increased by adding routers
and LAN hub/switches. Similar to the system of FIG. 2A, 1n
the system of FIG. 2B, each router 1s coupled through a
suitable WAN link to an ISP for communication with the IP
network, and each router 1s coupled to a respective LAN

hub/switch through a suitable LAN or WAN link.

[0072] Accordingly, in FIG. 2B, router A 1s coupled to
LAN A hub/switch, and router B 1s coupled to LAN B
hub/switch. LAN A hub/switch 1s coupled to two servers
(server 1 and server 2) in the server farm, and LAN B
hub/switch 1s coupled to three servers (Server 3, Server 4
and Server 5) 1n the server farm. Similar to the system of
FIG. 2A, 1n the system of FIG. 2B, all servers 1n the server
farm are coupled to one another through a LAN C hub/
switch and a synchronization hub, which are part of the
server farm.

10073] FIG. 2B shows scalability of the hardware archi-
tecture of the illustrative embodiments according to received
network traflic (e.g., adding bandwidth with additional rout-
ers and LAN hub/switches to accommodate increases in 1P
packets received from clients through the IP network).
Although FIG. 2B shows a situation where two routers are
coupled through suitable WANs to one or more ISPs for
communication with the IP network, additional routers and
L AN hub/switches can be added to the system of FIG. 2B 1n
a similar manner. Also, the system of FIG. 2B 1s expandable
with additional servers in a variety of ways, such as by
adding a server (in parallel with existing servers) to an
existing LAN hub/switch (e.g., to LAN A hub/switch or
LAN B hub/switch) or by adding a server to an additional
L AN hub/switch (which 1s coupled to an additional router
through a suitable LAN or WAN). Such additional servers
would likewise be coupled to the other servers through LAN
C hub/switch and the synchronization hub. In addition to
achieving scalability according to received network traflic,
the system of FIG. 2B likewise achieves scalability to
accommodate increases in IP packets (e.g., application
response packets) sent by servers to clients through the IP
network.

10074] FIG. 2C 1s a block diagram of a system for pro-
cessing information with a server farm, according to a third
illustrative embodiment. FIG. 2C shows a situation where
additional bandwidth 1s added for scalability of application
response packets. In the system of FIG. 2C, router B
receives packets from the IP network. These packets include
requests from clients, such as a request for a large file

according to HT'TP protocol (HyperText Transport Proto-
col).

[0075] Router B forwards each received packet to a server
(whose IP address 1s specified in the packet) in the server

Mar. 22, 2007

farm through LAN A hub/switch. In the illustrative embodi-
ment of FIG. 2C (in which LAN A hub/switch 1s coupled
through Router B to the global computer network), LAN A
hub/switch 1s a Layer 2 switch. By comparison, in an
alternative embodiment (in which LAN A hub/switch 1s
coupled directly to the global computer network without an
interposed router device), LAN A hub/switch 1s a Layer 3
switch. In the example of FIG. 2C, a server outputs response
packets to clients through a router other than router B, so that
the output response packets bypasses the network (e.g.,
LAN A1 FIGS. 2A, 2C, 2D, 4A, 4B and 7) that 1s connected
to Port A. Accordingly, as shown in FIG. 2C, server 1
outputs response packets to clients through router A which
1s dedicated to server 1 for such purpose, and server 2
outputs response packets to clients through router C which
1s dedicated to server 2 for such purpose.

[0076] Similar to router B, the additional router A and
router C are coupled through a suitable WAN link to an ISP
for communication with the IP network. The ISP may be the
same or different for each of routers A, B and C. Router A
1s connected to a Port C (discussed further hereinbelow 1n
connection with FIG. 3) of the iNIC of server 1. Likewise,
router C 1s connected to a Port C of the 1iNIC of server 2.

[0077] In a similar manner, the server farm is expandable
with additional servers, routers and IP network connections.
In the illustrative embodiments, various combinations of
scalability in incoming and outgoing bandwidth are pos-
sible. The system of FIG. 2C 1s particularly advantageous 1n
a situation where server 1 and server 2 output a relatively
high volume of response packets in response to a smaller
volume of recerved packets.

[0078] FIG. 2D is a block diagram of a system for pro-
cessing information with a server farm, according to a fourth
illustrative embodiment. In the example of FIG. 2D, two
applications (namely, “application 1” and “‘application 2”)
are deployed by servers within the server farm. In other
respects, the system of FIG. 2D 1s similar to the system of
FIG. 2A. Accordingly, the distributed architecture (of the
illustrative embodiments) provides for deployment of mul-
tiple applications with a single IP network connection.

[0079] As shown in FIG. 2D, servers 1 and 2 are grouped

(“application 1 group”) to deploy application 1, and servers
3, 4 and 5 (“application 2 group™) are grouped to deploy
application 2. For example, the server farm of FIG. 2D 1s
configurable to host two web sites (e.g., www.firstsite.com
and www.secondsite.com) with a single IP network connec-
tion. Client requests to a first URL (e.g., www.firstsite.com)
are processed by application 1 group, and client requests to
a second URL (e.g., www.secondsite.com) are processed by
application 2 group.

|0080] For each web site, IP addresses are advertised by
cither the DNS round-robin approach or the redirector
device round-robin approach, as discussed hereinabove 1n
connection with FIG. 2A. For example, IP addresses of
servers 1 and 2 are associated with the first URL (www-
Airstsite.com), and such IP addresses can be advertised in
round-robin manner. Similarly, IP addresses of servers 3, 4
and 5 are associated with the second URL (www.second-
site.com), and such IP addresses can be advertised in round-
robin manner.

[0081] Under the DNS round-robin approach: (a) for
application 1 group 1n association with the first URL, the

US 2007/0067046 Al

DNS advertises 1P addresses of servers 1 and 2 1n a round-
robin manner; and (b) for application 2 group 1n association

with the second URL, the DNS advertises IP addresses of
servers 3, 4 and 5 1n a round-robin manner.

[0082] Under a first version of the redirector device round-
robin approach: (a) for application 1 group in association
with the first URL, the DNS advertises a first redirector
device’s IP address; and (b) for application 2 group 1n
assoclation with the second URIL, the DNS advertises a
second redirector device’s IP address. In that manner, a
client imnitially commumnicates with the first redirector device
(for application 1 group 1n association with the first URL) or
the second redirector device (for application 2 group in
association with the second URL). In an alternative embodi-
ment, a single redirector device operates 1n association with
both the first and second URLSs for application 1 group and
application 2 group, respectively.

[0083] In response to the first redirector device receiving
a connection request from a client, the first redirector device
selects a server (1n a round-robin manner among servers 1
and 2) and outputs the selected server’s IP address to the
client (e.g., via HT'TP redirect command). Likewise, 1n
response to the second redirector device receiving a con-
nection request from a client, the second redirector device
selects a server (1n a round-robin manner among servers 3,
4 and 5) and outputs the selected server’s IP address to the
client.

Description Of Intelligent Network Interface
Controller (“INIC™)

[0084] FIG. 3 is a block diagram of intelligent network
interface controller (“iNIC”) circuitry and conventional
main board circuitry of a server of a server farm, according,
to the illustrative embodiments. FIG. 3 shows example
components of the iNIC. For clarity, various interconnec-

tions between such components are discussed hereimnbelow
in connection with FIGS. 5A-5C, 8 and 13-17, rather than

FIG. 3. The iNIC of FIG. 3 is a representative one of the
1INICs of the systems of FIGS. 2A-2D, 4A-4B, 7 and 13-17.

[0085] As shown in FIG. 3, each iNIC includes at least one
network processor. The network processor includes pro-
grammable hardware and firmware for performing various
operations, including packet classification, table lookups,
packet manipulation, and packet routing. For example, the
network processor includes a packet classification engine
and a general-purpose processor core, as discussed herein-

below 1n connection with FIGS. 5A-5C and FIG. 8.

[0086] In the illustrative embodiments, the classification
engine 1s an application specific integrated circuit (“ASIC”)
or a set ol integrated programmable multi-threaded
microengines. The classification engine 1s programmable
and examines the headers and contents of packets at rates
approaching wire speed. Other embodiments of the classi-
fication engine are possible.

|0087] The network processor classifies and manipulates
packets that are examined by the classification engine. The
classification engine executes a set ol istructions that are
collectively referred to as the “rules code.” In the network
processor, the processor core performs various management
tasks. The processor core executes a set of instructions that
1s referred to as the “action code.”

Mar. 22, 2007

|0088] The classification engine examines packet infor-
mation (e.g., header mnformation), verifies checksums, and
matches IP fields to records of previously stored tables of
information. Various tables of the illustrative embodiments
are shown 1n FIG. 12, which 1s discussed further hereinbe-
low. For example, the classification engine 1s operable to
classily a packet according to whether the packet 1s a TCP/IP
packet, and according to whether the packet’s source IP
address and source TCP port match an existing record 1n a
table (e.g., with table keys being source IP address and
source TCP port).

[0089] In response to such a match, the network processor
1s operable to perform an action on the packet (e.g., send the
packet to the protocol stack) in response to soltware mnstruc-
tions stored in the iINIC’s memory (e.g., SRAM/SDRAM).
In the 1llustrative embodiments, the network processor 1s a
commercially available processor, such as Intel’s IXP1200
processor (available from www.intel.com) or Motorola’s
C-5 Diagital Communications processor (available from
www.motorola.com).

[0090] In the illustrative embodiments, the IP operations
system (“1pOS”) refers to methods, circuitry, and system
architecture of the iINIC for classifying, manipulating and
performing actions in response to packets. Accordingly, the
1pOS 1ncludes the instructions executable by the network
processor, the forwarding processor, and the protocol stack
processor of FIG. 3. For example, the 1pOS includes various
instructions for performing operations of the iNIC within the
server farm, such as client request load-balancing, packet
routing, maintenance of connection endpoints, communica-
tions to and from particular applications, and control of
application processes (and associated software component
objects) deployed on the server farm.

[0091] The iNIC stores various tables of information in
support ol 1pOS decisions about packets and control of
server farm resources. As shown 1n FIG. 3, the tables include
various information, such as state information, routing infor-
mation, process information, and protocol stack information.
Such tables are shown 1n FIG. 12, which 1s discussed further
hereinbelow.

[0092] The protocol stack includes a series of routines for
processing packets. Conventionally, the protocol stack has
been part of the OS and has executed in kernel mode. By
comparison, in the illustrative embodiments, the 1NIC’s
protocol stack processor executes instructions to perform the
protocol stack operations. Accordingly, such operations are

offloaded trom the OS.

[0093] Also, the iNIC includes circuitry for processing of
torwarded packets, which are sent from one server’s iINIC to
another server’s 1NIC for processing. The forwarding pro-
cessor operates to route forwarded packets at rates approach-
ing wire speed. Possible embodiments of the forwarding
processor 1nclude a field programmable gate array

(“FPGA”) or an ASIC.

[10094] FIG. 3 shows an example iNIC configuration that
includes three IP packet ports (designated as Port A, Port B,
and Port C) and a single synchronization port (designated as
Synch Port). Each IP packet port 1s configurable to be full

duplex and to accommodate a variety of port protocols (e.g.,
Ethernet, ATM and FDDI). The synchronization port is
configurable in the same manner as an IP packet port or, 1n

US 2007/0067046 Al

an alternative embodiment, 1s specially configured. The
configuration of the synchronization port 1s selected accord-
ing to a particular application deployed on the server farm.
With suitable circuitry, extremely fast synchronization is
achievable for a particular application.

[0095] Also, the INIC includes a memory for storing
various data structures to represent the connection endpoints
for client-server socket-based application connections.
Moreover, the 1INIC includes Direct Memory Access
(“DMA”) circuitry for sending information (a) from the
INIC directly to the main board circuitry’s memory and (b)
from the main board circuitry’s memory to the 1NIC’s
memory. In an alternative embodiment, the 1NIC includes
additional circuitry and firmware (for clarity, not shown 1n
FIG. 3) for performing specified encryption operations.

Description Of Client Request Load-Balancing

[0096] The INIC performs server farm load-balancing of
socket application client requests. Round-robin approaches
to advertise IP addresses (e.g., DNS round-robin approach or
redirector device round-robin approach) have limited ability
to eflectively load-balance. For example, in selecting a
server 1o process a client request, round-robin approaches
substantially fail to account for the client request’s specific
details such as session management. Accordingly, in the
illustrative embodiments, after a connection 1s established
between the selected server and a client, the selected server
1s operable to selectively forward packets (received from a
client) for processing by another server (within the server
farm).

10097] FIG. 4A 1s a block diagram of a system for pro-
cessing 1nformation with a server farm, according to an
illustrative embodiment in which server 1’°s iNIC forwards
(or “outputs™) packets for processing by server 2’s iNIC
(and, 1n some 1nstances, by server 2’s application layer),
according to 1pOS logic of server 1’s iNIC. For clarty, the
processing of response packets by server 2’s application
layer 1s not shown 1n FIG. 4A. In forwarding packets, server
1’s iNIC operates substantially independently of server 1’s
application layer. Server 2’s 1NIC 1s substantially identical
to server 1’s 1NIC, so the operation of server 1 1s likewise
representative of the operation of server 2.

[0098] In the example of FIG. 4A, arrows show the
directions 1 which packets are communicated between
router A, server 1 and server 2. For example, a client sends
(or “outputs™) a request to server 1 at IP 123.123.123.1.
Router A receives the client request and outputs it to LAN
A hub/switch for receipt by server 1.

[0099] Server 1°s iNIC (in response to instructions of its
1pOS) determines whether to forward packets associated
with the client connection from server 1°s iNIC to server 2’s
INIC. IT so, 1n response to receiving such a packet from the
client, server 1’s 1INIC (in response to instructions of its
1pOS) encapsulates the packet with additional information
(as discussed hereinbelow) and forwards it to a physical port
(IP 222.222.222.3) on server 2’s iNIC. In response to
receiving the encapsulated packet from server 1’s 1NIC,
server 2°s 1INIC (1n response to instructions of its 1pOS)
unpacks and processes the encapsulated packet.

[0100] Accordingly, in such a situation, server 2’s iNIC (in
response to mstructions of 1ts 1pOS): (a) in response to such

Mar. 22, 2007

information received from server 1’s 1INIC, establishes a
connection endpoint in the memory of server 2°s 1NIC for
the particular client-server socket-based application connec-
tion; (b) 1I appropriate for the packet, processes and sends
information from the packet to server 2’s application layer;
and (c) if appropriate for the packet, processes and sends
response packets to the client through the IP network in
response to information from server 2’s application layer.
The protocol stack processor of server 2°s iINIC (1n response
to nstructions of its 1pOS) adds suitable header information
to the response packet and sends 1t to the client through the
IP network-connected port (IP 123.123.123.3) of server 2’s
1NIC. Although the response packet is sent to the client from
server 2, the response packet appears (from the client’s
perspective) to be sent from server 1.

