a9y United States
12y Patent Application Publication o) Pub. No.: US 2007/0022063 Al

Lightowler

US 20070022063A1

43) Pub. Date: Jan. 25, 2007

(54)

NEURAL PROCESSING ELEMENT FOR USE
IN A NEURAL NETWORK

(75) Inventor: Neil Lightowler, Old Aberdeen (GB)
Correspondence Address:
DAVID S. RESNICK
100 SUMMER STREET
NIXON PEABODY LLP
BOSTON, MA 02110-2131 (US)
(73) Assignee: Axeon Limited, Bridge of Don (GB)
(21) Appl. No.: 11/445,484
(22) Filed: Jun. 1, 2006
Related U.S. Application Data
(63) Continuation of application No. 09/890,816, filed on
Aug. 1, 2001, now Pat. No. 7,082,419, filed as 371 of
international application No. PCT/GB00/00277/, filed
on Feb. 1, 2000.
(30) Foreign Application Priority Data
Feb. 1, 1999 (GB) v 9902115.6

Publication Classification

(51) Int. CL

GO6N 3/02 (2006.01)

GO6F 15/18 (2006.01)

GO6E 1/00 (2006.01)
7 TR U T) P 706/15
(57) ABSTRACT

A neural processing element for use 1 a modular neural

network 1s provided. One embodiment provides a neural
network comprising an array of autonomous modules (300).
The modules (300) can be arranged in a variety of configu-
rations to form neural networks with various topologies, for
example, with a hierarchical modular structure. Each mod-
ule (300) contains suthcient neurons (100) to enable 1t to do
usetul work as a stand alone system, with the advantage that
many modules (300) can be connected together to create a
wide variety of configurations and network sizes. This
modular approach results 1in a scaleable system that meets
increased workload with an increase in parallelism and
thereby avoids the usually extensive increases in traiming
times associated with unitary implementations.

Patent Application Publication Jan. 25,2007 Sheet 1 of 16 US 2007/0022063 Al

Fig. 1a Fig. 1b
0.50
0.40
2 0.30
i .
£ 0.20 Fig. 2
O
0.10
>0 0% 20% 40% 60% 80% 100%
Percentage of Training Time
100
~ 0 OO\O O O
100~ = 7 X Xeeieeozen- Nc(t)=3
~o0 00 O0\0O\0O O
O~ 8 ORNKG N2
100b -ne-e--- Ne(t)=1
100, OO0 PO
~SO\O\OVOO00 102
100
100\0 ONONOO0 O
~O 0 NO0O OO0
100a

Patent Application Publication Jan. 25,2007 Sheet 2 of 16 US 2007/0022063 Al

Patent Application Publication Jan. 25,2007 Sheet 3 of 16 US 2007/0022063 Al

16 output data lines 3 handshake lines

2 handshake lines

3 bit instruction

| 16 input data lines 24 handshake lines

Fig. 5

16
g
-LI:I -
HE:1E

=
S5]| 116,

Iz

Fig. 6

16 bit data bus

Patent Application Publication Jan. 25,2007 Sheet 4 of 16 US 2007/0022063 Al

24 24 24 24
10 116 12 116 14 116 16 116
Data Handshake Data Handshake Data Handshake Data Handshake

Fig. 7

Patent Application Publication Jan. 25,2007 Sheet 5 of 16 US 2007/0022063 Al

Patent Application Publication Jan. 25,2007 Sheet 6 of 16 US 2007/0022063 Al

56
1Y 135 50

\ __/ 120
\ __/
Main
Reqisters

-y
!
!
|

|
i Reqister
|
' Adder/ 59
———— _l'--_ Subtracter Shifter
T
- 58b

110 _ F

/ 125 115 Flg p £8a

100
240 250 200
ﬂ
ROM
input '
uﬁer Aﬂ?’
‘iil 280

C tr I
260 Ilr——"

60 | MUX m 62
| r "o * ‘ .

290

24 230 210 Fjg. 12 220

ap0Ja(Q
sSalppy
pedy

ap023Q

SSaIPPY UM

US 2007/0022063 Al

. eyl b4

m M3 LIIHS

e

7 sng

S IndinQ ¢4

“ 1eqoI©

: _ Ol

= "

- O

= | s1)s|bay m. =4 sio)sibay

.m S19AL(1BYIO0 % = E . SNEU|
S wen?l o Q uj 1eqo[D
w sn

m g

:

m

A sng uolnaN albul

= d N 9|PDUIS

= 0

oy

qLL bl

n#llli't#l y :

_ .& m i _mr:m,—.nz

'.l'.'l'.l'.l.i‘.ll' mn B B N Ba Nl N B 2 Il.‘.l.l.l.i.lll..!‘.l...il.l.

US 2007/0022063 Al

hn
L 8

.m_n_-_._.,._-_.*n_._,_..__-_m_."._-_n_.“._-_._un_ wm
PO FWIETITLS VIR TIVRTOLFFI UL

Snfrritetie dis ouitalimdtedioin.

Jintereiaieteatutatedelatulnialagnzis, sizi2 gy,

L T+ a - 5 ¥ v §F I W I'-...II-.

Yo
“hp_:a-uuwua e e

LY e e g ::E _Ep

¥ mw_w“

1.-. il . gy .

Y223 3
= ., e I8X ﬂ .lm“ :

E!lqtlﬂi. :

. _. 8% §ailE
oo_‘ .__f __ _.....,...ai

MU AR

.l...::nl_-'. o aubit BRSNS A A% 17 |

WEE i 11 B IEIN

L L i et VG, o ey

_Fra:_su {iAK

Patent Application Publication Jan. 25,2007 Sheet 8 of 16

Patent Application Publication Jan. 25,2007 Sheet 9 of 16 US 2007/0022063 Al

100
Oxx

110

x = Dont care
Order of signals is RSS
- (R = Receiver, S = Sender)

Fig. 13

Get input 1
- vector

Calculate distance between|
current input and reference

vectors of all neurons

Find the active neuron 3

Output coordinates of the 4
active neuron

Update reference vectors for
neurons in current
neighbourhood

Patent Application Publication Jan. 25, 2007 Sheet 10 of 16 US 2007/0022063 Al

Manhattan 600
distance
of active 500
neuron 400
300
200
100
00 10 20 30 40 50 60 70 80 90 100
Number of training steps
Fig. 15
2.5
Training
Time 5 /
(seconds) ,/
1.5 o/
4
V4
1 s’
//
0.5 et
00200 400 600 800 1000 1200

Network Size —

Fig. 16

99 Element Vectors ----
16 Element Vectors ——

Patent Application Publication Jan. 25, 2007 Sheet 11 of 16 US 2007/0022063 Al

Training |
Time 10°

10°
10° | Parallel unitary network

10° Parallel Modular Map
10’
10°

O 200 400 600 800 10001200
Network size

Fig. 17

Patent Application Publication Jan. 25, 2007 Sheet 12 of 16 US 2007/0022063 Al

2
= [[B [
' 16 16
g 18l /16 S 16l el X .
Fig. 21

Patent Application Publication Jan. 25,2007 Sheet 13 of 16
8
4

64

Neutrons - O

3
2

4 4

Fig. 22
8

4

235 ..--"“""'O

Neutrons

3
2

“ : 1
Neutrons Neutro
16 12

0 4

o
I
= B [
16 12 12 12 19 17 1 .
0 4 4 4 4 /)

S
N [
SRR

12}:l i 13 13 13

US 2007/0022063 Al

6

6

ns
12
4
Fig. 23
8-238 0.205
- __ 0.100
2 3800 Z 0.000
2 -0.200 = .0.100
S -0.400 9
2 0540 -0.226
~70.00 0.25 0.50 0.75 1.00 1.25 0.00 0.25 0.50 0.75 1.00 1.25
Time (ms) Time (ms)
0.111 0.332
0.0001 __0.200
2 .0.100 = 0.000
. [
= -0.200 = -0.200
> -0.300 > -0.7?7
0.00 0.25 0.50 0.75 1.00 1.25 0.00 0.25 0.50 0.75 1.00 1.25
Time (ms) 0.200 Time (ms)
__0.100
2 0.000 _
% -0'100 Flgl 24
> -0.221

0.00 0.25 0.50 0.75 1.00 1.25
Time (ms)

Patent Application Publication Jan. 25, 2007 Sheet 14 of 16 US 2007/0022063 Al

D m
E g =
>
EO d
® 0 ®
3 E
% 0. =
< 0.0000 © mpemn gl
= "0 1000 2000 3000 4000 5000= 0 1000 2000 3000 4000 5000
Frequency (H,) Frequency (H,)
m ' m
£ 0.3602
% > 03000
= =~ 0.2000
O L,
= = 0.1000
5, S 0.0000
s 0 1000 2000 3000 4000 5000 s 0 1000 2000 3000 4000 5000
Frequency (H,) _ Frequency (H,)
2 0.26855 -
£ 0.20000 ~
~ 0.150004 | - I~
8 010000 Fig. 25
= 0.05000
& 0.00000
S 0 1000 2000 3000 4000 5000
Frequency (H,)

O No Activation
B 10KN |
E 20KN
EI130KN
CJ40KN

% Blind

Patent Application Publication Jan. 25, 2007 Sheet 15 of 16 US 2007/0022063 Al

4

64
Neutrons

64 64 64 64

: Neutrons Neutrons Neutrons| | Neutrons
Fig. 27

[JNo Activation

= b b e E3 30KN
,' e l:-:-'-'r -._;:;:_;} :-.."':" "5 1 n:_" E“.", -) - ':I... --ﬁ .
e LR E] g40KN
R TR Ry e e B s e s

) =~ * Blind

C- e - g e Eletielle R
P i gty iy Tl i EE LN N ,T 'I_:l_':".‘."‘.f.".‘.*-.". - 'y

T
o Bl el e . - PR e e Y

¥
'

.
o35

BT
: E2

[OJNo Activation

B 10KN
SR -~ EB20KN
e 30KN
= R 40KN
* Blind

Patent Application Publication Jan. 25, 2007 Sheet 16 of 16 US 2007/0022063 Al

[JNo Activation

B 10KN
B 20KN
El 30KN
1 40KN
% Blind

120KN
@ 30KN
[140KN

O No Activation
% Blind

M 10KN

[CJNo Activation

B {0KN
i 20KN
Bl 30KN
140KN
% Blind

US 2007/0022063 Al

NEURAL PROCESSING ELEMENT FOR USE IN A
NEURAL NETWORK

[0001] The present invention relates to neural networks
and more particularly, but not exclusively, to an apparatus
for creating, and a method of training, a neural network.

10002] Artificial Neural Networks (ANNs) are parallel
information processing systems inspired by what 1s known
about the brain and the way 1t functions. They ofler a
computing mechanism that differs significantly from the
conventional serial computer systems, not simply because
they process information in a parallel manner but because
they do not require explicit information about the problems
they are required to tackle; instead they learn by example.
However, rather than being designed and built as computing
platforms, they are predominantly simulated on conven-
tional serial computing systems i1n software. For small
networks this approach i1s generally suflicient, especially
when considering the improvement in processing speed that
has been achieved 1n recent years. However, when real-time
systems and large networks are required, the computational
burden often requires other approaches.

[0003] The basic neuron does very little computation on
its own but when large numbers of neurons are used, the
total computation 1s often such that even the fastest of serial
computers 1s unable to train a network in a reasonable time
scale. The problem 1s exacerbated because, the larger the
network, the more training steps are required and, conse-
quently, the amount of computation required increases expo-
nentially with increasing network size. There 1s also the
added problem of inter-neuron communication, which also
increases with increasing network size and must be taken
into account when attempting to implement networks on
parallel systems, because this communication can become a
bottleneck, preventing substantial speedups for parallel
implementations.

[0004] When considering parallel implementation of
ANNs, 1t 1s 1mportant to consider how the system 1s to be
parallelised. This 1s dependent not only on the underlying
architecture/technology but also the algorithm and some-
times on the intended application itsellf. However, there 1s
often more than one approach for any particular architecture
and an understanding of the consequences of partitioning
strategies 1s of great value. When using multi-processor
systems, there are two basic approaches to parallelising the
Self-Organising Map (SOM) algorithm; either the function-
ality of the network can be partitioned such that one pro-
cessor may perform only one aspect of the functionality of
a neuron but performs this function for a large number of
neurons, or the network can be partitioned so that a set of
neurons (a set typically consists of one or more neurons) 1s
implemented on each processor in the system.

[0005] Partitioning functionality of the network is an
approach that has been used with transputer systems and,
normally results 1n an architecture known as a systolic array.
The basic principle of the systolic array 1s that the traditional
single processing element 1s replaced by an array of pro-
cessing elements with mputs and outputs only occurring at
cach end of the array. The processing that would tradition-
ally be carried out by a single processor i1s then divided
amongst the processor array. Normally, each processor
would perform some of the functionality of the network and
that function would only be performed by that processor.

Jan. 25, 2007

The array then acts as a pipeline of processors, with data
flowing 1n at one end and results flowing out of the other.
Unfortunately, this approach 1s generally only appropnate
for moderately sized networks because the inter-processor
communication overheads become unmanageable very
quickly and adding more processors does little or nothing to
alleviate the problem.

[0006] When partitioning the SOM wherein one or more
neurons are implemented on an individual processor, the
communication overhead 1s lessened when compared to
approaches that partition functionality but can still become
a bottleneck as network size increases. Coarse grain paral-
lelism 1s the term generally associated with a number of
neurons implemented on each processor whereas fine grain
parallelism 1s the term used when only a single neuron 1s
implemented on 1ndividual processors. The communication
overhead tends to become more prominent as the number of
neurons per processor 1s reduced because traditional pro-
cessors are implemented on separate devices and commu-
nication between devices has much greater overheads than
communication amongst neurons on the same device. Fine
grain parallelism normally results 1n a Single Instruction
stream Multiple Data stream (SIMD) system and 1s suited to

massively parallel architectures such as the Connection
Machine.

[0007] If the implementation medium i1s to be in hardware
such as very large scale mtegration (VLSI) or similar, then
it may be possible to increase the level of parallelism to the
extent ol implementing each weight in parallel. However,
this approach does little to improve overall parallelism of the
system because only part of the functionality 1s performed at
the weight level and consequently, such an approach does
not lead to the most effective use of resources. The approach
adopted 1s fine grain parallelism with a single processing
clement performing the functionality of a single neuron. To
overcome some of the inter-processor communication prob-
lems 1t 1s suggested that several processors be implemented
on a single device with strong short range communications.

Neural Network Implementations

[0008] In an attempt to overcome the limitations of gen-
eral purpose parallel computing platforms some researchers
attempted to develop specialised neural network computers.
Such approaches attempt to develop architectures best suited
to neural networks but are normally based on the traditional
parallel architectures listed above. Modifications to these
basic architectural approaches have often been used 1n an
attempt to overcome some of the traditional problems such
as inter-processor communication. Others have attempted to
modily existing parallel systems such as the Connection
Machine to improve their usefulness as neurocomputing
architectures. Some have even considered reconfigurable
neurocomputer systems based on Field Programmable Gate
Array Technology (FPGA) but most neurocomputer sys-
tems, while useful for investigating the possibilities of
ANNSs, are normally too large and expensive to be used for
many applications.

[0009] Driven mainly by the application domain research-
ers undertook to mnvestigate direct hardware implementation
of ANNs, and as biological neural systems appear to be
analogue, there was a bias towards analogue implementa-
tion. Indeed, analogue implementation of ANNs appears to
be beneficial in some ways, e.g. very little hardware 1s

US 2007/0022063 Al

required for the memory elements of such a system. How-
ever, there are also many problems with analogue imple-
mentation of ANNs because the fundamental building block
of such systems 1s the capacitor. Due to the shortcomings of
the capacitor, such as its tendency to sufler from leakage, a
variety of schemes were developed to overcome these
weaknesses.

[0010] Macq et al proposed an analogue approach to
implementation of the SOM based on the use of currents to
represent weight values. Such an approach may provide a
mechanism for generating high density integration due to the
small number of transistors required for each neuron, but
this approach uses analogue synaptic weights based on
current copiers, the principle component of which i1s the
capacitor, which 1s prone to leakage. These leakage currents
continuously modily the value stored by the capacitor
thereby necessitating some form of refreshment to maintain
reasonable precision of weight values. The main cause of
this leakage 1s the reverse biased junction. Their proposed
method of refreshment uses a converter to periodically
refresh each synaptic weight. This 1s achueved by reading the
current memorised by each cell using successive approxi-
mation and then writing back to the cell the next upper
reference current. It 1s claimed that this approach allows for
on chip learning. However, for the gain factor to reduce with
time, as prescribed by Kohonen, adjustments need to be
made to the reset signal, and for the neighbourhood to
reduce with time the period of one of the timing circuit
clocks must be adjusted. The impression given 1s that these
changes would require manual intervention. The leakage
current of capacitors also appears to be the main factor that
would restrict the maximum number of memory cells 1n this
design.

[0011] A charge based approach to implementation was
suggested 1 “A Charge-Based On-Chip Adaptation
Kohonen Neural Network” which claims that such an
approach would lead to low power dissipation and compact
device configurations. The approach uses switched capacitor
circuits to store the weights and the adaptive weight syn-
apses used utilises parasitic capacitances between two adja-
cent gates of the switched capacitor circuit to determine the
learning rate. This will give a fixed learning rate, which will
be different for each device manufactured due to the difli-
culties 1n manufacturing such components to exactly the
same parameters from device to device. Weight integrity 1s
also a potential problem area because, as with most analogue
implementations of neural networks, weight values are
stored by capacitors which have difliculty maintaining the
charge held, and consequently the weight value. The authors
of this paper attempt to address this 1ssue but, for weights not
being updated during a cycle, they simply regarded 1t as a
torget eflect. Unfortunately, as the number of neurons on the
device increases, so too does the common node parasitic
capacitance. This will require the size of the storage elec-
trode ol each neuron to be increased as network size
increases to compensate.

[0012] Perhaps the most successful analogue implemen-
tations are those which utilise a pulse stream approach. It has
long been known that biological neural systems use pulses
to communicate between cells and simple oscillating circuits
can be mmplemented i VLSI relatively easily. Unfortu-
nately, the problem of analogue memory still overshadows
such approaches. The main advantage of pulse stream

Jan. 25, 2007

approaches 1s that hardware requirements for the arithmetic
units are very low compared to the equivalent digital imple-
mentation; 1 particular multipliers which can be 1mple-
mented 1n an analogue fashion using only three transistors
require many gates for digital systems.

[0013] The problems of implementing digital multipliers
and storing weight values provide two reasons that most
digital implementations of the SOM have been restricted to
small network sizes and are often only coprocessors rather
than fully parallel implementations. The other main factor
that has made a significant contribution to limiting network
s1ize 1s the nter-neuron communication overhead which
increases exponentially with network size. Consequently,
most fully digital implementations of the SOM require some
modification to Kohonen’s original algorithm, ¢.g. Ienne et
al suggest two alternative modifications to the SOM algo-
rithm for digital implementation. Van den Bout et al also
propose an all digital implementation of the SOM and
investigate a rapid prototyping approach towards neural
network hardware development. This 1s facilitated by the use
of Xilinx field programmable gate arrays (FPGAs) which
provide a flexible platform for such endeavours and speed
up construction time compared to VLSI development. Their
approach uses stochastic signals to allow pseudo-analogue
computation to be carried out using space eflicient digital
logic. A Markovian learning algorithm i1s used to simplity
that suggested by Kohonen and the Manhattan distance
metric 1s used 1n place of Fuclidean distance to simplify
distance calculations. Their approach towards the imple-
mentation of the SOM 1s later reiterated when they describe
theirr VLSI implementation, TInMann.

