US 20070050563A1

a9y United States

12y Patent Application Publication o) Pub. No.: US 2007/0050563 Al
Alsup 43) Pub. Date: Mar. 1, 2007

(54) SYNCHRONIZATION ARBITER FOR Publication Classification
PROACTIVE SYNCHRONIZATION WITHIN
A MULTIPROCESSOR COMPUTER SYSTEM (51) Int. CI.

Goor 12/14 (2007.01)
GO 12/00 (2006.01)
(75) TInventor: Mitchell Alsup, Austin, TX (US) (32) US. Cl e 711/145
Correspondence Address: (57) ABSTRACT
MEYERTONS, HOOD, KIVLIN, KOWERT & A synchronization arbiter may be used 1n a computer system
GOETZEL (AMD) including one or more processors configured to request
P.O. BOX 398 exclusive access to a given memory resource. The request
AUSTIN, TX 78767-0398 (US) may include one or more addresses associated with the
memory resource. The synchronization arbiter includes an
(73) Assignee: Advanced Micro Devices, Inc. address storage that may store sets of addresses. Each
address may correspond to a respective memory resource to
(21) Appl. No.: 11/508,647 which a requestor has acquired exclusive access. The
address storage may further store count values, each asso-
(22) Filed: Aug. 23, 2006 ciated with a respective set of addresses, and each may be
indicative of a number of requesters contending for any
Related U.S. Application Data address 1n the respective set of addresses. If any of the one
or more addresses matches any address in the sets of
(60) Provisional application No. 60/710,548, filed on Aug. addresses, control logic may return the count value associ-
23, 2005. ated with the matching address to the requestor.

405
Store Sets of Addresses of Current
\k

Cache Lines Being Accessed As
Part Of Critical Section

410-\ J'

Maintain A Count Value For
Each Set Of Addresses

l T 415
.‘ Request Access To One Or More Cache

Lines Using Locked Load Instructions
And An Acquire Instruction

L — 420

Compare Addresses Of The
Requested Cache Lines To
Addresses of Current Cache Lines

Being Accessed
Increment Count |«
3 o 460
Return Failure
Count Return Pass
Count
I [| l 435
Requestor Uses
Count To Select Add Addresses Of The Requested
Different Resource Cache Lines To Addresses of Current
Cache Lines Being Accessed
l e 440
Operate On Requested
Cache Lines

Operation
Complete?

Remove/Release Addresses
From Address Lists

Patent Application Publication Mar. 1, 2007 Sheet 1 of 4 US 2007/0050563 Al

Vemory | 314A vemory | —— 3148
318C I
316A
S 1 — 3168
Y ve” — 318A 318D — ve [
/ N — 316F
| - 324 A | Y,
Processing Processing
LL Node e Lo Node T
312A < 3128
F \ I
\ 324B A
A A
\— 318B \—— 318E
UE - 324D
— 324F 3240 ~ 314D
318H 318K
v ,/ To 318N v | /—
F — 318 318J —h IF L
/ 324G \ S
Processing < > Processing | <+ E
L Node = L Node = =
312C < - 312D \
324H
/ MC F 16D
/
[318G I ~— 316C 38L — A
e 314C y
Memo
7 /0
Device
320A
A
100 /‘ v
FIG. 1 o
Device
3208

Patent Application Publication Mar. 1, 2007 Sheet 2 of 4 US 2007/0050563 Al

 Processing Node 312A

| Processor Core 18A Processor
Core 18n

‘ L1 Instruction Cache, Prefetch, and Branch Prediction 250

Instruction Decoder 255
| — — Ret
| | Instruction Dispatch and Control 257
) _ —Prb
Scheduler 259 hit
Execution Units 260
207 205 |S1 LinearLS2 209 |1
— — Physical LS2 210
.1 Data LB
Cache Data 211
206 270
208
probe

Bus Interface Unit 220 l Predictor 223 | Count Locked Line
Compare 221 Buffer 222

i R

Northbridge Unit 280

h__n_-——“_——_——“—_—-—nn_——_m—_n_—-—_—n“—_m_--

MC 316A HT 318A HT j{& ! I _
L“ﬂj | |-
232 _ =
FIG. 2 | Address 233

Compare
Control 234 231

Synchronization Arbiter 230

Patent Application Publication Mar. 1,2007 Sheet 3 of 4 US 2007/0050563 Al

405 Store Sets of Addresses of Current
Cache Lines Being Accessed As
Part Of Critical Section
410

Maintain A Count Value For
Each Set Of Addresses
415

Request Access To One Or More Cache
Lines Using Locked Load Instructions
And An Acquire Instruction

420

Compare Addresses Of The
Requested Cache Lines To

Addresses of Current Cache Lines
Being Accessed

45 425
Y
Increment Count @
60 N

5
4
430
Return Failure
Count Return Pass
Count
465 - 435
Requestor Uses

Count To Select Add Addresses Of The Requested

Different Resource Cache Lines To Addresses of Current
Cache Lines Being Accessed

440
Operate On Requested
Cache Lines
ation

Complete?

Y
450
Remove/Release Addresses
From Address Lists

445

FIG. 3

Patent Application Publication Mar. 1,2007 Sheet 4 of 4 US 2007/0050563 Al

505
Receive Probe with INValidate
that matches
critical section address
515 510
Respond to probe with Y Acquired
Failure to Requestor cache lines?
\ 520

Disregard CO count
value

525

Notify instruction control;
Cause ACQUIRE
instruction to falil

FIG. 4

US 2007/0050563 Al

SYNCHRONIZATION ARBITER FOR PROACTIVE
SYNCHRONIZATION WITHIN A
MULTIPROCESSOR COMPUTER SYSTEM

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 60/710,348, filed on Aug. 23, 2003.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] This invention relates to microprocessors and,
more particularly, to process synchronization processors in
a multiprocessor system.

10004] 2. Description of the Related Art

[0005] Modern microprocessor performance has increased
steadily and somewhat dramatically over the past 10 years or
s0. To a large degree, the performance gains may be attrib-
uted to increased operating frequency and moreover, to a
technique known as deep pipelining. Generally speaking,
deep pipelining refers to using instruction pipelines with
many stages, with each stage doing less, thereby enabling
the overall pipeline to execute at a faster rate. This technique
has served the industry well. However, there are drawbacks
to increased frequency and deep pipelining. For example,
clock skew and power consumption can be significant
during high frequency operation. As such, the physical
constraints 1imposed by system level thermal budget points,
and the increased dificulty 1n managing clock skew may
indicate that practical limits of the technique may be just
around the corner. Thus, industry has sought to increase
performance using other techniques. One type of technique
to increase performance 1s the use of multiple core proces-
sors and more generally multiprocessing.