[0101] FIG. 4B 1s a block diagram of the system of FIG.
4 A, according to an 1llustrative embodiment 1in which server
2 processes packets without forwarding to server 1. Server
1 1s substantially i1dentical to server 2, so the operation of
server 2 1s likewise representative of the operation of server
1. In the example of FIG. 4B, arrows show the directions 1n
which packets are commumicated between router A and
server 2. For example, a client sends a request to server 2 at
IP 123.123.123.3. Router A receives the client request and
outputs it to LAN A hub/switch for receipt by server 2.

[0102] Server 2’s iNIC determines (in response to instruc-
tions of its 1pOS) whether to forward packets associated with
the client request to server 2. If not, in response to receiving
such a packet from the client, server 2’s iINIC (1n response
to 1structions of its 1pOS) keeps the packet and processes it.

[0103] Accordingly, in such a situation, server 2’s iNIC (in
response to instructions of 1its 1pOS):. (a) establishes a
connection endpoint in the memory of server 2°s 1INIC for
the particular client-server socket-based application connec-
tion (b) 1t approprniate for the packet, processes and sends
information from the packet to server 2’s application layer;
and (c) 1t appropriate for the packet, processes and sends
response packets to the client through the IP network in
response to information from server 2’s application layer.
The protocol stack processor of server 2°s iINIC (1n response
to 1nstructions of its 1pOS) adds suitable header information
to the response packet and sends 1t to the client through the
IP network-connected port (IP 123.123.123.3) of server 2’s
INIC. The response packet appears (Irom the client’s per-
spective) to be sent from server 2.

Description Of Inic Packet Flow

[0104] FIG. 5A 1s a block diagram of the iNIC and main
board circuitry of FIG. 3, according to an 1illustrative
embodiment 1 which the 1INIC processes information
received and sent through a Port A. FIG. 5A shows pathways
by which various packets (recerved from clients through
Port A) are communicated through the 1NIC. For clanty, n
the example of FIG. SA, the iNIC has two IP packet ports
(Port A and Port B) and a single synchronization port (Synch

Port).

[0105] At Port A, the iINIC receives a packet and classifies
it with the network processor classification engine. The
classification engine executes the rules code to determine
whether a match exists for the packet. If the packet i1s not
destined for the server, fails checksum verification, or fails
to match other criteria, then the classification engine drops

US 2007/0067046 Al

(or “discards™) the packet. If the packet 1s not dropped, the
classification engine sends the classified packet, along with
possible table lookup results, to either (a) the processor core
for execution of 1pOS action code, (b) the forwarding
processor for processing, or (¢) the protocol stack processor
for processing.

[0106] In the illustrative embodiments, the classification
engine 1s operable to perform the packet classification by
reviewing one or more tables in response to a packet’s
information. For example, 1n response to the rules code, the
classification engine determines whether a match exists
between (a) the packet’s source IP and source TCP port and
(b) an existing table of source IP addresses and source TCP
ports (e.g., to determine whether the packet should be
forwarded to another server).

10107] Ifthe classification engine sends a classified packet
to the processor core, then the processor core receives the
packet and processes i1t according to the 1pOS action code.
In response to the action code, the processor core determines
whether to (a) drop the packet, (b) send the packet to the
protocol stack processor, or (¢) process the packet and send
it to the forwarding processor. If the processor core drops the
packet, the processor core erases the packet’s iformation
from the 1INIC’s memory.

[0108] If the processor core sends the packet to the pro-
tocol stack processor, 1t does so during the connection setup
process which 1s discussed further hereimnbelow. In such a
situation, the packet either: (a) 1s part of the connection setup
process (e.g., SYN packet); or (b) 1s a request packet (e.g.,
during the socket to connection endpoint setup process) that
1s being processed locally without forwarding to another
SErver.

10109] If the processor core sends the packet to the for-
warding processor, the packet either (a) 1s part of a new
connection (e.g., mcluding a connection endpoint) that 1s
being migrated to another server’s INIC, or (b) 1s part of an
existing connection that has already been migrated to
another server’s iNIC. In sending the packet to the forward-
ing processor, the processor core also sends information to
the forwarding processor for encapsulation of the packet,
thereby enabling the forwarding processor to encapsulate the
packet before forwarding the packet to another server. If a
connection 1s migrated from a {irst server to a second server,
the client request packet (see FIGS. 10A-10C) and all
subsequent packets of the migrated connection bypass the
first server’s protocol stack and, instead, are processed by
the second server’s protocol stack. The forwarding proces-
sor 1s operable to receive packets from either the classifi-
cation engine or processor core (in response to the processor
core’s action code). If the forwarding processor receives a
packet from the classification engine, the forwarding pro-
cessor forwards the packet to another iNIC through Port B
at rates approaching wire speed. Belore forwarding the
packet, the forwarding processor encapsulates 1t with header
information.

[0110] The protocol stack processor 1s operable to receive
packets from either the processor core or the classification
engine. If the protocol stack processor receives a packet
from the processor core (in response to the processor core’s
action code), the packet i1s part of the connection setup
process (e.g., during delayed connection endpoint to appli-
cation socket binding). In the connection setup process for

Mar. 22, 2007

a packet recerved at Port A, the first packet received by the
protocol stack processor from the processor core 1s the SYN
packet (the SYN packet initiates creation of a connection
endpoint). In association with such connection, the next
packet received by the protocol stack processor from the
processor core indicates a decision to process the connection
locally without forwarding to another server.

[0111] If the protocol stack processor receives a packet
from the classification engine, the packet either: (a) 1s part
of the connection setup process (e.g., SYN packet); or (b) 1s
a packet associated with an already established connection
that 1s being processed locally without forwarding to another
server. In FIG. 5A, 11 a packet has moved down the protocol
stack for destination to a client, the protocol stack processor
sends the packet to the client through Port A (which 1s
coupled to the IP network). If a packet has moved up the
protocol stack for destination to the main board circuitry’s
memory, the protocol stack processor sends information
from the packet to the DMA circuitry.

[0112] Also, in FIG. 5A, the DMA circuitry (a) sends
information from the i1NIC directly to the main board
circuitry’s memory and (b) receives information from the
main board circuitry’s memory to the iNIC’s memory.
Accordingly, through the DMA circuitry and main board
circuitry’s memory, the protocol stack processor outputs
information (from a packet) and a connection endpoint
reference to an application that 1s associated with the con-
nection endpoint. Likewise, through the main board circuit-
ry’s memory and the DMA circuitry, the protocol stack
processor receives mnformation from an application that 1s
associated with a connection endpoint and, 1n response
thereto, the protocol stack processor assembles a packet for
destination to a client.

[0113] FIG. 5B 1s a block diagram of the iNIC and main
board circuitry of FIG. 3, according to an 1illustrative
embodiment 1 which the 1INIC processes information
received through a Port B. FIG. 5B shows pathways by
which various packets (recerved from other server iNICs
within the server farm through Port B) are communicated
through the iINIC. Such packets from other server iNICs are
received as encapsulated packets at Port B and are classified
by the classification engine, which executes the rules code to
determine whether a match exists for the packet.

[0114] If the classification engine does not drop the
packet, the packet is classified and either (a) 1s part of a new
connection (e.g., mcluding a connection endpoint) that 1s
being migrated to the server’s iINIC, or (b) 1s part of an
existing connection that has already been migrated to the
server’s INIC, or (¢) 1s a verification that a connection was
successiully migrated to another server’s iNIC. If the packet
1s not dropped, the classification engine sends the classified
packet to either (a) the processor core for execution of 1pOS
action code or (b) the protocol stack processor for process-
ng.

[0115] If the encapsulated packet (received at Port B) is
part of a new connection that 1s being migrated to the
server’s INIC (“receiving server’s iNIC”), the classification
engine verifies the packet according to the packet’s check-
sum algorithm. If the packet 1s verified, the classification
engine sends information (e.g., the payload) of the packet to
the processor core for establishing a connection endpoint
that 1s associated with the new connection. After the pro-

US 2007/0067046 Al

cessor core establishes the connection endpoint, (a) the
processor core sends information to the protocol stack
processor for binding (or “associating”) the connection
endpoint to an appropriate socket and 1ts associated socket
application, and (b) the processor core forms an encapsu-
lated acknowledgement packet and sends 1t to the forward-
ing processor, which outputs such packet to another server’s
INIC (*forwarding server’s 1NIC”) through Port B as a
verification that the connection endpoint was successiully
migrated to the receiving server’s iNIC.

[0116] If the encapsulated packet (received at Port B) is a
verification that a connection endpoint was successiully
migrated to the iINIC of another server (“receiving server’),
the classification engine sends information of the packet
(along with a reference to the connection endpoint) to the
processor core. In response to such information and refer-
ence, the processor core (in response to instructions of 1ts
1ipOS) erases the connection endpoint from the 1NIC’s
memory and drops the packet. After such verification of the
connection endpoint migration, the iINIC (1n response to
istructions of 1ts 1pOS) sends (through the forwarding
processor) all packets associated with the connection to the
receiving server.

[0117] The protocol stack processor 1s operable to receive
packets from either the classification engine or the processor
core. It the encapsulated packet (recerved at Port B) 1s part
ol an existing connection that has already been migrated to
the server’s iINIC, the protocol stack processor receives the
packet from the classification engine. In response thereto,
the protocol stack processor (a) verifies and removes the
packet’s header and (b) processes information (e.g., the IP
packet payload) of the packet associated with an already
established connection endpoint.

[0118] If the protocol stack processor receives a packet
from the processor core, the packet 1s part of the connection
setup process. In response to such a packet from the pro-
cessor core, the protocol stack processor binds (or “associ-
ates”) the packet’s associated connection endpoint to an
appropriate socket and 1ts associated socket application. The
socket application 1s executed by the main board circuitry.

[0119] Accordingly, in such a situation, through the DMA

circuitry and main board circuitry’s memory, the 1INIC’s
protocol stack processor sends a request (along with a
reference to the connection endpoint) to the main board
circuitry. In response to such request, the main board cir-
cuitry stores the reference (“‘connection endpoint reference”)
within a socket. The socket 1s related to a suitable associated
socket application for servicing the connection. In that
manner, the socket application 1s related to (and associated
with) the connection endpoint, as discussed further herein-
below 1n connection with FIG. 13.

[0120] In FIG. 5B, if a packet has moved down the
protocol stack for destination to a client, the protocol stack

processor outputs the packet to the client through Port A
(which 1s coupled to the IP network). If a packet has moved
up the protocol stack for destination to the main board
circuitry’s memory, the protocol stack processor outputs
information from the packet to the DMA circuitry.

[0121] Also, in FIG. 5B, the DMA circuitry sends infor-
mation (a) from the iNIC directly to the main board circuit-
ry’s memory and (b) from the main board circuitry’s

Mar. 22, 2007

memory to the 1INIC’s memory. Accordingly, through the
DMA circuitry and main board circuitry’s memory, the
protocol stack processor outputs information (from a packet)
and a connection endpoint reference to an application that 1s
associated with the connection endpoint. Likewise, through
the main board circuitry’s memory and the DMA circuitry,
the protocol stack processor receives mformation from an
application that 1s associated with a connection endpoint
and, 1n response thereto, the protocol stack processor
assembles a packet for destination to a client.

10122] FIG. 5C is a block diagram of the iNIC and main

board circuitry of FIG. 3, according to an 1illustrative
embodiment in which the iINIC processes information
received and sent through a Synch Port. FIG. 5C shows
pathways by which various packets (received from other
servers within the server farm through the Synch Port) are
communicated through the iNIC. At the Synch Port, the
INIC receives the packet and classifies 1t with the classifi-
cation engine.

[0123] If the classification engine determines that the
packet 1s a synchronization packet, the classification engine
sends the packet to the processor core for processing accord-
ing to the 1pOS action code. In response thereto, the pro-
cessor core reads synchronization information from the
synchronization packet and writes such information nto a
suitable state table of the iINIC memory. After suitably
processing the synchronization packet, the processor core
drops 1it.

[0124] Also, through the Synch Port, the processor core is
responsible for sending the server’s state to others servers in
the server farm. Accordingly, at specified synchromization
intervals, the processor core assembles specified synchroni-
zation information into a packet. Then, the processor core

outputs the assembled packet through the Synch Port for
distribution to other servers 1n the server farm.

Description Of Server Farm State Synchronization

[0125] FIG. 6 1s a conceptual illustration of information
stored 1n a memory of the representative iINIC of FIG. 3. In
the 1llustrative embodiments, the servers in the server farm
endeavor to synchronmize state information with one another
by sending and recerving the state information through the
server farm’s synchronization hub. FIG. 6 illustrates the
types ol information stored by the iINIC in the synchroni-
zat1on process.

[0126] Through the synchronization port of a server’s
INIC, the server sends information to the other servers in the
server farm. In the memory of the server’s iNIC, the server
stores information that represents the state of other servers
in the server farm. Such information i1s accessible to the
server’s 1pOS.

[0127] On a high priority basis (e.g., high frequency), the
INIC receives information that represents the state of other
servers 1n the server farm. In an illustrative embodiment,
such information (“server farm state information™) includes
the other servers’ respective number of then-currently estab-
lished TCP connections, CPU utilization, available main
board circuitry memory, available server bandwidth, and/or
other suitable information for high priority synchronization
of the server farm’s servers.

[0128] On a medium priority basis (e.g., medium fre-
quency), the 1NIC receives information about local and

US 2007/0067046 Al

foreign object instances being executed by servers in the
server farm (“‘object mstances™). In an illustrative embodi-
ment, for object instances, such information includes an
object i1dentification tag (along with 1ts IP address) and a
shadow object i1dentification tag (if any, along with 1its IP
address), and/or other suitable information for medium
priority synchronization of the server farm’s servers.

10129] Also, on a medium priority basis, the iNIC receives
information about local and foreign application processes
being executed by servers 1n the server farm. In an illustra-
tive embodiment, for application processes, such informa-
tion 1ncludes an application process identification tag (along,
with 1its IP address), TCP port (e.g., listening socket con-
nection information), and/or other suitable information for
medium priority synchronization of the server farm’s serv-
ers.