[0014] Saarinen et al propose a fully digital approach to
the implementation of Kohonen’s SOM 1n order to create a
neural coprocessor for PC based systems. Their approach
uses three Xilinx XC3090 FPGAs to create 16 processing
clements, and RAM to store both weight and input vector
values. The host computer mnitialises the random weight
values, loads up the iput vector values and sets the network
parameters (1.¢. network size, number of inputs, gain factor
and number of training steps). After the host computer has
set these parameters the coprocessor system then trains the
network according to the pre-specified parameters until
training 1s complete. The architecture of the system consists
of three main elements; a distance and update unit (DUU),
a distance comparator unit (DCU) and an address control
unit (ACU), each implemented on a separate FPGA which 1s
clearly a partitioning of the network functionality and is not
likely to be scaleable due to the communication overheads.
In addition, this implementation does not implement the
standard SOM but, a rather limited, one dimensional ver-
S1011.

[0015] While more obvious than many of the digital
implementation approaches used, that of Saarinen 1s rather
typical 1n that 1t partitions functionality. Most digital imple-
mentations appear to do the same, but they maintain the
whole system on a single device. The rationale behind this
1s that when using digital multipliers, vast resources are
normally required to implement them, so 1t 1s often more
ellective to have a limited number but to make them fast. To
avoid using excessive resources for the Modular Map 1mple-
mentation, very limited reduced instruction set computers
(RISC) processors are suggested that use an alternative
approach to multiplication which will only require a fraction

US 2007/0022063 Al

of the resources needed to implement a traditional digital
multiplier. In addition, while minor modifications to
Kohonen’s algorithm are made, 1ts basic operation and two
dimensional nature are maintained.

[0016] The paper by Ruping et al presented simulta-
neously with the paper by Lightowler et al presents a fully
digital hardware implementation of the SOM which incor-
porates some of the same ideas as does the Modular Map
design. To facilitate hardware implementation Ruping et al
also use Manhattan distance instead of Euclidean distance
and the gain factor 1s restricted to negative powers of two.
A system comprising 16 devices 1s outlined and performance
information 1s presented in terms of the operating speed of
the system etc. Each of their devices implements 25 neurons
as separate processing elements and allows for network size
to be increased by using several devices. However, these
devices only contain neurons; there 1s no local control for the
neurons on a device. An external controller 1s required to
interface with these devices and control the actions of their
constituent neurons. Consequently, these devices are not
autonomous as are Modular Maps and only lateral expansion
which creates a Single Instruction stream Multiple Data
stream (SIMD) architecture has been considered as an
approach towards creating larger network sizes.

[0017] There have also been some commercial hardware
implementations of ANNs, the number of which has been
steadily growing over the last few years. They generally
offer a speedup of around an order of magnitude compared
to 1implementation on a PC alone but are predominantly
coprocessors rather than stand alone systems and are not
normally scaleable. However, while some of these imple-
mentations are only able to implement a single ANN para-
digm, most use digital signal processing (DSP) chips, trans-
puters or standard microprocessors, thereby allowing the

system to be programmable to some extent and implement
a range of standard ANNS.

[0018] The commercially available approach to imple-
mentation, (1.e. accelerator cards) oflers the slowest speedup
of the main implementation approaches but can still offer a
significant speedup compared to simulation on standard PC
systems and the growing number available on the market
suggests that they are usetul for a range of applications.
General purpose multiprocessor systems offer a further
speedup but large scale systems normally have significant
communication overheads. Some researchers have
attempted to modily standard multiprocessor architectures
to 1mprove their application to ANNs and have increased
achievable speedup by doing so but while these systems
have been useful i ANN research, they are not fully
scaleable and require significant financial outlay. The great-
est speedups for ANN implementations have been achieved
by dedicated neural network chips but the problem again has
been that these systems are limited to relatively small scale
systems. As an approach towards developing scaleable neu-
ral network systems, there have been some attempts at
developing modular systems.

Modular System

[0019] There is considerable evidence to suggest that
biological neural systems have a modular organisation at
various levels. At a macroscopic level, for example, it has
been found that some people have no connection between
the left and right hemispheres of the brain, which does bring

Jan. 25, 2007

with 1t certain problems, but they are still able to function in
a near to normal way, which shows that each hemisphere 1s
able to function independently. However, it has also been
noted that, while each hemisphere 1s almost 1dentical physi-
ologically, they specialise 1n functionality. When one begins
to look closer at the cerebral hemisphere one finds that
different functionality 1s found at different regions, even
though these regions show a modular organisation and are
made up of geometrically defined repetitive units. Research
by Murre and Sturdy also supports this view of a modular
organisation in their attempt at a quantitative analysis of the
brain’s connectivity. It 1s of interest that this modularity 1s
also seen 1n relation to the topological maps formed in the
neo-cortex, e.g. somatosensory maps for different parts of
the body are found at different parts of the cerebral cortex
and similar maps for other senses such as sound (tonotopic
maps) are found in different regions again. Such evidence
suggests that while the concept of topological maps which
form the basis for Kohonen’s self organising map 1s valid, 1t
also suggests that the brain contains many of these maps.
Consequently, 1t 1s reasonable to suggest that when attempt-
ing to develop scaleable, and particularly when trying to
develop large scale implementations of the SOM, that a
modular approach should be considered.

[0020] Researchers such as Happel and Murre have
approached neural network design as an evolutionary pro-
cess using genetic algorithms to determine network archi-
tectures. Their investigations into the design of modular
neural networks using the CALM module are intended as a
study to assist with understanding of the relationship
between structure and functionality in the brain but they
present some findings that may also assist with the devel-
opment of information processing systems. They found that
the best performing network architectures derived with their
approach reproduced characteristics of the vision system
with the 1s orgamisation of coarse and fine processing of
stimuli 1n different pathways. They also present a range of
evidence that supports the belief that the brain 1s highly
organised and modular 1 1its architecture.

[0021] The basic premise on which modular neural net-
work systems are developed 1s that the computation per-
formed by the network 1s decomposed mnto two or more
separate modules which operate as individual entities. Not
only can such approaches improve scaleability but consid-
erable savings can be made on the learning times required
for large networks, which are often rather slow. In addition,
the generalisation abilities of large networks are often poor,
whereas systems composed of several modules do not
appear to suller from this drawback. Research carried out by
Jacobs et al using modules composed of Multi Layer Per-
ceptrons (MLPs) used competition to split the mput space
into overlapping regions. Their work found that the modular
approach had much improved training times compared to
single large networks and gave better performance, espe-
cially where there were discontinuities within classes in the
original input space. They also found, when building hier-
archies of such systems, an architecture they refer to as a
hierarchical mixture of experts, that the results yielded a
probabilistic approach to decision tree modelling. Others,
such as Hansen and Salamon, have considered ensembles of
neural networks as a means ol improving classification.
Essentially the ensemble approach imnvolves traiming several
networks on the same task to achieve a more reliable output.

US 2007/0022063 Al

10022] A modular approach to implementation of the SOM
1s a valid alternative to the more traditional approaches
which attempt to create single networks. Other authors such
as Helge Ritter have also presented research supporting a
modular approach for the SOM. There also appears to be a
sound basis for modularity 1n biological systems and, while
no attempt 1s being made to replicate biological systems,
they are nevertheless the initial inspiration for artificial
neural networks. It 1s also pertinent to consider that, while
Man has only been attempting to develop computing sys-
tems for a matter of centuries, natural evolution had pro-
duced a range of biological computers long before Man was
on this earth. Even with the latest of modern technology,
Man 1s unable to create computers that surpass the comput-
ing abilities of biological systems, so 1t 1s suggested that
Man should continue to learn from nature.

[0023] According to a first aspect of the present invention,
there 1s provided a neuron for use 1n a neural network, the
neuron comprising,

[0024] an arithmetic logic unit;

0025] a shifter mechanism:;
0026] a set of registers;
0027] an input port;

0028] an output port; and
0029] control logic.

[0030] According to a second aspect of the present inven-
tion, there 1s provided a module controller for controlling the
operation of at least one neuron, the controller comprising

0031] an input port;

0032] an output port;

0033] a programmable read-only memory;
0034] an address map;

0035] an input buffer; and

10036]

at least one handshake mechanism.

[0037] According to a third aspect of the present inven-
tion, there 1s provided a neuron module, the module com-
Prising

0038
0039

at least one neuron; and

at least one module controller.

[0040] Preferably, the at least one neuron and the at least
one module controller are implemented on one device. The
device 1s typically a field programmable gate array (FPGA)
device. Alternatively, the device may be a full-custom very
large scale integration (VLSI) device, a semi-custom VLSI
or an application specific mtegrated circuit (ASIC).

[0041] According to a fourth aspect of the present inven-
tion there 1s provided a neural network, the network com-
Prising

[0042] at least two neuron modules coupled together.

10043] 'Typically, the neuron modules are coupled in a
lateral expansion mode. Alternatively, the neuron modules
may be coupled in a hierarchical mode. Optionally, the
neuron modules may be coupled in a combination of lateral
expansion modes and hierarchical modes.

Jan. 25, 2007

[0044] In lateral expansion mode, the at least two neuron
modules are typically connected on a single plane. Data 1s
preferably input to the modules in the network only once.
Thus, the modules forming the network are synchronised to
facilitate this. The modules are preferably synchronised
using a two-line handshake mechanism. The two-line
mechanism typically has two states. The two states typically
comprise a wait state and a data ready state. The wait state
typically occurs where a sender and/or a receiver 1s not ready
for the transter of data from the sender to the receiver or vice
versa. The data ready state typically occurs when both the
sender and receiver are ready for data transfer. Data transfer
follows immediately the data ready state occurs.

[0045] The neuron modules typically comprise at least one
neuron, and at least one module controller.

[0046] 'Typically, the number of neurons in a module is a
power ol two. The number of neurons mm a module 1s
preferably 256. Any number of neurons may be used in a
module, but the number of neurons 1s preferably a power of
two.

[0047] A neuron typically comprises an arithmetic logic
unit, a shifter mechamsm, a set of registers, an mput port, an
output port, and control logic.

[0048] The arithmetic logic unit (ALU) typically com-
prises an adder/subtractor unit. The ALU is typically at least
a 4-bit adder/subtractor unit, and preferably a 12-bit adder/

subtractor unit. The adder/subtractor unit typically includes
a carry lookahead adder (CLA).

[0049] The ALU typically includes at least two flags. A
zero flag 1s typically set when the result of an arithmetic
operation 1s zero. A negative tlag 1s typically set when the
result of an arithmetic operation 1s negative.

[0050] The ALU typically further includes at least two
registers. A first register 1s typically located at one of the
inputs to the ALU. A second register 1s typically located at
the output from the ALU. The second register 1s typically
used to store data until 1t 1s ready to be transierred eg stored.

[0051] The shifter mechanism typically comprises an
arithmetic shifter. The arithmetic shifter 1s typically imple-
mented using tlip-tlops. The shifter mechanism 1s preferably
located 1n a data stream between the output of the ALU and
the second register of the ALU. This location increases the
flexibility of the neuron and increases the simplicity of the
design.

[0052] The control logic typically comprises a reduced
istruction set computer (RISC). The instruction set typi-
cally comprises thirteen different instructions.

[0053] The module controller typically comprises an input
port, an output port, a programmable read-only memory, an
address map, an input builer, and at least one handshake
mechanism.

[0054] The programmable read-only memory (PROM)
typically contains the instructions for the controller and/or
the subroutines for the at least one neuron.

[0055] The address map typically allows for conversion
between a real address and a virtual address of the at least
one neuron. The real address 1s typically the address of a
neuron on the device. The virtual address 1s typically the
address of the neuron within the network. The virtual

US 2007/0022063 Al

address 1s typically two 8-bit values corresponding to X and
Y co-ordinates of the neuron on the single plane.

[0056] The at least one handshake mechanism typically
includes a synchromisation handshake mechanism for syn-
chronising data transier between a sender and a receiver
module. The synchronisation handshake mechanism typi-
cally comprises a three-line mechanism. The three-line
mechanism typically has three states. The three states typi-
cally comprise a wait state, a no device state and a data ready
state. The wait state typically occurs where a sender and/or
a receiver 1s not ready for the transfer of data from the sender
to the recetver or vice versa. The no device state 1s typically
used where inputs are not present. Thus, reduced input
vector sizes may be used. The no device state may also be
used to prevent the controller from malfunctioning when an
input stream(s) 1s temporarily lost or stopped. The data ready
state typically occurs when both the sender and receiver are
ready for data transfer. Data transfer follows immediately
when the data ready state occurs. The three-line mechanism
typically comprises two outputs from the receiver and one
output from the sender. The advantage of the three-line
mechanism 1s that no other device 1s required to facilitate
data transmission between the sender and receiver or vice
versa. Thus, the transmission of data 1s directly from point
to point.

[0057] According to a fifth aspect of the present invention
there 1s provided a method of training a neural network, the
method comprising the steps of

0058

0059] reading an input vector applied to the input of
the neural network;

[0060] calculating the distance between the input vector
and a reference vector for all neurons 1in the network;

providing a network of neurons;

0061] finding the active neuron;
0062] outputting the location of the active neuron; and
0063] updating the reference vectors for all neurons in

a neighbourhood around the active neuron.

[0064] A distance metric is typically used to calculate the
distance between the mput vector and the reference vector.
Preferably, the Manhattan distance metric 1s used. Alterna-
tively, a Euclidean distance metric may be used.

[0065] Calculation of the Manhattan distance preferably
uses a gain factor. The value of the gain factor 1s preferably
restricted to negative powers ol two.

[0066] The network of neurons typically comprises a
neural network. The neural network typically comprises at
least two neuron modules coupled together.

[0067] 'Typically, the neuron modules are coupled in a
lateral expansion mode. Alternatively, the neuron modules
may be coupled in a hierarchical mode. Optionally, the
neuron modules may be coupled in a combination of lateral
expansion modes and hierarchical modes.

[0068] In lateral expansion mode, the at least two neuron
modules are typically connected on a single plane. Data 1s
preferably input to the modules in the network only once.
Thus, the modules forming the network are synchronised to
tacilitate this. The modules are preferably synchronised
using a two-line handshake mechanism. The two-line

Jan. 25, 2007

mechanism typically has two states. The two states typically
comprise a wait state and a data ready state. The wait state
typically occurs where the sender and/or the receiver 1s not
ready for the transfer-of data from the sender to the receiver
or vice versa. The data ready state typically occurs when
both the sender and receiver are ready for data transfer. Data
transier follows immediately the data ready state occurs.

[0069] The neuron modules typically comprise at least one
neuron, and at least one module controller.

[0070] Preferably, the at least one neuron and the at least
one module controller are implemented on one device. The
device 1s typically a field programmable gate array (FPGA)
device. Alternatively, the device may be a full-custom very
large scale integration (VLSI) device, a semi-custom VLSI
or an application specific mtegrated circuit (ASIC).

[0071] Typically, the number of neurons in a module is a
power ol two. The number of neurons mm a module 1s
preferably 256. Any number of neurons may be used 1 a

module, but the number of neurons 1s preferably a power of
two.

[0072] A neuron typically comprises an arithmetic logic
unit, a shifter mechamism, a set of registers, an mput port, an
output port, and control logic.

[0073] The arnthmetic logic unit (ALU) typically com-
prises an adder/subtractor unit. The ALU 1s typically at least
a 4-bit adder/subtractor unit, and preferably a 12-bit adder/

subtracter unit. The adder/subtractor unit typically includes
a carry lookahead Adder (CLA).

[0074] The ALU typically includes at least two flags. A
zero flag 1s typically set when the result of an arithmetic
operation 15 zero. A negative tlag 1s typically set when the
result of an arithmetic operation 1s negative.

[0075] The ALU typically further includes at least two
registers. A first register 1s typically located at one of the
iputs to the ALU. A second register 1s typically located at
the output from the ALU. The second register 1s typically
used to store data until 1t 1s ready to be transierred eg stored.

[0076] The shifter mechanism typically comprises an
arithmetic shifter. The arithmetic shifter 1s typically imple-
mented using flip-flops. The shifter mechanism 1s preferably
located 1n a data stream between the output of the AL U and
the second register of the ALU. This location increases the
flexibility of the neuron and increases the simplicity of the
design.

[0077] The control logic typically comprises a reduced
istruction set computer (RISC). The istruction set typi-
cally comprises thirteen different instructions.

[0078] The module controller typically comprises an input
port, an output port, a programmable read-only memory, an
address map, an input buffer, and at least one handshake
mechanism.

[0079] The programmable read-only memory (PROM)

typically contains the instructions for the controller and/or
the subroutines for the at least one neuron.

[0080] The address map typically allows for conversion
between a real address and a virtual address of the at least
one neuron. The real address 1s typically the address of a
neuron on the device. The virtual address 1s typically the

US 2007/0022063 Al

address of the neuron within the network. The wvirtual
address 1s typically two 8-bit values corresponding to X and
Y co-ordinates of the neuron on the single plane.

|0081] The at least one handshake mechanism typically
includes a synchronisation handshake mechanism for syn-
chronising data transier between a sender and receiver
module. The synchronisation handshake mechanism typi-
cally comprises a three-line mechanism. The three-line
mechanism typically has three states. The three states 1s
typically comprise a watit state, a no device state and a data
ready state. The wait state typically occurs where the sender
and/or the receiver 1s not ready for the transfer of data from
the sender to the receiver or vice versa. The no device state
1s typically used where inputs are not present. Thus, reduced
input vector sizes may be used. The no device state may also
be used to prevent the controller from malfunctioning when
an input stream(s) 1s temporarily lost or stopped. The data
ready state typically occurs when both the sender and
receiver are ready for data transier. Data transfer follows
immediately when the data ready state occurs. The three-line
mechanism typically comprises two outputs from the
receiver and one output from the sender. The advantage of
the three-line mechanism 1s that no other device 1s required
to facilitate data transmission between the sender and
receiver or vice versa. Thus, the transmission of data 1s
directly from point to point.