[0006] As computing systems employ multiprocessing
schemes with more and more processors (€.g., processing
cores), the number of requestors that may interfere or
contend for the same memory datum may increase to such
an extent that conventional methods of process synchroni-
zation may be madequate. For example, when a low number
of processors are contending for a resource, sitmply locking
structures may provide adequate performance to critical
sections of code. For example, locked arithmetic operations
on memory locations may be suilicient. As the scale of
multiprocessing grows, these primitives become less and
less eflicient. To that end, more advanced processors include
additions to the instruction set that include hardware syn-
chronization primitives (e.g., CMPXCHG, CMPXCHGS8B,
and CMPXCHG16B) that are based on atomically updating
a single memory location. However, we are now entering the
realm 1n which even these hardware primitives may not
provide the kind of performance that may be demanded in
high-performance, high processor count multiprocessors.

[0007] Many conventional processors use synchronization
techniques based on an optimistic model. That 1s, when
operating 1 a multiprocessor environment, these conven-
tional processors are designed to operate under the assump-
tion that they can achieve synchronization by repeatedly
rerunning the synchronization code until no interference 1s
detected, and then declare that synchronization has been
achieved. This type of synchronization may incur an unde-
sirable waste of time, particularly when many processors are
attempting the same synchronizing event, since no more

Mar. 1, 2007

than one processor can make forward progress at any instant
in time. As such, diflerent synchronization techniques may

be desirable.

SUMMARY

[0008] Various embodiments of a synchronization arbiter
for proactive synchronization i a computer system are
disclosed. In one embodiment, the synchronization arbiter
may be used 1 a computer system including one or more
processors each configured to request exclusive access to a
given memory resource. The request may include one or
more addresses associated with the given memory resource.
The synchronization arbiter includes and address storage, a
compare unit, and control logic. The address storage may
store a plurality of sets of addresses, and each address may
correspond to a respective memory resource to which a
requestor has acquired exclusive access. In addition, the
address storage may further store a plurality of count values
cach associated with a respective set of addresses. Each
count value may be indicative of a number of requesters
contending for any address the respective set of addresses.
The compare unit may compare each of the one or more
addresses 1n the request to each address stored 1n the address
storage. If any address of the one or more addresses matches
any address 1n the sets of addresses, the control logic may
return to the requestor, the count value associated with the
matching address.

[0009] In one specific implementation, the control logic
may return a predetermined count value such as zero, for
example, to the requestor 1n response to no address of the
one or more addresses matching any address 1n the sets of
addresses.

[0010] In another embodiment, the synchronization arbiter
may be used 1 a computer system including one or more
processors each configured to request exclusive access to a
given memory resource. The request may include one or
more addresses associated with the given memory resource.
The synchromization arbiter includes and address storage, a
compare unit, and control logic. The address storage may
store a plurality of sets of addresses, and each address may
correspond to a respective memory resource to which a
requestor has acquired exclusive access. In addition, the
address storage may further store a plurality of count values.
Each count value may be associated with a respective
address of each set of the plurality of sets of addresses.
Further, each count value may be indicative of a number of
requesters contending for any address the respective set of
addresses. The compare unit may compare each of the one
or more addresses 1n the request to each address stored 1n the
address storage. If any address of the one or more addresses
matches any address in the sets of addresses, the control
logic may return to the requester, the count value associated
with the matching address.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 15 a block diagram of one embodiment of a
computer system.

[0012] FIG. 2 1s a block diagram depicting further details
of an embodiment a processing node of FIG. 1.

[0013] FIG. 3 1s a flow diagram that describes operation of
one embodiment of the computer system shown FIG. 1 and

FIG. 2.

US 2007/0050563 Al

[0014] FIG. 4 15 a flow diagram that describes operation of
one embodiment of the computer system shown FIG. 1 and
FIG. 2 1n response to receiving a coherency invalidation
probe.

[0015] While the invention is susceptible to various modi-
fications and alternative forms, specific embodiments
thereol are shown by way of example 1n the drawings and
will herein be described in detail. It should be understood,
however, that the drawings and detailed description thereto
are not itended to limit the mvention to the particular form
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within
the spirit and scope of the present invention as defined by the
appended claims. It 1s noted that the word “may” 1s used
throughout this application 1n a permissive sense (1.€., hav-
ing the potential to, being able to), not a mandatory sense
(1.e., must).

DETAILED DESCRIPTION

[0016] To enable the construction of high performance
synchronization methods 1n software, a set of 1nstructions,
which may be referred to as an advanced synchromization
tacility may be used. The facility may support the construc-
tion of non-Blocking synchronization, Waitkree synchroni-
zation, Transactional Memory, along with the construction
of various forms of Compare and Swap primitives typically
used in the construction of these methods. The facility
allows construction (in software) of a large variety of
synchronization primitives.

[0017] Moreover, the advanced synchronization facility
may enable software to program a large variety of synchro-
nization kinds. Each synchronization kind may directly
specily: the cache lines needed for successiul completion, a
sequence point where failures can redirect control tlow, a
data modification section where the result of the successtul
critical section 1s performed, and a sequence point where
success 1s made visible to the rest of the system making the
whole sequence of instructions appear to be atomic.

[0018] Accordingly, the functionality of the advanced
synchronization facility may enable the acquisition and
release of multiple cache lines with write permission asso-
ciated with a critical section substantially simultaneously as
seen by other processors/cores. This process may be referred
to as Linearizing. After acquisition, several modifications
can be performed before any other interested party may
observe any of the modifications to any of the specified
multiple cache lines. Between the acquisition and the
release, no other processors are allowed to be manipulating
these same lines (e.g. have write permission). A similar
method could have been performed by not sending Hyper-
Transport™ Source Done messages for the associated lines
and thereby preventing concurrent accesses. However, these
solutions lead to deadlock and/or livelock, or timeouts.
Thus, a computer system including processors and processor
cores that may implement the advanced synchronization
facility 1s described below.

[0019] Turning now to FIG. 1, an embodiment of a com-
puter system 100 1s shown. Computer system 100 includes
several processing nodes 312A, 312B, 312C, and 312D.
Each of processing node 312A-312D is coupled to a respec-
tive memory 314A-314D via a memory controller 316A-
316D included within each respective processing node

Mar. 1, 2007

312A-312D. Additionally, processing nodes 312A-312D
include interface logic (IF) used to communicate between
the processing nodes 312A-312D. For example, processing
node 312 A includes interface logic 318 A for communicating
with processing node 312B, interface logic 318B for com-
municating with processing node 312C, and a third interface
logic 318C for commumnicating with yet another processing
node (not shown). Similarly, processing node 312B includes
interface logic 318D, 318E, and 318F; processing node
312C includes interface logic 318G, 318H, and 318I; and
processing node 312D includes mterface logic 318J, 318K,
and 318L. Processing node 312D 1s coupled to communicate
with a plurality of mput/output devices (e.g. devices 320A-
320B 1n a daisy chain configuration) via interface logic
318L. Other processing nodes may communicate with other
I/O devices 1 a similar fashion. Processors may use this
interface to access the memories associated with other
processors 1n the system. It 1s noted that a component that
includes a reference numeral followed by a letter may be
generally referred to solely by the numeral where appropri-
ate. For example, when referring generally to the processing
nodes, processing node(s) 312 may be used.