[0130] On a much lower priority basis (e.g., lower fre-
quency), the 1INIC receives application process (and com-
ponent object) performance information. In an illustrative
embodiment, such information includes an application pro-
cess (or object) 1dentification tag, application process (or
object) memory size, average CPU utilization, information
on application processes (and component objects) that are
stored by particular servers for execution, and/or other
suitable mformation for low priority synchronization of the
server Tarm’s servers. Referring also to FIGS. 3 and 12, the
INIC’s application mformation table (included within the
process information 1n iINIC memory) stores information for
mapping a specified application process (or object) 1denti-
fication tag to the application process’s (or object’s) memory
requirements and CPU utilization.

[0131] Within the server farm, on a periodic basis, each
server advertises its state by outputting a UDP message
through the synchronization port of the server’s iNIC. Other
servers (1n the server farm) receive the message and store
information from the message into their respective 1INIC
memories. Accordingly, in that manner within the server
farm, such information i1s accessible to any server’s 1pOS,
and the server farm’s servers perform load-balancing and
resource management operations in response to such infor-
mation.

Description Of Dynamic Load Balancing

[0132] In the illustrative embodiments, the iNIC (in
response to instructions of its 1pOS) executes a process for
dynamic load-balancing of client requests across servers
within the server farm. The load-balancing technique
includes a process to select a suitable server for processing
a client request. For efliciency, the technique favors selec-
tion of the server that iitially receives the client request.
With a set of n available servers that synchronize their state
tables (e.g., by storing identical server farm state informa-
tion), the server (which iitially receives the client request)
executes the load-balancing process to select a server (from
among the n available servers in the server farm) for
processing the client request.

10133] For additional efficiency in the illustrative embodi-
ments, 1n response to mstructions of 1ts ipOS, the iNIC of a
server (which initially receives the client request) executes
the load-balancing process only when the server reaches a
predetermined threshold of activity. In the illustrative
embodiments, the server calculates whether such threshold

Mar. 22, 2007

has been reached, 1n response to some or all of the state table
information. Example thresholds are (a) a maximum number
of TCP connections then-currently established by the server
or (b) a maximum CPU utilization within the server.

[0134] A potential shortcoming of load-balancing tech-
niques 1s that multiple simultaneous client requests may
result 1n one particular server processing many (or all) of the
simultaneous client requests, without forwarding a suitable
number of the simultaneous client requests to another server
in the server farm (e.g., the load-balancing process may
select the same server for processing all of the simultaneous
client requests). Such a result leads to a process called
thrashing. In the illustrative embodiments, the load-balanc-
ing technique substantially avoids thrashing by selecting a
server to process a request 1n response to a probability
distribution.

[0135] According to such a probabilistic technique, the
iINIC (1n response to instructions of its 1pOS) executes a
process for dynamic load-balancing in response to a number
of TCP connections then-currently established by each
server. The probability of a server being selected 1s inversely
proportional to the number of TCP connections then-cur-
rently established by the server. In the illustrative embodi-

ments, this probability 1s calculated in accordance with
Equations (1) and (2) below.

k , (1)
p;=—— for1=1,2,3,...n
CN

[0136] In Equation (1), (a) p; is the probability that the
load-balancing technique will result 1n the client request
being serviced by the i™ server (among n servers in the
server farm), (b) CN. 1s the number of TCP connections
t_len-currently estabhshed by server 1, and (c) k 1s a constant
that 1s calculated 1n accordance with Equation (2). In Equa-
tion (2), (a) CN; 1s the number of TCP connections then-
currently estabhshed by server j and (b) n 1s the number of
servers 1n the server farm.

10137] FIG. 7 1s a block diagram of a system for process-
ing information with a server farm, according to an 1llus-
trative embodiment in which servers 1, 2 and 3 perform
load-balancing of client requests. In the example of FIG. 7,
servers 1, 2 and 3 have synchronized (e.g., servers 1, 2 and
3 have 1dentical state tables in their respective iINIC memo-
ries). Moreover, 1n the example of FIG. 7, each of servers 1,
2 and 3 has exceeded a predefined threshold of activity (e.g.,
number of TCP connections greater than a threshold).

[0138] Accordingly, in the illustrative embodiments,
received client requests are load-balanced within the server
farm. In the example of FIG. 7, server 1 receives a client
request, and the iNIC of server 1 (1n response to instructions
of 1ts 1pOS) executes the load-balancing process. The iINIC
of server 1 (in response to 1structions of 1ts 1pOS) calculates
a probability that any one of servers 1, 2 or 3 will be selected
to process the client request.

[0139] In response to the example state information of
FIG. 7, the 1NIC of server 1 (1n response to 1nstructions of

US 2007/0067046 Al

its 1pOS) calculates the following probabilities for servers 1,
2 or 3, respectively: p,=0.37, p,=0.33, and P,=0.30. To
determine which of servers 1, 2 or 3 will actually be selected
to process the client request, the iINIC of server 1, in
response to instructions of 1ts 1pOS, (a) executes a pseudo
random number generator for identifying a random number
between 0 and 1 and (b) compares the random number to the
calculated probabilities, 1n order to select one of servers 1,
2 or 3. For example, 1 the random number 1s less than 0.37,
the 1INIC of server 1 (1in response to instructions of its 1pOS)
selects server 1. By comparison, 1f the random number 1s
greater than 0.37 yet less than 0.7 (0.37+0.33), the iNIC of
server 1 (in response to instructions of 1ts 1pOS) selects
server 2. Otherwise, 11 the random number 1s greater than
0.7, the iINIC of server 1 (in response to 1nstructions of 1ts
1pOS) selects server 3.

Description of 1p OS Threads

[0140] FIG. 8 1s a data flow diagram of process threads
executed by the representative iINIC of FIG. 3. FIG. 8 shows
1ipOS components, which include one or more threads of
execution. In the example of FIG. 8, the 1pOS components
include four threads of execution. For clarity, FIG. 8 does
not illustrate the packet processing performed by the for-
warding processor (e.g., the splicing of an 1pOS encapsula-
tion header to a packet) for the creation and sending of
encapsulated packets through Port B.

[0141] Each thread of execution includes a packet classi-
fication component and an action code component. For
example, if applicable to a particular thread, the thread
processes a packet by classitying the packet according to a
set of classification rules. After classiiying the packet, the
thread processes the packet by performing operations asso-
ciated with the classification.

10142] As shown in FIG. 8, the 1pOS components include
a balance thread, a forward thread, and a synchronization
thread. Each of those threads includes program code that 1s
executable by the network processor for performing opera-
tions associated with the particular thread. Also, the 1pOS
components nclude a protocol stack thread. The protocol
stack thread includes program code that 1s executable by the
protocol stack processor for performing operations associ-
ated with the protocol stack thread.

10143] Referring also to FIG. 3, the iNIC’s memory stores
routing information, which includes tables that are search-
able 1n response to a thread’s packet classification compo-
nent or action code component. In response to a search key,
the iNIC (in response to instructions of 1its 1pOS) searches a
table to locate a record of information associated with the
search key. The iNIC (in response to instructions of 1ts ipOS)
1s programmed to match the search key with specific fields
ol a packet.

[0144] As shown in FIG. 8, at Port A, the iNIC (a) receives
a packet from a client through the IP network and (b) sends
the packet to the balance thread. The balance thread pro-
cesses the packet by classifying the packet according to a set
of classification rules. In communicating the packet through
the balance thread, the balance thread reads local, temporary,
forward, and listening socket tables.

[0145] FIG. 12 1s a conceptual illustration of tables stored
by a server’s iINIC memory, according to the illustrative

Mar. 22, 2007

embodiments. In particular, F1G. 12 shows the types of fields
(and descriptions thereof) 1n each table. Also, FIG. 12 shows
whether a particular field 1s used as a key for locating
records 1n the table. Accordingly, for example, the local,

forward-connect, and temporary tables have the same types
of fields and keys.

[0146] The local, forward-connect, and temporary tables
store information representative of connection endpoints 1n
various states. Because these tables store information rep-
resentative of connection endpoints, a packet’s source IP
address, source TCP port, destination IP address, and des-
tination TCP port are used as keys for locating records in the
tables. Each record 1s capable of storing additional infor-
mation beyond the fields shown 1n FIG. 12, and the server’s
1NIC 1s capable of storing additional tables beyond the tables

shown 1n FIG. 12.

[0147] The local table stores information representative of
connection endpoints that are attached to a socket associated
with a local application (1.e., an application executed by the
server that stores the table). The forward-connect table
stores 1nformation representative of connection endpoints
that have been migrated to the server. The temporary table
stores 1nformation representative of connection endpoints
that are not yet attached to a socket associated with an
application (e.g., the server 1s assessing the client request).
Accordingly, 1n the temporary table, such connection end-
points have a state associated with a delayed connection
endpoint to application socket bind (as discussed further
hereinbelow).

[0148] The forward table stores information representative
of connection endpoints that have been migrated to a dii-
ferent server. Accordingly, such connection endpoints are
attached to a socket that 1s associated with a non-local
application (1.e., an application executed by the different
server). The listening sockets table stores information rep-
resentative of an IP address and TCP port of a listenming
socket associated with an application.

[0149] FIG. 9A 1s a flowchart of the balance thread of FIG.
8 for TCP/IP based applications. FIG. 9A shows a detailed
communication of a packet through the balance thread, 1n
which the packet 1s processed 1n a sequence of steps until the
packet 1s either dropped or output from the balance thread.
If the packet satisfies a particular rule, the iNIC (in response
to 1structions of 1ts 1pOS) performs a suitable operation in
response to the packet.

[0150] As shown in FIG. 9A, an IP packet enters the
balance thread from Port A. The 1NIC (in response to
instructions of 1ts balance thread) verifies the packet accord-
ing to its checksum algorithm (16-bit one’s compliment
sum). If the packet 1s corrupt (as evidenced by a failure to
verily according to its checksum algorithm), then the packet
1s dropped.

[0151] After verifying the packet according to its check-
sum algorithm, the iNIC (in response to instructions of its
balance thread) reads the packet’s destination IP address to
verily that the packet 1s addressed to the iNIC’s server. 11 the
packet 1s not addressed to the iINIC’s server, then the packet
1s dropped.

[0152] After verifying that the packet’s destination IP
address matches the server’s IP address, the iNIC (in
response to instructions of its balance thread) determines

US 2007/0067046 Al

whether the packet’s source IP address and source TCP port
match a record in the temporary table. If so, a client has
initiated a connection, but the connection endpoint has not
yet attached to a socket associated with an application. In
such a situation, the iINIC (in response to mstructions of its
balance thread) reads the packet to determine whether it

represents a client request (e.g., the first packet in which the
TCP flag 1s set to PUSH).

[0153] If the packet is not a client request (e.g., TCP Flag
set to ACK), the 1NIC (in response to instructions of its
balance thread) sends the packet and a reference to the
connection endpoint (stored 1n the temporary table’s match-
ing record) to the protocol stack thread (which 1s executed
by the 1NIC’s protocol stack processor). By comparison, it
the packet 1s a client request (1.e., PUSH), the iNIC (in
response to instructions of i1ts balance thread) reviews the
request and selects a server to process the request (e.g.,
according to the load-balancing technique). If the selected
server 1s a different server (1.e., not the iNIC’s server), the
INIC (1in response to instructions of its balance thread)
migrates the connection endpoint to the selected server.

|0154] If the packet’s source IP address and source TCP
port do not match a record in the temporary table, the iINIC
(in response to instructions of 1ts balance thread) determines
whether the packet 1s part of an already established connec-
tion to a different server. Accordingly, the iNIC (in response
to mstructions of 1ts balance thread) determines whether the
packet’s source IP address and source TCP port match a
record in the forward table. If so, the INIC (1n response to
instructions of 1ts balance thread) (a) identifies the different
server’s INIC as storing the connection endpoint, (b) encap-
sulates the packet with an 1pOS encapsulation header (FIG.
11A), and (c¢) with the iNIC’s forwarding processor, outputs
the encapsulated packet through Port B to the diflerent
server’s 1INIC, so that the output encapsulated packet
bypasses the network (e.g., LAN A 1n FIGS. 2A, 2C, 2D, 4A,
4B and 7) that 1s connected to Port A. In order to form the
1ipOS encapsulation header, the forward table stores the
following information i1n association with the matching
record: (a) the IP address of the different server’s iNIC and
(b) the TCP port of the server application which 1s executed
by the different server.

[0155] By encapsulating the packet with an encapsulation
header, the 1INIC (in response to instructions of 1ts balance
thread) addresses the packet to the previously selected server
and migrated connection endpoint. Advantageously, 1n the
illustrative embodiments, the IP packet 1s not rewritten. Such

encapsulation 1s discussed further hereinbelow in connec-
tion with FIGS. 11 A-111.

[0156] If the packet’s source IP address and source TCP
port do not match a record 1n the forward table, the iINIC (in
response to 1nstructions of its balance thread) determines
whether the packet’s source IP address and source TCP port
match a record 1n the local table. If so, the iINIC (1n response
to 1nstructions of 1ts balance thread) i1dentifies the packet as
having a connection endpoint that 1s attached to a socket
associated with a local application. Accordingly, 1n such a
situation, the iNIC 1dentifies 1tself as storing the connection
endpoint. In such a situation, the INIC (in response to
instructions of its balance thread) sends the packet and a
reference to the connection endpoint (stored in the local
table’s matching record) to the protocol stack thread.

Mar. 22, 2007

[0157] If the packet’s source IP address and source TCP
port do not match a record in the local table, the iINIC (in
response to instructions of its balance thread) determines
whether the IP packet’s TCP SYN flag 1s set (e.g., deter-
mines whether a client 1s itiating a new connection) and
whether the packet specifies an IP address and TCP port that
match a record 1n the listening sockets table. It so, the iNIC
sends the packet to the protocol stack processor for estab-
lishing a temporary connection. The protocol stack proces-
sor responds to the client with a SYN-ACK response packet
as part of the TCP/IP mmitiation of a connection. Also, the
INIC creates a connection endpoint that has yet to be
attached to a socket associated with an application. In the
temporary table, the iNIC stores a record which includes a
reference to such connection endpoint.

[0158] As shown in FIG. 9A, if the IP packet’s TCP SYN

flag 1s not set, or 1f the packet specifies an IP address and
TCP port that do not match a record 1n the listening sockets
table, then the packet 1s dropped.

[0159] FIG. 9B is a flowchart of the forward thread of FIG.
8 for TCP/IP based applications. FIG. 9B shows a detailed
communication of a packet through the forward thread. The
packet enters the forward thread from Port B. Packets from

Port B are encapsulated packets and are sent to the forward
thread.