10082] Embodiments of the present invention shall now be

described, with reference to the accompanying drawings 1n
which:

[0083] FIG. 1a is a unit circle for a Euclidean distance
metric;

10084] FIG. 15 1s a unit circle for a Manhattan distance
metric:

[0085] FIG. 2 1s a graph of gain factor against training
time;

[0086] FIG. 3 1s a diagram showing neighbourhood func-
tion;

[0087] FIGS. 4a-¢ are examples used to illustrate an
clastic net principle;

[0088] FIG. 5 1s a schematic diagram of a single Modular
Map:;

[0089] FIG. 6 is a schematic diagram of laterally com-
bined Maps;

[0090] FIG. 7 is a schematic diagram of hierarchically
combined Maps;

[0091] FIG. 8 is a scatter graph showing input data sup-
plied to the network of FIG. 7;

[10092] FIG. 9 1s a Voronoi diagram of a module in an input
layer I of FIG. 7;

10093] FIG. 10 is a diagram of input layer activation
regions for a level 2 module with 8 nputs;

[0094] FIG. 11 1s a schematic diagram of a Reduced
Instruction Set Computer (RISC) neuron;

10095] FIG. 12 is a schematic diagram of a module con-
troller system:;

Jan. 25, 2007

[0096] FIG. 13 is a state diagram for a three-line hand-
shake mechanism;

[0097] FIG. 14 is a flowchart showing the main processes
involved in training a neural network;

[0098] FIG. 15 is a graph of activations against training
steps for a typical neural net;

[10099] FIG. 16 is a graph of training time against network
size using 16 and 99 element reference vectors;

[0100] FIG. 17 is alog-linear plot of relative training times
for different implementation strategies for a fixed input
vector size of 128 elements;

[0101] FIG. 18 1s example greyscale representation of the
range ol 1mages for a single subject used m a human face
recognition application;

10102] FIG. 19a 1s an example activation pattern created

by the same class of data for a modular map shown 1n FIG.
23:

10103] FIG. 195 1s an example activation pattern created
by the same class of data for a 256 neuron selif-organising

map (SOM);

[0104] FIG. 20 1s a schematic diagram of a modular map
(configuration 1);

[0105] FIG. 21 is a schematic diagram of a modular map
(configuration 2);

[0106] FIG. 22 is a schematic diagram of a modular map
(configuration 3);

[0107] FIG. 23 1s a schematic diagram of a modular map
(configuration 4);

[0108] FIGS. 24a to 24e are average time domain signals
for a 10 kN, 20 kN, 30 kN, 40 kN and blind ground
anchorage pre-stress level tests, respectively;

[0109] FIGS. 25a to 25¢ are average power spectrum for
the time domain signals 1n FIGS. 24a to 24e respectively;

[0110] FIG. 26 1s an activation map for a SOM trained
with the ground anchorage power spectra of FIGS. 25a to
25¢;

[0111] FIG. 27 is a schematic diagram of a modular map
(configuration 5);

[0112] FIG. 28 is the activation map for module 0 in FIG.
27:

[0113] FIG. 29 is the activation map for module 1 in FIG,
27;

[0114] FIG. 30 is the activation map for module 2 in FIG.
27:

[0115] FIG. 31 is the activation map for module 3 in FIG.
27; and

[0116] FIG. 32 1s the activation map for an output module
(module 4) i FIG. 27.

[0117] As an approach to overcoming the constraints of
unitary artificial neural networks a modular implementation
strategy for the Self-organising Map (SOM) can be used.
The basic building block of this system 1s the Modular Map
which 1s 1tself a parallel implementation of the SOM.
Kohonen’s original algorithm has been maintained, except-

US 2007/0022063 Al

ing that parameters have been quantised and the Fuclidean
distance metric used as standard has been replaced by
Manhattan distance. Fach module contains suflicient neu-
rons to enable 1t to do useful work as a stand alone system.
However, the Modular Map design 1s such that many mod-
ules can be connected together to create a wide variety of
configurations and network sizes. This modular approach
results 1n a scaleable system that meets an increased work-
load with an increase 1n parallelism and thereby avoids the
usually extensive increases 1n training times associated with
unitary implementations.

BACKGROUND

[0118] An important premise on which the Modular Map
has been developed 1s 1ts ability to form topological maps of

the input space, a phenomenon which has been likened to the
‘neuronal maps’ of the brain which are found in regions of
the neo-cortex associated with various senses. The forma-
tion of such topology preserving maps occurs during the

learning process defined for the Self Organising Map
(SOM).

[0119] In the Modular Map implementation of the SOM
the multidimensional Euclidean mput space R", where

R covers the range (0, 255) and (O0<n=16), 1s mapped to a
two dimensional output space R (where the upper limit on

R 1s variable between 8 and 255) by way of a non-linear
projection of the probability density function. Each neuron
in the network has a reference vector

mi=[;,, W5, - - ., W, JERT where ;. are scalar weights, 1 1s
the neuron index and 7 the weight index.

[0120] An input vector x=[€, €,,6, JER" 1s presented
to all neurons 1n the network where the closest matching,
reference vector (codebook vector) C 1s determined, 1.e.

Z €7 — Mejl = Hﬂﬂ{z €7 — Hfjl}
=0 =0

k
=

1

where k=network size.

[0121] The neuron with minimum distance between its
codebook vector and the current mput (1.e. greatest sumilar-
1ty) becomes the active neuron. A variety of distance metrics
can be used as a measure ol similarity, the Fuclidean
distance being the most popular. However, it should be noted
that the distance metric beimng used here 1s Manhattan
distance, known to many as the L, metric of the family of
Minkowski metrics, 1.e. the distance between two points a

and b 1s
L=(a-b[*/a-b/) "

10122] Clearly, Euclidean distance would be the L, metric
under Minkowski’s scheme. An 1dea of these two distance
functions can be gained by plotting the unit circle for both
metrics. FIG. 1a shows the unit circle for the Euclidean
metric, and FIG. 15 shows the unit circle for the Manhattan
metric.

10123] The Manhattan distance metric 1s both simple to
implement and a reasonable alternative to the Fuclidean
distance metric which 1s rather expensive to implement 1n
terms of hardware due to the need to calculate squares of the
distances 1nvolved.

Jan. 25, 2007

[0124] After the active neuron has been identified refer-
ence vectors are updated to bring them closer to the current
input vector. The amount by which codebook vectors are
changed 1s determined by their distance from the input, and
the current gain factor a(t). If neurons are within the
neighbourhood of the active neuron then their reference
vectors are updated, otherwise no changes are made.

m;(t+ D)=m,()+a){x(1)-m ()] if iEN(1)
and
m(i+1)=m.(?) 1 i¢N_(7)
where N_(1) 1s the current neighbourhood andt =0, 1, 2 . . .

[0125] Both the gain factor and neighbourhood size
decrease with time from their original start-up wvalues
throughout the training process. Due to implementation
considerations these parameters are constrained to a range of
discreet values rather than the continuum suggested by
Kohonen. However, the algorithms chosen to calculate val-
ues for gain and neighbourhood size facilitate convergence
of codebook vectors in line with Kohonen’s original algo-

rithm.

[0126] The gain factor a.(t) being used by the Modular
Map 1s restricted to negative powers of two to simplity
implementation. FIG. 2 1s a graph of gain factor a(t) against
training time when the gain factor a(t) i1s restricted to
negative powers ol two. By restricting the gain factor a(t) in
this way 1t 1s possible to use a bit shift operation for
multiplication rather than requiring an additional hardware
multiplier which would clearly require more hardware and
increase the complexity of the implementation. This
approach does not unduly affect the performance of the
algorithm and 1s suitable for simplifying hardware require-
ments.

[0127] A square, step function neighbourhood, one of
several approaches suggested by Kohonen, could be defined
by the Manhattan distance metric. This approach to defiming
the neighbourhood has the eflect of rotating the square
through 45 degrees and can be used by individual neurons to
determine 11 they are in the current neighbourhood when
given the index of the active neuron (see FIG. 3). FIG. 3 1s
a diagram showing the neighbourhood function when a
square, step function neighbourhood 1s used. When all these
parameters are combined to form the Modular Map 1t has the
same characteristics as the self-organising map and gives
comparable results when evaluated. The architecture of the
Modular Map was also designed to allow for expansion by
combining many such modules together to create larger
maps while avoiding the usual communications bottleneck
and maintaiming self-organising map behaviour.

Stand Alone Maps

[0128] If, for visualisation purposes, a simplified case of
the Modular Map 1s considered where only three dimensions
are used as iputs, then a single map would be able to
represent an input space enclosed by a cube and each
dimension would have a possible range of values between 0
and 255. With only the simplest of pre-processing this cube

could be placed anywhere in the input space R" where

R covers the range (—oo to +o0), and the codebook vector of
cach neuron within the module would give the position of a
point somewhere within this feature space. The implemen-

US 2007/0022063 Al

tation suggested would allow each vector element to hold
integer values within the given scale, so there are a finite
number of distinct points which can be represented within
the cube (i.e. 256°). Each of the points given by the
codebook vectors has an ‘elastic’ sort of bond between 1tself
and the point denoted by the codebook vectors of neigh-
bouring neurons so as to form an elastic net (FIG. 4).

10129] FIGS. 4a to 4¢ shows a series of views of the elastic
net when an input 1s presented to the network. The figures
show the point position of reference vectors 1n three dimen-
sional Euclidean space along with their elastic connections.
For simplicity, reference vectors are initially positioned 1n
the plane with z=0, the gain factor c.(t) 1s held constant at 0.5
and both orthogonal and plan views are shown. After the
input has been presented, the network proceeds to update
reference vectors of all neurons in the current neighbour-
hood. In FIG. 45, the neighbourhood function has a value of
three. In FIG. 4¢ the same input 1s presented to the network
for a second time and the neighbourhood 1s reduced to two
for this iteration. Note that the reference points around the
active neuron become close together as 1f they were being
pulled towards the mput by elastic bonds between them.

[0130] Inputs are presented to the network in the form of
multi-dimensional vectors denoting positions within the
feature space. When an input 1s recerved, all neurons 1n the
network calculate the similarity between their codebook
vectors and the put using the Manhattan distance metric.
The neuron with minimum Manhattan distance between 1ts
codebook vector and the current input, (1.e. greatest simi-
larity) becomes the active neuron. The active neuron then
proceeds to bring 1ts codebook vector closer to the nput,
thereby increasing their similarity. The extent of the change
applied 1s proportional to the distance nvolved, this pro-
portionality being determined by the gain factor a(t), a time
dependent parameter.

10131] However, not only does the active neuron update
its codebook vector, so too do all neurons in the current
neighbourhood (i1.e. neurons topographically close to the
active neuron on the surface of the map up to some geo-
metric distance defined by the neighbourhood function) as
though points closely connected by the elastic net were
being pulled towards the input by the active neuron. This
sequence of events 1s repeated many times throughout the
learning process as the training data 1s fed to the system. At
the start of the learning process the elastic net 1s very flexible
due to large neighbourhoods and gain factor, but as learning
continues the net stiflens up as these parameters become
smaller. This process causes neurons close together to form
similar codebook values.

[0132] During this learning phase, the codebook vectors
tend to approximate various distributions of nput vectors
with some sort of regularity and the resulting order always
reflects properties of the probability density function P(X) (1ie
the point density of the reference vectors becomes propor-
tional to [(P(x)]1/3). A similar effect 1s found in biological
neural systems where the number of neurons within regions
of the cortex corresponding to diflerent sensory modalities
appear to retlect the importance of the corresponding feature
set. The importance of a feature set 1s related to the density
of receptor cells connected to that feature as would be
expected. However, there also appears to be a strong rela-
tionship between the number of neurons representing a

Jan. 25, 2007

feature and the statistical frequency of occurrence of that
feature. The scale of this relationship 1s often loosely
referred to as the magnification factor. While the reference
vectors are tending to describe the density function of inputs,
local interactions between neurons tend to preserve conti-
nuity on the surface of the map. A combination of these
opposing forces causes the vector distribution to approxi-
mate a smooth hyper-surface 1n the pattern space with
optimal orientation and form that best imitates the overall
structure of the input vector density. This 1s done 1n such a
way as to cause the map to i1dentify the dimensions of the
feature space with greatest variance which should be
described in the map. The 1nitial ordering of the map occurs
quite quickly and 1s normally achieved within the first 10%
of the traiming phase, but convergence on optimal reference
vector values can take a considerable time. The trained
network provides a non-linear projection of the probability
density function P(x) of the high-dimensional mput data x
onto a 2-dimensional surface (1.e. the surface of neurons).

10133] FIG. 5 is a schematic representation of a single
modular map. At start-up time the Modular Map needs to be
configured with the correct parameter values for the
intended arrangement. All the 8-bit weight values are loaded
into the system at configuration time so that the system can
have either random weight values or pre-trained values at
start-up. The index of all individual neurons, which consist
of two 8-bit values for the X and Y coordinates, are also
selected at configuration time. The flexibility offered by
allowing this parameter to be set 1s perhaps more important
for situations where several modules are combined, but still
offers the ability to create a variety of network shapes for a
stand alone situation. For example, a module could be
configured as a one or two dimensional network. In addition
to providing parameters for individual neurons at configu-
ration time the parameters that apply to the whole network
are also required (1.e. the number of training steps, the gain
factor and neighbourhood start values). Intermediate values
for the gain factor and neighbourhood size are then deter-
mined by the module 1tself during run time using standard
algorithms which utilise the current training step and total
number of training steps parameters.

[0134] After configuration is complete, the Modular Map
enters 1ts operational phase and data are input. 16 Bits (i.e.
two mput vector elements) at a time. The handshake system
controlling data input 1s designed 1n such a way as to allow
for situations where only a subset of the maximum possible
inputs 1s to be used. Due to tradeolls between data input rates
and tlexibility the option to use only a subset of the number
ol possible 1nputs 1s restricted to even numbers (1.e. 14, 12,
10 etc). However, if only say 15 inputs are required then the
16th mput element could be held constant for all inputs so
that 1t does not aflect the formation of the map during
training. The main difference between the two approaches to
reducing 1nput dimensionality 1s that when the system 1s
aware that inputs are not present it does not make any
attempt to use their values to calculate the distance between
the current input and the codebook vectors within the
network, thereby reducing the workload on all neurons and
consequently reducing propagation time of the network.

[0135] After all inputs have been read by the Modular

Map the active neuron 1s determined and its X,Y coordinates
are output while the codebook vectors are being updated. As
the training process has the eflect of creating a topological

US 2007/0022063 Al

map (such that neural activations across the network have a
meaningiul order as though a feature coordinate system
were defined over the network) the X,Y coordinates provide
meaningiul output. By feeding inputs to the map after
training has been completed it 1s straightforward to derive an
activation map which could then be used to assign labels to
the outputs from the system.

Lateral Maps

[0136] As many difficult tasks require large numbers of
neurons the Modular Map has been designed to enable the
creation of networks with up to 65,536 neurons on a single
plane by allowing lateral expansion. Each module consists
of, for example, 256 neurons and consequently this 1s the
building block size for the lateral expansion of networks.
Each individual neuron can be configured to be at any
position on a 2-dimensional array measuring up to 256 but
networks should 1deally be expanded 1n a regular manner so
as to create rectangular arrays. The individual neuron does
in fact have two separate addresses; one 1s fixed and refers
to the neuron’s location on the device and 1s only used
locally; the other, a virtual address, refers to the neuron’s
location 1n the network and 1s set by the user at configuration
time. The virtual address 1s accommodated by two 8-bit
values denoting the X and Y coordinates; 1t 1s these coor-
dinates that are broadcast when the active neuron on a
module has been 1dentified.

10137] When modules are connected together in a lateral
configuration, each module receives the same 1nput vector.
To simplity the data input phase 1t 1s desirable that the data
be made available only once for the whole configuration of
modules, as though only one module were present. To
facilitate this all modules 1n the configuration are synchro-
nised so that they act as a single entity. The mechanism used
to ensure this synchronism 1s the data input handshake
mechanism. By arranging the input data bus for lateral
configurations to be inoperative until all modules are ready
to accept input, the modules will be synchronised. All the
modules perform the same functionality simultaneously, so
they can remain in synchronisation once 1t has been estab-
lished, but after every cycle new data 1s required and the
synchronisation will be reinforced.

10138] All modules calculate the local ‘winner’ by using

all neurons on the module to simultaneously subtract one
from their calculated distance value until a neuron reaches a
value of zero. The first neuron to reach a distance of zero 1s
the one that imtially had the minimum distance value and 1s
therefore the active neuron for that module. The virtual
coordinates of this neuron are then output from the module,
but because all modules are synchronised, the first module
to attempt to output data 1s also the module containing the
‘global winner’ (1.e. the active neuron for the whole net-
work). The index of the ‘global winner’ 1s then passed to all
modules 1n the configuration. When a module receives this
data i1t supplies it to all its constituent neurons. Once a
neuron receives this index 1t 1s then able to determine 1f 1t 1s
in the current neighbourhood in exactly the same way as 1f
it were part of a stand alone module. Some additional logic
external to modules 1s required to ensure that only the index
which 1s output from the first module to respond 1s for-
warded to the modules 1n the configuration (see FIG. 6). In
FIG. 6, logic block A accepts as mputs the data ready line
from each module 1n the network. The first module to set this

Jan. 25, 2007

line contains the “global winner” for the network. When the
logic receives this signal 1t 1s passed to the device ready
input which forms part of the two line handshake used by all
modules 1n lateral expansion mode. When all modules have
responded to the eflect that they are ready to accept the
coordinates of the active neuron the module with these
coordinates 1s requested by logic block A to send the data.
When modules are connected 1n this lateral manner they
work 1n synchronisation, and act as though they were a
single module which then allows them to be further com-
bined with other modules to form larger networks.

[0139] Once a network has been created in this way it acts
as though 1t were a stand alone modular map and can be used
in conjunction with other modules to create a wide range of
network configurations. However, it should be noted that as
network size increases the number of training steps also
increases because the number of training steps required 1s
proportional to the network size which suggests that maps
are best kept to a moderate size whenever possible.

Hierarchical Maps

[0140] The Modular Map system has been designed to
allow expansion by connecting maps together 1in different
ways to cater for changes 1n network size, and mput vector
s1ize, as well as providing the flexibility to enable the
creation ol novel neural network configurations. This modu-
lar approach offers a mechanism that maintains an even
workload among processing elements as systems are scaled
up, thereby providing an eflective parallelism of the Self
Organising Map. To facilitate expansion in order to cater for
large mput vectors, modules are arranged 1n a hierarchical
manner which also appears plausible 1n terms of biological
systems where, for example, layers of neurons are arranged
in a hierarchical fashion 1n the primary visual system with
layers forming increasingly complex representations the
turther up the hierarchy they are situated.

[0141] FIG. 7 shows an example of a hierarchical network,
with four modules 10, 12, 14, 16 on the 1nput layer 1. The
output from each of the modules 12, 14, 16, 18 on the input
layer I 1s connected to the input of an output module 18 on
the output layer O. Each of the modules 10, 12, 14, 16, 18
has a 16 bit input data bus, and the modules 10, 12, 14, 16
on the input layer I have 24 handshake lines connected as
inputs to facilitate data transier between them, as will be
described heremnafter. The output module 18 has 12 hand-
shake lines connected as mputs, three handshake lines from
cach of the modules 10, 12, 14, 16 1n the input layer 1.

[0142] As each Modular Map is limited to a maximum of
16 1mputs 1t 1s necessary to provide a mechanism which will
enable these maps to accept larger input vectors so they may
be applied to a wide range of problem domains. Larger input
vectors are accommodated by connecting together a number
of Modular Maps 1n a hierarchical manner and partitioning
the mput data across modules at the base of the hierarchy.
Each module in the hierarchy 1s able to accept up to 16
inputs, and outputs the X,Y coordinates of the active neuron
for any given input; consequently there 1s a fan-1n of eight
modules to one which means that a single layer 1n such a
hierarchy will accept vectors contaiming up to 128 inputs. By
increasing the number of layers in the hierarchy the number
of 1inputs which can be catered for also increases (1.e. Max
Number of inputs =2*8" where n=number of layers in

US 2007/0022063 Al

hierarchy). From this simple equation 1t 1s apparent that very
large puts can be catered for with very few layers 1n the
hierarchy.

[0143] By building hierarchical configurations of Modular
Maps to cater for large input vectors the system 1s 1n eflect
parallelising the workload among many processing ecle-
ments. This approach was preferred over the alternative of
using more complex neurons which would be able to accept
larger mput vectors. There are many reasons for this, not
least the problems associated with implementation which, 1n
the main, dictate that hardware requirements increase with
increasing input vector sizes catered {for.