[0020] Processing nodes 312 implement a packet-based
link for inter-processing node communication. In the 1llus-
trated embodiment, the link 1s implemented as sets of
unmidirectional lines (e.g. lines 324A are used to transmit
packets from processing node 312A to processing node
312B and lines 324B are used to transmit packets from
processing node 312B to processing node 312A). Other sets
of lines 324C-324H are used to transmit packets between
other processing nodes as illustrated in FIG. 1. Generally,
cach set of lines 324 may include one or more data lines, one
or more clock lines corresponding to the data lines, and one
or more control lines indicating the type of packet being
conveyed. The link may be operated in a cache coherent
fashion for communication between processing nodes or 1n
a non-coherent fashion for communication between a pro-
cessing node and an I/0 device (or a bus bridge to an I/O bus
of conventional construction such as the PCI bus or ISA
bus). Furthermore, the link may be operated i a non-
coherent fashion using a daisy-chain structure between 1/0
devices as shown (e.g., 320A and 320B). It 1s noted that 1n
an exemplary embodiment, the link may be implemented as
a coherent HyperTransport™ link or a non-coherent Hyper-
Transport™ link, although in other embodiments, other
links are possible.

[10021] 1/O devices 320A-320B may be any suitable I/0O
devices. For example, I/O devices 320A-320B may include
devices for communicating with another computer system to
which the devices may be coupled (e.g. network interface
cards or modems). Furthermore, I/O devices 320A-320B
may include video accelerators, audio cards, hard or floppy
disk drives or drive controllers, SCSI (Small Computer
Systems Interface) adapters and telephony cards, sound
cards, and a variety of data acquisition cards such as GPIB
or field bus interface cards. It 1s noted that the term “I/O
device” and the term “peripheral device” are intended to be
synonymous herein.

10022] Memories 314A-314D may comprise any suitable
memory devices. For example, a memory 314A-314D may
comprise one or more RAMBUS DRAMs (RDRAMs),
synchronous DRAMs (SDRAMs), DDR SDRAM, static

RAM, etc. The memory address space of computer system

US 2007/0050563 Al

300 1s divided among memories 314A-314D. Each process-
ing node 312A-312D may include a memory map used to
determine which addresses are mapped to which memories
314A-314D, and hence to which processing node 312A-
312D a memory request for a particular address should be
routed. Memory controllers 316A-316D may comprise con-
trol circuitry for interfacing to memories 314A-314D. Addi-
tionally, memory controllers 316A-316D may include
request queues for queuing memory requests. Memories
314A-314D may store code executable by the processors to
implement the functionality as described in the preceding
sections.

[10023] It is noted that a packet to be transmitted from one
processing node to another may pass through one or more
intermediate nodes. For example, a packet transmitted by
processing node 312A to processing node 312D may pass
through either processing node 312B or processing node
312C as shown i FIG. 1. Any suitable routing algorithm
may be used. Other embodiments of computer system 100
may include more or fewer processing nodes then the
embodiment shown 1n FIG. 1. Generally, the packets may be
transmitted as one or more bit times on the lines 324
between nodes. A bit time may be the rising or falling edge
of the clock signal on the corresponding clock lines. The
packets may include command packets for initiating trans-
actions, probe packets for maintaining cache coherency, and
response packets from responding to probes and commands.

10024] In one embodiment, processing nodes 312 may
additionally include one or more processor cores (shown 1n
FIG. 2). It 1s noted the processor cores within each node may
communicate via internal packet-based links operated 1n the
cache coherent fashion. It 1s further noted that processor
cores and processing nodes 312 may be configured to share
any (or all) of the memories 314.

[0025] In one embodiment, one or more of the processor
cores may implement the x86 architecture, although other
architectures are possible and contemplated. As such,
instruction decoder logic within each of the various proces-
sor cores may be configured to mark instructions that use a
LOCK prefix. In addition, as described further below, pro-
cessor core logic may include hardware (shown in FIG. 2)
that may enable 1dentification of the markers associated with
LOCKed instructions. This hardware may enable the use of
the LOCK 1nstruction prefix to identily critical sections of
code as part of the advanced synchronization facility.

10026] 'To reduce the effects of interference caused by
more than one processor attempting to access the same
memory reference (e.g., critical sections of code) at the same
time, the advanced synchronization facility and associated
hardware may be implemented within computer system 100.
As will be described 1n greater detail below, the advanced
synchronization facility may employ new instructions and
use hardware such as a synchronization arbiter (shown in
FIG. 2) which may be interconnected within the cache
coherent fabric. As shown in FIG. 2, synchronization arbiter
230 15 coupled to a Northbridge unit 290 of any processing
node 312, thus enabling the synchronization arbiter to
observe explicit addresses associated with the Advanced
Synchronization Facility transactions of each node. The
synchronization arbiter may be placed anywhere in the
coherent domain of the interconnect network. It 1s noted that
although one synchronmization arbiter 1s shown, it 1s contem-

Mar. 1, 2007

plated that when a system 1s configured to support multiple
virtual machines, and when these virtual machines do not
share any actual physical memory, multiple synchronization
arbiters can be configured to distribute the synchronization
load across several arbiters.

[0027] It is noted that the phrase “critical section” 1s used
throughout this document. A “critical section” refers to a
section of code used 1n the advanced synchronization facility
that may include one or more memory reference nstructions
marked with a LOCK prefix, an ACQUIRE instruction, and
a RELEASE mstruction which ends the critical section. In
one embodiment, there are four stages ol each critical
section: 1) speciiying the address(es) of the cache line(s)
needed during the critical section (e.g., entering the critical
section), 2) going through the mechanics to acquire these
cache lines, 3) atomically moditying the critical section data,
4) releasing the cache lines back to the system. In particular,
the critical section code will appear to be executed atomi-
cally by interested observers. The first phase may be referred
to as the specification phase, while the third phase 1s often
referred to as the atomic phase.

[0028] In various implementations, software may be
allowed to perform ‘simple’ arithmetic and logical manipu-
lations on the data between reading and modifying the data
of the critical section as long as the simple arithmetic
operations do not cause exceptions when executed. If a data
mampulation causes an exception inside a critical section,
atomicity of that critical section may not be guaranteed.
Critical section software should detect failures of atomicity,
and deal with them appropnately, s described further below.

[10029] Generally, the advanced synchronization facility
may utilize a weakened memory model and operate only
upon cacheable data. This weakened memory model may
prevent the advanced synchronization facility from wasting
processor cycles waiting for various processor and memory
buflers to empty before performing a critical section. How-
ever, when soltware requires a standard PC strong memory
model, software may 1nsert LFENSE, SFENSE, or
MFENSE 1nstructions just prior to the RELEASE 1nstruc-
tion to guarantee standard PC of memory ordering. For the
case ol using cacheable synchronization to enable accesses
to unCacheable data, an SFENSE instruction between the
last LOCKed Store and the RELEASE instruction will
guarantee that the unCacheable data i1s globally visible
before the cacheable synchronization data 1s globally visible
in any other processor. This may enable maximum overlap
of unCacheable and Cacheable accesses with minimal per-
formance degradation.