[0160] Accordingly, if the forward thread receives a
packet from Port B, the packet either (a) 1s part of a new
connection that 1s being migrated to the server’s 1iNIC, or (b)
1s part ol an existing connection that has already been
migrated to the server’s iINIC, or (c¢) 1s a verification that a
connection was successiully migrated to another server’s
INIC. In FIG. 12, the forward-connect table stores informa-
tion representative ol connection endpoints that have been
migrated to the server. In response to such information, the
torward thread determines a suitable operation to perform on

the packet, using an IP address and TCP port as keys to
locate records in the forward-connect table.

[0161] As shown in FIG. 9B, after receiving a packet from
Port B, the iNIC (1n response to instructions of its forward
thread) verifies the packet’s encapsulation header according,
to 1ts checksum algorithm (16-bit one’s compliment sum of
the header). If the encapsulation header i1s corrupt (as
evidenced by a failure to verily according to 1ts checksum
algorithm), then the packet 1s dropped.

[0162] After verifying the encapsulation header according
to 1ts checksum algorithm, the 1NIC (in response to 1nstruc-
tions of 1ts forward thread) reads the encapsulation header’s
destination IP address to verity that the encapsulated packet
1s addressed to the iINIC’s Port B. If the encapsulated packet
1s not addressed to the 1NIC’s Port B, then the packet i1s
dropped.

[0163] After verifying that the encapsulated header’s des-
tination IP address matches the iNIC’s Port B IP address, the
INIC (1n response to instructions of 1ts forward thread)
determines whether the encapsulation header’s type field 1s
set to Ox01. If so, the packet 1s part of a new connection that
1s being migrated to the server’s iNIC. In such a situation,
the 1INIC removes the encapsulation header and performs a
one-time connection endpoint setup. As verification that the
connection was successiully migrated, the iNIC (in response
to 1nstructions of 1ts forward thread) sends a packet (with

US 2007/0067046 Al

type field set to 0x03) through Port B to the orniginating iNIC
(1.e., to the 1NIC that requested the migration).

[0164] By comparison, if the encapsulation header’s type
field 1s set to 0x02, the packet (e.g., PUSH, ACK or FIN
types of packets) 1s part of an existing connection that has
already been migrated to the server’s 1INIC. In such a
situation, the iINIC (1n response to instructions of 1ts forward
thread) reads the client source IP address and source TCP
port Irom the encapsulation header and, 1n response thereto,
locates a matching connection endpoint record in the for-
ward-connects table. Also, the iINIC (1n response to mstruc-
tions of its forward thread) removes the encapsulation
header and sends the unencapsulated packet (which 1s an IP
packet) and a reference to the connection endpoint (stored in
the forward-connects table’s matching record) to the proto-
col stack thread.

[0165] If the encapsulation header’s type field is set to
0x03, then the packet 1s a verification that a connection was
successiully migrated to another server’s iNIC. In such a
situation, the 1INIC (1n response to nstructions of its forward
thread) reads information from the encapsulation header
and, 1 response thereto, locates a matching connection
endpoint record in the temporary table. Then, the 1NIC (in
response to instructions of 1ts forward thread): (a) moves
such record from the temporary table to the forward table,
(b) deletes such record 1n the temporary table, and (¢) drops
the packet.

[0166] If the encapsulation header’s type field is set to
neither O0x01, 0x02 nor 0x03, then the packet 1s dropped.

[0167] FIG. 9C is a flowchart of the synchronization
thread of FIG. 8. FIG. 9C shows a detailed communication
ol a packet through the synchromization thread. The packet
enters the synchronmization thread from the Synch Port.

Packets from the Synch Port are sent to the synchronization
thread.

[0168] After receiving a packet from the Synch Port, the
INIC (in response to instructions of 1its synchronization
thread) classifies the packet according to the synchronization
thread’s classification rules. Numerous embodiments of the
synchronization thread and Synch Port are possible. As
shown 1n FIG. 12, the iNIC 1ncludes a server state table for
storing information representative of the current states of all
servers 1n the server farm.

[0169] As shown in FIG. 9C, after receiving a packet from
the Synch Port, the iNIC (in response to instructions of its
synchronization thread) determines whether the packet 1s a
UDP packet. If not, then the packet 1s dropped.

[0170] After determining that the packet is a UDP packet,
the 1INIC (in response to instructions of 1ts synchronization
thread) determines whether the packet’s source IP address
matches a record 1n the server state table. It so, the packet
indicates either an update to a server’s state information or
a removal of a server from the server state table (e.g., a
removal of the server from the server farm due to mainte-
nance). If the packet indicates an update to a server’s state
information, the 1INIC (in response to instructions of 1its
synchronization thread) updates the matching record 1n the
server state table and drops the packet. By comparison, 1f the
packet indicates a removal of a server from the server state
table, the iINIC (1n response to instructions of its synchro-
nization thread) removes the matching record and drops the
packet.

Mar. 22, 2007

[0171] If the iNIC (in response to instructions of its
synchronization thread) determines that the packet’s source
[P address does not match a record in the server state table,
the 1INIC (1n response to mnstructions of 1ts synchromzation
thread): (a) adds a new record 1n the server state table in
association with the packet’s source IP address, (b) updates
the new record in response to other information from the
packet, and (c¢) drops the packet.

10172] Also, with the synchronization thread, the iNIC
assembles state information of the 1INIC’s server into a
packet for broadcast to other servers within the server farm.
In the illustrative embodiments, the 1INIC (in response to
instructions of i1ts synchronization thread) assembles such
information into a UDP packet and outputs the UDP packet
through the Synch Port.

[0173] Referring to FIG. 8, the protocol stack thread
implements the IP, UDP and TCP protocols, including
operations that are commonly referred to as the Network and
Transport Layers. Some conventional techmiques would
perform the protocol stack operations i the OS of the
server’s main board circuitry. Accordingly, such conven-
tional techniques would perform (a) network address trans-
lations 1n IP packets that are communicated between clients
and specified servers 1n the server farm and (b) TCP splicing
(e.g., rewriting of sequence numbers).

[0174] By comparison, in the illustrative embodiments,
the protocol stack operations are performed advantageously
by the protocol stack processor (in response to protocol
stack 1nstructions) of the server’s iNIC. For example, 1in the
illustrative embodiments, the protocol stack thread avoids
the need to perform network address translations (“NATS™)
in IP packets that are communicated between clients and
specified servers in the server farm. Moreover, 1n the 1llus-
trative embodiments, the protocol stack thread avoids the
need to perform TCP splicing (e.g., rewriting of sequence
numbers).

10175] FIG. 13 is a block diagram of the iNIC and main
board circuitry of FIG. 3, according to the illustrative
embodiments 1 which a socket application is related to a
socket and 1ts associated connection endpoint. In FIG. 13, a
socket application includes instructions for mitiating the
formation of a socket by calling a system function (or by
calling an application program interface (“API")) to form a
socket of a specific type (e.g., UDP or TCP) within a socket
layer. In response to instructions of the OS kernel, the main
board circuitry manages the socket layer. In response to such
a call, the OS kernel includes instructions for forming the
socket and returning a file descriptor (which references the
socket) to the application.

[0176] Although FIG. 13 shows a single socket, a socket

application can be related to numerous sockets at any
particular time. The socket layer includes instructions for
sending one or more requests to the iNIC, 1n order to 1nitiate
the 1INIC’s formation of a new connection endpoint (of a
specified type), and 1n order to mitiate the iINIC’s formation
of a socket reference. Such request 1s associated with a
socket, and the socket reference i1s a reference to that socket.

[0177] In response to such a request, the iNIC (a) forms
the new connection endpoint, irrespective of whether a
socket application 1s associated with the new connection
endpoint, and (b) returns a reference (which references the

US 2007/0067046 Al

connection endpoint) to the socket layer. As shown 1n FIG.
13, the socket includes a reference (“connection endpoint
reference”) for associating the socket with the connection
endpoint. Likewise, the connection endpoint includes a
reference (“‘socket reference”) for associating the connection
endpoint with the socket. The protocol stack thread
(executed by the protocol stack processor) has access to the
INIC’s memory, where connection endpoints are stored 1n
various tables (as discussed further herein in connection

with FIG. 12).

[0178] Also, the iNIC (in response to instructions of its
protocol stack thread) 1s operable to associate an existing,
connection endpoint and a socket with one another. For such
association, through the DMA circuitry and main board
circuitry’s memory, the 1NIC’s protocol stack processor
sends a request (along with a reference to the connection
endpoint) to the main board circuitry. In response to such
request, the main board circuitry (a) forms a client specific
socket (1f a listening socket exists for the IP address and TCP
Port), (b) stores the connection endpoint reference within the
socket, and (c¢) returns a reference (which references the
socket) to the 1INIC. The iNIC completes the association by
storing the socket reference within the connection endpoint.

[0179] The protocol stack thread of the illustrative
embodiments 1s similar to a conventional standard protocol
stack (e.g., BSD protocol stack), but the protocol stack
thread of the illustrative embodiments 1s modified from the
conventional standard protocol stack 1n various ways. Such
modifications include (a) the addition of several fields to the
connection endpoint data structure, (b) the revision of pro-
tocol stack code to use the modified connection endpoint,
and (c) the revision of protocol stack code to selectively add
special information within an IP packet’s data portion (e.g.,
session management). Moreover, the protocol stack thread
of the illustrative embodiments 1s modified to advanta-
geously avoid several conventional protocol stack opera-
tions, including checksum calculations and connection end-
point searches, because such operations are performed by
the classification engine (e.g., a packet sent to the protocol
stack thread 1s accompanied by a reference to the packet’s
associated connection endpoint).

[0180] Referring again to FIG. 8, packets are sent to the
protocol stack thread from the balance thread and the
forward thread (en route to a server application). Such
packets are moving up the protocol stack during a receive
operation. After the protocol stack thread processes the
packet, the protocol stack processor outputs the payload
information (destined for the application) to the main board
circuitry’s memory through DMA circuitry (as discussed
turther hereinabove 1n connection with FIG. 3).

|0181] As discussed herein in connection with FIG. 13, the
connection endpoint includes a socket reference. In response
to receiving payload mformation from the protocol stack
processor, the main board circuitry appends the payload
information to a socket queue for the referenced socket.
Also, the main board circuitry alerts the application about
such appending.

[0182] Similarly, packets are sent to the protocol stack
thread from an application (en route to Port A). Such packets
are moving down the protocol stack during a send operation.
As discussed herein 1n connection with FIG. 13, the socket

includes a connection endpoint reference, so a packet sent to

Mar. 22, 2007

the protocol stack thread 1s accompanied by a reference to
the packet’s associated connection endpoint, and the proto-
col stack thread does not perform connection endpoint
searching. Moreover, 1n processing such a packet, the pro-
tocol stack processor outputs the packet to a client through
Port A without TCP splicing or packet rewriting.

[0183] In an illustrative embodiment, for any server appli-
cation that services a client request, a server’s protocol stack
processor (in response to instructions of 1ts protocol stack
thread) 1s operable to selectively form and add special
information (for causing the client to perform an operation)
within an IP packet before sending it to the client through
Port A. In response to the special information, the client (1n
response to mstructions of 1ts application) 1s operable to: (a)
maintain a session, as discussed further hereinbelow, (b)
selectively update state information (stored by the client) 1n
a manner specified by the special information (e.g., for state
maintenance, such as modilying state information); and/or
(c) selectively perform another application specific opera-
tion 1n a manner specified by the special mformation.

[0184] For example, the server’s protocol stack processor
1s operable to add the special information 1n response to the
synchronized state information (which 1s discussed further
hereinabove such as 1n connection with FIG. 6) of servers in
the server farm. The protocol stack processor adds the
special information within the IP packet’s data portion (e.g.,

TCP payload), so that the special information i1s not con-
tamned 1n the IP packet’s headers (e.g., IP, TCP or UDP

header).

|0185] Advantageously, unlike at least one conventional
technique, the protocol stack processor (of such an illustra-
tive embodiment) adds the special information (e.g., session
maintenance information, state maintenance information) in
a manner that 1s independent of the main board circuitry, and
independent of whether the server application includes any
instructions for such purpose. By comparison, 1n at least one
conventional technique, the protocol stack instructions ailect
the IP packet’s headers (not the IP packet’s data portion), so
that session maintenance information (1n the IP packet’s data
portion) 1s added by the main board circuitry 1n response to
istructions of a server application (rather than in response

to protocol stack instructions).

[0186] A session (e.g., HT'TP session) includes multiple
connections. For example, 1mn such an illustrative embodi-
ment, alter establishing a first connection of a session with
a client (which executes an application, such as a web
browser), the first server receives a request packet from the
client. In response to the request packet, the first server’s
INIC 1s operable to (a) select a server for maintaining the
session with the client and (b) notify the client of the
selection by outputting special information (e.g., HI'TP
session 1dentifier, such as a cookie) 1n a response packet to
the client. The special information 1s added to the response
packet by the protocol stack processor of the first server’s

1INIC.

[0187] Accordingly, in response to the request packet from
the client, the first server’s 1NIC 1s operable to either: (a) in
response to the synchronized state information (which iden-
tifies servers 1n the server farm that have access to suitable
resources for servicing the client request), select one of the
identified servers for maintaining the session with the client;
or (b) select the first server for maintaining the session with
the client, irrespective of the synchronized state information.

US 2007/0067046 Al

[0188] In a first illustrative embodiment according to the
HTTP protocol, the special information 1s an HI'TP session
identifier (which specifies a server for maintaining the
session with the client). In the first illustrative embodiment,
the client: (a) during the first connection, receives the
response packet (which includes the HTTP session identi-
fier) from the first server; (b) establishes a second connec-
tion of the session with the server farm; and (c) after
establishing the second connection, adds the HT'TP session
identifier within a request packet (of the second connection)
before sending 1t to the server farm. In response to the
request packet (which includes the HT'TP session identifier),
the server farm 1s responsible for sending the request packet
to the specified server.

[0189] For example, in the first illustrative embodiment,
the client establishes the second connection of the session
with a server (“‘connecting server’) of the server farm, as
discussed further hereinabove in connection with FIG. 2A.
In response to the second connection’s request packet, the
connecting server eitther: (a) keeps the request packet and
processes 1t, 1f the request packet’s HT'TP session 1dentifier
specifies the connecting server; or (b) forwards the request
packet to a different server (within the server farm) for
processing, 1i the request packet’s HI'TP session 1dentifier
specifies the different server (as discussed further hereinbe-
low 1n connection with FIG. 10A and the cookie map table
of FIG. 12). Accordingly, 1n the first 1llustrative embodi-
ment, the servers in the server farm endeavor to synchronize
state information with one another by sending and receiving
the state information (including information for the cookie
map table) through the server farm’s synchronization hub, as
discussed further hereinabove 1n connection with FIGS. 5C
and 6. By comparison, in a conventional technique, the
client would establish the second connection of the session
with a flow switch, which 1n turn would send the second
connection’s request packet to a server as specified by the
request packet’s HI'TP session identifier.