[0144] Furthermore, as the input vector size increases, so
too does the workload on 1ndividual neurons which leads to
considerable increases in propagation delay through the
network. Hierarchical configurations keep the workload on
individual neurons almost constant, with an increasing
workload being met by an increase in neurons used to do the
work. It should be noted that there 1s still an increase in
propagation time with every layer added to the hierarchy.

10145] 'To facilitate hierarchical configurations of modular
maps 1t 1s necessary to ensure that communication between
modules 1s not going to form a bottleneck which could
adversely aflect the operating speed of the system. To
circumvent this, a bus 1s provided to connect the outputs
from up to eight modules to the mnput of a single module on
the next layer of the hierarchy (see FIG. 7). To avoid data
collision and provide sequence control, each Modular Map
has 16 mput data lines plus three lines for each 16 bit input
(two vector elements), 1.e. 24 handshake lines which corre-
sponds to a maximum of eight input devices.

10146] Consequently, each module also has a three bit
handshake and 16 bit data output to facilitate the interface
scheme. One handshake line will be used to advise the
receiving module that the sender 1s present; one line will be
used to advise 1t that the sender 1s ready to transmit data; and
the third line will be used to advise the sender that 1t should
transmit the data. After the handshake 1s complete the sender
will then place 1ts data on the bus to be read by the receiver.
The simplicity of this approach negates the need for addi-
tional interconnect hardware and thereby keeps to a mini-
mum the communication overhead. However, the limiting
tactor with regard to these hierarchies and their speed of
operation 1s that each stage in the hierarchy cannot be
processed faster than the slowest element at that level, but
there are circumstances under which the modules complete
their classification at differing rates and thereby aflect opera-
tional speed. For example, one module may be required to
have greater than the 256 neurons available to a single
Modular Map and would be made up of several maps
connected together 1n a lateral type of configuration (as
described above) which would slightly increase the time
required to determine its activations, or perhaps a module
has less than 1ts maximum number of iputs thereby reduc-
ing 1ts time to determine activations. It should also be noted
that under normal circumstances (1.¢. when all modules are
of equal configurations) that the processing time at all layers
in the hierarchy will be the same as all modules are carrying
out equal amounts of work; this has the eflect of creating a
pipelining efl

ect such that throughput 1s maintained constant
even when propagation time through the system 1s depen-
dent on the number of layers in the hierarchy.

Jan. 25, 2007

[0147] As each Modular Map 1s capable of accepting a
maximum of 16 inputs and generates only a 2-dimensional
output, there 1s a dimensional compression ratio of 8:1
which oflers a mechanism to fuse together many mputs in a
way that preserves the essence of the features represented by
those inputs with regard to the metric being used.

[0148] An ordered network can be viewed in terms of
regions ol activation surrounding the point positions of its
reference vectors, a technique sometimes referred to as
Voronor sets. With this approach the whole of the feature
space 1s partitioned by hyper-planes marking the boundaries
of activation regions, which contain all points from the mnput
space that are closer to the enclosed reference point than to
any other point in the network. These regions normally meet
cach other 1n the same order as the topological arrangement
of neurons within the network. As with most techniques
applied to artificial neural networks, this approach 1s only
suitable for visualisation 1in two or three dimensions, but can
still be used to visualise what 1s happening within hierar-
chical conﬁguratlons of Modular Maps. The series of graphs
shown 1 FIGS. 8 to 10 emphasise some of the processes
taking place 1n hierarchical configurations. Although a 2-D
data set has been used for clanty, the processes i1dentified
here are also applicable to higher dimensional data.

[0149] A Modular Map containing 64 neurons configured
in a square with neurons equally spaced within a 2-D plane
measuring 256° was trained on 2000 data points randomly
selected from two circular regions within the mput space of
the same dimensions (see FIG. 8). The trained network
formed regions of activation as shown in the Voronoi
diagram of FI1G. 9. From the map shown in FIG. 9 1t 1s clear
that the point positions of reference vectors (shown as black
dots) are much closer together (1.e. have a higher concen-
tration) around regions of the mput space with a high
probability of containing inputs. It 1s also apparent that,
although a simple distance metric (Manhattan distance) 1s
being used by neurons, the regions of activation can have
some 1nteresting shapes. It should also be noted that the
formation of regions at the outskirts of the feature space
associated with the training data are often quite large and
suggest that further inputs to the trained system considerably
outwith the normal distribution of the training data could
lead to spurious neuron activations. It was also-observed
that three neurons of the trained network had no activations
at all for this data, the reference vector positions of these
three neurons (marked on the Vorono1 diagram of FIG. 9 by
*) 1all between the two clusters shown and act as a divider
between the two classes.

[0150] As an approach to identifying the processes
imnvolved in multidimensional hierarchies, the trained net-
work detailed 1n FIG. 9 was used to provide several mputs
to another network of the same configuration (except the
number of inputs) 1in a way that mimicked a four into one
hierarchy (1.e. four networks an the first layer, one on the
second). After the module at the highest level 1n the hier-
archy had been trained, 1t was found that the regions of
activation for the original input space were as shown 1n FIG.
10. Comparison between FIGS. 9 and 10 shows that the
same regional shapes have been maintained exactly, except
that some regions have been merged together, showing that
complicated non-linear regions can be generated 1n this way
without affecting the integrity of classification. It can also be
seen that the regions of activation being merged together are

US 2007/0022063 Al

normally situated where there 1s a low probability of mnputs

so as to make more eflicient use of the resources available
and provide some form of compression. It should be noted
that there 1s an apparent anomaly because the activation
regions of the three neurons of the first network, which are
inactive aiter training, have not been merged together, the
reason being that this region of iactivity 1s formed naturally
between the two clusters during training due to the ‘elastic
net’ effect outlined earlier and 1s consequently unatfected by
the merging of regions. This combining of regions has also
increased the number of inactive neurons to eight for the
second layer network. The processes highlighted apply to
higher dimensional data and suggest that such hierarchical
configurations not only provide a mechanism for partition-
ing the workload of large input vectors, but can also provide
a basis for data fusion of a range of data types, from different

sources and input at different stages in the hierarchy.

[0151] When modules are connected together in a hierar-
chical manner there 1s still the opportunity to partition input
data 1n various ways. The most obvious approach 1s to
simply split the original high dimensional input data into
vectors of 16 1nputs or less, 1.e. given the original feature

space R, 1s partitioned 1nto groups of 16 or less. When data
1s partitioned in this way, each module forms a map of 1ts
respective mput domain, there 1s no overlap of maps, and a
module has no iteraction with other modules on 1ts level in
the hierarchy. However, it 1s also realistic to consider an
approach where mputs to the system would span more than
one module, thereby enabling some data overlap between
modules. An approach of this nature can assist modules in
their classification by providing them with some sort of
context for the mputs; 1t 1s also a mechanism which allows
the feature space to be viewed from a range of perspectives
with the similarity between views being determined by the
extent of the data overlap. Simulations have also shown that
an overlap of inputs (1.e. feeding some inputs to two or more
separate modules) can lead to an improved mapping and
classification.

[0152] A similar approach to partitioning could also be
taken to give better representation to the range of values in

any dimension, 1.e. B could be partitioned. Partitioning a
single dimension of the feature space across several inputs-
should not normally be required, but 11 the reduced range of
256 which 1s available to the Modular Map should prove to
be too restrictive for an application, then the flexibility of the
Modular Map 1s able to support such a partitioning
approach. The range of values supported by the Modular
Map mnputs should be suflicient to capture the essence of any
single dimension of the feature space, but pre-processing 1s
normally required to get the best out of the system.

[0153] Partitioning R is not as simple as partitioning n,
and would require a little more pre-processing of input data,
but the approach could not be said to be overly complex.

However, when partitioning R, only one of the mputs used
to represent each of the feature space dimensions will
contain mput stimuli for each mput pattern presented to the
system. Consequently, 1t 1s necessary to have a suitable
mechanism to cater for this eventuality, and the possible
solutions are to either set the system input to the min or max
value depending on which side of the domain of this input
the actual input stimuli 1s on, or do not use an 1nput at all 1T
it does not contain active iput stimuli.

11

Jan. 25, 2007

[0154] The design of the Modular Map is of such flex-
ibility that inputs could be partitioned across the network
system 1n some interesting ways, €.g. mputs could be taken
directly to any level in the hierarchy. Similarly, outputs can
also be taken from any module 1n the hierarchy, which may
be useful for merging or extracting different information
types. There 1s no compulsion to maintain symmetry within
a hierarchy which could lead to some novel configurations,
and consequently separate configurations could be used for
specific Tunctionality and combined with other modules and
inputs to form systems with increasing complexity of func-
tionality. It 1s also possible to mtroduce feedback into
Modular Map systems which may enable the creation of
some 1nteresting modular architectures and expand possible
functionality.

Neural Pathways and Hybrid Networks

[0155] Various types of sensory modalities such as light,
sound and smell are mapped to diflerent parts of the brain.
Within each of these modalities specific stimuli, e.g. lines or
corners in the visual system, act selectively on specific
populations of neurons situated in different regions of the
cortex. The number of neurons within these regions retlect
the importance of the corresponding feature set. The 1impor-
tance of a feature set 1s related to the density of receptor cells
connected to that feature. However, there 1s also a strong
relationship between the number of neurons representing a
feature and the statistical frequency of occurrence of that
feature. The scale of this relationship 1s often loosely
referred to as the magnification factor.

[0156] While the neocortex contains a great many neu-
rons, somewhere in the region of 10°, it only contains two
broad categories of neuron; smooth neurons and spiny
neurons. All the neurons with spines (pyramidal cells and
spiny stellates) are excitory and all smooth neurons (smooth
stellates) are inhibitory. The signals presented to neurons are
also limited to two types of electrical message. The mecha-
nisms by which these signals are generated are similar
throughout the brain and the signals themselves cannot be
endowed with special properties because they are stereo-
typed and much the same 1n all neurons. It seems that with
such a limited range of components with stereotyped signals
that the connections will have an important bearing on the
capabilities of the brain.

[0157] It may be possible to facilitate dynamically chang-
ing context dependent pathways within Modular Map sys-
tems by utilising feedback and the concepts of excitory and
inhibitory neurons as found in nature. This prospect exists
because the interface of a Modular Map allows for the
processing ol only part of the mnput vector, and supports the
possibility of a module being disabled. The logic for such
inhibitory systems would be external to the modules them-
selves, but could greatly increase the flexibility of the
system. Such 1nhibition could be utilised 1n several ways to
facilitate diflerent functionality, e.g. either some mputs or
the output of a module could be inhibited. If 1nsuflicient
inputs were available a module or indeed a whole neural
pathway could be disabled for a single iteration, or if the
output of a module were to be within a specific range then
parts of the system could be inhibited. Clearly, the concept
of an excitory neuron would be the inverse of the above with
parts of the system only being active under specific circum-
stances.

US 2007/0022063 Al

[0158] When implementing ANNs in hardware difficulties
are encountered as network size increases. The underlying
reasons for this are silicon area, pin out considerations and
inter-processor communications. By utilising a modular
approach towards implementation, the inherent partitioning
strategy overcomes the usual limitations on scaleability.
Only a small number of neurons are required for a single
module and separate modules are implemented on separate
devices.

[0159] The Modular Map design 1s fully digital and uses
a fine grain implementation approach, i1.e. each neuron 1is
implemented as a separate processing element. Each of these
processing elements 1s effectively a simple Reduced Instruc-
tion Set Computer (RISC) with limited capabilities, but
suilicient to perform the functionality of a neuron. The
simplicity of these neurons has been promoted by applying
modifications to Kohonen’s original algorithm. These modi-
fications have also helped to minimise the hardware
resources required to implement the Modular Map design.

Background

[0160] Essentially the Self-Organising Map (SOM) con-

sists of a two dimensional array of neurons connected
together by strong lateral connections. Each neuron has its
own relference vector which input vectors are measured
against. When an input vector 1s presented to the network, 1t
1s passed to all neurons constituting the network. All neurons
then proceed to measure the similarity between the current
input vector and their local reference vectors. This similarity
1s assessed by calculating the distance between the input
vector and the reference vector, generally using the Euclid-
can distance metric. In the Modular Map implementation
Euclidean distance i1s replaced by Manhattan distance
because Manhattan distance can be determined using only
an adder/subtractor unit whereas calculations of Euclidean
distances require determination of the squares of diflerences
involved and would therefore require a multiplier unit which
would use considerably greater hardware resources.

[0161] There are a range of techniques that could be
utilised to perform the multiplication operations required to
calculate Euclidean distance. These include multiple addi-
tion operations, which would introduce unacceptable time
delays, or traditional multiplier units such as a Braun’s
multiplier, but compared to an adder/subtractor unit the
resource requirements would be significantly increased.
There would also be an increase 1n the time required to
obtain the result of a multiplication operation compared to
the addition/subtraction required to calculate Manhattan
distance. Furthermore, when using multiplication, the num-
ber of bits 1n the result 1s equal to the number of bits 1n the
multiplicand plus the number of bits 1n the multiplier, which
would produce a 16 bit result for an 8 bit by 8 bit multipli-
cation and would therefore require at least a 16 bit adder to
calculate the sum of distances. This requirement would
turther increase the resource requirements for calculating
Euclidean distance and, consequently, further increases the
advantages of using the Manhattan distance metric.

[0162] Once all neurons in the network have determined
their respective distances they communicate via strong lat-
eral connections with each other to determine which
amongst them has the minimum distance between 1ts refer-
ence vector and the current input. The Modular Map imple-
mentation maintains strong local connections, but determi-

Jan. 25, 2007

natton of the winner 1s achieved without the
communications overhead suggested by Kohonen’s original
algorithm. All neurons constituting the network are used 1n
the calculations to determine the active neuron and the
workload 1s spread among the network as a result.

[0163] During the training phase of operation all neurons
in the immediate vicinity of the active neuron update their
reference vectors to bring them closer to the current input.
The size of this neighbourhood changes throughout the
training phase, initially being very large and finally being
restricted to the active neuron itself. The shape of neigh-
bourhood can take on many forms, the two most popular
being a square step function and a gaussian type neighbour-
hood. The Modular Map approach again utilises Manhattan
distance to measure the neighbourhood, which results 1n a
square neighbourhood, but it 1s rotated through 45 degrees
so that 1t appears to be a diamond shape (FIG. 3). This
turther assists the implementation because an adder/subtrac-
tor unit 1s still all that 1s required at this stage. However,
additional hardware 1s required to update reference vector
values because reference vectors are only updated by a
proportion of the distance between the mput and reference
vectors. The proportionality of the update applied 1s deter-
mined by what 1s normally referred to as the gain factor a.(t)
which Kohonen specifies as a decreasing monotonic func-
tion. Consequently, a mechanism 1s required that will enable
multiplication of distances by a suitable range of fractional
values. This 1s achieved by restricting o(t) to negative
powers of two. By restricting o.(t) 1n this way 1t 1s possible
to perform the required multiplication by using only an
arithmetic shifter, which 1s considerably less expensive 1n
terms of hardware resources than a full multiplier unat.

The Neuron

[0164] The Modular Map approach has resulted in a
simple Reduced Instruction Set Computer (RISC) type
architecture for neurons. The key elements of the neuron
design which are shown 1n FIG. 11 are an adder/subtractor
unmt (ALU) 50, a shifter mechanism 32, a set of registers and
control logic 54. The ALU 50 1s the main computational
component and by utilising an arithmetic shifter mechanism
52 to perform all multiplication functions, the ALU 50
requirements have been kept to a minimum.

[0165] All registers in a neuron are individually address-
able as 8 or 12 bit registers although individual bits are not
directly accessible. Instructions are receirved by the neuron
from the module controller and the local control logic
interprets these mstructions and coordinates the operations
of the mndividual neuron. This task 1s kept simple by main-
tamning a simple series of instructions that only number
thirteen 1n total.

[0166] The adder/subtractor unit 50 is clearly the main
computational element within a neuron. The system needs to
be able to perform both 8 bit and 12 bit arithmetic, with 8
bit arithmetic being the most frequent. A single 4 bit
adder/subtractor unit could be utilised to do both the 8 bit
and 12 bit arithmetic, or an 8 bit unit could be used.
However, there will be considerably different execution
times for different sizes of data 1f a 12 bit adder/subtractor
unit 1s not used (e.g. 1f an 8 bit unit 1s used i1t will take
approximately twice as long to perform 12 bit arithmetic as
it would 8 bit arithmetic because two passes through the
adder/subtractor would be required). In order to avoid vari-

US 2007/0022063 Al

.

able execution times for the different calculations to be
performed a 12 bit adder/subtractor umt is preferable.

[0167] A 12 bit adder/subtractor unit utilising a Carry
Lookahead Adder (CLA) would require approximately 160
logic gates, and would have a propagation delay equal to the
delay of 10 logic gates. The ALU 30 also has two flags and
two registers directly associated with 1t. The two flags
associated with the ALU 30 are a zero flag, which 1s set
when the result of an arithmetic operation 1s zero, and a
negative flag, which 1s set when the result 1s negative.

[0168] The registers associated with the ALU So are both
12 bit; a first register 36 1s situated at the ALU output; a
second register 58 1s situated at one of the ALU inputs. The
first register 56 at the output from the ALU 50 1s used to
builer data until 1t 1s ready to be stored. Only a single 12 bit
register 38 1s required at the mput to the ALU 50 as part of
an approach that allows the length of 1nstructions to be kept
to a mimnimum. The design 1s a register-memory architecture,
and arithmetic operations are allowed directly on register
values but the instruction length used for the neuron 1s too
small to include an operation and the addresses of two
operands 1n a single mstruction. Thus, the second register 58
at one of the ALU 1nputs 1s used so that the first datum can
be placed there for use 1n any following arithmetic opera-
tions. The address of the next operand can be provided with
the operator code and, consequently, the second datum can
be accessed directly from memory.

[0169] The arithmetic shifter mechanism 52 is only
required during the update phase of operation to multiply the
difference between mput and weight elements by the gain
factor value a(t). The gain factor a(t) 1s advantageously
restricted to four values (1.e. 0.5, 0.25, 0.125 and 0.0625).
Consequently, the shifter mechanism 52 1s required to shiit
right by 0, 1, 2, 3 and 4 bits to perform the required
multiplication. The arithmetic shifter 52 can typically be
implemented using flip flops which 1s a considerable
improvement on the alternative of a full multiplier unit
which would require substantially more resources to imple-
ment.

[0170] It should be noted that, for the bit shift approach to
work correctly, weight values are required to have as many
additional bits as there are bit shift operations (1.e. given that
a weight value 1s 8 bits, when 4 bit shiits are allowed, 12 bits
need to be used for the weight value). The additional bits
store the fractional part of weight values and are only used
during the update operation to ensure convergence 1S pos-
sible; there 1s no requirement to use this fractional part of
weight values while determining Manhattan distance.

[0171] For simplicity with flexibility the arithmetic shifter
52 1s positioned 1n the data stream between the output of the
ALU 50 and its input register 58, but 1s only active when the
gain value 1s greater than zero. This approach was regarded
as a suitable approach to limiting the number of separate
instructions because the gain factor values are supplied by
the system controller at the start of the update phase of
operations and can be reset to zero at the end of this
operational phase.