[0030] In various embodiments, interface logic 318A-
318L may comprise a variety of bufllers for receiving packets
from the link and for builering packets to be transmitted
upon the link. Computer system 100 may employ any
suitable flow control mechanism for transmitting packets. In
addition to interface logic 318A-318L each processing node
may include respective bufler interface units (BIU) 220
(shown in FIG. 2), which may provide functionality to
enable proactive synchronization. For example, as described
turther below, BIU 220 may be configured to those special
addresses that are associated with an Advanced Synchroni-
zation event and to transmit those addresses to synchroni-
zation arbiter 230 1n response to execution of an ACQUIRE
instruction. The BIU 220 may also be configured to deter-

US 2007/0050563 Al

mine 1f the response recerved from synchronization arbiter
230 indicates the addresses may be interference {iree.
Depending on whether the response indicates the addresses
may not be interference free, BIU 220 may notily the
requesting processor core of a failure by sending a failure
count value to a register within the processor core 18, and
sending a completion message to synchromization arbiter
230, or when guaranteed to be interference free by allowing
the execution of the critical section, and waiting to send the
completion message to synchronization arbiter 230.

10031] FIG. 2 is a block diagram that illustrates more
detailed aspects of embodiments of processing node 312A
and synchronization arbiter 230 of FIG. 1. Referring to FIG.
2, processing node 312A includes processor cores 18A and
187, where n may represent any number ol processor cores.
Since the processor cores may be substantially the same 1n
various embodiments, only detailed aspects of processor
core 18A are described below. As shown, processor cores
18A and 187 are coupled to bus interface unit 220 which 1s
coupled to a Northbridge unit 290, which 1s coupled to
memory controller 316 A, HyperTransport™ interface logic
318A-318C, and to synchronization arbiter 230 via a pair of
unidirectional links 3241-324].

[0032] Processor core 18A includes hardware configured
to execute instructions. More particularly, as 1s typical of
many processors, processor core 18A includes one or more
instruction execution pipelines including a number of pipe-
line stages, cache storage and control, and an address
translation mechanism (only pertinent portions of which are
shown for brevity). Accordingly, as shown processor core
18A 1ncludes a level one (LL1) instruction cache, pretetch
logic, and branch prediction logic. Since these blocks may
be closely coupled with the instruction cache, they are
shown together as block 250. Processor core 18A also
includes an L1 data cache 207. Processor core 18A also
includes mnstruction decoder 255 and an 1nstruction dispatch
and control umt 256 may be coupled to receive structions
from instruction decoder 255 and to dispatch operations to
a scheduler 239. Further, instruction dispatch and control
unit 256 may be coupled to a microcode read-only memory
(MROM) (not shown). Scheduler 259 1s coupled to receive
dispatched operations from instruction dispatch and control
unit 256 and to i1ssue operations to execution units 260. In
various 1mplementations, execution units 260 may include
any number of integer execution units and floating-point
units. Further, processor core 18A includes a TLB 206 and
a load/store unit 270. It 1s noted that 1n alternative embodi-
ments, an on-chip L2 cache may be present (although not
shown).

[0033] Instruction decoder 255 may be configured to
decode 1instructions into operations which may be either
directly decoded or indirectly decoded using operations
stored within the MROM. Instruction decoder 255 may
decode certain instructions into operations executable within
execution units 260. Simple instructions may correspond to
a single operation, while in other embodiments, more com-
plex instructions may correspond to multiple operations. In
one embodiment, mstruction decoder 255 may include mul-
tiple decoders (not shown) for simultaneous decoding of
instructions. Fach instruction may be aligned and decoded
into a set of control values 1n multiple stages depending on
whether the instructions are first routed to MROM. These
control values may be routed 1n an instruction stream to

Mar. 1, 2007

instruction dispatch and control unit 257 along with operand
address information and displacement or immediate data
which may be included with the instruction. As described
further below, when a memory reference instruction
includes a LOCK prefix, instruction decoder may identily
the address with a marker.

[0034] Load/store unit 270 may be configured to provide
an interface between execution units 260 and data cache
207. In one embodiment, load/store unit 270 may include
load/store buflers with several storage locations for data and
address information for pending loads or stores. As such, the
illustrated embodiment includes [L.S1205, linear 1.52209,
physical L.S2210, and data storage 211. Further, processor
core 18A 1includes marker logic 208, and a marker bit 213.

[0035] In one embodiment, a critical section may be
processed 1n one of two ways: deterministically, and opti-
mistically. The choice of execution may be based upon the
configuration of the advanced synchronization facility and
upon the state of a critical section predictor, as described 1n
greater detaill below. In various embodiments, either the
basic input output system (BIOS), the operating system
(OS), or a virtual memory manager (VMM) may configure
the operational mode of the advanced synchronization facil-
ity. When operating 1n the deterministic execution mode, the
addresses specified by the locked memory reference mstruc-
tions may be bundled up and sent enmasse to the synchro-
nization arbiter 230 to be examined for iterference. The
cache line data may be obtained and the critical section
executed (as permitted). In contrast, when operating 1n the
optimistic synchronization mode, no interference may be
assumed, and the critical section may be executed (bypass-
ing the synchronization arbiter 230) and if any other pro-
cessor interferes with this critical section, the interference
will be detected and then the processor backs up to the
ACQUIRE instruction and redirects control tlow away from
the atomic phase.

[0036] To implement the deterministic mode, the
advanced synchronization facility may use the synchroniza-
tion arbiter 230. As described above, synchronization arbiter
230 examines all of the physical addresses associated with
a synchronization request and either pass (a.k.a. bless) the
set of addresses or fail (1.e., reject) the set of addresses,
based upon whether any other processor core or requestor 1s
operating on or has requested those addresses while they are
being operated on. As such, synchronization arbiter 230 may
allow software to be constructed that proactively avoids
interference. When interference 1s detected by synchroniza-
tion arbiter 230, synchronmization arbiter 230 may respond to
a request with a failure status including a unique number
(e.g., count value 233) to a requesting processor core. In one
embodiment, the count may be indicative of the number of
requesters contending for the memory resource(s) being
requested. Software may use this number to proactively
avold interference 1n subsequent trips through the critical
section by using this number to choose a different resource
upon which to attempt a critical section access.

[0037] Accordingly, as shown in FIG. 2, synchronization
arbiter 230 includes a storage 232 including a number of
entries, control logic 234, and compare unmit 231. Each of the
entries may store one or more physical addresses of requests
currently being operated on. In one embodiment, each entry
may store up to eight physical addresses that are transported

US 2007/0050563 Al

as a single 64-byte request. In addition, the synchronization
arbiter entry includes the count value 233, which corre-
sponds to all the addresses 1n the entry. As described above,
the count value may be indicative of the number of request-
ers (1.e., iterferers) that are contending for any of the
addresses 1n a critical section. When synchronization arbiter
230 recerves a set of addresses, a compare umt 231 within
synchronization arbiter 230 checks for a match between
cach address 1n the set and all the addresses 1n storage 232.
I1 there 1s no match, control logic 234 may be configured to
1ssue a pass response by returning a passing count value and
to store the addresses within storage 232. In one embodi-
ment, the passing count value 1s zero, although suitable
count value may be used. However, 1t there 1s an address
match, control logic 234 may increment the count value 233
associated with set of addresses that includes the matching
address, and then return that count value as part of a failure
response. It 1s noted that compare unit 231 may be a compare
only structure implemented in a variety of ways, as desired.
In addition, 1n another embodiment, each address stored
within storage 232 may be associated with a respective
count. As such, the count value may be indicative of the
number of requesters (1.e., interferers) that are contending
for one of the respective address 1n a critical section.