[0190] In a second illustrative embodiment, the client (in
response to instructions of its application): (a) during the
first connection, receives the response packet (which
includes the special information) from the first server; (b) if
the special information specifies the first server, establishes
the second connection of the session directly with the first
server; and (c) if the special information specifies a second
server (1.¢., different than the first server), establishes the
second connection of the session directly with the second
server (instead of the first server). Also, in the second
illustrative embodiment, the client (1n response to 1nstruc-
tions of 1ts application) 1s operable to: (a) selectively update
state information (stored by the client) 1n a manner specified
by the special information (e.g., for state maintenance); and
(b) selectively perform another application specific opera-
tion m a manner specified by the special information.

[0191] Accordingly, in the first and second illustrative
embodiments, the first server’s 1INIC 1s operable to selec-
tively migrate the session to a second server in response to
the synchronized state information. Likewise, after such
migration, the second server’s INIC 1s operable to either: (a)
in response to the synchronized state information, select a
suitable server for maintaiming the session with the client; or
(b) select the second server for maintaining the session with
the client, irrespective of the synchronized state information.
In that manner, a server’s 1INIC 1s operable to selectively

Mar. 22, 2007

migrate a session by outputting special information 1n a
response packet to the client during any connection of the
session, not merely during the first connection.

[0192] FIG. 10A 1s a sequence diagram of steps for
establishing a local TCP/IP connection between a client and
a server, according to the illustrative embodiments. Refer-
ring also to FIG. 9A, a client mitiates a new connection to
a server by sending an IP SYN packet to Port A of the
server’s INIC. Accordingly, the IP SYN packet 1s an 1nitial-
ization packet orniginating from the client. The packet is
addressed to a particular destination IP address and desti-
nation TCP port (e.g., a specific listening socket for an
application). The 1INIC classifies and processes the packet
according to the balance thread’s classification rules and
action code.

[0193] If an application 1s listening for such a connection,
the 1NIC (in response to instructions of its balance thread)
creates a connection endpoint and stores a record (in the
temporary table of FIG. 12) which includes a reference to
such connection endpoint. Also, the 1INIC (in response to
instructions of its balance thread) sends the SYN packet and
a reference to the connection endpoint (stored in the tem-
porary table’s record) to the protocol stack thread. In
response to the SYN packet, the protocol stack processor
outputs a SYN-ACK response packet (as part of the standard
TCP/IP socket connection setup process) to the client
through Port A without modification. In response to the
SYN-ACK response packet, the client sends an ACK packet
to the server, thereby acknowledging receipt of the SYN-
ACK response packet. Accordingly, the ACK packet origi-
nates from the client.

10194] The ACK packet (and subsequent packets from the
client) has a source IP address and source TCP port that
match the record in the temporary table. Accordingly, the
1NIC (in response to mstructions of its balance thread) sends
the ACK packet and a reference to the connection endpoint
(stored 1n the temporary table’s matching record) to the
protocol stack thread. In response to such packet and refer-
ence, the protocol stack processor updates the connection
endpoint 1 the iINIC’s memory and drops the packet.

[0195] In an illustrative embodiment, the next packet sent
from the client 1s a client request packet (e.g., the first packet
in which the TCP flag 1s set to PUSH). Accordingly, the
client request packet originates from the client. In an alter-
native embodiment, the client request packet 1s sent by the
client at a later time. In this example, the client request
packet includes the client request for resource (e.g., GET
request using the HI'TP protocol). In response to such client
request for resource, the iINIC (in response to instructions of
its balance thread) selects a server to process the request.

[0196] For example, in selecting a server to process the
request, the INIC examines the client request packet to
determine whether the packet includes special information
in the form of a cookie. With a cookie, the client 1s able to
request connection to a specified server 1n the server farm.
In a first i1llustrative embodiment according to the HT'TP
protocol, the client 1s able to msert a cookie in the packet for
maintaining an HT'TP session (e.g., a series of connections)
between the client and the specified server. In a second
illustrative embodiment according to a different protocol,
the client 1s able to pass special information (within a packet
to a server) according to the different protocol without a
cookie.

US 2007/0067046 Al

[0197] Accordingly, if the packet includes a cookie (as
represented by an i1dentifier 1n the packet), the 1NIC selects
the cookie’s specified server to service the request (includ-
ing performing a suitable operation). In such a situation, 1f
the cookie’s specified server 1s the 1INIC’s server (1.e., the
balance thread’s server), the iNIC performs the suitable
operation 1n response to the packet. By comparison, if the
cookie’s specified server 1s a different server (1.e., not the
balance thread’s server), the 1NIC migrates the packet’s
associated connection endpoint to the cookie’s specified
server for performing the suitable operation 1n response to
the packet. Referring also to FIGS. 3 and 12, the 1NIC’s
cookie map table (included within the process information 1n
INIC memory) stores mformation for mapping a specified
cookie 1dentification tag to an associated server.

[0198] Similarly, in selecting a server to process the
request, the 1INIC examines the client request packet to
determine whether information 1n the packet has been
mapped (e.g., by an administrator of the server farm) to one
or more associated servers in the server farm. For example,
the INIC examines the client request (e.g., HI'TP request) to
determine whether a specific URL has been mapped to one
or more associated servers in the server farm (e.g., see
discussion heremabove in connection with FIG. 2D). Refer-
ring also to FIGS. 3 and 12, the iINIC’s URL map table
(included within the process information in iINIC memory)
stores information for mapping a specified URL address of
a server application to one or more associated servers within
the server farm. Accordingly, 11 the URL map table indicates
that the specified URL (as represented by an identifier 1n a
request packet) 1s associated with a single server within the
server farm, the iINIC selects the associated server to service
the connection (including performing a suitable operation).
It the associated server 1s the INIC’s server, the 1NIC
performs the suitable operation in response to the request
packet. If the associated server 1s diflerent than the iINIC’s
server, the 1INIC outputs the request packet to the associated
server’s 1INIC for performing the suitable operation in
response to the request packet. If the URL map table
indicates that the specified URL 1s associated with multiple
servers within the server farm, the iINIC selects one of the
multiple servers to service the connection (including per-
forming the suitable operation), according to the load-
balancing technique in response to the synchronized state
information.

[0199] Similarly, the iNIC memory’s process information
includes an SSL (secure socket layer) map table for mapping
a specified SSL connection (port 443) to one or more
associated servers within the server farm. Accordingly, if the
SSL map table indicates that the specified SSL connection
(as represented by an identifier in a request packet) 1s
associated with a single server within the server farm, the
INIC selects the associated server to service the SSL con-
nection (including performing a suitable operation). If the
associated server 1s the iNIC’s server, the iINIC performs the
suitable operation 1n response to the request packet. If the
assoclated server 1s different than the iNIC’s server, the iINIC
outputs the request packet to the associated server’s iINIC {o

performing the suitable operation 1n response to the request
packet. If the SSL map table imndicates that the specified SSL
connection 1s associated with multiple servers within the
server farm, the 1INIC selects one of the multiple servers to
service the SSL connection (including performing the suit-

Mar. 22, 2007

able operation), according to the load-balancing technique 1n
response to the synchronized state information.

[10200] Ifthe client request packet does not contain special
information for connection to a specified server (e.g., does
not include a cookie) and does not specily information (e.g.,
a URL or SSL) that 1s mapped to one or more associated
servers, then the iINIC selects a server (to process the
request) according to the load-balancing techmique in
response to the synchronized state information.

[0201] In selecting a server to process the request, the
connection 1s reclassified from being a temporary connec-
tion to being either a local connection or a forwarded
connection. The connection 1s reclassified to being a local
connection 1f the client request packet 1s processed by the
server (“first server”) without forwarding to a second server.
By comparison, the connection is reclassified to being a
forwarded connection 1f the client request packet 1s for-
warded to a second server for processing (e.g., ii the first
server 15 too busy, or if the client request 1s part of a session
maintained by the second server).

[10202] In the example of FIG. 10A, the connection is
reclassified to being a local connection. In such a situation,
the 1NIC (in response to instructions of its balance thread)
moves the associated connection endpoint record from the
temporary table to the local table. Also, 1n such a situation,
the protocol stack processor establishes the actual connec-
tion to the application through the socket layer by forming
the socket reference 1n the connection endpoint and forming
the connection endpoint reference in the socket.

10203] FIG. 14 is a block diagram of servers within a
server farm, according to an illustrative embodiment 1n
which the servers establish sockets and associated connec-
tion endpoints for a local connection and a forwarded (or
“migrated”) connection. FIG. 14 shows servers 1 and 2 1n
the server farm. Server 1 includes main board circuitry 1 and
INIC 1. Server 2 includes main board circuitry 2 and 1NIC

2.

[0204] In the example of FIG. 14, an application of server
1 has established a connection to a client through socket 1
and connection endpoint 1 to a client. Likewise, an appli-
cation of server 2 has established a connection to a client
through socket A and connection endpoint A. For clarity,
FIG. 14 does not show (a) the complete association between
a specific application and a specific socket(s) through a
socket layer, which 1s discussed elsewhere herein in con-
nection with the protocol stack thread, (b) other connections
that have already been established, or (c¢) the association
between connection endpoints (e.g., in a doubly linked list)
within an INIC memory.

[0205] In one example, a connection with a client is
represented by connection endpoint 2 (which includes infor-
mation for the connection) formed as part of the SYN,
SYN-ACK, and ACK packet processing of FIG. 10A. For
the connection, before 1INIC 1 receives the client request
packet from the client, connection endpoint 2 1s not yet
associated with a socket in the socket layer of main board
circuitry 1, so an application has not yet been assigned to
process the connection. As discussed heremabove in con-
nection with FIG. 10A, the connection i1s reclassified to
being a local connection if the client request packet i1s
processed by a first server (e.g., server 1 in FIG. 14) without

US 2007/0067046 Al

forwarding to a second server (e.g., server 2 in FIG. 14). If
the connection 1s reclassified to being a local connection,
1INIC 1 sends a request to main board circuitry 1. In response
to such request, main board circuitry 1 initiates the forma-
tion of socket 2 within the socket layer of main board
circuitry 1. Socket 2 1s associated with the application,
connection endpoint 2, and the client.

[0206] Referring also to FIG. 10A, the protocol stack

thread receives information from the application (along with
a relerence to 1ts associated connection endpoint). In
response to such information, the i1NIC (in response to
instructions of 1ts protocol stack thread) forms a packet by
adding suitable header information (including checksum
calculations) and sends the packet to the client through Port
A. Advantageously, the packet sent by the iNIC 1s received
by the client without intervening network address translation
(“NAT”) or TCP splicing (e.g., without rewriting of
sequence numbers), 1 contrast to the conventional flow
switch architecture of FIG. 1B.

[10207] If the iNIC (in response to instructions of its
balance thread) determines that a source IP address and
source TCP port of a packet (originating from the client and
received at Port A) match a record 1n the local table, the iNIC
sends the packet and a reference to the connection endpoint
(stored in the local table’s matching record) to the protocol
stack thread. After the protocol stack thread processes the
packet, the protocol stack processor sends the payload
information (destined for the connection endpoint’s associ-
ated socket application) to the main board circuitry’s
memory through DMA circuitry (as discussed further here-
inabove 1 connection with FIG. 3). The main board cir-
cuitry adds the payload information to a socket queue
associated with the socket application. Advantageously, the
protocol stack thread processes the packet without perform-

ing NAT or TCP splicing.

10208] FIG. 10B is a sequence diagram of steps for
establishing a forwarded connection between a client and a
server, according to the illustrative embodiments. FIG. 10C
1s a sequence diagram of steps for processing a forwarded
connection with a server, according to the illustrative
embodiments. In FIG. 10B (as in FIG. 10A), a client initiates

a new connection to a server by sending an IP SYN packet
to Port A of the server’s 1iNIC.

[0209] If an application 1s listening for such a connection
attempt, the iINIC (in response to istructions of its balance
thread) creates a connection endpoint and stores a record (in
the temporary table of FIG. 12) which includes a reference
to such connection endpoint. Also, the iNIC (1n response to
instructions of 1ts balance thread) sends the SYN packet and
a reference to the connection endpoint (stored in the tem-
porary table’s record) to the protocol stack thread. In
response to the SYN packet, the protocol stack processor
sends a SYN-ACK response packet (as part of the standard
TCP/IP socket connection setup process) to the client
through Port A without modification.

[10210] In response to the SYN-ACK response packet, the
client sends an ACK packet to the server, thereby acknowl-
edging receipt of the SYN-ACK response packet. The ACK

packet (and subsequent packets from the client) has a source
IP address and source TCP port that match the record in the
temporary table. Accordingly, the 1NIC (in response to
instructions of 1ts balance thread) sends the ACK packet and

Mar. 22, 2007

a reference to the connection endpoint (stored in the tem-
porary table’s matching record) to the protocol stack thread.
In response to such packet and reference, the protocol stack
processor updates the connection endpoint in the 1NIC’s
memory and drops the packet.

[0211] Inthis example, the next packet sent from the client
1s a client request packet. In response to the client request
packet, the iINIC (in response to mstructions of 1ts balance
thread) selects a server to process the request, 1n the same
manner as discussed further hereinabove 1n connection with
FIG. 10A. If the 1NIC selects a different server (1.e., not the
balance thread’s server), the 1NIC muigrates the packet’s
associated connection endpoint to the different server, and
the connection 1s reclassified to being a forwarded connec-
tion.

[0212] In the example of FIG. 10B, the connection is
reclassified to being a forwarded connection. Referring also
to FIG. 14, the connection 1s represented by connection
endpoint 3 (which includes information for the connection)
formed as part of the SYN, SYN-ACK, and ACK packet
processing of FIG. 10B. For the connection, before iNIC 1
receives the client request packet from the client, connection
endpoint 3 1s not yet associated with a socket in the socket
layer of main board circuitry 1, so an application has not yet
been assigned to process the connection.

[0213] For example, if iNIC 1 selects server 2 to process
the client request, iINIC 1 migrates connection endpoint 3 to
INIC 2 1n reclassitying the connection to being a forwarded
connection. For clanty, on iNIC 2, the migrated connection
endpoint 3 1s denoted as connection endpoint B 1n FIG. 14.

[0214] In migrating connection endpoint 3 from iINIC 1 to
INIC 2, 1iNIC 1 prepends connection endpoint 3 with an
1pOS encapsulation header to form an 1pOS encapsulated
packet, which iNIC 1 outputs through its Port B to iNIC 2,
as discussed further herembelow i connection with FIGS.
11A-111. Accordingly, connection endpoint B includes a
copy of information from connection endpoint 3 and addi-
tional information such as server 1’s IP address and the
destination TCP port of the client request. Moreover, in such

an 1pOS encapsulated packet, the encapsulation header’s
type field 1s set to 0xO01.