10172] The data registers of these RISC neurons require
substantial resources and must hold 280 bits of data. The
registers must be readily accessible by the neuron, especially
the reference vector values which are accessed frequently. In

Jan. 25, 2007

order for the system to operate effectively access to weight
values 1s required either 8 or 12 bits at a time for each
neuron, depending on the phase of operation. This require-
ment necessitates on-chip memory because there are a total
of 64 neurons attempting to access their respective weight
values simultaneously. This results 1n a minimum require-
ment of 512 bits rising to 768 bits (during the update phase)
that need to be accessed simultaneously. Clearly, this would
not be possible if the weight values were stored off chip
because a single device would not have enough I/0 pins to
support this 1n addition to other I/O functions required of a
Modular Map. There are ways of maximising data access
with limited pin outs but, a bottleneck situation could not be
entirely avoided if memory were off chip.

[0173] The registers are used to hold reference vector
values (16*12 baits), the current distance value (12 bits), the
virtual X and Y coordinates (2*8 bits), the neighbourhood
s1ize (8 bits) and the gain value a(t) (3 1s bits) for each
neuron. There are also mput and output registers (2*8bits),
registers for the ALU (2%12), a register for the neuron ID (8
bit) and a one bit register for maintaiming an update tlag. Of
these registers all can be directly addressed except for the
output register and update tlag, although the neuron ID 1is
fixed throughout the training and operational phases, and
like the mnput register 1s a read only register as far as the
neuron 1s concerned.

[0174] At start up time all registers except the neuron ID
are set to zero values before parameter values are provided
by an I/O controller. At this stage the 1nmitial weight values
are provided by the controller to allow the system to start
from either random weight values or values previously
determined by training a network. While 12 bit registers are
used to hold the weight values, only 8 bits are used for
determining a neuron’s distance from an input, and only
these 8 bits are supplied by the controller at start up; the
remaining 4 bits represent the fractional part of the weight
value, are mitially set to zero, and are only used during
weight updates.

[0175] The neighbourhood size is also supplied by the
controller at start up but, like the gain factor a(t), 1t 1s a
global variable that changes throughout the traiming process
requiring new values to be eflected by the controller at
appropriate times throughout training. The virtual coordi-
nates are also provided by the controller at start up time, but
are fixed throughout the training and operational phases of
the system and provide the neuron with a location from
which to determine if 1t 1s within the current neighbourhood.
Because virtual addresses are used for neurons, any neuron
can be configured to be anywhere within a 256 array which
provides great flexibility when networks are combined to
form systems using many modules. It 1s advantageous for
the virtual addresses used 1n a network to maximise the
virtual address space (1.e. use the full range of possible
addresses 1 both the X and Y dimensions). For example, 1f
a 64 neuron module 1s used, the virtual addresses of neurons
along the Y axis should be 0,0 0,36 0,72 etc. In this way the
outputs from a module will utilise the maximum range of
possible values, which 1n this instance will be between 0 and
252. Simulations found that classification results were poor
when this practice was not adopted.

[0176] It should also be noted that, because there is a
requirement to use mixed sizes of data, an update flag 1s used

US 2007/0022063 Al

as a switch mechanism for the data type to be used. This
mechanism was found to be necessary because when 8 bit
values and 12 bit values are being used there are differing
requirements at diflerent phases of operation. During the
normal operational phase only 8 bit values are necessary but
they are required to be the least significant 8 bits, e.g. when
calculating Manhattan distance. However, during the update
phase of operation both 8 bit and 12 bit values are used.
During this update phase all the 8 bit values are required to
be the most significant 8 bits and when applying changes to
reference vectors the full 12 bit value 1s required. By using
a sumple flag as a switch the need for duplication of
instructions 1s avoided so that operations on 8 and 12 bat
values can be executed using the same instruction set.

[0177] The control logic within a neuron is kept simple
and 1s predominantly just a switching mechanism. All
instructions are the same size, 1.e. 8 bits, but there are only
thirteen distinct instructions in total. While an 8 bit instruc-
tion set would 1n theory support 256 separate instructions,
one of the aims of the neuron design has been to use a
reduced 1nstruction set. In addition, separate registers within
a neuron need to be addressable to facilitate all the opera-
tions required of them and, where an instruction needs to
refer to a particular register address, that address effectively
forms part of the 1nstruction.

[0178] The instruction length has been set at 8 bits because
the data bus 1s only 8 bits wide which sets the upper limait for
a single cycle mstruction read. There 1s also a requirement
to address locations of operands for six of the instructions
which necessitates the mncorporation of up to 25 separate
addresses 1nto these instructions and will require 5 bits for
the address of the operand alone. However, the total mnstruc-
tion length can still be maintained at 8 bits because nstruc-
tions that do not require operand addresses can use some of
these bits as part of their instruction and, consequently, there
1s room for expansion of the instruction set within the
instruction space.

[0179] All instructions for neuron operations are 8 bits in
length and are received from the controller. The first mnput to
a neuron 1s always an instruction, normally the reset istruc-
tion to zero all registers. The instruction set 1s as follows:

[0180] RDI: (Read Input) will read the next datum from its

input and write to the specified register address. This mstruc-
tion will not affect arithmetic flags.

[0181] WRO: (Write arithmetic Output) will move the
current data held at the output register 56 of the ALU to the
specified register address. This instruction will overwrite
any existing data 1n the target register and will not atfect the
systems arithmetic flags.

[0182] ADD: Add the contents of the specified register
address to that already held at the ALU 1nput. This istruc-
tion will aflect arithmetic tlags and, when the update register
1s zero all 8 bit values will be used as the least significant 8
bits of the possible 12, and only the most significant 8 bits
of weight vectors will be used (albeit as the least significant
8 bits for the ALU) when the register address specified 1s that
ol a weight whereas, when the update register 1s set to one,
all 8 bit values will be set as the most significant bits and all
12 bits of weight vectors will be used.

[0183] SUB: Subtract the value already loaded at the ALU
input from that at the specified register address. This 1nstruc-

Jan. 25, 2007

tion will aflect arithmetic flags and will treat data according
to the current value of the update register as detailed for the
add command.

[0184] BRN: (Branch if Negative) will test the negative

flag and will carry out the next instruction 1f 1t 1s set, or the
next mstruction but one 1t 1t 1s not.

10185] BRZ: (Branch if Zero) will test the zero flag and
will carry out the next instruction if 1t 1s set. It the flag 1s zero
the next but one nstruction will be executed.

10186] BRU: (Branch if Update) will test the update flag

and will carry out the next instruction 11 1t 1s set, or the next
instruction but one 1t 1t 1s not.

[0187] OUT: Output from the neuron the value at the
specified register address. This instruction does not aflect the
arithmetic flags.

[0188] MOV: Set the ALU input register to the value held

in the specified address. This 1nstruction will not affect the
arithmetic flags.

[0189] SUP: Set the update register. This instruction does
not affect the arithmetic tlags.

[0190] RUP: Reset the update register. This instruction
does not aflect the arithmetic tlags.

[0191] NOP: (No Operation) This instruction takes no
action for one instruction cycle.

[0192] MRS: Master reset will reset all registers and flags
within a neuron to zero.

The Module Controller

10193] FIG. 12 shows a schematic representation of a
module controller for controlling the operation of a number
of RISC neurons, one of which 1s shown 1n FIG. 11. The
Module Controller 1s required to handle all device input and
output 1n addition to 1ssuing instructions to neurons within
a module and synchronising their operations. To facilitate
these operations the controller system comprises the 1/O
ports 60, 62; a programmable read-only-memory (PROM)
64 containing instructions for the controller system and
subroutines for the neural array; an address map 66 for
conversion between real and virtual neuron addresses; an
input builer 68 to hold incoming data; and a number of

handshake mechanisms (see FIG. 12).

10194] The controller handles all input for a module which
includes start-up data during system configuration, the mput
vectors 16 bits (two vector elements) at a time during normal
operation, and also the index of the active neuron when
configured in lateral expansion mode. Outputs from a mod-
ule are also handled exclusively by the controller. The
outputs are limited to a 16 bit output representing Cartesian
coordinates of the active neuron during operation and
parameters of trained neurons such as their weight vectors
alter training operations have been completed. To enable the
above data transfers a bi-directional data bus 1s required
between the controller and the neural array such that the
controller can address either individual neurons or all neu-
rons simultaneously; there 1s no requirement to allow other
groups ol neurons to be addressed but the bus must also
carry data from individual neurons to the controller.

[0195] While Modular Map systems are intended to allow
modules to operate asynchronously from each other, except

US 2007/0022063 Al

when 1n lateral expansion mode 1t 1s necessary to synchro-
nise data communication in order to simplity the mechamism
required. When two modules have a data connection linking,
them together a handshake mechanism 1s used to synchro-
nise data transfer from the module transmitting the data (the
sender) to the module receiving the data (the receiver). The
handshake 1s implemented by the module controllers of the
sender and receiver modules, only requires three handshake
lines and can be viewed as a state machine with only three
possible states:

10196]
0197] 2) No Device (No input stream for this position)
0198] 3) Data Ready (Transfer data)

1) wait (Not ready for input)

0199] The handshake system is shown as a simple state
diagram 1n FIG. 13. With reference to FIG. 13, the wait state
70 occurs when either the sender or receiver (or both) are not
ready for data transfer. The no device state 72 1s used to
account for situations where mputs are not present so that
reduced input vector sizes can be utilised. This mechanism
could also be used to facilitate some fault tolerance when
input streams are out of action so that the system did not
come to a halt. The data ready state 74 occurs when both the
sender and the receiver are ready to transier data and,
consequently, data transier follows immediately this state 1s
entered. This handshake system makes 1t possible for a
module to read mmput data 1n any sequence. When a data
source 1s temporarily unavailable the delay can be mini-
mised by processing all other input vector elements while
waiting for that datum to become available. Individual
neurons could also be mstructed to process inputs 1n a
different order but, as the controller buflers input data there
1s no necessity for neurons to process data 1in the same order
it 1s received. The three possible conditions of this data
transier state machine are determined by two outputs from
the sender module and one output from the receiving mod-
ule. The three line handshake mechanism allows the transier
of data direct to each other wherein no third party device 1s
required, and data communication i1s maintained as point to
point.

10200] Similarly, data 1s also output 16 bits at a time, but
as there are only two 8 bit values output by the system, only
a single data output cycle i1s required, with the three line
handshake mechanism used to synchronise the transier of
data, three handshake connections are also required at the
output of a module. However, the mputs are intended to be
received from up to eight separate sources, each one requir-
ing three handshake connections thereby giving a total of 24
handshake connections for the mput data. This mechanism
will require 24 pins on the device but, internal multiplexing,
will enable the controller to use a single three line handshake
mechanism internally to cater for all mputs.

10201] To facilitate reading the coordinates for lateral
expansion mode, a two line handshake system 1s used. The
mechanism 1s similar to the three line handshake system,
except the ‘device not present’ state 1s unnecessary and has
therefore been omitted.

10202] The module controller is also required to manage
the operation of neurons on its module. To facilitate such
control there 1s a programmable read-only memory (PROM)
64 which holds subroutines of code for the neural array 1n
addition to the instructions 1t holds for the controller. The

Jan. 25, 2007

program 1s read from the PROM and passed to the neural
array a single instruction at a time. Fach instruction 1is
executed immediately when received by individual neurons.
When issuing these mstructions the controller also forwards
incoming data and processes outgoing data. There are four
main routines required to support full system functionality
plus routines for setting up the system at start up time and
outputting reference vector values etc. at shutdown. The
start up and shutdown routines are very simple and only
require data to be written to and read from registers using the
RDI and OUT commands. The four main routines are
required to enable the calculation of Manhattan distance
(calcdist); find the active neuron (findactive);, determine
which neurons are 1n the current neighbourhood (nbhood);
and update reference vectors (update). Each of these proce-
dures will be detailed 1n turn.

[0203] The most frequently used routine (calcdist) is
required to calculate the Manhattan distance for the current
input. When an input vector 1s presented to the system 1t 1s
broadcast to all neurons an element at a time, (1.e. each 8 bit
value) by the controller. As neurons receive this data they
calculate the distance between each mput value and 1ts
corresponding weight value, adding the results to the dis-
tance register. The controller reads the routine from the
program ROM, forwards 1t to the neural array and forwards
the incoming data at the appropriate time. This subroutine 1s
required for each vector element and will be as follows:

MOV (W,) /*Move weight (W.) to the ALU input
register.™/

SUB (X;) /*Subtract the value at the ALU register from
the next mput.*/

MOV (R,) /*Move the result (R,) to the ALU nput

register.™/
BRN /*If the result was negative™®/

SUB dist /*distance = distance — R,*/
ADD dist /*Else distance = distance + R,*/
WRO dist /*Write the new distance to its register.™®/

[10204] Once all inputs have been processed and neurons
have calculated their respective Manhattan distances the
active neuron needs to be identified. As the active neuron 1s
simply the neuron with minimum distance and all neurons
have the ability to make these calculations the workload can
be spread across the network. This approach can be 1imple-
mented by all neurons simultaneously subtracting one from
their current distance value repeatedly until a neuron reaches
a zero distance value, at which time 1t would poll the
controller to notify it that 1t was the active neuron. Through-
out this process the value to be subtracted from the distance
1s supplied to the neural array by the controller. On the first
iteration this will be zero to check 1f any neuron has a match
with the current input vector (1.e. distance 1s already zero)
thereafter the value forwarded will be one. The subroutine
findactive defines this process as follows:

MOV input
SUB dist

/*Move the mnput to the ALU mmput register.*/
/*Subtract the next input from the current
distance value.*/

US 2007/0022063 Al

-continued
BRZ /*If result 1s zero.™/
OUT ID /*out put the neuron ID.*/
NOP /*Else do nothing.*/

[0205] On receiving an acknowledge signal from one of
the neurons 1n the network, by way of its 1D, the controller
would output the virtual coordinates of the active neuron.
The controller uses a map (or lookup table) of these coor-
dinates which are 16 bits so that neurons can pass only their
local ID (8 bits) to the controller. It 1s important that the
controller outputs the virtual coordinates of the active neu-
ron 1mmediately they become available because when hier-
archical systems are used the output 1s required to be
available as soon as possible for the next layer to begin
processing the data, and when modules are configured
laterally it 1s not possible to know the coordinates of the
active neuron until they have been supplied to the input port
of the module.

[0206] When modules are connected together in a lateral
manner, each module 1s required to output details of the
active neuron for that device before reference vectors are
updated because the active neuron for the whole network
may not be the same as the active neuron for that particular
module. When connected together 1in this way, modules are
synchronised and the first module to respond 1s the one
containing the active neuron for the whole network only the
first module to respond will have 1ts output forwarded to the
inputs of all the modules constituting the network. Conse-
quently, no module 1s able to proceed with updating refer-
ence vectors until the coordinates of the active neuron have
been supplied via the mput of the device because the
information 1s not known until that time. When a module 1s
in ‘lateral mode’ the two line handshake system 1s activated
and after the coordinates of the active neuron have been
supplied the output 1s reset and the coordinates broadcast to
the neurons on that module.

10207] When coordinates of the active neuron are broad-
cast, all neurons 1n the network determine 11 they are in the
current neighbourhood by calculating the Manhattan dis-
tance between the active neurons virtual address and their
own. IT the result i1s less than or equal to the current
neighbourhood value, the neuron will set its update flag so
that 1t can update 1ts reference vector at the next operational
phase. The routine for this process (nbhood) 1s as follows:

MOV Xcoord *Move the virtual X coordinate to the
ALU input register.™/

SUB mput /*Subtract the next mput (X coord) from
value at ALU.*¥/

WRO dist /*Write the result to the distance
register.®/

MOV Ycoord /*Move the virtual Y coordinate the
ALU.¥/

SUB mput /*Subtract the next mput (Y coord) from
value at ALU.*/

MOV dist *Move the value 1n distance register to
ALU.¥/

ADD result /* Add the result of the previous

arithmetic to the value at ALU mput.®/

16

Jan. 25, 2007

-continued

MOV result /*Move the result of the previous
arithmetic to the ALU mput.*/

SUB 1nput /*Subtract the next input (neighbourhood
val) from value at ALU.*/

BRN /*If the result 1s negative.”/

SUP /*Set the update flag.™®/

BRZ /*If the result 1s zero.™/

SUP /*Set the update flag.®/

NOP /*Else do nothing*®/

[0208] All neurons in the current neighbourhood then go
on to update their weight values. To achieve this they also
have to recalculate the difference between 1nput and weight
clements, which 1s methcient computationally as these val-
ues have already been calculated 1n the process of deter-
mining Manhattan distance. However, the alternative would
require these intermediate values to be stored by each
neuron, thereby necessitating an additional 16 bytes of
memory per neuron. To minimise the use of hardware
resources these mtermediate values are recalculated during
the update phase. To {facilitate this the module controller
stores the current input vector and 1s able to forward vector
clements to the neural array as they are required. The update
procedure 1s then executed for each vector element as
follows:

RDI gain /*Read next mput and place 1t in the gain
register. ®/

MOV W, *Move weight value (W,) to ALU mput.*/

SUB input /*Subtract the input from value at ALU¥/

MOV result /*Move the result to the ALU. */

ADD Wi /*Add weight value (W) to ALU mput.*/

BRU /*If the update flag 1s set.®/

WRO W, /*Write the result back to the weight
register. ™/

NOP /*Else do nothing.*/

[0209] After all neurons in the current neighbourhood
have updated their reference vectors the module controller
reads 1n the next mput vector and the process 1s repeated.
The process will then continue until the module has com-
pleted the requested number of training steps or an 1nterrupt
1s received from the master controller. The term ‘master
controller’ 1s used to refer to any external computer system
that 1s used to configure Modular Maps. The master con-
troller 1s not required during normal operation as Modular
Maps operate autonomously but 1s required to supply the
operating parameters and reference vector values at start up
time, set the mode of operation and collect the network
parameters after training 1s completed. Consequently, the
module controller receives instructions from the master
controller at these times. To enable this, modules have a
three bit instruction interface exclusively for receiving input
from the master controller. The instructions receirved are
very basic and the total master controller instruction set only
comprises six instructions which are as follows:

10210] RESET: This is the master reset instruction and is
used to clear all registers etc. in the controller and neural
array

10211] LOAD: Instructs the controller to load in all the
setup data for the neural array including details of the gain

US 2007/0022063 Al

factor and neighbourhood parameters. The number of data
items to be loaded 1s constant for all configurations and data
are always read 1n the same sequence. To enable data to be
read by the controller the normal data input port 1s used with
a two line handshake (the same one used for lateral mode),
which 1s i1dentical to the three line handshake described
carlier, except that the device present line 1s not used.

10212] UNLOAD: Instructs the controller to output net-
work parameters from a trained network. As with the LOAD
instruction the same data items are always output in the same
sequence. The data are output from the modules data output
port.

10213] NORMAL: This input instructs the controller to
run in normal operational mode

10214] LATERAL: This instructs the controller to run in
lateral expansion mode. It 1s necessary to have this mode
separate to normal operation because the module 1s required
to read 1n coordinates of the active neuron before updating
the neural arrays reference vectors and reset the output when
these coordinates are received.

[0215] STOP: This is effectively an interrupt to advise the
controller to cease 1ts current operation.