[0038] In the illustrated embodiment, bus interface unit
(BIU) 220 includes a count compare circuit 221, a locked
line bufler (LLB) 222, and a predictor 223. BIU 220 may
also include various other circuits for transmitting and
receiving transactions from the various components to
which 1t 1s connected, however, these have been omitted for
clarnity. As such, BIU 220 may be configured to transmit a set
of addresses associated with a critical section from LLB 222
to synchromization arbiter 230 in response to the execution
of an ACQUIRE i1nstruction. In addition, compare circuit
221 may be configured to compare the count value returned
by synchronization arbiter 230 to check if the count 1s a
passing count value (e.g., zero) or a failing count value. It 1s
noted that SBB 22 may be implemented using any type of
storage structure. For example, 1t may be part of an existing
memory address buller (MAB) or separate, as desired.

[0039] As described above, if processor core 18 is oper-
ating 1n the deterministic synchronization mode, addresses
associated with a critical section may be marked during
instruction decode by using the LOCK prefix. More particu-
larly, memory references that explicitly participate 1n
advanced synchronization code sequences are annotated by
using the LOCK prefix with an appropriate MOV 1nstruc-
tion. LOCKed Load instructions may have the following
form:

0040] LOCK MOVx reg,[B+I*s+DISP].

More particularly, a regular x86 memory read 1nstruction
1s made special by attaching a LOCK prefix. This
causes the BIU 220 to gather the associated marked
physical address mto the LLB 222 as the address passes
through the L1 cache (and TLB 206). In addition,
memory access strength 1s reduced to access the line (1n

the case of a cache miss) without write permission
(ReadS, not ReadM or Read). The Load instruction

may not be retired out of LS2 until the ACQUIRE

istruction returns from the synchronization arbiter
230.

[0041] While the request form BIU 220 (to synchroniza-
tion arbiter 230) 1s awaiting a response, the LLB 222

Mar. 1, 2007

watches for Probes with INValidate semantics, and 11 one (or
more) occurs, the ACQUIRE instruction will be made to fail,
even 1I synchronization arbiter 230 returns a success. The
LOCK prefix does not cause any particular locking of the
cache or bus, but simply provides a convement marker to be
added to memory based MOVe instructions. As such,
LOCKed MOV to register instructions (which may be
otherwise referred to as LOCKed Loads) may be processed
normally down the data cache pipeline.

[0042] Accordingly, during address translation each linear
address may be stored within linear address portion of
[.52209. The corresponding physical addresses may be
stored in TLB 206 and within physical 1L.S2210, while the
corresponding data may be stored within data cache 207 and
data.LS2211. Marker logic 208 may detect the LOCK prefix
marker generated during decode and generate an additional
marker bit 213, thereby marking each such address as a
participant 1n a critical section. Any LOCKed Load that
takes a miss 1n the data cache may have 1ts cache line data
fetched through the memory hierarchy with Read-to-Share
access semantics, however write permission to that specified
memory resource 1s checked.

[0043] As described above, 1f processor core 18 1s oper-
ating 1n a deterministic synchronization mode, addresses
associated with a critical section may be marked during
instruction decode by using the LOCK prefix. More particu-
larly, memory prefetch references that explicitly participate
in advanced synchronization code sequences are annotated
by wusing the LOCK prefix with an appropnate

PREFETCHW instruction. These types of LOCKed Load
instructions may have the following form:

[0044] LOCK PREFETCHW [B+I*s+DISP].

Thus, a regular memory PREFETCHW 1nstruction 1s
made special by attaching a LOCK prefix. This causes
the BIU 220 to gather the associated marked physical
address 1nto the LLLB 222 as the address passes through
the L1 cache (and TLB 206). In addition, memory
access strength 1s reduced to avoid an actual DRAM
access the line. The PREFETCHW 1nstruction may not
be retired out of LS2 until the ACQUIRE 1nstruction
returns from synchronization arbiter 230. These
istructions may be used to touch cache lines that
participate 1n the critical section and that need data
(e.g., a pointer) 1n order to touch other data also needed
in the critical section. At the conclusion of the speci-
fication phase, an ACQUIRE instruction 1s used to
notity BIU 220 that all memory reference addresses for
the critical section are stored in LLB 222.

[0045] The ACQUIRE instruction may have the form
[0046] ACQUIRE reg, imm8

The ACQUIRE instruction checks that the number of
LOCKed memory reference instructions 1s equal to the
immediate value 1 the ACQUIRE instruction. IT this
check fails, the ACQUIRE instruction terminates with
a failure code, otherwise, the ACQUIRE instruction
causes BIU 220 to send all addresses stored within LLB
222 to the synchronization arbiter 230. This instruction
‘looks’ like a memory reference instruction on the data
path so that the count value returned from the synchro-
nization arbiter 230 can be used to confirm (or deny)
that all the lines can be accessed without interference.

US 2007/0050563 Al

No address 1s necessary for this ‘load’ instruction
because there can be only one synchronization arbiter
230 per virtual machine or per system. The register
specified 1n the ACQUIRE instruction 1s the destination
register of processor core 18.

[0047] In one embodiment, the semantics of a LOCKed
Load operation may include probe monitoring the location
for a PROBE. If a PROBE 1s detected for a location, the [L.S1
or LS2 queue may return a failure status without waiting for
the read to complete. A general-purpose fault (#GP) may be
generated 1f the number of LOCKed loads exceeds a micro-
architectural limit. If an ACQUIRE 1instruction fails, the
count of LOCKed loads will be reset to zero. If the address
1s not to a Write Back memory type, the ACQUIRE 1nstruc-
tion can be made to fail (when subsequently encountered).

[0048] It is expected that some critical sections may
include a number of arithmetic and control flow decisions to
compute what data modifications may be appropriate (if
any). However, software should arrange that these types of
instructions never cause an actual exception. In one embodi-
ment, arithmetic and memory reference nstructions may be
processed 1n either the SSE registers (XMM), or 1n the
general-purpose registers (e.g., EAX, etc), or in the MMX or
x87 registers.

10049] As described above, synchronization arbiter 230
may either pass the request enmasse or fail the request
enmasse. If synchronization arbiter 230 fails the request, the
response back to BIU 220 may be referred to as a “synchro-
nization arbiter Fail-to-ACQUIRE” with the zero bit set
(c.g., RFLAGS.ZF). As described above, the response
returned by synchronization arbiter 230 may include the
count value 233, which may be indicative of the number of
interferers. Software may use this count to reduce future
interference as described above. The count value 233 from
the synchronization arbiter 230 may be delivered to a
general-purpose register (not shown) within processor core
18 and may also be used to set condition codes. I the
synchronization arbiter 230 passes the request, the response
back to BIU 220 may include a pass count value (e.g., zero).