[0215] Referring to FIGS. 9B and 10C, in response to
receiving such an 1pOS encapsulated packet at Port B of
INIC 2, 1INIC 2 (in response to rules code of its forward
thread) (a) determines that such packet 1s a migration of a
connection endpoint, (b) unpacks the packet, and (¢) sends
the connection endpoint to the protocol stack thread. Also, in
such a situation, iINIC 2 (a) establishes connection endpoint
B and (b) 1n response to instructions of 1ts protocol stack
thread, sends a request to main board circuitry 2. In response
to such request, main board circuitry 2 mitiates the forma-
tion of socket B within the socket layer of main board
circuitry 2.

[0216] Socket B is associated with the application, con-
nection endpoint B, and the client. In such a situation, the
protocol stack processor of INIC 2 establishes the actual
connection to the application through the socket layer of
main board circuitry 2 by storing the socket reference within
connection endpoint B and storing the connection endpoint
reference within socket B. Moreover, in the forward-connect
table of INIC 2, 1t stores a record which includes a reference
to connection endpoint B.

US 2007/0067046 Al

10217] After storing such record in its forward-connect
table, 1INIC 2 (in response to instructions of 1its forward
thread) forms an encapsulated acknowledgement packet and
outputs such packet to iINIC 1 through Port B as a verifica-
tion that the connection endpoint was successiully migrated
to 1NIC 2. In such a packet, the encapsulation header’s type
field 1s set to Ox03. The encapsulated acknowledgement
packet 1s received by iINIC 1 (at 1ts Port B), which processes
the packet as discussed further hereinabove in connection
with FIG. 9B (including moving the associated connection
endpoint record from the temporary table of INIC 1 to the

forward table of iINIC 1).

10218] The client is unaware of the connection endpoint
migration from 1INIC 1 to 1NIC 2. Accordingly, the client
sends packets (of the connection) addressed to server 1
instead of server 2. Examples of such packets (originating
from the client) include TCP/IP packets with PUSH, ACK or
FIN flags set. Referring also to FIG. 9A, (a) such a packet’s
source IP address and source TCP port match a record 1n the
forward table of iNIC 1, (b) 1n response to such match, iNIC
1 encapsulates such packet with an encapsulation header
(whose type field 1s set to 0x02), as discussed further
hereinbelow 1n connection with FIGS. 11A-111, and (c) the
torwarding processor of 1INIC 1 sends (through Port B) the
encapsulated packet to iINIC 2, which processes (e.g., per-
forms an operation in response to) such packet as discussed
turther heremnabove 1n connection with FIG. 9B. Advanta-
geously, 1 the illustrative embodiments, the original IP
packet 1s not rewritten (e.g., without NAT or TCP splicing).

10219] Likewise, the client receives packets (of the con-
nection) which appear to be sent from server 1 instead of
server 2 (even though such packets bypass server 1 and,
instead, are sent from server 2). Server 2 achieves such a
result by specitying (in such packets) a source IP address of
server 1 instead of server 2, plus the sequence numbers
associated with the connection. By reading the associated
connection endpoint (which includes the addresses of server
1 and the client, plus the sequence numbers associated with
the connection), server 2’s 1INIC avoids NAls and TCP
splicing, because server 2’s 1INIC forms a response packet
according to the addresses of server 1 and the client and
sequence numbers associated with the connection between
the client and server 2.

[0220] For example, referring to FIG. 10C, 1n server 2,
packets are sent to the protocol stack thread from an appli-
cation (en route to Port A of iNIC 2). As discussed herein 1n
connection with FIG. 13, the socket includes a connection
endpoint reference, so a packet sent to the protocol stack
thread 1s accompanied by a reference to the packet’s asso-
ciated connection endpoint, and the protocol stack thread
does not perform connection endpoint searching. Moreover,
in processing such a packet, the protocol stack processor
sends the packet to a client through Port A without TCP
splicing or packet rewriting. Advantageously, the packet 1s
received by the client without interveming TCP splicing or
NAT, in contrast to the conventional flow switch architecture

of FIG. 1B.

[0221] For establishing a connection between a client and
a server’s socket application, the illustrative embodiments
achieve various advantages over conventional techniques.
According to one conventional technique, a content aware
flow switch performs a “‘connection spoof” in which a

Mar. 22, 2007

connection 1s established between the client and the flow
switch. Such a connection (between the client and the flow
switch) 1s conventionally referred to as a delayed bind and
operates to delay selection of a server 1n the server farm until
the client request packet 1s received by the tlow switch.

10222] After the flow switch receives the client request
packet, the flow switch selects a server to process the client
request. After selecting a server, the flow switch establishes
another connection between the flow switch and the selected
server. Accordingly, for processing the client request, the
flow switch maintains two connections, namely (a) a first
connection between the client and the tlow switch and (b) a
second connection between the tlow switch and the selected
SErver.

[10223] With such a conventional technique, packets
between the client and the selected server are passed through
the flow switch. The client does not establish a direct
connection with the selected server. In such a situation, the
flow switch manmipulates (e.g., rewrites) the packets 1n the
course of performing “translation” operations such as TCP
splicing, NATs, and checksum calculations.

10224] By comparison, the illustrative embodiments do
not perform such a “connection spool.” Instead, the illus-
trative embodiments perform a delayed connection endpoint
to application socket bind. Advantageously, after performing
such bind (or *“association”) between the connection end-
point and application socket, the illustrative embodiments

send packets between the client and the selected server
without TCP splicing or NATsS.

[0225] Even after performing a connection endpoint to
application socket bind in response to a first request packet
(as discussed further hereinabove in connection with FIGS.
10A-10C), a server’s 1NIC (in response to 1nstructions of 1ts
1pOS) remains operable to selectively migrate the connec-
tion endpoint during the same connection (e.g., before
closing the TCP or UDP connection). For example, even
alter performing a connection endpoint to application socket
bind, a first server’s iNIC (1n response to instructions of its
1pOS) remains operable to selectively migrate the connec-
tion endpoint to a second server’s iINIC 1n response to (a) the
request packet(s) recerved from the client, (b) the synchro-
nized state information (which 1s discussed further herein-
above such as 1n connection with FIG. 6) of servers 1n the
server farm, and/or (¢) a command received at Port B of the
first server’s iNIC from a system administrator (e.g., in the
course ol performing server maintenance).

[10226] In a first example, during a connection, if a client
(1n response to 1instructions of its application, such as an
Internet gaming application) sends first and second request
packets to a first server, (a) 1n response to the first request
packet, the first server’s iNIC (1n response to instructions of
its 1pOS) 1s operable to selectively classify the connection as
a local connection and process 1t accordingly, as discussed
further hereinabove in connection with FIGS. 10A and 14,
and (b) in response to the second request packet, the first
server’s INIC (1in response to instructions of its 1pOS)
remains operable to selectively migrate the connection end-
point to a second server’s 1INIC.

10227] After performing a connection endpoint to appli-
cation socket bind, 1n migrating the connection endpoint
from the first server’s iNIC to the second server’s iNIC, the

US 2007/0067046 Al

first server’s iINIC: (a) removes the association between (or
“disassociates™) the connection endpoint and the first serv-
er’s application socket; and (b) through Port B, migrates the
connection endpoint to the second server’s INIC, as dis-
cussed further herein in connection with FIGS. 10B-10C, 13
and 14.

[0228] In a second example, during a connection, in
response to a request packet of the connection, a first
server’s INIC (in response to instructions of its 1pOS) 1s
operable to selectively migrate the connection endpoint to a
second server’s INIC. In such a situation, the second server’s
1INIC performs a connection endpoint to application socket
bind at the second server. Subsequently, during the connec-
tion, the second server’s iINIC 1s operable to selectively: (a)
maintain the connection endpoint to application socket bind
at the second server; or (b) 1n response to a request from the
first server’s INIC (via its Port B) to the second server’s
INIC (via its Port B), or vice versa, migrate the connection
endpoint back to the first server’s iNIC; or (¢) 1n response to
a request from the first server’s iINIC (via 1ts Port B) to the
second server’s INIC (via 1ts Port B), or vice versa, migrate
the connection endpoint to a third server’s iNIC.

10229] In migrating the connection endpoint from the
second server’s INIC back to the first server’s INIC, the
second server’s INIC: (a) removes the association between
the connection endpoint and the second server’s application
socket; (b) removes the matching connection endpoint
record 1n the forward-connect table of the second server’s
INIC; and (c) through Port B, migrates the connection
endpoint to the first server’s 1INIC, similar to the manner
discussed further herein in connection with FIGS. 10B-10C,
13 and 14. However, in such migration, the {first server’s
1INIC stores the matching connection endpoint record in 1ts
local table instead of its forward-connect table. Moreover,
the first server’s INIC removes the matching record 1n the
forward table of the first server’s iNIC.

10230] In migrating the connection endpoint from the
second server’s INIC to a third server’s 1NIC, the second
server’s 1INIC: (a) removes the association between the
connection endpoint and the second server’s application
socket; (b) removes the matching connection endpoint
record 1n the forward-connect table of the second server’s
1INIC; (¢) modifies the connection endpoint to specity the IP
address and TCP port of the third server’s iNIC 1instead of
the second server’s iINIC and (d) through Port B, migrates
the connection endpoint to the third server’s iNIC, similar to
the manner discussed further herein in connection with
FIGS. 10B-10C, 13 and 14. Moreover, the first server’s iNIC
(a) modifies the matching record in the forward table of the
first server’s 1NIC to specily the IP address and TCP port of
the third server’s 1iNIC 1instead of the second server’s iINIC
and (b) modifies the connection endpoint to specily the IP
address and TCP port of the third server’s iNIC 1nstead of
the second server’s iNIC.

Description of IP OS Encapsulation Protocol

10231] FIG. 11A 1s a conceptual illustration of a conven-
tional Ethernet encapsulation header. As shown 1n FIG. 11A,
the header includes 14 bytes of information. The first field (6
bytes) specifies a 48-bit destination address, the second field
(6 bytes) specifies a 48-bit source address, and the last field
(2 bytes) specifies a type of mformation within the packet

Mar. 22, 2007

(1.e., the packet to which the header 1s appended). Although
the header of FIG. 11A is conventional, it has an unconven-
tional aspect mn which a type of 0x007 indicates that the
packet includes 1pOS encapsulation information.

10232] In the illustrative embodiments, the ipOS encap-
sulation protocol 1s advantageous for sending packets
through Port B from a first server in the server farm to a
second server 1n the server farm. The first server (with 1ts
1INIC’s forwarding processor) splices encapsulation headers
to packets that are sent through its iINIC’s Port B to the
second server’s INIC. For example, as discussed turther
hereinabove 1n connection with FIGS. 10B and 14, in
migrating a connection endpoint from a first iNIC (of a first
server) to a second INIC (of a second server), the first iNIC
(with 1ts forwarding processor) prepends the connection

endpoint with an 1pOS encapsulation header to form an 1pOS
encapsulated packet, which the first iNIC sends through 1ts
Port B to the second iNIC.

10233] In the illustrative embodiments, iNICs communi-
cate packets to one another through Port B according to the
Ethernet protocol. Accordingly, a packet encapsulated
according to the 1pOS encapsulation protocol (“1pOS encap-
sulated packet”) 1s further encapsulated by an FEthemet
encapsulation header that specifies a type of 0x007. Addi-
tional elements of the 1pOS encapsulation protocol are
discussed hereinbelow 1n connection with FIGS. 11B-111.

10234] FIG. 11B is a conceptual illustration of an ipOS
encapsulation header, according to the 1llustrative embodi-
ments. As shown 1n FIG. 11 B, the header includes 16 bytes
of information. Such a header i1s useful for migrating a
connection endpoint from a first iNIC (of a first server) to a
second 1INIC (of a second server).

[0235] In the header of FIG. 11B, the first field (4 bytes)
specifies a source IP address of a client, and the second field
(2 bytes) specifies a source port (which 1s a TCP or UDP
port) of the client application which 1s executed by the
client. The third field (4 bytes) specifies a destination IP
address of the second server, and the fourth field (2 bytes)
specifies a destination port (which 1s a TCP or UDP port) of
the server application which 1s executed by the second
server. The fifth field (1 byte) specifies a type of information
within the packet (1.e., the packet to which the header 1s
appended).

[0236] For example, a type of Ox01 indicates that the
packet includes connection endpoint information (e.g., see
FIGS. 11C, 11D, 11E and 11F) that 1s being migrated to the

second server. By comparison, a type of 0x02 indicates that
the packet includes an IP packet (e.g., see FIGS. 11G and
11H). A type of 0x03 indicates that the packet includes a
verification that a connection endpoint was successiully
migrated to the first server’s iNIC (e.g., see FIG. 111).

10237] Also, in the header of FIG. 11B, the sixth field (1

byte) specifies a type of protocol for communicating infor-
mation between a client and a server. For example, a
protocol of O0x01 indicates that the IP packet includes a TCP
payload. By comparison, a protocol of O0x02 indicates that
the IP packet includes a UDP payload.

[0238] Finally, in the header of FIG. 11B, the last field (2
bytes) specifies a checksum for veritying the packet header.

[10239] If a connection endpoint is migrated from a first
INIC (of a first server) to a second iNIC (of a second server),

US 2007/0067046 Al

the connection endpoint specifies the (a) IP address of the
client, (b) port (which 1s a TCP or UDP port) of the client
application which 1s executed by the client, (¢) IP address of
the first server, (d) port (which 1s a TCP or UDP port) of the
associated server application (*“first server application™) that
1s executed by the first server (“first server application’s
port”), (e) IP address of the second server, and (1) port
(which 1s a TCP or UDP port) of the associated server
application (“second server application”) that 1s executed by
the second server (“second server application’s port”). The
first server application 1s not necessarily identical to the
second server application, and the first server application’s
port 1s not necessarily 1dentical to the second server appli-
cation’s port. The connection endpoint 1s identifiable 1n
response to the (a) IP address of the client, (b) port (which
1s a TCP or UDP port) of the client application which 1is
executed by the client, (¢) IP address of the second server,
and (d) port (which 1s a TCP or UDP port) of the server

application which 1s executed by the second server.