The Module

[0216] An individual neuron is of little use on its own, the
underlying philosophy of neural networks dictates that they
are required 1 groups to enable parallel processing and
perform the levels of computation necessary to solve com-
putationally difficult problems. The minimum number of
neurons that constitute a useful group size 1s debatable and
1s led more by the problem to be addressed (1.e. the appli-
cation) than by any other parameters. It 1s desirable that the
number of neurons on a single module be small enough to
cnable implementation on a single device. Another consid-
eration was motivated by the fact that Modular Maps are
cllectively building blocks that are intended to be combined
to form larger systems. As these factors are interrelated and
can aflect some network parameters such as neighbourhood
size, 1t was decided that the number of neurons would be a
power of 2 and the network size which best suited these
requirements was 256 neurons per module.

10217] As the Modular Map design is intended for digital
hardware there are a range of technologies available that
could be used, e.g. full custom very large scale integration
(VLSI), semi-custom VLSI, application specific integrated
circuit (ASIC) or Field Programmable Gate Arrays (FPGA).
A 256 neuron Modular Map constitutes a small neural
network and the simplicity of the RISC neuron design leads
to reduced hardware requirements compared to the tradi-
tional SOM neuron.

10218] The Modular Map design maximises the potential
for scaleability by partitioning the workload 1n a modular
fashion. Each module operates as a Single Instruction
Stream Multiple Data stream (SIMD) computer system
composed of RISC processing elements, with each RISC
processor performing the functionality of a neuron These
modules are self contained units that can operate as part of
a multiple module configuration or work as stand alone
systems.

10219] The hardware resources required to implement a
module have been minimised by applying modifications to

Jan. 25, 2007

the original SOM algorithm. The key modification being the
replacement of the conventional Fuclidean distance metric
by the simpler and easier to implement Manhattan distance
metric. The modifications made have resulted 1n consider-
able savings of hardware resources because the modular
map design does not require conventional multiplier units.
The simplicity of this fully digital design 1s suitable for

implementation using a variety ol technologies such as
VLSI or ASIC.

[0220] A balance has been achieved between the precision
of vector elements, the reference vector size and the pro-
cessing capabilities of individual neurons to gain the best
results for minmimum resources. The potential speedup of
implementing all neurons in parallel has also been maxi-
mised by storing reference vectors local to their respective
neurons (1.¢. on chip as local registers). To further support
maximum data throughput simple but eflective parallel point
to point communications are utilised between modules. This
Modular Map design oflers a fully digital parallel imple-
mentation of the SOM that 1s scaleable and results 1n a
simple solution to a complex problem.

10221] One of the objectives of implementing Artificial
Neural Networks (ANNs) 1n hardware 1s to reduce process-
ing time for these computationally intensive systems. Dur-
ing normal operation of ANNs significant computation 1s
required to process each data mput. Some applications use
large 1nput vectors, sometimes containing data from a num-
ber of sources and require these large amounts of data
processed Irequently. It may even be that an application
requires reference vectors updated during normal operation
to provide an adaptive solution, but the most computation-
ally intensive and time consuming phase of operation 1is
network tramning. Some hardware ANN i1mplementations,
such as those for the multi-layer perceptron, do not imple-
ment training as part of their operation, thereby minimising
the advantage of hardware implementation. However,
Modular Maps do implement the learning phase of operation
and, 1n so doing, maximise the potential benefits of hardware
implementation. Consequently, consideration of the time
required to train these networks 1s appropriate.

Background

10222] The modular approach towards implementation
results 1n greater parallelism than does the equivalent unitary
network implementation. It 1s this difference 1n parallelism
that has the greatest eflect on reducing training times for
Modular Map systems. Consideration was given to devel-
oping mathematical models of the Modular Map and SOM
algorithms for the purpose of simulating training times of
the two systems.

10223] The Modular Map and SOM algorithms have the

same basic phases of operation, as depicted in the flowchart
of FIG. 14. When considering an implementation strategy in
terms of partitioning the workload of the algorithm and
employing various scales of parallelism, the potential
speedup of these approaches should be considered in order
to mimmise network training time. Of the five operational
phases shown in FIG. 14, only two are computationally
intensive and therefore significantly affected by varying
system parallelism. These two phases of operation mmvolve
the calculation of distances between the current input and
the reference vectors of all neurons constituting the network,

US 2007/0022063 Al

and updating the reference vectors of all neurons 1n the
neighbourhood of the active neuron (1.e. phases 2 and 5 in

FIG. 14).

10224] To facilitate investigation into the potential
speedup of Modular Map systems over the alternative uni-
tary networks and serial implementation, the model used
was based on the two computationally intensive phases of
operation mentioned above. This allows assessment of the
trends 1n training times while varying parameters such as
network size and vector size, and facilitating an understand-
ing of the relative training times for different implementa-
tion strategies.

Training Times for Parallel Implementation

[0225] A simplified mathematical model of the Modular

Map can be constructed for the purpose of assessing training
times. The starting point for this model will be the neuron,
as 1t 1s the fundamental building block of the Modular Map.
When the neuron is presented with an input vector x=| €1, €2,

..., en]JER" 1t proceeds to calculate the distance between

its reference vector m.=[L. ,, L., . . ., L. [ER" and the current
input vector x. The distance calculation used by the Modular
Map 1s the Manhattan distance, 1.¢.

Distance = Z &7 — 1]
=0

where n=vector size.

10226] The differences between vector elements are cal-
culated 1n sequence as while all neurons are implemented 1n
parallel, vector elements are not. To implement the system
utilising this level of parallelism 1s not practical because it
would require either 16 separate processors per neuron, or a
vector processor for each neuron, so that the distances
between all vector elements could be calculated simulta-
neously. The resources required to process all vector ele-
ments 1 parallel would be substantially greater than the
requirements of the RISC neuron (FIG. 11) and would
greatly reduce the chances of implementing a Modular Map
on a single device. Consequently, when n dimensional
vectors are used, n separate calculations are required.

[10227] If the time required by a neuron to determine the
distance for one dimension i1s taken to be t; seconds and
there are n dimensions, then the total time taken to calculate
the distance between mnput and reference vectors (d) will be
nt, seconds 1.e. d=nt, (seconds). The summation operation 1s
carried out as the distance between each element 1s deter-
mined and 1s therefore a variable overhead dependent on the
number of vector elements, and does not affect the above
equation for distance calculation time. However, the value
tfor t, will reflect the additional overhead of this summation
operation, as 1t will all variable overheads proportional to
vector size for this calculation. The reason being that the
distance calculation time (t;) 1s the fundamental timing unit
used 1n this model. It has no direct relationship to the time
an addition or subtraction operation will take for any par-
ticular device; it 1s the time required to calculate the distance
for a single element of a reference vector including all
variable overheads associated with this operation.

Jan. 25, 2007

[0228] As all neurons are implemented in parallel the total
time required for all neurons to calculate Manhattan distance
will be equal to the time 1t takes for a single neuron to
calculate 1ts Manhattan distance. Once neurons have calcu-
lated their Manhattan distances the active neuron has to be
identified before any further operations can be carried out.
This process 1nvolves all neurons simultaneously subtract-
ing one from their current distance value until one neuron
reaches a value of zero. As this process only continues until
the active neuron has been identified, (the neuron with
minimum distance) relatively few subtraction operations are
required.

[0229] Data generated during the training of Modular
Maps for the GRANIT application (discussed later) was
used to evaluate the overheads involved-in finding the active
neuron. FIG. 15 1s a graph of the activation values (Man-
hattan distances) of the active neuron for the first 100
training steps. The data was generated for a 64 neuron
Modular Map with 16 iputs using a starting neighbourhood
covering 80% of the network. The first few 1terations of the
training phase (less than 10) have a high value for their
Manhattan distances as can be seen from FIG. 15. However,
after the first 10 iterations there 1s little varation for the
distances between the reference vector of the active neuron
and the current input. Thus, the average activation value
after this mitial period 1s only 10, which would require only
10 subtraction operations to find the active neuron. Conse-
quently, there 1s a substantial overhead for the first few
iterations, but these will be similar for all networks and can
be regarded as a fixed overhead which 1s not accounted for
in the simple timing model used. Throughout the rest of the
training phase the overhead of calculating the active neuron
1s 1nsubstantial and will be assumed to be negligible for the
sake of simplicity.

[0230] During the training phase of operation, reference
vectors are updated after the distances between the current
input and the reference vectors of all neurons have been
calculated. This process again involves the calculation of
differences between vector elements as detailled above.
Computationally this 1s meflicient because these values have
already been calculated during the last operational phase.
However, to have used the previously calculated values
would have required an additional 16 bytes of local memory
for each neuron to store these values and to avoid the
additional resource overhead these values are recalculated.
After the distance between each element has been calculated
these intermediate results are then multiplied by the gain
factor. The multiplication phase i1s carried out by an arith-
metic shifter mechanism which 1s placed within the data
stream and therefore does not require any significant addi-
tional overhead (see FIG. 11). The addition of these values
to the current reference vector will have an impact on the
update time for a neuron approximately equivalent to the
original summation operation carried out to determine the
differences between mput and reference vectors. Conse-
quently, the time taken for a neuron to update 1ts reference
vector 1s approximately equal to the time it takes to calculate
the Manhattan distance, 1.e. d (seconds), because the pro-
cesses involved are the same (1.e. diflerence calculations and
addition). The number of neurons to have their reference
vectors updated in this way varies throughout the traiming
period, often starting with approximately 80% of the net-
work and reducing to only one by the end of training.
However, the time a Modular Map takes to update a single

US 2007/0022063 Al

neuron will be the same as 1t requires to update all its
neurons because the operations ol each neuron are carried
out in parallel.

10231] Kohonen states that the number of training steps
required to train a single network 1s proportional to network
s1ze. So let the number of training steps (s) be equal to the
product of the proportionality constant (k) and the network
size (N) (1.e. Number of training steps required (s)=kN).
From this simplified mathematical model 1t can be seen that
the total training time (T_,) will be the product ot the
number of traiming steps required (s), the time required to
process each mput vector (d), and the time required to
update each reference vector (d) 1.e. Total training time
(1,..)=2ds (seconds), but d=nt; and s =kN, so substituting
and rearranging gives:

T =2Nnkiy Equation 1.1

10232] This simplified model is suitable for assessing
trends 1n traiming times and shows that the total training time
will be proportional to the product of the network size and
the vector size, but the main objective 1s to assess relative
training times. In order to assess relative training times
consider two separate i1mplementations with 1dentical
parameters, excepting that different vector sizes, or network
s1zes, are used between the two systems such that vector size
n, 1s some multiple (y) of vector size n,. If T,=2Nn, kt, and
T,=2Nn, kt,, then by rearranging the equation for T,,
n,=T,/(2Nkt,) but, n, =yn,=y(T,/(2Nkt,)). By substituting
this result into the above equation for T, it follows that:

T5=2 Ny(T'/(2Nkt)kt =vT] Equation 1.2

10233] The consequence of this simple analysis is that a
module containing simple neurons with small reference
vectors will train faster than a network of more complex
neurons with larger reference vectors. This analysis can also
be applied to changes 1n network size where 1t shows that
training time will increase with increasing network size.
Consequently, to minimise traiming times both networks and
reference vectors should be kept to a minimum as 1s done

with the Modular Map.

10234] 'This model could be further expanded to consider
hierarchical configurations of Modular Maps. One of the
advantages of building a hierarchy of modules i1s that large
input vectors can be catered for without significantly
increasing the system training time.

[10235] This situation arises because the training time for a
hierarchy 1s not the sum of training times for all i1ts con-
stituent layers, but the total training time for one layer plus
the propagation delays of all the others. The propagation
delay of a module (1,,,) 1s very small compared to its
training time and 1s approximately equal to the time taken
for all neurons to calculate the distance between their input
and reference vectors. This delay 1s kept to a minimum
because a module makes its output available as soon as the
active neuron has been determined, and before reference
vectors are updated. A consequence of this type of configu-
ration 1s that a pipelining eflect i1s created with each suc-
cessive layer 1n the hierarchy processing data derived from
the last input of the previous layer.

T PI.GP:H 4 d

Equation 1.3

10236] All modules forming a single layer in the hierarchy
are operating 1n parallel and a consequence of this parallel-
ism 1s that the training time for each layer 1s equal to the

Jan. 25, 2007

training time for a single module. When several modules
form such a layer 1n a hierarchy the tramning time will be
dictated by the slowest module at that level which will be the
module with the largest input vector (assuming no modules
are connected laterally). As a single Modular Map has a
maximum input vector size of 16 elements and under most
circumstances at least one module on a layer will use the
maximum vector size available, then the vector size for all
modules 1n a hierarchy (n,) can be assumed to be 16 for the
purposes of this timing model. In addition, each module
outputs only a 2-dimensional result which creates an 8:1
data compression ratio so the maximum input vector size
catered for by a hierarchical Modular Map configuration will
be 2x8"' (where 1 is the number of layers in the hierarchy).
Consequently, large input vectors can be accommodated
with very few layers 1n a hierarchical configuration and the
propagation delay introduced by these layers will, 1n most
cases, be negligible. It then follows that the total training
time for a hierarchy (1) will be:

11, =2Nwn kt (-1t =2 Nn, Kt 4 Equation 1.4

10237] By following a similar derivation to that used for
equation 1.2 1t can be seen that:

T FﬁyTh

par

[0238] Where the scaling factor y=n/n,..

Equation 1.5

10239] This modular approach meets an increased work-
load with an increase in resources and parallelism which
results 1n reduced training times compared to the equivalent
umtary network and, this difference in training times 1s
proportional to the scaling factor between the vector sizes

(1.e. y).

Training Times for Serial Implementation

[0240] The vast majority of ANN implementations have
been 1n the form of simulations on traditional serial com-
puter systems which effectively offer the worst of both
worlds because a parallel system 1s being implemented on a
serial computer. As an approach to assessing the speedup
allorded by parallel implementation the above timing model
can be modified. In addition, the validity of this model can
be assessed by comparing predicted relative training times
with actual training times for a serial implementation of the

Modular Map.

10241] The main difference between parallel and serial
implementation of the Modular Map 1s that the functionality
of each neuron i1s processed 1n turn which will result 1n a
significant increase in the time required to calculate the
Manhattan distances for all neurons in the network com-
pared to a parallel implementation. As the operations of
neurons are processed in turn there will also be a difference
between the time required to calculate Manhattan distances
and update reference vectors. The reason for this disparity
with serial implementation is that only a subset of neurons
in the network have their reference vectors updated, which
will clearly take less time than updating all neurons consti-
tuting the network when each reference vector 1s updated in
turn.

10242] The number of neurons to have their reference
vectors updated varies throughout the training period, start-
ing with 80% and reducing to only one by the end of
training. As this parameter varies with time 1t 1s diflicult to
incorporate 1mnto the timing model, but as the neighbourhood

US 2007/0022063 Al

s1ze 1s decreasing 1n a regular manner the average neigh-
bourhood size over the whole tramning period covers
approximately 40% of the network. The time required to
update each reference vector 1s also approximately equal to
the time required to calculate the distance for each reference
vector, and consequently the time spent updating reference
vectors for a serial implementation will average 40% of the
time spent calculating distances. In order to maintain sim-
plicity of the model being used, the workload of updating
reference vectors will be evenly distributed among all neu-
rons 1n the network and, consequently, the time required for
a neuron to update 1ts reference vectors will be 40% of the
time required for 1t to calculate the Manhattan distance, 1.¢.
update time=0.4d (seconds).

[0243]

T ..=1.4N*nkt (seconds)

serial™—

In this case equation 1.1 becomes:

Equation 1.6

[10244] This equation clearly shows that for serial imple-
mentation the training time will increase 1n proportion to the
square of the network size. Consequently, the training time
for serial implementation will be substantially greater than
for parallel implementation. Furthermore, comparison of
equation 1.1 and 1.6 shows that T, ,=0.7 NT__, 1.e. the

difference 1n training time for serial and parallel implemen-
tation will be proportional to the network size.

[10245] A series of simulations were carried out using a
single processor on a PowerXplorer system to assess the
trends and relationships between training times for serial
implementation of Modular Maps and provide some evi-
dence to support the model being used. The simulations used
a Modular Map simulator (MAPSIM) to train various Modu-
lar Maps with a range of network and vector sizes. As the
model does not take account of data mput and output
overheads these were not used in the determination of
training times, although the tramning times recorded did
include the time taken to find the active neuron.

[10246] Some assumptions and simplifications have been
incorporated into this model, but have been incorporated 1n
such a way as to facilitate a good approximation of timing
behaviour. The simulations that were run to help evaluate
this model showed that trends in training time did follow
those prescribed by equation 1.6 (see FIG. 16). FIG. 16
shows that the range of training time required for a 99
clement vector increases substantially for increased network
s1Ze, whereas for a 16 element vector, the increase 1n training
time 1s not so substantial. When the actual training time 1s
known for one configuration, the training times for other
configurations can be calculated using equation 1.2 and all
predicted times using this approach were within 10% of the
actual traiming time measured on the PowerXplorer.

10247] The three main implementation strategies are serial
implementation, fine grain parallelism for a unitary network
and fine grain parallelism for a modular network. FIG. 17 1s
a graph which has been constructed to show the theoretical
differences in training times for these three strategies. The
training times presented for serial implementation have been
derived from actual traiming times measured on the Pow-
erXplorer and the other plots have been calculated relative
to these values using the model. FIG. 17 clearly indicates
that a modular approach to implementation which utilises
fine grain parallelism offers considerably reduced training
times compared to the other strategies considered.

Jan. 25, 2007

[0248] The model has been developed from the two com-
putationally intensive phases of operation that involve the
calculation of distances and updating of reference vectors, as
shown 1n FIG. 14. These are the phases of operation that will
be most affected by increasing system parallelism and offer
a good approximation of timing behaviour.

10249] Consideration could also be given to the overheads
of data mput and output for these implementation strategies
although the impact of these overheads will be minimal
compared to the time required for the computationally
intensive phases ol operation mentioned above. The data
output operation involves outputting the XY coordinates of
the active neuron for the Modular Map. This approach could
also be used for the other implementation approaches con-
sidered here. The Modular Map design allows the output to
be made available as soon as the coordinates of the active
neuron have been determined. Both output values are main-
tained at the output of the device until they are read, but once
the output has been made available the other processes
continue, leaving the data transfer to be handled by an
autonomous handshake system. The same approach could be
adopted by a unitary network system, but serial implemen-
tation would have to output the X and Y coordinates
separately and all other processing would have to stop while
these operations were being carried out. This would result in
the serial implementation taking more time to perform data
output than the other two approaches, but the impact on
overall training time would be minimal.

[0250] The data input phase of operation requires more
time than does data output, but again the Modular Map
design aims to minimise the overheads involved. The Modu-
lar Map will require a maximum of eight read cycles per
input vector because mput vectors have a maximum of 16
clements and two of these elements are read on each cycle.
In addition, the inputs for Modular Maps are buflered and
most of these read cycles can be carried out while previously
read data 1s being processed by the neural array. If the same
approach were used for a unitary network with larger input
vectors, the overheads would be similar because the neural
array would be processing previously read data while new
data was being input to the data bufller. Again 1t 1s the serial
implementation strategy that will sufler the greatest over-
head for this phase of operation because each vector element
has to be read in separately, and while data 1s being input no
other processing 1s able to proceed. Consequently, serial
implementation will sufler a data mput overhead propor-
tional to the vector size.

Applications

[0251] Modular Maps offer a versatile implementation of
Kohonen’s Self-Organising Map (SOM) that 1s suitable for
use 1 a wide variety of problem domains. Two possible
application have been used as examples of the applications
for which Modular Maps are suited; human face recognition
and ground anchorage integrity testing. The applications
have little 1n common other than their 1ll-defined nature but,
Modular Maps offer possible solutions 1n both domains. The
SOM 1s also applied to these problems to provide a bench-
mark for the Modular Map approach.