[0050] In one embodiment, if the synchronization arbiter
address storage 232 1s full, the request may be returned with
a negative count value such as minus one (-1), for example.
This may provide software running on the processor core a
means to see an overload in the system and to enable that
soltware to stop making requests to synchronization arbiter
230 for a while. For example, the software may schedule
something else or 1t may simply waste some time before
retrying the synchronization attempt.

[0051] If the count is zero (meaning there are no interfer-
ers observed by synchronization arbiter 230), processor core
18 may execute the instructions in the atomic phase and
manipulate the data 1n the cache lines as desired. When the
data manipulation 1s complete, a RELEASE instruction 1s
executed signifying the end of the critical section. In one
embodiment, the RELEASE i1nstruction enables all of the
modified data to become wvisible substantially simulta-
neously by sending the RELEASE message to synchroni-
zation arbiter 230, thereby releasing the associated cache
lines back to the system.

[0052] In one embodiment, the advanced synchronization
facility supports two kinds of failures, a “Fail-to-AC-

Mar. 1, 2007

QUIRE” and a “Fail-to-REQUESTOR”. The Fail-to-AC-
QUIRE failure causes the ACQUIRE instruction to complete
with the zero bit set (e.g., RFLAGS.ZF) so that the subse-
quent conditional jump 1nstruction can redirect control tlow
away Irom damage inducing instructions in the atomic
phase. The synchronization arbiter Fail-to-ACQUIRE with
the zero bit set (e.g., RFLAGS.ZF) 1s one type of Fail-to-
ACQUIRE failure. A processor Fail-to-ACQUIRE 1s
another type. In one embodiment, during execution of
critical sections, processor cores may communicate by
observing memory transactions. These observations may be
made visible at the ACQUIRE instruction of an executing
processor core. More particularly, during the time between
the start of collecting of the addresses necessary for a critical
section and the response ol synchronization arbiter 230,
processor core 18 monitors all of those addresses for coher-
ent invalidation probes (e.g., Probe with INValidate). If any
of the lines are invalidated, the response from synchroniza-
tion arbiter 230 may be 1gnored and the ACQUIRE 1nstruc-
tion may be made to fail with the zero bit set (e.g., RFLAG-
S.ZF).

[0053] The Fail-to-REQUESTOR {failure may be sent as a

PROBE response if there 1s a cache hit on a line that has
been checked for interference and passed by synchromization
arbiter 230. A Fail-to-REQUESTOR response causes the
requesting processor to Fail-to-ACQUIRE 1f it 1s currently
processing an advanced synchronization facility critical sec-
tion, or 1t will cause the requesting processor’s BIU to
re-request that memory request if 1t 1s not processing the
critical section. As such, BIU 220 may be configured to
cause a Fail-to-ACQUIRE 1n response to receiving a Probe
with INValidate prior to obtaining a pass noftification from
synchronization arbiter 230.

[0054] Once the addresses of the critical section have been
acquired, a processor core 18 that has had its addresses
passed by synchronization arbiter 230 may obtain each
cache line for exclusive access (e.g. write permission) as
memory reference instructions are processed in the atomic
phase. After a passed cache line arrives, processor core 18
may hold onto that cache line and prevent other processor
cores from stealing the line by responding to coherent
invalidation probes with Fail-to-REQUESTOR responses. It
1s noted that Fail-to-REQUESTOR may also be referred to

as a negative-acknowledgement (NAK).

[0055] As described above, when a processor receives a
Fail-to-REQUESTOR and it 1s currently participating in an
advanced synchronization mstruction sequence, that imstruc-
tion sequence will be caused to fail at the ACQUIRE
instruction. In this case, the subsequent conditional jump 1s
taken and the damage inducing part of the memory reference
instructions 1n the critical section may be avoided. However,
when a processor receives a Fail-to-REQUESTOR and 1s
not participating in an advanced synchronization instruction
sequence, the requesting processor’s BIU may just re-
request the original memory transaction. Thus, the elapsed
time between the sending of the Fail-to-REQUESTOR and
the subsequent arrival of the next coherent invalidation
probe at the passed critical section enables forward progress
ol the processor with the synchronization arbiter’s blessing
to be guaranteed. The guarantee of forward progress enables
the advanced synchronization facility to be more eflicient
under contention than currently existing synchromization
mechanisms. Accordingly, sooner or later, both the critical

US 2007/0050563 Al

section and the interfering memory reference may both be
performed (e.g., no live-lock, nor dead-lock).

[0056] As mentioned above, the performance of a proces-
sor participating 1n the Advanced Synchronization Facility
may be optimized by using a critical section predictor 223.
Intially predictor 223 may be set up to predict that no
interference 1s expected during execution of a critical sec-
tion. In this mode, processor core 18 may not actually use
the synchronization arbiter 230. Instead processor core 18
may record the LOCKed memory references and may check
these against Coherent Invalidation PROBE:s to detect inter-
terence. If the end of the critical section 1s reached before
any interference 1s detected, no interested third party has
seen the activity of the critical section and 1t has been
performed as 1f 1t was executed atomically. This property
enables the Advanced Synchronization Facility to be pro-

cessor-cycle competitive with currently existing synchroni-
zation mechamisms when no contention 1s observed.

[0057] More particularly, when interference is detected,
processor core 18 may create a failure status for the
ACQUIRE instruction and the subsequent conditional
branch redirects the flow of control out of the critical
section, and resets the predictor to predict deterministic
mode. When the next critical section 1s detected, the decoder
will then predict interference might happen, and will process

the critical section using the synchronization arbiter 230 (it
cnabled).

[0058] Inoneembodiment, the Advanced Synchronization
facility may operate on misaligned data items as long as
these 1tems do not span cache lines that are not participating
in the actual crtical section. Software 1s free to have
synchronization 1tems span cache line boundaries as long as
all cache lines so touched are recognized as part of the
critical section entry. When a data item spans a cache line
into another cache line that was not part of the synchroni-
zation communication, the processor neither detects the
failure of atomicity nor signals the lack of atomicity.

[0059] Further, access to critical section data may be
dependent upon the presence of that data in main memory.
All of the lines necessary for the critical section are touched
betore ENTRY 1into the critical section, and any access rights
1ssues or page-faulting issues may be detected when the
LOCKed Load or LOCKed PREFETCHW instructions
execute prior to entering the critical section. When any of the
lead-in addresses take a fault, the subsequent ACQUIRE
instruction 1s made to fail. After entry to the critical section,
il any 1instruction causes an exception, the processor will
causes a failure at the ACQUIRE instruction, and the sub-
sequent conditional jump redirects control away from the
critical section.

[0060] In one embodiment, if the decoder of processor

corc 18 must take an interrupt, 1t may arrange that the
ACQUIRE 1nstruction will fail with the zero bit set (e.g.,

RFLAGS.ZF), and take the interrupt at the ACQUIRE
instruction.

[0061] It is noted that in embodiments in which synchro-
nization arbiter 230 1s connected within a North Bridge
implementation within the HyperTransport™ {fabric, syn-
chronization arbiter 230 may be assigned a predetermined
and/or reserved node ID that no other component may have.
This assignment may be made at boot time by the BIOS, for

vy

Mar. 1, 2007

example. In addition, 1n the above embodiments, the count
value may be returned as a 64-bit value, although other
values are contemplated.