10240] Accordingly, the forward table (FIG. 12) includes
suilicient information for identifying the connection end-
point associated with the packet. In that manner, such
information operates as a reference to the connection end-
point. Likewise, suflicient information (for operating as a
reference to the connection endpoint associated with the
packet) 1s included within the single 1pOS encapsulation
header of FIG. 11B, so that the second iNIC i1dentifies the
connection endpoint in response to the single 1pOS encap-
sulation header. In that manner, the second 1INIC (with 1ts
protocol stack processor 1n response to instructions of its
protocol stack thread) processes the packet more efliciently
in accordance with the packet’s associated connection end-
point. Moreover, by sending packets from the first iNIC’s
Port B to the second 1NIC’s Port B, the second iNIC more
readily and efliciently distinguishes between packets that are
received from the first iNIC (through Port B) versus packets
that are received from a client (through Port A).

10241] The 1ipOS encapsulation header of FIG. 11B is
superior to IP-IP encapsulation. For example, with IP-IP
encapsulation, the second 1NIC would execute additional
protocol stack instructions to i1dentity the connection end-
point. By comparison, with the 1pOS encapsulation header
of FIG. 11B, the network processor (discussed turther here-
imnabove, such as in connection with FIGS. SA-5C, 8 and
9A-9C) 1dentifies the connection endpoint associated with
the packet. Accordingly, the network processor sends the
packet and a reference to the connection endpoint to the
protocol stack processor (which executes the protocol stack
thread), as discussed further hereinabove. In that manner, the
protocol stack processor’s efliciency 1s enhanced.

10242] FIG. 11C is a conceptual illustration of ipOS con-
nection information for migration of a UDP connection
endpoint, according to the illustrative embodiments. As
shown 1n FIG. 11C, the information includes 6 bytes. The
first field (4 bytes) specifies a source IP address of a first
server, and the second field (2 bytes) specifies a source UDP
port of the first server, which received the SYN packet from
the client. The 1pOS encapsulation header, together with the
UDP 1pOS connection information of FIG. 11C, 1s suflicient
information for a second server (receiving such information)
to establish a UDP connection endpoint.

10243] FIG. 11D 1is a conceptual illustration of 1pOS
connection information for migration of a TCP connection

Mar. 22, 2007

endpoint, according to the illustrative embodiments. As
shown 1n FIG. 11D, the information includes 146 bytes. The
first field (4 bytes) specifies a source IP address of a first
server, and the second field (2 bytes) specifies a source TCP
port of the first server, which received the SYN packet from
the client. The last field (140 bytes) specifies additional
information for the TCP connection endpoint, such as infor-
mation for output sequence variables, receive sequence
variables, transmit timing variables, out-of-bound variables,
and other suitable information. The 1pOS encapsulation
header, together with the TCP 1pOS connection information
of FIG. 11D, 1s sufficient information for a second server
(receiving such mformation) to establish a TCP connection
endpoint.

10244] FIG. 11E is a conceptual illustration of an 1pOS
TCP connection endpoint packet, according to the illustra-

[1

tive embodiments. As shown in FIG. 11E, the packet
includes 176 bytes. The first field (14 bytes) specifies an
Ethernet encapsulation header (that specifies a type of
0x007) according to FIG. 11A, and the second field (16
bytes) specifies an 1pOS encapsulation header according to
FIG. 11B. The last field (146 bytes) specifies TCP 1pOS
connection information according to FIG. 11D. In the packet
of FIG. 11E, the 1pOS encapsulation header specifies a type
of O0x01 and a protocol of 0x01.

[10245] FIG. 11F 1s a conceptual illustration of an 1ipOS
UDP connection endpoint packet, according to the illustra-
tive embodiments. As shown i FIG. 11F, the packet
includes 36 bytes. The first field (14 bytes) specifies an
Ethernet encapsulation header (that specifies a type of
0x007) according to FIG. 11A, and the second field (16
bytes) specifies an 1pOS encapsulation header according to
FIG. 11B. The last field (6 bytes) specifies UDP 1pOS
connection information according to FIG. 11C. In the packet
of FIG. 11F, the 1pOS encapsulation header specifies a type
of O0x01 and a protocol of 0x02.

10246] FIG. 11G is a conceptual illustration of a packet
having an IP/TCP payload, according to the illustrative
embodiments. As shown 1 FIG. 11G, the packet includes 70
bytes, plus the number of bytes of information in the TCP
payload. The number of bytes of mformation in the TCP
payload varies according to the type and protocol that are
specified by the 1pOS encapsulation header. In the packet of
FIG. 11G, the first field (14 bytes) specifies an Ethernet
encapsulation header (that specifies a type of 0x007) accord-
ing to FIG. 11A, and the second field (16 bytes) specifies an
1pOS encapsulation header according to FIG. 11B. Also, 1n
the packet of FIG. 11G, the 1pOS encapsulation header
specifies a type of 0x02 and a protocol of 0x01.

10247] FIG. 11H 1s a conceptual illustration of a packet
having an IP/UDP payload, according to the illustrative
embodiments. As shown i FIG. 11H, the packet includes 58
bytes, plus the number of bytes of information in the UDP
payload. The number of bytes of information 1n the UDP
payload varies according to the type and protocol that are
specified by the 1pOS encapsulation header. In the packet of
FIG. 11H, the first field (14 bytes) specifies an Ethernet
encapsulation header (that specifies a type o1 0x007) accord-
ing to FIG. 11A, and the second field (16 bytes) specifies an
1pOS encapsulation header according to FIG. 11B. Also, 1n
the packet of FIG. 11H, the 1pOS encapsulation header
specifies a type of 0x02 and a protocol of 0x02.

US 2007/0067046 Al

10248] FIG. 111 is a conceptual illustration of a connection
endpoint migration acknowledgement packet, which 1s a
verification that a connection endpoint was successtully
migrated to the iNIC of the server which sent the connection
endpoint migration acknowledgement packet, according to
the illustrative embodiments. As shown in FIG. 111, the
packet imncludes 30 bytes. In the packet of FIG. 111, the first
field (14 bytes) specifies an Ethernet encapsulation header
(that specifies a type of 0x007) according to FIG. 11 A, and
the second field (16 bytes) specifies an 1pOS encapsulation
header according to FIG. 11B. Also, in the packet of FIG.

111, the 1pOS encapsulation header specifies a type of 0x03.

Description of Server Farm Resource Usage
Enhancements

10249] FIG. 15 1s a block diagram of a server farm
including a deployment workstation for deploying applica-
tion processes and associated software component objects to
servers within the server farm, according to the illustrative
embodiments. The illustrative embodiments achieve an
improved overall use of the server farm’s resources for
applications. Advantageously, such an improved overall use
of the server farm’s resources 1s optional for other portions
of the illustrative embodiments (e.g., client request load-
balancing).

[0250] The server farm architecture of the illustrative
embodiments (e.g., FIG. 2A) enables an application-aware
server farm. Such an application-aware server farm includes
a distributed system of 1INICs (executing the 1pOS) that are
aware ol the state of applications executing on servers
within the server farm, as discussed further hereinabove 1n
connection with the Synch Port. The iNICs execute the 1pOS
as a distributed system (“1pOS distributed operations sys-
tem”) in coordination with one another to 1improve overall
use of the server farm’s resources.

[0251] In the illustrative embodiments, the 1pOS distrib-
uted operations system achieves two primary objectives in
deploying and executing applications within the server farm.
First, the 1pOS distributed operations system achieves an
improved dynamic deployment of socket application pro-
cesses on the server farm. Accordingly, the 1pOS distributed
operations system selects a server for executing a particular
application process, along with the timing of such execution.

[0252] Second, with the ipOS distributed operations sys-
tem, application developers have a platform to deploy and
execute soltware component objects in support of socket
applications. With the 1pOS distributed operations system,
the processor of an individual server’s main board circuitry
and associated resources operate efliciently 1n relation to the
entire server farm. Accordingly, the 1pOS distributed opera-
tions system architecture achieves load-balancing of appli-
cation process resources (and their associated software com-
ponent objects) within the server farm.

10253] Advantageously, the illustrative embodiments are
compatible with conventional techmques 1n development of
applications (and associated soltware component objects)
deployed within a server farm for IP networks. A conven-
tional development cycle involves the development of an
application with reusable software objects (or component
objects) that are deployed in a middleware component
model, such as the development of an application process
that calls service objects deployed 1n a middleware compo-

Mar. 22, 2007

nent model. Commercially available embodiments of
middleware component models include Microsoit’s Trans-

action Server (available from www.microsoft.com) and
BEA’s WebLogic Server (available from www.BEA.com).

[0254] As shown in FIG. 15 for an illustrative embodi-
ment, the server farm includes an additional workstation,
denoted as a deployment workstation. Nevertheless, the
addition of the deployment workstation 1s optional 1 a
situation where a server in the server farm performs the same
or similar operation of the deployment workstation. The
deployment workstation operates as a central location (or
repository) for deploying application processes and associ-
ated software component objects within the server farm.

[0255] In the deployment workstation, ipOS deployment
solftware includes the repository of application process
executables (1.e., software mstructions that are executable by
a processor) and associated software component object
executables. In response to instructions of the 1pOS deploy-
ment software, the deployment workstation (a) selectively
groups various application process executables and associ-
ated component object executables with one another into
application packages and (b) makes the application packages
available for deployment to servers in the server farm. The
deployment workstation deploys an executable to a server 1n
response to a request from either a user (e.g., network
administrator), the server’s iINIC (in response to mstructions
of 1ts 1pOS), or another server’s 1INIC (in response to
istructions of 1ts 1pOS). For example, the deployment
workstation deploys applications to servers within the server
farm 1n accordance with FIG. 2D and 1ts associated discus-
S1011.

[0256] In FIG. 15, servers 1 through n in the server farm
are configurable as shown mn FIGS. 2A-2C, but actual
connections are not shown 1 FIG. 15 for clarity. In the
example of FIG. 15, the deployment workstation 1s coupled
to servers 1 through n through the deployment workstation’s
INIC. Moreover, through servers 1 through n, the deploy-
ment workstation 1s connected to an IP network.

[0257] The processor of the deployment workstation’s
main board circuitry executes the 1pOS deployment soft-
ware, which 1s written with conventional programming
techniques. The 1pOS deployment software includes soft-
ware lor managing application process executables and
associated software component object executables (e.g.,
application packages) to improve overall use of the server
farm’s resources. For example, 1n response to istructions of
the 1pOS deployment software, the deployment workstation
deploys the application process executables and component
object executables (e.g., an application package) to servers
in the server farm.

[0258] In performing its operations, the deployment work-
station (1n response to instructions of the 1pOS deployment
soltware) communicates indirectly with an 1pOS component
object model which 1s executed by the processor of a
server’s main board circuitry. In response to 1nstructions of
either (a) the 1pOS deployment software or (b) the 1pOS of
a server’s INIC, the server receives and stores copies of
application process executables and component object
executables (e.g., application packages) from the deploy-
ment workstation. FIG. 15 shows two examples of an
application package being sent from the deployment work-
station to an 1pOS component object model.

US 2007/0067046 Al

[0259] As shown by solid arrows in FIG. 15, in response
to 1nstructions of the 1pOS deployment software, the deploy-
ment workstation’s main board circuitry sends a first request
(e.g., for sending an application package) to the deployment
workstation’s iINIC (e.g., triggered 1n response to a request
from a network administrator). In response to the first
request, the deployment workstation’s 1NIC (in response to
istructions of 1ts 1pOS) sends an associated second request
to server 1’s iNIC. In response to the second request, server
1’s iINIC (in response to istructions of 1its 1pOS) sends an
associated third request to the 1pOS component object model
of the main board circuitry of server 1.

[0260] After the third request is processed by the ipOS
component object model of the main board circuitry of
server 1, the deployment workstation (in response to mnstruc-
tions of the 1pOS deployment soiftware) sends the applica-
tion package to the 1pOS component object model of server
1 through the respective 1NICs of the deployment worksta-
tion and server 1. The 1NIC of server 1 stores a record of the
availability of the executables (e.g., one or more application
processes and/or component objects). Similarly, the deploy-
ment workstation (in response to instructions of the 1pOS
deployment software) sends process performance mforma-
tion to notity 1NICs about application processes and com-
ponent objects that are stored by particular servers for
execution.

10261] The deployment workstation sends such process
performance information to the iNICs of servers within the
server farm, in addition to the process instances that are
output during synchronization (which 1s discussed further
hereinabove such as 1n connection with FIG. 6). For
example, the process instances represent a current state of
processes that are already being executed by servers 1n the
server farm. During synchromization, the process instances
and process performance information are advertised by
INICs (of servers in the server farm) to one another, as

discussed further hereinabove such as 1n connection with
FIG. 6.

[0262] As shown by dashed arrows in FIG. 15, the iNIC of
server n (1n response to instructions of 1ts 1pOS) sends a first
request (e.g., for sending an application package) to the
deployment workstation’s iINIC (e.g., triggered 1n response
to an application load-balancing process of the 1pOS of
server n’s 1INIC). In response to the first request, the deploy-
ment workstation’s 1INIC (in response to instructions of its
1pOS) sends an associated second request to the deployment
workstation’s main board circuitry. In response to the second
request and instructions of the 1pOS deployment software,
the deployment workstation’s main board circuitry sends an
associated third request (e.g., for sending the application
package) to the deployment workstation’s 1NIC.

[0263] In response to the third request, the deployment
workstation’s INIC (1in response to mstructions of its 1pOS)
sends an associated fourth request to server 2’s iNIC. In
response to the fourth request, server 2’s iINIC (1n response
to 1structions of 1ts 1pOS) sends an associated fifth request
to the 1pOS component object model of the main board
circuitry of server 2.

10264 After the fifth request is processed by the 1ipOS

component object model of the main board circuitry of
server 2, the deployment workstation (in response to instruc-
tions of the 1pOS deployment software) sends the applica-

Mar. 22, 2007

tion package to the 1pOS component object model of server
2 through the respective iNICs of the deployment worksta-
tion and server 2. The 1NIC of server 2 stores a record of the
availability of the executables (e.g., one or more application
processes and/or component objects). Similarly, the deploy-
ment workstation (in response to instructions of the 1pOS
deployment software) sends process performance iforma-
tion to notity 1NICs about application processes and com-
ponent objects that are stored by particular servers for
execution.

[0265] FIG. 16 is a block diagram of servers within a
server farm, according to an illustrative embodiment 1n
which a server 1 selectively initiates execution of (or
“spawns’’) an application process that 1s stored by a server
2. FIG. 17 1s a block diagram of servers within a server farm,
according to an illustrative embodiment 1n which a server 1
selectively spawns an object that 1s stored by a server 2. In
such illustrative embodiments, the 1pOS distributed opera-
tions system performs operations for improving overall use
of the server farm’s resources for application processes and
objects.