10252] Human face recognition is an ill-defined problem
that 1s diflicult to tackle using conventional computing
techniques but has aspects that make 1t amenable to solution
by neural network systems. There are many approaches to

US 2007/0022063 Al

the face recognition problem that have been attempted over
the years utilising a range of techmques including statistical
and genetic algorithm approaches. However, the aim here 1s
to assess Modular Maps as an alternative to the traditional

SOM. Consequently, comparisons are only made between
the SOM and Modular Map solutions.

[0253] As the SOM 1i1s the basis for the Modular Map
design, the classification and clustering of the two systems
are further compared 1n the application domain of ground
anchorage 1ntegrity testing (GRANIT). This 1s also an
application that 1s difficult to tackle using conventional
computing techniques, but its ill-defined nature and high
noise levels make i1t a suitable application for a neural
network solution. The application 1s currently being devel-
oped at the Umiversity of Aberdeen to provide an easy to use
mechanism to replace the current conventional test proce-
dures used within the civil engineering industry which are
time consuming, expensive and often destructive.

Human Face Recognition

10254] Human face recognition is generally regarded as a
very diflicult task for computing systems to undertake. There
are databases containing face images available via the
Internet, e.g. the Olivetti1 web site but, like many Internet
resources, there 1s no standardisation from one site to
another. Consequently, 1t 1s dithicult to obtain a data set of
face 1mages 1n a usable format containing suilicient varia-
tions and instances of each face to enable training of ANN
systems. However, at the Unmiversity of Aberdeen, Dr Ian
Craw of the Department of Mathematics has been working
in the field of face recognition for some time and has built
several face databases. Access to some of this data was
arranged, along with permission to use 1t as part of the
evaluation of Modular Map systems, which avoided the
problems of loading large data files from the Internet.

0255] The data base used for evaluation of Modular Maps

was dertved from photographs of human faces taken by a
colour CCD camera connected to a framegrabber which
digitised colour at a resolution of 576x768 pixels. A total
database of 378 1mages made up from 14 photographs of 27
different subjects was created 1n this way. The photographs
were taken over a period of weeks with varying intervals
between shots using differing lighting conditions and a
variety of orientations of the subject. FIG. 18 shows a typical
example of the types of images used 1n greyscale. Excessive
variation was avoided to prevent potential matches based on
condition rather than subject. None of the photographs
included faces with glasses or beards but the clothing worn
by subjects changed throughout their series of photographs.

10256] The background of the photographs was eliminated
to leave 1images of 128x128 pixels, but the hair which 1s not
invariant over time was left 1 the picture. Thirty-four
landmarks were then found manually for each image to
create a face model. The 1images are then scaled (“morphed’)
to mimimise the error between landmark positions for indi-
vidual 1images and a reference face; the reference face being
used here 1s the average of the ensemble of faces. This
process normalises the 1images for inter-ocular distance and
ocular location (1.e. the faces are scaled and translated to put
the centre of both eyes 1 the same X,Y location for all
images). This normalisation process removes the eflects of
different camera locations and face orientations and offers an
alternative to positioning subjects carefully before images

Jan. 25, 2007

are acquired. The average image 1s calculated from the
whole database and, 1n addition to being used as detailed
above, 1s subtracted from each image resulting 1n a face
subspace of n—1, where n was the original dimensionality of
the 1mages.

[0257] Principal Component Analysis (PCA) may then be
performed separately on the shape-iree face images and the
shape vectors consisting of the X,Y location of the points on
the original face image. The data used for the evaluations
used the shape-free face images. The normalised 1mages
were considered as raster vectors and subjected to PCA
where the eigenvalues and unit yeigenvectors (eigenfaces of
99 eclements) of the image cross-correlation matrix were
obtained. PCA has the eflect of reducing the dimensionality
of the data by “transforming to a new set ol variables
(principal components) which are uncorrelated, and which
are ordered so that the first few components retain most of
the variation present 1n all of the original variables”. While
PCA 1s a standard statistical techmique for reducing the
dimensionality of data and attempting to preserve as much
of the original information as possible 1t 1s diflicult to give
meaningful labels to individual components.

[0258] Hancock and Burton have investigated principal
component representations of faces and suggest several
correlations with PCA components of shape vectors and face
teatures such as head size, nodding and shaking of the head
and variations 1n face shape. However, little 1s suggested
about the correlations between PCA components derived
from the shape-iree vectors and face features. It appears that
individual PCA components derived from shape free face
images do not normally correlate directly to individual face
features, but the first two components of the eigenface are
believed to be associated with the size of the face and
lighting conditions. It 1s because of the application that these
eigenvectors are olten referred to as eigenfaces.

[0259] It was these eigenfaces that were made available
for the Modular Map 1nvestigation. In ANN terms this
database contaimned a very limited dataset and, normally
many more than 14 instances of a class would be used to
train a network. However, this still offered an improvement
over other sources such as the Olivetti data base which only
had 10 instances of each face. To facilitate both training and
testing of ANN systems nine eigenfaces for each subject
were used to train a network and the other five were used to
test 1ts classification. The test set was selected across the
range ol orientation and lighting conditions so that the
training set would also cover the whole range of conditions.

[0260] The eigenface data consisted of double precision
floating point values between minus one and plus one but
Modular Maps only accept eight bit inputs. Consequently,
the face data needed to be converted to suitable eight bit
values belore 1t could be used with Modular Map systems.
This was achieved using some utility programs developed
for use with Modular Map systems. This software was able
to offset data values so that all values were positive, scale the
data to cover the range 0 to 255 and convert it to integer (8
bit) values. The eflects of this data manipulation do not
change the relationships between vector elements as the
same scaling and oflset are applied to each element but,
rounding does occur during the conversion process. It 1s also
perhaps noteworthy that all data used in the training and
testing of a network should use the same scaling factor and
oflset values to maintain 1ts integrity.

US 2007/0022063 Al

10261] To facilitate the training and testing of neural
networks the eigenface data was split into nine training
vectors and five test vectors for each face. To ensure that the
networks were trained on the whole range of possible
orientations and lighting conditions the first two and last two
vectors 1n a class were always used for traiming. The rest of
the data was selected as training vectors and test vectors
alternately such that on one simulation eigenfaces 1, 2, 4, 6,
8, 10, 12, 13 and 14 were used to train the network while
eigenfaces 3, 5, 7, 9 and 11 were used to test the network.

The next simulation would then use eigentaces 1, 2, 3, 5, 7,
9,11, 13 and 14 to train the network and eigentaces 4, 6, 8,
10 and 12 to test the network etc.

[10262] Using Kohonen’s Self Organising Map to Classify
Face Data

10263] Simulations using Kohonen’s Self Organising Map
(SOM) were carried out to provide a benchmark for the
Modular Map evaluation. The first of these simulations used
the original double precision floating point data and a 64

neuron SOM, but the majority of vectors caused the activa-
tion of the same neuron. Investigation found that the prob-
lem was that the original data set actually covered a smaller
range than had been expected and required excessive pre-
cision with regard to the ANN processes. Rather than the

data covering the whole range between minus one and plus
one, most vector elements had a maximum variance of less
than 0.1 over the entire data set and the maximum variance
found for any element was less than 0.7. Consequently, 1t

was possible to have vectors originating from different faces
with a Euclidean distance much less than one.

10264] The SOM implementation used double precision
values but, rounding errors within the mechanism resulted in
problems with the original data set.

[0265] Due to the problems encountered with the original
eigenfaces, the data was scaled to cover the range between
0 and 2535 but, using tloating point values rather than the 8
bit data required for Modular Maps. When the 135 test
vectors were presented to the network this approach proved

to offer much better results but, high classification error rates
of 40% were still encountered (i.e. of the 135 test vectors
presented to the network after training, only 81 (60%) were
correctly 1dentified). The reason for this poor performance
was that each class of data caused the activation of several
neurons and there were simply not enough neurons in the
network for all activation regions to be distinct (1.e. a larger
network was required). FIG. 194 1s an example activation
region for a modular map and FIG. 196 1s an example
activation map for a SOM. When the same data was used
with a SOM network of 256 neurons the error rate dropped
to 6%. When simulations were run using a quantised version

of the data set (1.e. using integer values) the results were
found to be identical thereby suggesting that the rounding
errors within the data introduced by the quantisation process
were not significant (see the error rate table (table 1 below).

Jan. 25, 2007

TABLE 1

Summary Classification Error Rate Table. Figures quoted
are mean classification errors with standard deviation.
All fisures are quoted to the nearest integer value.

ANN type Configuration Details % Error

SOM 64 Neurons 40 £ 12
Floating point data
(99 element vectors)
SOM 64 Neurons 40 = 12
Integer data
(99 element vectors)
SOM 256 Neurons 6 =1
Floating point data
(99 element vectors)
SOM 256 Neurons 6 =1
Integer data
(99 element vectors)
SOM 1024 Neurons 6+ 1
Floating point data
(99 element vectors)
SOM 256 Neurons 7 x1
Floating point data
Using overlap data
(127 element vectors)
Nine Module Hierarchy
7 with 13 1nputs
1 with & mputs
Output = 64 Neurons
(configuration 1)
Seven Module Hierarchy
6 with 16 inputs
Output = 64 Neurons
(configuration 2)
Nine Module Hierarchy
Using overlap data
7 with 16 mmputs, 1 with 15 inputs
Output = 64 Neurons
(configuration 3)
Nine Module Hierarchy 4 +1
Using overlap data
7 with 16 inputs, 1 with 15 inputs
Output = 256 Neurons
(configuration 4)

.I.

Modular Map 19 £ 3

Modular Map 18 £ 3

Modular Map 11 £2

Modular Map

Using Modular Maps to Classily Face Data

[0266] Modular Maps can be combined in different ways
and use dif

erent data partitioning strategies. Four separate

Modular Map configurations are used to outline the effects
of using different approaches. The first approach to Modular
Map solution of the eigenface classification problem pre-
sented 1s intended more as a “how not to do” approach. This
combination of modules, configuration 1, utilises nine
Modular Map networks each with 64 neurons (see FIG. 20).
The topology of the system 1s hierarchical with eight mod-
ules at the base of the hierarchy (the mput layer 1) and one
at the output level (output layer O). The data was partitioned
so that seven modules each had 13 mputs and one module
had 8 mputs. This data partitioning strategy may result in
poor classification because a module will give better results
when the whole of the reference vector 1s utilised (1.e. when
all 16 1inputs are used).

[0267] The results from simulations using configuration 1
(FIG. 20) showed poor classification of the face data with an
average classification error of 19% from the output module.
It can also be seen from table 2 below that the error rate for

US 2007/0022063 Al

module 7, which only has eight mputs as opposed to the 13
used by all other networks at that level, are much higher than
all other networks.

10268] A factor contributing to this is that module 7 has
much fewer mputs, which will naturally lead to poorer
performance but, 1t should also be noted that there i1s a
general trend of classification errors from modules at the
base of the lierarchy which correlates to the importance of
the elements of the eigenvectors (1.e. the first few PCA
clements have most of the variation). However, the small
number of vector elements used 1s the most prominent factor
contributing to poor performance and this 1s highlighted by
the results of configuration 2 (FIG. 21) which show consid-
erably better classification results for most modules at the
base of the hierarchy when all 16 mputs are used.

TABLE 2

Error Rate Table for Configuration 1 (FI(:. 20)

Module No of Inputs % Error
0 13 20
1 13 22
2 13 21
3 13 21
4 13 28
5 13 29
6 13 29
7 8 39
8 16 19

10269] The second Modular Map configuration (configu-
ration 2 shown 1n FIG. 21) used only seven modules 1n total;
s1x on the mput layer I of the hierarchy and one at the output
layer O. The data was partitioned so that all modules at the
base of the hierarchy had sixteen inputs, which gives a total
of 96 mput vector eclements as opposed to the 99 in the
original eigenfaces; the final three elements of the eigen-
faces being the least significant ones and therefore omitted.

[0270] The results from this series of simulations showed
an improved classification but, only an increase of 1% on the
previous error rates for the output module were achieved
(table 3 below). The overall performance increase 1s due 1n
part to the fact that the output module 1s now only using 12
out of the 16 possible inputs. However, most modules had
reduced error rates compared to the previous series of
simulations and all modules had better classification rates
than had been experienced for module 7 1n configuration 1
(FIG. 20). An additional two modules could be added to the
base of the hierarchy so that the output module would be
using all of 1ts mnputs. One possible approach would be to

simply present the first 16 elements of the eigenfaces to two
modules. This type of approach 1s normally referred to as an
ensemble and has been found to improve classification.
There are no known dependencies between vector elements
ol the eigenfaces and there 1s no direct correlation between
individual elements and particular face features so the data
overlap approach was used to spread the data being used for
two mputs across the whole vector rather than relying solely
on any one block of 16 elements.

Jan. 25, 2007

TABLE 3

Error Rate Table for Configuration 2 (FIG. 21)

Module No of Inputs % Error
0 6 21
1 6 20
2 6 21
3 6 22
4 6 25
5 6 25
6 6 28
7 4 18

[0271] Utilising all inputs for modules at the base of the
hierarchy 1mproves classification. To maximise on this and
the number of iputs to the next layer of the hierarchy, some
of the mnput vector elements can be fed to more than one
module. This ‘data overlap” technique 1s where the data 1s
split mto groups of 16 clement mnputs, but the last few
clements of one mput vector are also used as mnputs for the
next module. This was accomplished by feeding vector
elements 0 to 15 to module 0 and, elements 12 to 27 to
module 1 etc. so that there was effectively an overlap of four
vector elements between modules. In this way modules 0 to
6 all had 16 mputs but, module 7 only had 15 because when
using the original 99 element vectors this was the closest to
maximum 1nput usage that could be achieved without using
different strategies for different modules. This approach was
chosen because 1t enables most modules at the base of the
hierarchy to have 16 inputs and therefore helps to maximise
the limited amount of training data.

10272] As with the first configuration, a total of nine
modules all with 64 neurons were used and were connected
together 1n a hierarchical manner as shown in FIG. 22. The
simulations carried out using this ‘data overlap’ approach
showed a significant improvement over configurations 1 and
2 (FIGS. 20 and 21) because the classification error from the
output module had been reduced to 11%. However, the
classification errors for modules at the base of the hierarchy
did not show any sigmificant statistical difference to those
found with configuration 2 (FIG. 21) (compare table 3 and
table 4 below). This suggests that the improvement in
classification 1s not due to the particular partitioning strategy

used, but to the fact that more inputs to the hierarchy were
used.

TABLE 4

Error Rate Table for Configuration 3 (FIG. 22)

Module No of Inputs % Error
0 6 21
1 6 20
2 6 19
3 6 21
4 6 24
5 6 24
6 6 26
7 5 28
8 6 11

[0273] From the simulations performed using the SOM it
was noted that the activation regions for the face data were
such that a 256 neuron SOM was required to classily the

US 2007/0022063 Al

data with reasonable accuracy. The simulations carried out
using Modular Maps for this data found that fewer neurons
were active on the output module of a Modular Map
hierarchy than for the SOM. This occurs because of the data
compression being performed by successive layers in the
hierarchy and results 1n a situation where fewer neurons are
required 1n the output network of a hierarchy of Modular
Maps than are required by a single SOM for the same
problem. However, when only a two layer hierarchy 1s being
used the compression 1s not suflicient for a 256 neuron
module to be replaced by a 64 neuron module. In addition,
Modular Maps can be combined both laterally and hierar-
chically to provide the architecture suitable for numerous
applications.

10274] Configuration 4 (FIG. 23) has 256 neurons at the
output layer O of a Modular Map hierarchy but all other
modules 1n the system were still maintained at 64 neurons.
To create an array of 256 neurons, four Modular Maps are
connected together 1n a lateral configuration and because
modules connected 1n this way act as though they were a
single Modular Map they can then be further combined to
create hierarchies containing different sized networks.

[0275] For these simulations the input data and the eight
base modules were 1dentical to those detailed for configu-
ration 3 (FIG. 22); the only change was to the size of the
output module. The results of these simulations showed that
the classification error at the output of the hierarchy had
been reduced to 4% (the results from layer one being
identical to those for configuration 3) which offered an
improvement over all previous simulations, including the
ones using the standard Kohonen network.

ANN Classification of Faces

10276] The hardware required to provide the Modular Map
solution for this face recognition problem would comprise
12 modules which could be implemented on twelve VLSI
devices. The SOM solution, however, would require a
network of 256 neurons, each capable of using reference
vectors of 99 elements. The digital hardware requirements
for a parallel implementation of such a SOM would not {it
onto a single VLSI device and would require wafer scale
integration for a monolithic implementation. Even when
attempting to implement this SOM on several separate
devices there are no known systems with a comparable level
of parallelism to the Modular Map solution outside the
realms of neuro-computers and super-computers. There are,
of course, many other ways of implementing a SOM of this
s1Ze, €.g. transputer systolic array, but at present the difli-
culties of implementing this comparatively small SOM
network on a single device 1n digital hardware have been
suilicient to prevent 1ts occurrence.

[0277] The results of these simulations show that Modular
Maps can be combined in a hierarchical and/or lateral
configuration to good eflect. It was also shown that to
maximise the classification potential of Modular Map hier-
archies all inputs to modules should be used. There are a
variety of possible approaches to maximising inputs and in
this case a ‘data overlap’ approach was used to maximise the
limited training data available and thereby improve classi-
fication results.

[0278] It was also found that the Modular Map approach
to classification of this face data offers slightly better clas-

Jan. 25, 2007

sification than the traditional SOM (see the summary error
rates table 1). In addition, the clustering on the surface of
output modules was improved over that found on the SOM
as can be seen Irom the activation maps presented 1n
appendix A. When using a Modular Map hierarchy 1n
configuration 4 (FIG. 23) the output module averaged 147
inactive neurons compared to 106 for the 256 neuron SOM,
the reason being that the number of neurons active for
individual classes 1s reduced (1.e. tighter clustering 1s found
on the surface of the map). The clustering produced by the
Modular Map systems 1s similar to that of the SOM, but was
generally better defined. This can be seen when comparing
the neural activations created by the same single class for the
two systems, an example of which 1s presented 1n FIGS. 19a
and 19b. This example corresponds to the activations for
data class 3 in appendix A. These differences are due to the
different architectures of the two systems. The SOM will
only have a single reference vector (containing 99 elements
in this case) while a Modular Map hierarchy results 1n
reference vectors for the output neurons being constructed
from a number of reference vectors from lower levels 1n the
hierarchy (eflectively providing 127 elements here).
Because the reference vectors of the output layer of a
Modular Map hierarchy are constructed from several lower
level reference vectors it 1s possible to represent complex
regions of the feature space with few neurons at the output.

[0279] The Modular Map solution to the face recognition
problem requires more neurons than does the SOM solution,
but the RISC neurons used by Modular Maps are much
simpler which will result n a much reduced resource
requirement when implemented 1n hardware as intended. It
1s the architecture of the Modular Map approach that has
resulted in better classification rather than the number of
neurons. This 1s emphasised by the failure of the SOM to
improve over the previously stated classification results
when network size 1s increased beyond 256 neurons. When
a SOM containing 1024 neurons was trained on the same
data detailed above for the face recognition problem, the
classification of this data still resulted in a 6% error for the
test data. Stmulations were also carried out to check that the
‘data overlap’ approached used for the Modular Map hier-
archy shown 1n configuration 4 (FIG. 23) was not giving the
Modular Map solution an unfair advantage. These simula-
tions used the same data as had been used for the Modular
Map configuration except that the separate input vectors for
modules were joined together to form 127 element vectors
(1.e. 7x16+1x15 vector elements). When a 256 neuron SOM
was trained using these 127 element vectors equivalent to
the ‘data overlap’ used for configuration 4 (FIG. 23), the
classification results did not improve, but resulted in an
additional 1% error compared to simulations using the 99
clement vectors, 1.e. classification error was 7% (see the
summary error table 1).