[10062] FIG. 3 is a flow diagram describing the operation
of the embodiments of the computer system shown 1n FIG.
1 and FIG. 2. Referring collectively to FIG. 1 through FIG.
3, and beginning 1n block 405 addresses of cache lines that
are currently being operated on or accessed as part of a
critical section are maintained 1 a list (e.g., within LLB
222). For example, synchronization arbiter 230 may store
the addresses corresponding to a critical section, as a set,
within an entry of address storage 232. In one embodiment,
cach entry of address storage 232 may also store a count
value that 1s associated with the whole set of addresses
stored therein (block 410). As described above, the count
value may be indicative of the number of contenders (1.¢.,
interferers) for any of the addresses 1n the set. In another
embodiment, synchromization arbiter 230 may store a num-
ber of count values within each entry, such that each address
in the entry has a an associated count value.

[0063] When a processor or processor core that 1s imple-
menting the advanced synchronization facility, requests
exclusive access to one or more cache lines, the request
comes 1n the form of a critical code section. For example, as
described above, to ensure completion of the instructions 1n
an atomic manner (as viewed by all outside observers) a
critical section may 1include the use of LOCKed MOV
istructions, followed by an ACQUIRE instruction and a
RELEASE instruction (block 415). Accordingly, the set of
addresses that are requested are checked for interference. In

one embodiment, the set of addresses 1s compared to all of
the addresses within address storage 232 (block 420). In the

embodiments described above, the LOCKed MOV instruc-
tions cause the addresses to be marked. The marker causes
BIU 220 to store each marked address in LLB 222. The
ACQUIRE instruction causes BIU 220 to send the entire set
of address in LLLB 222 to synchronization arbiter 230 1n the
form of an unCacheable write that carries 64-bytes of
physical address data. Synchronization arbiter 230 compares
the set of addresses to all the addresses 1n the storage 232.

[0064] If there is a match on any address (block 425), the
count value associated with the matching address 1s incre-
mented (block 455) and the new count value 1s returned to
BIU 220 as a part of a failure response to the unCacheable
write (block 460) that carries 64-bits of response data. In
addition, synchronization arbiter 230 discards the set of
addresses upon failure. BIU 220 sends the failure count
value to the register of the requesting processor/core, which
may also set condition code tlags. As a result, the requesting
processor/core may use the count value to select another set
of memory resources 1n subsequent operations (block 465)
and avoid interference on its subsequent synchronization

attempt. Operation proceeds as described above in block
415.

[0065] Referring back to block 425, 1f there is no matching
address 1n storage 232, synchronization arbiter 230 may
return a passing count value (e.g., zero) to BIU 220 (block
430). In addition, synchronization arbiter 230 may store the
set of addresses 1n an entry of storage 232 (block 435). BIU
220 may send the passing count value to the requesting
processor/core register specified 1in the ACQUIRE 1nstruc-
tion. As such, the requesting processor/core may mampulate

US 2007/0050563 Al

or otherwise operate on the data at the requested addresses
(block 440). If the operation 1s not complete (block 445),
BIU 220 defers sending a completion message to synchro-
nization arbiter 230. When the operation in the critical
section 1s complete such as when the RELEASE 1nstruction
1s executed, BIU 220 may send a completion message to
synchronization arbiter 230. Upon recerving the completion
message, synchronization arbiter 230 may flush the corre-
sponding addresses from storage 232, thereby releasing
those addresses back to the system (block 450) for use by
another processor/core. In addition, load/store unit 270
updates the data cache for all instructions in that critical
section that retired.

[0066] As described above, if a coherency invalidation
probe hits on an address in the critical section during
processing of the critical section, the response to that probe
may be dependent upon the state of processing of the critical
section (1.e., whether or not the cache lines have been
acquired). FIG. 4 1s a flow diagram describing the operation
of the embodiments of FIG. 1 and FIG. 2 when a coherency
invalidation probe 1s received.

[0067] Referring collectively to FIG. 1 through FIG. 4 and
beginning in block 505 of FIG. 4, a Probe 1s received and
hits on a critical section address 1n load store unit 270. If the
requested lines have been successtully acquired (block 510),
(e.g., a coherency 1nvalidation probe 1s received after syn-
chronization arbiter 230 has provided a pass count value,
and stored the set of addresses within storage 232), BIU 220
may send a Failure-to-Requestor response as a response to
the probe (block 515). At the requesting processor core, this
Failure-to-Requestor response should cause a failure of the
ACQUIRE nstruction 1f the processor core was operating in
a critical section, or a retry of the addresses if not.

[0068] Referring back to block 510, if the requested lines
have been acquired, the processor core may 1gnore any count
value recerved form synchronmization arbiter 230 (block
520). Load/store unit 270 may notily instruction dispatch
and control unit 257 that there 1s a probe hit (e.g., Prb hit
signal), and thus there 1s a Failure-to-Acquire. As such, the
ACQUIRE 1nstruction 1s made to fail, as described above.
As such, to an outside observer the ACQUIRE instruction
simply failed.

[0069] It is noted that although the computer system 100
described above includes processing nodes that include one
or more processor cores, 1t 1s contemplated that 1in other
embodiments, the advanced synchronization facility and
associated hardware may be implemented using stand-alone
processors or a combination of processing nodes and stand-
alone processors, as desired. In such embodiments, each
stand-alone processor may include all or part of the above
described hardware and may be capable of executing the
instructions that are part of the advanced synchronization
tacility. As such the terms processor and processor core may
be used somewhat synonymously, except when specifically
enumerated to be different.

[0070] Code and/or data that implements the functionality
described in the preceding sections may also be provided on
computer accessible/readable medium. Generally speaking,
a computer accessible/readable medium may include any
media accessible by a computer during use to provide
istructions and/or data to the computer. For example, a
computer accessible medium may include storage media

Mar. 1, 2007

such as magnetic or optical media, e.g., disk (fixed or
removable), CD-ROM, or DVD-ROM, CD-R, CD-RW,
DVD-R, DVD-RW, volatile or non-volatile memory media
such as RAM (e.g. synchronous dynamic RAM (SDRAM),
Rambus DRAM (RDRAM), static RAM (SRAM), etc.),
ROM, Flash memory, non-volatile memory (e.g. Flash
memory) accessible via a peripheral interface such as the
Universal Serial Bus (USB) interface, etc., as well as media
accessible via transmission media or signals such as elec-
trical, electromagnetic, or digital signals, conveyed via a
communication medium such as a network and/or a wireless

link.

[0071] Although the embodiments above have been
described 1n considerable detail, numerous variations and
modifications will become apparent to those skilled 1n the art
once the above disclosure 1s fully appreciated. It 1s intended
that the following claims be interpreted to embrace all such
variations and modifications.