[0266] In FIG. 16, server 1 executes m application pro-
cesses (where m 1s an integer number). The main board
circuitry’s processor (1n response to mstructions of 1ts OS)
manages the state of such application processes.

[0267] In the example of FIG. 16, the iNIC of server 1 (in
response to mstructions of its 1pOS) determines whether to
spawn an application process (e.g., process 1) on another
server (e.g., server 2), as for example to support additional
resources for process 1 executing on server 1. The iNIC of
server 1 (in response to nstructions of its 1pOS) makes such
determination in response to mformation stored within 1ts
server state table (see FIG. 12). In response to such infor-
mation, the iINIC (in response to instructions of its 1pOS)
performs load-balancing of application processes within the

server farm 1n response to the synchronized state informa-
tion.

[0268] As shown in FIG. 16, in support of additional
resources, the 1INIC of server 1 sends a request to the 1NIC
of server 2 to spawn process 1 on server 2. In response to the
request, the iNIC of server 2 (1in response to instructions of
its 1pOS) sends the request to the 1pOS component object
model of server 2 to spawn process 1. Accordingly, the 1pOS
component object model sends the request to the OS which
1s executing on the main board circuitry of server 2, and the
OS spawns process 1 (e.g., loads the executable of process
1 1into the main board circuitry’s memory for execution) on
server 2 (which executes n application processes, where n 1s
an integer number).

[10269] Conventional application processes are built upon
service objects. In the example of FIG. 17, the 1pOS com-
ponent object model of server 1 stores information for
execution ol g objects, where g 1s an integer number. As
shown 1n FIG. 17, process 1 of server 1 sends a request to
the 1pOS component object model of server 1 for execution
of an object 1. For example, object 1 may perform a database
operation.

[0270] In the example of FIG. 17, the 1pOS component

object model of server 1 determines whether to spawn object
1 on server 1 or another server (e.g., server 2). For making
such determination, the 1NIC (1in response to instructions of

US 2007/0067046 Al

its 1pOS) sends mnformation to the 1pOS component object
model, such as (a) the state of other servers 1n the server
farm and (b) whether particular servers store particular
objects. In response to such information, the 1pOS compo-
nent object model performs load-balancing of objects within
the server farm 1n response to the synchronized state infor-
mation.

[10271] If the ipOS component object model of server 1
determines to spawn object 1 on server 2, it sends a request
to the iINIC of server 1. Accordingly, the iNIC of server 1 (in
response to 1nstructions of its 1pOS) sends the request to the
INIC of server 2. In response to the request, the iINIC of
server 2 (1n response to instructions of 1ts 1pOS) sends the
request to the 1pOS component object model of server 2
(which stores information for execution of r objects, where
r 1s an integer number), and the 1pOS component object
model of server 2 spawns object 1 (e.g., loads the executable
of object 1 into the main board circuitry’s memory for
execution) on server 2 (on behalf of process 1 of server 1),
independent of a type of application that 1s associated with
the object.

10272] The respective iINICs of server 1 and server 2
coordinate the communication of information between pro-
cess 1 of server 1 and object 1 executing on server 2.
Accordingly, information from process 1 to object 1 1s sent
from process 1 to object 1 through the iNIC of server 1 and
the INIC of server 2, and vice versa.

10273] With the architecture of the 1pOS distributed opera-
tions system, redundant service objects (e.g., shadow
objects) are executable by one or more servers (within the
server farm). A shadow object 1s a duplicate of a primary
service object that 1s spawned by an application process.
During execution, the shadow object maintains the same
state as the primary service object.

10274] With a shadow object, a server failure is more
casily recoverable. For example, 11 execution of a primary
service object fails (e.g., due to a fault in the primary service
object’s server), the shadow object 1s available to replace the
primary service object in continuing such execution. This
feature 1s especially advantageous for service objects that
maintain state during an extended period of time (e.g.,
multi-player game objects).

[0275] Referring to FIG. 15, the deployment workstation
(in response to instructions of the 1pOS deployment soft-
ware) sends a request to a server for deploying a shadow
object. In response to such request, the server deploys the
shadow object with the server’s 1pOS component object
model. For example, referring to FIG. 17, even 11 the 1pOS
component object model of server 1 determines to spawn a
primary service object 1 on server 1, the 1pOS component
object model of server 1 i1s operable to spawn a shadow
object 1 on server 2, thereby achieving a level of fault
tolerance.

10276] During execution, an application process request-
ing a service object 1s unaware that a shadow object has been
spawned (and likewise 1s unaware of where the shadow
object has been spawned). On behall of the application
process, the 1pOS component object model 1s responsible for
spawning and maintaining primary service objects and
shadow objects. For the 1pOS component object model’s
determination of when and where to spawn a shadow object,

Mar. 22, 2007

the 1INIC (in response to instructions of 1ts 1pOS) sends
information to the 1pOS component object model, such as (a)
the state of other servers in the server farm and (b) whether
particular servers store particular objects.

Description of Computer System

10277] Each computer system of the illustrative embodi-
ments includes (a) optionally, mput devices for receiving
information from a human user, (b) optionally, a display
device (e.g., a conventional electronic cathode ray tube
(“CRT™) device) for displaying imnformation to the user, (c)
a computing device (e.g., iINIC) for executing and otherwise
processing instructions, (d) optionally, a nonvolatile storage
device (e.g., a hard disk drive or other computer-readable
medium (or apparatus), as discussed further hereinbelow)
for storing information, and (e¢) various other electronic
circuitry for performing other operations of the computer
system.

[0278] For example, the computing device includes a
memory device (e.g., random access memory (“RAM™)
device and read only memory (“ROM”) device) for storing
information (e.g., mstructions executed by the computing
device and data operated on by the computing device 1n
response to such instructions). Optionally, the computing
device 1s connected to the mput devices, the display device,
and the computer-readable medium. The illustrative
embodiments are independent of current computer architec-
tures and methods of connecting devices (e.g., PCI bus).
Moreover, the 1llustrative embodiments are compatible with

emerging techniques for connecting computing devices
(¢.g., Infiniband).

[10279] If the computing device is connected to the display
device, the display device displays visual images 1n response
to signals from the computing device, and the user views
such visual images. If the computing device 1s connected to
the input devices, the user operates the input devices 1n order
to output information to the computing device, and the
computing device receives such information from the input
devices.

[0280] The input devices include, for example, a conven-
tional electronic keyboard or keypad and a pointing device
such as a conventional electronic “mouse,” rollerball, or
light pen. The user operates the keyboard or keypad to
output alphanumeric text information from the keyboard. If
the computing device 1s connected to the pointing device,
the user operates the pointing device to output cursor-control
information to the computing device, and the computing
device receives such cursor-control information from the
pointing device.

10281] If the computing device is connected to (or
includes) a computer-readable medium, the computing
device and computer-readable medium are structurally and
functionally interrelated with one another as discussed fur-
ther herembelow. The computer-readable medium stores (or
encodes, or records, or embodies) functional descriptive
material (e.g., including but not limited to software (also
referred to as computer programs or applications) and data
structures). Such functional descriptive material imparts
functionality when encoded on the computer-readable
medium. Also, such functional descriptive matenal 1s struc-
turally and functionally imterrelated to the computer-read-
able medium.

US 2007/0067046 Al

[10282] Within such functional descriptive material, data
structures define structural and functional interrelationships
between such data structures and the computer-readable
medium (and other aspects of the computing device and the
computer system). Such interrelationships permit the data
structures’ functionality to be realized. Also, within such
functional descriptive material, computer programs define
structural and functional interrelationships between such
computer programs and the computer-readable medium (and
other aspects of the computing device and the computer
system). Such interrelationships permit the computer pro-
grams’ Tunctionality to be realized.

[0283] For example, the computing device reads (or
accesses, or copies) such functional descriptive matenal
from the computer-readable medium into the memory
device of the computing device, and the computing device
performs its operations (as discussed elsewhere herein) in
response to such material which 1s stored in the memory
device of the computing device. More particularly, the
computing device performs the operation of processing a
computer application (that 1s stored, encoded, recorded or
embodied on a computer-readable medium) for causing the
computing device to perform additional operations (as dis-
cussed elsewhere herein). Accordingly, such functional
descriptive material exhibits a functional interrelationship
with the way 1n which the computing device executes its
processes and performs 1ts operations.

10284] Further, the computer-readable medium is an appa-
ratus from which the computer application 1s accessible by
the computing device, and the computer application 1s
processable by the computing device for causing the com-
puting device to perform such additional operations. In
addition to reading such functional descriptive matenal from
the computer-readable medium, the computing device 1s
capable of reading such functional descriptive material from
(or through) a network which 1s also a computer-readable
medium (or apparatus). Moreover, the memory device of the

computing device 1s itsell a computer-readable medium (or
apparatus).

10285] The various embodiments described above can be
combined to provide further embodiments. All of the above
U.S. patents, U.S. patent application publications, U.S.
patent applications, foreign patents, foreign patent applica-
tions and non-patent publications referred to 1n this speci-
fication and/or listed 1n the Application Data Sheet, includ-

ing but not limited to: U.S. Provisional Patent Application
No. 60/257,456, filed Dec. 21, 2000; U.S. patent application

Nos. 09/873,018, filed Jun. 1, 2001, 09/872,329, filed June
1, 2001; Ser. No. 09/872,539, filed Jun. 1, 2001; Ser. No.
09/873,019, filed Jun. 1, 2001; Ser No. 09/872,376, filed
Jun. 1, 2001; Ser. No. 09/872,372, filed Jun. 1, 2001; Ser.
No. 09/872,332, filed Jun. 1, 2001; Ser. No. 09/872,081,
filed Jun. 1, 2001; and Ser. No. 11/265,558, filed Nov. 1,
2003, are incorporated herein by reference, 1n their entirety.

10286] From the foregoing it will be appreciated that,
although specific embodiments of the invention have been
described herein for purposes of illustration, various modi-
fications may be made without deviating from the spirit and
scope of the invention. Accordingly, the mmvention 1s not
limited except as by the appended claims.

Mar. 22, 2007

1. An mformation processing system, comprising:
a first computing device configured to:

through a first network, receive an mformation packet
originating from a client;

in response to receiving the mformation packet, 1den-
tify a computing device that stores a data structure of
a connection with the client;

when the 1dentified computing device 1s the first com-
puting device, execute a soltware application asso-
ciated with the information packet; and

when the identified computing device 1s a second
computing device, output the information packet
through a second network to the second computing
device for executing the software application asso-
ciated with the information packet, such that the
output information packet bypasses the first network.

2. The system of claim 1 wherein the first computing
device comprises a network interface card.

3. The system of claiam 1 wherein the first network
includes a local area network.

4. The system of claim 3 wherein the local area network
1s coupled through a global computer network to the client.

5. The system of claam 1 wherein the second network
includes a local area network.

6. The system of claim 1 wherein the first network
includes a first local area network, and wherein the second
network includes a second local area network.

7. (canceled)

8. The system of claim 1 wherein the software application
1s a socket application.

9. The system of claim 1 wherein the information packet
1s addressed by the client to the first computing device, and
wherein the first computing device 1s configured to receive
the information packet through the first network 1n response
to the addressing.

10. The system of claim 1 wherein the executed software
application outputs a response packet to the client, and
wherein the first computing device 1s configured to:

when the 1dentified computing device 1s the second com-
puting device, output the information packet through
the second network to the second computing device for
outputting the response packet to the client, such that
the output response packet bypasses the first computing
device.

11. A method performed by a first computing device of an

information processing system, the method comprising:

through a first network, receiving an iformation packet
originating from a client;

in response to recerving the information packet, identify-
ing a computing device that stores a data structure of a
connection with the client;

when the 1dentified computing device 1s the first comput-
ing device, executing a software application associated
with the information packet; and

when the identified computing device 1s a second com-
puting device, outputting the information packet
through a second network to the second computing
device for executing the software application associ-
ated with the information packet, such that the output
information packet bypasses the first network.

US 2007/0067046 Al

12. The method of claim 11 wherein the first computing
device comprises a network interface card.

13. The method of claim 11 wherein the first network
includes a local area network.

14. The method of claim 13 wherein the local area
network 1s coupled through a global computer network to
the client.

15. The method of claim 11 wherein the second network
includes a local area network.

16. The method of claim 11 wherein the first network
includes a first local area network, and wherein the second
network 1ncludes a second local area network.

17. (canceled)

18. The method of claim 11 wherein the software appli-
cation 1s a socket application.

19. The method of claam 11 wherein the information
packet 1s addressed by the client to the first computing
device, and wherein the recerving of the information packet
through the first network 1s 1n response to the addressing.

20. The method of claim 11 wherein the executed soft-
ware application outputs a response packet to the client, and
wherein the method comprises:

when the 1dentified computing device 1s the second com-
puting device, outputting the information packet
through the second network to the second computing
device for outputting the response packet to the client,
such that the output response packet bypasses the first
computing device.
21. A computer-readable memory medium containing
contents that cause a first computing device of an informa-
tion processing system to perform a method comprising:

through a first network, receiving an information packet
originating from a client;

in response to recerving the mformation packet, identify-
ing a computing device that stores a data structure of a
connection with the client;

when the 1dentified computing device 1s the first comput-
ing device, executing a software application associated
with the information packet; and

when the identified computing device 1s a second com-
puting device, outputting the information packet

Mar. 22, 2007

through a second network to the second computing
device for executing the software application associ-

ated with the mformation packet, such that the output
information packet bypasses the first network.

22. The computer-readable memory medium of claim 21
wherein the first computing device comprises a network
interface card.

23. The computer-readable memory medium of claim 21
wherein the first network includes a local area network.

24. The computer-readable memory medium of claim 21
wherein the local area network 1s coupled through a global
computer network to the client.

25. The computer-readable memory medium of claim 21
wherein the second network includes a local area network.

26. The computer-readable memory medium of claim 21
wherein the first network includes a first local area network,
and wherein the second network includes a second local area
network.

277. The computer-readable memory medium of claim 21
wherein the contents are instructions that when executed
cause the first computing device to perform the method.

28. The computer-readable memory medium of claim 21
wherein the software application 1s a socket application.

29. The computer-readable memory medium of claim 21
wherein the information packet 1s addressed by the client to
the first computing device, and wherein the method com-
Prises:

recerving the information packet through the first network
in response to the addressing.

30. The computer-readable memory medium of claim 21
wherein the soitware application outputs a response packet
to the client, and wherein the method comprises:

when the identified computing device 1s the second com-
puting device, outputting the information packet
through the second network to the second computing
device for outputting the response packet to the client,
such that the output response packet bypasses the first
computing device.

	Front Page
	Drawings
	Specification
	Claims