[0280] In addition, the eigenface data used in the above
face recognition were derived using Principal Component
Analysis (PCA) which reduced the dimensionality of the
original pictures by transforming the original variables into
a new set of vaniables (the principal components) 1n a way
that retains most of the variation present in the original data.
The principal components are ordered so that the first few
dimensions retain most of the variation present 1n all of the
original variables. The data presented to the modular map
array maintained this order such that module 0 1n a hierarchy
had the first few dimensions and the highest indexed module

US 2007/0022063 Al

on the lowest level had the last few dimensions etc. While
the error rates of modules on the lowest layer in a hierarchy
do not show a monotonic increase in error rate with icreas-
ing index, the general trend shows that error rates increase
as the PCA components show decreasing variance.

10281] When combining Modular Maps in hierarchical
configurations, the error rates at the output network were
less than those found for any modules at lower levels in the
hierarchy (see tables 2, 3 and 4). Both classification and
clustering improve moving up through subsequent layers 1n
a Modular Map hierarchy as though higher layers in the
hierarchy were performing some higher level functionality.

Ground Anchorage Integrity Testing

10282] The Ground Anchorage Integrity Testing System
(GRANIT) 1s being developed as a joint project between the

Universities of Aberdeen and Bradford in collaboration with
AMEC Civil Engineering Ltd. This work 1s built on the

research of Prof. A. A. Rodger and Proi. G. S. Littlejohn into
the effects of close proximity blasting to rock bolt behaviour.

[0283] As part of this development process, field trials
were carried out at the Adlington site of AMEC Civil
Engineering Ltd. Two test ground anchorages were installed
by AMEC Civil Engineering Ltd for the purpose of these
trials. The analysis pertains to a single strand anchor which
has a diameter of 15.2 mm, a total length of 10 m and a bond
length of 2 m. The drilling records for this anchorage show
that the soi1l composition was weathered sandstone between
5> m and 5.8 m with strong sandstone between 5.8 m and 9.95
m. Using a pneumatic impact device to apply an impulse
vibration was itiated within the anchorage system. An
accelerometer aflixed to the anchorage strand was then used
to detect vibrations within the system.

10284] The accelerometer output was fed, via a charge
amplifier, to a notebook PC where the signals were sampled
at 40 kSamples/Sec by a National Instruments DAQ 700
data acquisition card controlled by the GRANIT software
developed at the University of Aberdeen. This software was
developed using National Instruments Labwindows/CVI
and the C programming language. The intricacies of data
sampling and signal pre-processing are handled by the DAQ
700 software and Labwindows. However, laboratory tests
using known signals were carried out to check that signals
were being captured and processed as expected and no
problems were 1dentified.

[0285] Data was gathered for five pre-stress levels of the
ground anchorage system; four of these levels were known
to be 10 kN, 20 kN, 30 kN and 40 kN values, while the fifth
level was mitially unknown and used as a blind test to
evaluate the potential predictive capacity of the GRANIT
system. After results of the data analysis were presented to
AMEC Civil Engineering the pre-stress value of the anchor-
age when the blind data were generated was revealed to be
approximately 18 kN. Fitty (50) wavelorms containing 512
samples were taken at each level. Throughout this evaluation
process the blind test data were used only as a check; they
were not taken into account when determining statistics of
the main data set efc.

[0286] The time domain signals generated by the ground
anchorage approximate a damped impulse response (see
FIGS. 24a to 24¢) and the envelope of these signals often
provides an indication of the pre-stress level of the anchor-

Jan. 25, 2007

age. FIGS. 24a to 24e show the average time domain signals
for the 10 kN, 20 kN, 30 kN, 40 kN and blind tests
respectively. However, the power spectra of these signals
provides a better insight into varying pre-stress levels, and
oflers a significant compression of the data by transforming
the original 512 1s dimensional time domain signals into
their frequency components which, in this mstance, resulted
in 64 components. A 5th order Butterworth low pass filter
with a threshold of 5 kHz was used to remove unwanted high
frequency components. The power spectrum of these signals
provides the average frequency components over the entire
signal and shows that power spectra vary for varying pre-
stress levels 1n the ground anchorage. Manual comparison of
the power spectra can be dithicult, but can be used to provide
an approximation of pre-stress levels (see FIGS. 25a to 235¢).
FIGS. 25a to 25¢ show the average power spectrum for the
10 kN, 20 kN, 30 kN, 40 kN and blind tests respectively.
Analysis utilising wavelet transforms could be used to
provide a more detailed time-frequency analysis but the
power spectra data oflers considerable compression over the
original 1mnput data and provided suilicient information for
this analysis.

Classification of Ground Anchorage Pre-Stress Levels Using
the Self-Organising Map

[0287] A 64 neuron SOM was trained using the 64 dimen-
sional power spectra derived from response signals of the
ground anchorage generated at known pre-stress levels. The
activation map was then derived after training was complete
by feeding test data to the network and noting which neuron
was active for which class of data. However, this labelling
process can be time consuming when carried out manually
so a small utility program was developed which takes the
output from the network and calculates the activation map
automatically by correlating the original class of inputs with
the resultant neuron activation. Once the activations on the

surface of the map had been determined, the blind data set
was fed to the SOM and the resultant activations were

recorded and can be seen m FIG. 26. All 50 samples

gathered during the blind field test caused the activation of
neurons associated with the 20 kIN data class.

[0288] The grouping of activations (clustering) on the
surface of the SOM does not show a gradual transition from
low to high pre-stress levels moving across the surface of the
map (see FIG. 26). However, 1n most cases, there 1s a clear
distinction between activations for different pre-stress lev-
cls, with very few neurons being active for two or more
pre-stress values. There are regions of activation on the
surface of the map that can be assigned to known pre-stress
values of the anchorage but no individual pre-stress level has
a single distinctive cluster of activations. There are several

reasons for this, one of which 1s that data sets were not as
consistent as would have been desired, especially the 30 and
40 kN cases. One factor that 1s responsible for these incon-
sistencies 1s that the impact applied to the anchorage varied
slightly throughout the testing period. However, the activa-
tion map created from this data (FIG. 26) shows that the
active neurons for the blind data set correspond to neurons
which were active for the 20 kNN data set. Consequently, 1t
can be stated that the closest matching pre-stress value to the

blind data set 1s 20 kN.

US 2007/0022063 Al

Classification of Ground Anchorage Pre-Stress Levels Using
Modular Maps

10289] A simple Modular Map configuration was used
with the ground anchorage data detailed above to show that
Modular Map hierarchies give improvements in classifica-
tion and clustering moving up the hierarchy. A total of five
modules were employed 1n a hierarchical configuration as
shown 1n FIG. 27. As the data consisted of 64 dimensional
vectors, each of the original vectors were partitioned 1nto
four separate vectors of 16 elements. The data were also
scaled and quantised to fulfil the put requirements of
Modular Maps but, 1n order to keep the configuration as
simple as possible no attempts were made to create an
optimal solution to the ground anchorage integrity testing
problem and no data overlapping was used.

10290] When the Modular Map system was trained on the
same power spectra data of ground anchorage response
signals as the SOM (see FIGS. 25a to 25¢), the resultant
activation maps for modules at the base of the hierarchy
show poor classification and clustering of the blind data set
(see FIGS. 28 to 31). The unknown pre-stress value could
not be determined correctly from any individual one of these
activation maps and, 1t 1s also unlikely that 1t could be
identified by manual inspection of any combination of lower
level maps.

10291] However, all 50 samples of the blind test data set
caused the activation of neurons associated with the 20 kIN
data on the output module of the hierarchy, as had occurred
with the SOM (see FIG. 32) showing that classification does
indeed 1improve moving up through a modular map hierar-
chy.

10292] In addition, identification of each data class
required fewer neurons 1n the output module of the hierarchy
than had been required for the SOM. Instead of the three
neurons that were active for the 20 kN data on the SOM (see
FIG. 26). This class of data only resulted in two active
neurons for the Modular Map. As the Modular Map system
had fewer active neurons for each data class than did the
SOM, there were 24 1nactive neurons and, consequently, a
40 neuron module could have been used 1 place of the 64
neuron module. This effect was also found to increase as the
depth of hierarchy increases such that the disparity between
the number of neurons required by the SOM and the output
module of a hierarchy increases with increasing depth of
hierarchy. There are still similarities between the activations
formed by the SOM and Modular Map for thus data, with
cach class accounting for approximately the same percent-
age ol activations for both systems, suggesting that the
essential features of the data have been maintained. Overall
the Modular Map also has fewer clusters (regions of acti-
vation) per class, than does the SOM, thereby reducing the
disjoint nature of activation sets. For example, on the SOM
the 30 kN case has three separate clusters and the 40 kN case
has four separate clusters but, the Modular Map has two and
three clusters for this data respectively.

10293] The Modular Map approach to face recognition
results 1n a hierarchical modular architecture which utilises

Jan. 25, 2007

a ‘data overlap’ approach to data partitioning. When com-
pared to the SOM solution for the face recognition problem,

Modular Maps offer better classification results. This

improvement in classification 1s achieved because a modular
architecture 1s used. Modular Maps provide the basic build-
ing block for modular architectures and can be combined

both laterally and hierarchically to good eflect as has been
shown.

10294] When hierarchical configurations of Modular Maps
are created the classification at the output layer offers an

improvement over that of the SOM because the clusters of
activations are more compact and better defined for modular
hierarchies. This clustering and classification improves
moving up through successive layers in a modular hierarchy
such that higher layers, 1.e. layers closer to the output,

cllectively perform higher, or more complex, functionality.

10295] Application solutions using a modular approach
based on the Modular Map will result 1n more neurons being
used than would be required for the standard SOM. How-
ever, the RISC neurons used by Modular Maps require

considerably less resources than the more complex neurons

used by the SOM. The Modular Map approach 1s also

scaleable such that arbitrary sized networks can be created
whereas many factors impose limitations on the size of
monolithic neural networks. In addition, as the number of
neurons 1n a modular hierarchy increases, so does the

parallelism of the system such that an increase 1n workload
1s met by an increase in resources to do the work. Conse-
quently, network training time will be kept to a minimum
and this will be less than would be required by the equivalent
SOM solution, with the savings 1n training time for the
Modular Map increasing with increasing workload.

[0296] Modifications and improvements may be made to
the foregoing without departing from the scope of the
present invention. Although the above description describes
the preferred forms of the invention as implemented in
special hardware, the invention is not limited to such forms.
The modular map and hierarchical structure can equally be

implemented in software, as by a software emulation of the
circuits described above.

Appendix A

Sample Activation Maps

[0297] The activation maps presented in this appendix
were derived from the application of human face recognition
detalled i1n chapter 7. This application had 27 separate
classes, 1.e. there were pictures of 27 humans. Each square
on the activation map represents a single neuron. When a
neuron has activations for a particular class, the class
number 1s denoted. Where no class number 1s denoted the
neuron 1s not associated with any class, 1.e. 1t has no
activations.

US 2007/0022063 Al Jan. 25, 2007
27

4] | |1s{1s[rs|nmrjtejte] | | | | [13]13
4|4 |1s| | [n]upe] | | | [13]13]18
4lele| | | | [s|23]10/10] | J13] |
4| [efe] | | | |23] jto[10] |r2] |21
|e]e| |ofofe] |23]10] 12| [12|21]21
5[1of1e] | fo] [J2f2] j12] | J21
5(5|5] [19l25] [251 |2] | | | j21]21
20{20] | | | [25] [12]122]2]7}7]7|
(18] (18] | (15| | |12] | | |7)26]
o [a]aue] [18]1815] [14]14] [14] | |26]
27j27] 1] 1]18] |15] [14]14]14]14]| |26] |19
27j27|18[18|16|16[11] | | | | |26j26] |19
20j22|22/22]16] | |11] [17] | | [26]19]24
20| |22f3] |1f1f 17| | | [8] | |24
L el {30 | [[7pt7js] |8]7)7]24
ofofe] [afafaltzjrz] | [sf8|7] |24

Figure A.1: Example activation map for a 256 neuron SOM trained on
eigenface data

US 2007/0022063 Al Jan. 25, 2007
23

24] | J3] [| f21] |21f | |afe] |
L qstsl [LIl | faje] |}
HEEEEEEEEEERI NN
2] | [] [J7{ J7{ 1 []]]6
J2] (] (1] [7]r7] | j8| | | |6
19|26]26] [12| [13]13] J17| | |8] |6]
19| | [14]12{13[13] [17] | |8] | |e[6
| rafaa] | D3] 47) j12)]] L]
| frajal |]| J12[je2fas| | |
|22[22f22] | | | |s[s|s5[1s|1s] | |
Ll st asp | |
1] | [es|erjer|orjor] (1] | [2]20] |
] [J2s[9] | [19]23] | [2[2]2|20]20
[1]s8] |of ltof2sl2a] | | |2j20]
| [18[+e[18]9|9| [16] [23]10j10] | |
[8[Js8[| | [lre[16] [to]10]10] |

Figure A.2: Example activation map for a Modular Map Hierarchy
(Configuration 4) trained on eigenface data

US 2007/0022063 Al

1-23. (canceled)

24. A neural network module (300) comprising an array of
neural processing elements (100) and at least one neural
network controller (200), the neural processing elements
comprising;

arithmetic logic means (50);

an arithmetic shifter mechanism (52);

data multiplexing means (115,125);

memory means (56,57,58,59);

data mput means (110) including at least one mmput port;

data output means (120) including at least one output port;
and

control logic means (54);

and the controller (200) comprising

control logic means (270,280);

data mput means (60) including at least one input port;
data output means (62) having at least one output port;
data multiplexing means (290,292,294);

memory means (64,68,280);

an address map (66); and

at least one handshake mechamism (210,220,230);

characterized in that the controller (200) 1s adapted to
perform computations on data incoming to and outgo-
ing from the neural processing elements.

25. The neural network module as claimed 1n claim 24
wherein the controller 1s further adapted to provide
addressed and non-addressed instructions to the neural pro-
cessing clements.

26. The neural network module as claimed 1n claim 24
wherein the memory means of the controller includes pro-
grammable memory means.

27. The neural network module as claimed 1n claim 24
wherein the memory means of the controller includes bufler
memory associated with said data input means and/or said
data output means.

28. The neural network module as claimed 1n claim 24
wherein the controller further comprises a collection of
registers and a program counter.

29. The neural network module (300) as claimed in claim
24 wherein the number of processing elements (100) 1n the
array 1s a power of two.

30. A modular neural network comprising:

one module (300) as claimed 1n claim 24, or at least two
modules (300) as claimed in any of claims 24 to 29
coupled together.

31. The modular neural network as claimed 1n claim 30
turther comprising arbitration logic adapted to ensure that
during neural activity, only the index from a single module
representing the active neuron 1s output to the processing
clements.

32. The modular neural network as claimed 1n claim 31
wherein the arbitration logic 1s provided on each processing,
clement.

33. The modular neural network as claimed 1n claim 31
wherein the arbitration logic 1s provided on each module.

29

Jan. 25, 2007

34. The modular neural network as claimed in claim 31
wherein the arbitration logic comprises a binary tree.

35. The modular neural network as claimed 1n claim 31
wherein the arbitration logic provides a bus grant signal on
the output of each processing element.

36. The modular neural network as claimed 1n claim 30
including synchronization means to facilitate data input to
the neural network.

37. The modular neural network as claimed 1n claim 36,
wherein said synchronization means enables data to be mnput
only once when the modules (300) are coupled 1n hierar-
chical mode.

38. The modular neural network as claimed in claim 36
wherein the synchromzation means 1s adapted to implement
a two-line handshake mechanism.

39. A neural network device comprising a neural network
as claimed 1n claim 30 wherein an array of processing
clements (100) 1s implemented on the neural network device
with at least one module controller (200).

40. The neural network device as claimed 1n claim 39,
wherein the device 1s a field programmable gate array
(FPGA) device.

41. The neural network device as claimed 1n claim 39,
comprising one of the following: a full-custom very large
scale 1ntegration (VLSI) device, a semi-custom VLSI
device, or an application specific integrated circuit (ASIC)
device.

42. A neural processing element (100) for use 1n a neural
network, the processing element comprising:

arithmetic logic means (50);

an arithmetic shifter mechanism (52);

data multiplexing means (115,125);

memory means (56,57,58,59);

data mput means (110) including at least one 1nput port;

data output means (120) including at least one output port;
and

control logic means (54);

characterized i1n that the control logic means (54) 1s
adapted to receive addressed and non-addressed
instructions from a module controller.

43. The neural processing element (100) as claimed 1n
claim 42, wherein each neural processing element (100) 1s a
single neuron 1n the neural network.

44. The neural processing element as claimed 1n claim 42
further comprising data bit-size indicating means {for
enabling operations on different bit-size data values to be
executed using the same 1nstruction set.

45. A neural network controller (200) for controlling the
operation of at least one neural processing element (100) as
claimed i any of claims 42 to 44, the controller (200)
comprising;

control logic means (270,280);

data input means (60) including at least one 1nput port;
data output means (62) having at least one output port;
data multiplexing means (290,292,294);

memory means (64,68,280);

an address map (66); and

US 2007/0022063 Al

at least one handshake mechamism (210,220,230);

characterized in that the controller (200) 1s adapted to
provide addressed and non-addressed 1nstructions to a
neural processing element.

46. The neural network controller (200) as claimed in
claiam 45 wherein the memory means includes program-
mable memory means.

47. The neural network controller (200) as claimed in
claiam 45 wherein the memory means includes buller

memory associated with said data input means and/or said
data output means.

48. A neural network module (300) comprising an array of
neural processing elements (100) as claimed 1 claim 42;

and at least one neural network controller (200) as claimed
in claim 45.

49. A modular neural network comprising:

at least one module (300) comprising an array of neural
processing elements (100) the neural processing ele-
ments comprising

arithmetic logic means (50);

an arithmetic shifter mechanism (52);
data multiplexing means (115,1235);
memory means (56,57,58,59);

data input means (110) including at least one input port;

Jan. 25, 2007

data output means (120) including at least one output
port; and

control logic means (54);

characterized 1n that the module turther comprising arbi-
tration logic adapted to ensure that during neural activ-
ity, only the index from a single module representing
the active neuron 1s output to the processing elements.

50. The modular neural network as claimed in claim 49

wherein the arbitration logic 1s provided on each processing
clement.

51. The modular neural network as claimed 1n claim 49
wherein the arbitration logic 1s provided on each module.

52. The modular neural network as claimed 1n claim 49
wherein the arbitration logic comprises a binary tree.

53. The modular neural network as claimed in claim 49
wherein the arbitration logic provides a bus grant signal on
the output of each processing element.

54. A computer program which upon execution on a
computer constitutes together with the computer upon which
it 1s executed an apparatus according to claim 24.

55. A method of classifying data comprising:

using the apparatus of claim 24.

	Front Page
	Drawings
	Specification
	Claims