What 1s claimed 1is:

1. A synchronization arbiter for use in a computer system
including one or more processors each configured to request
exclusive access to a given memory resource, wherein the
request mcludes one or more addresses associated with the
given memory resource, the synchronization arbiter com-
prising:

an address storage configured to store a plurality of sets of
addresses, wherein each address of the plurality of sets
of addresses corresponds to a respective memory
resource to which a requester has acquired exclusive
access;

wherein the address storage 1s further configured to store
a plurality of count values each associated with a
respective set of addresses of the plurality of sets of
addresses, wherein each count value 1s indicative of a
number of requestors contending for any address in
cach respective set of addresses;

a compare unit coupled to the address storage and con-
figured to compare each of the one or more addresses
in the request to each address of the plurality of sets of
addresses stored 1n the address storage; and

control logic coupled to the compare unit and configured
to return to the requester, the count value associated
with a matching address in response to any address of
the one or more addresses matching any address 1n the
plurality of sets of addresses.

2. The synchromization arbiter as recited in claim 1,
wherein the control logic 1s further configured to return to
the requestor, a predetermined count value 1n response to no
address of the one or more addresses matching any address
in the plurality of sets of addresses.

3. The synchronization arbiter as recited i claim 2,
wherein the predetermined count value comprises a pass
count value of zero.

4. The synchronmization arbiter as recited in claim 1,
wherein the control logic 1s further configured to store the
one or more addresses within the address storage 1n response
to no address of the one or more addresses matching any
address 1n the plurality of sets of addresses.

5. The synchronization arbiter as recited i claim 1,
wherein the address storage comprises a plurality of entries,

US 2007/0050563 Al

wherein each entry 1s configured to store one set of the
plurality of sets of addresses and the associated count value.

6. The synchronization arbiter as recited in claim 1,
wherein each address corresponds to a physical address of a
64-byte cache line.

7. The synchronization arbiter as recited in claim 1,
wherein each set of addresses of the plurality of sets of
addresses comprises up to eight physical addresses.

8. The synchronization arbiter as recited in claim 1,
wherein the control logic 1s further configured to remove a
set of addresses from the address storage in response to
receiving a notification of completion of operations on
corresponding data 1n the given memory resource.

9. The synchronization arbiter as recited in claim 1,
wherein the control logic 1s further configured to increase
the count value associated with the set of addresses 1includ-
ing the matching address prior to returning the count value.

10. The synchronization arbiter as recited in claim 1,
turther comprising one or more communications interfaces
for connection to the one or more processors via one or more
communications links.

11. The synchromization arbiter as recited in claim 10,
wherein the one or more communications links comprise
pairs of unmidirectional packet-based links.

12. A computer system comprising:

one or more processors coupled together and to one or
more memories, wherein each of the processors 1is
configured to request exclusive access to a given
memory, wherein the request includes one or more
addresses associated with the given memory; and

a synchronization arbiter coupled to each of the one or
more processors, wherein the synchronization arbiter
includes:

an address storage configured to store a plurality of sets
of addresses, wherein each address of the plurality of
sets of addresses corresponds to a respective memory
to which a requester has acquired exclusive access;

wherein the address storage 1s further configured to
store a plurality of count values each associated with
a respective set of addresses of the plurality of sets
of addresses, wherein each count value 1s indicative
of a number of requesting processors contending for
any address 1n each respective set of addresses;

a compare unit coupled to the address storage and
configured to compare each of the one or more
addresses 1n the request to each address of the
plurality of sets of addresses stored in the address
storage; and

control logic coupled to the compare unit and config-
ured to return to the requesting processor, the count
value associated with a matching address 1n response
to any address of the one or more addresses matching
any address in the plurality of sets of addresses.
13. The computer system as recited in claim 12, wherein
the control logic 1s further configured to return to the
requestor, a predetermined count value in response to no
address of the one or more addresses matching any address
in the plurality of sets of addresses.
14. The computer system as recited in claim 13, wherein
the predetermined count value comprises a pass count value
of zero.

Mar. 1, 2007

15. The computer system as recited 1n claim 12, wherein
the control logic 1s further configured to store the one or
more addresses within the address storage 1n response to no
address of the one or more addresses matching any address
in the plurality of sets of addresses.

16. The computer system as recited in claim 12, wherein
the address storage comprises a plurality of entries, wherein
cach entry 1s configured to store one set of the plurality of
sets of addresses and the associated count value.

17. The computer system as recited 1n claim 12, wherein
cach address corresponds to a physical address of a 64-byte
cache line.

18. The computer system as recited in claim 12, wherein
cach set of addresses of the plurality of sets of addresses
comprises up to eight physical addresses.

19. The computer system as recited 1n claim 12, wherein
the control logic 1s further configured to remove a set of
addresses from the address storage in response to receiving
a notification of completion of operations on corresponding
data in the given memory resource.

20. The computer system as recited in claim 12, wherein
the control logic 1s further configured to increase the count
value associated with the set of addresses including the
matching address prior to returning the count value.

21. The computer system as recited in claim 12, wherein
the one or more processors and the synchronization arbiter
are interconnected via a plurality of communications links
cach comprising a pair of unidirectional packet-based links

22. The computer system as recited in claim 12, wherein
cach of the one or more processors 1s further configured to
use the count value to request exclusive access to a diflerent
memory resource including a different set of addresses.

23. A synchronization arbiter for use 1n a computer system
including one or more processors each configured to request
exclusive access to a given memory resource, wherein the
request includes one or more addresses associated with the
given memory resource, the synchronization arbiter com-
prising:

an address storage configured to store a plurality of sets of
addresses, wherein each address of the plurality of sets
of addresses corresponds to a respective memory
resource to which a requestor has acquired exclusive
access;

wherein the address storage 1s further configured to store
a plurality of count values, each count value associated
with a respective address of each set of the plurality of
sets of addresses, wherein each count value 1s 1ndica-
tive of a number of requestors contending for the
associated respective address;

a compare unit coupled to the address storage and con-
figured to compare each of the one or more addresses
in the request to each address of the plurality of sets of
addresses stored 1n the address storage; and

control logic coupled to the compare unit and configured
to return to the requester, the count value associated
with a matching address in response to any address of
the one or more addresses matching any address 1n the
plurality of sets of addresses.

24. The synchronization arbiter as recited in claim 23,
wherein the control logic 1s further configured to store the
one or more addresses, as a set, within the address storage

US 2007/0050563 Al

in response to no address of the one or more addresses
matching any address 1n the plurality of sets of addresses.

25. The synchronization arbiter as recited in claim 23,
wherein the control logic 1s further configured to store the
one or more addresses using a sequence of store operations
within the address storage in response to no address of the
one or more addresses matching any address in the plurality
of sets of addresses.

26. The synchronization arbiter as recited 1n claim 23,
wherein the control logic 1s further configured to remove a
set of addresses from the address storage in response to

Mar. 1, 2007

receiving a notification of completion of operations on
corresponding data 1n the given memory resource.

27. The synchronization arbiter as recited in claim 23,
wherein the control logic 1s further configured to remove
addresses from the address storage 1n a sequence of opera-
tions 1n response to receiving a notification of completion of

operations on corresponding data in the given memory
resource.

	Front Page
	Drawings
	Specification
	Claims

