a9y United States
12 Patent Application Publication o) Pub. No.: US 2005/0265582 Al

Buehler et al.

US 20050265582A1

43) Pub. Date: Dec. 1, 2005

(54)

(76)

(21)
(22)

(63)

METHOD AND SYSTEM FOR TRACKING
AND BEHAVIORAL MONITORING OF
MULTIPLE OBJECTS MOVING THROUGH
MULTIPLE FIELDS-OF-VIEW

Inventors: Christopher J. Buehler, Cambridge,
MA (US); Neil Brock, Acton, MA
(US); Jehanbux Edulbehram, Boston,
MA (US); Patrick Sobalvarro,
Harvard, MA (US)

Correspondence Address:

GOODWIN PROCTER LLP
PATENT ADMINISTRATOR
EXCHANGE PLACE
BOSTON, MA 02109-2881 (US)

Appl. No.: 11/191,128
Filed: Jul. 27, 2005

Related U.S. Application Data

Continuation of application No. 10/706,850, filed on

Nov. 12, 2003.

400

\
o«

(60) Provisional application No. 60/425,267, filed on Nowv.
12, 2002.

Publication Classification

(51)  Inte CL7 coooooooeeeeeeeeeeeeeeeeeeeeeeeeeee e GO6K 9/00
) TR VR T ¢ T, 382/103; 382/143
(57) ABSTRACT

A computerized method of video analysis that includes
receiving several series of video frames generated by a
number of 1mage sensors. Each image sensor has a field-
of-view. The 1mage sensors monitor a portion of a monitored
environment. The computerized method also includes con-
currently tracking, independent of calibration, multiple
objects within the monitored environment as the objects
move between fields-of-view, at least two of which overlap,
and multiple objects within one field-of-view. The tracking
1s based on the plurality of received series of video frames
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METHOD AND SYSTEM FOR TRACKING AND
BEHAVIORAL MONITORING OF MULTIPLE
OBJECTS MOVING THROUGH MULTITPLE
FIELDS-OF-VIEW

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of U.S. patent
application Ser. No. 10/706,850, filed on Nov. 12, 2003,
which further claims priority to and the benefit of U.S.
provisional patent application Ser. No. 60/425,267/, filed
Nov. 12, 2002, both of which are mcorporated herein by
reference 1n their enfirety.

TECHNICAL FIELD

10002] The present invention generally relates to video
surveillance, and more specifically to a computer aided
surveillance system capable of tracking multiple objects.

BACKGROUND

[0003] The current heightened sense of security and
declining cost of camera equipment have resulted 1n
increased use of closed circuit television (CCTV) surveil-
lance systems. Such systems have the potential to reduce
crime, prevent accidents, and generally increase security 1n
a wide variety of environments.

10004] A simple closed-circuit television system uses a
single camera connected to a display device. More complex
systems can have multiple cameras and/or multiple displays.
One known type of system 1s the security display 1n a retail
store, which switches periodically between different cam-
eras to provide different views of the store. Higher security
installations, such as prisons and military installations, use a
bank of video displays each displaying the output of an
assoclated camera. A guard or human attendant watches the
various screens looking for suspicious activity.

[0005] More recently, inexpensive digital cameras have
become popular for security and other applications. “Web
cams” may also be used to monitor remote locations. Web
cams typically have relatively slow frame rates, but are
suflicient for some security applications. Inexpensive cam-
eras that transmit signals wirelessly to remotely located

computers or other displays are also used to provide video
survelllance.

[0006] As the number of cameras in a surveillance system
increases, the amount of raw mmformation that needs to be
processed and analyzed also increases. Computer technol-
ogy can be used to alleviate this raw data processing task,
resulting 1n a new breed of information technology device—
the computer-aided surveillance (CAS) system. Computer-
aided surveillance technology has been developed for vari-
ous applications. For example, the military has used
computer-aided 1mage processing to provide automated tar-
ogeting and other assistance to fighter pilots and other per-
sonnel. In addition, computer-aided surveillance has been
applied to monitor activity in other environments such as
swimming pools, stores, and parking lots.

[0007] A CAS system automatically monitors objects
(e.g., people, inventory, etc.) as they appear in series of
surveillance video frames. One particularly useful monitor-
ing task is tracking the movements of objects in a monitored
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arca. Methods for tracking objects, such as people, moving
through an i1mage are known in the art. To achieve more
accurate tracking information, the CAS system can utilize
knowledge about the basic elements of the images depicted
in the series of surveillance video frames.

|0008] Generally, a video surveillance frame depicts an
image of a scene 1n which people and things move and
interact. A video frame 1s composed of a plurality of pixels,
often arranged 1n a grid-like fashion. The number of pixels
in an 1mage depends on several factors including the reso-
lution of the camera generating the 1image, the display on
which the image 1s presented, the capacity of the storage
device on which the images are stored, etc. Analysis of a
video frame can be conducted either at the pixel level or at
the (pixel) group level depending on the processing capa-
bility and the desired level of precision. A pixel or group of
pixels being analyzed 1s referred to herein as an “image
region.”

[0009] Image regions can be categorized as depicting part
of the background of the frame or as depicting a foreground
object. A set of contiguous pixels determined to depict one
or more foreground objects 1s referred to as “blob.” In
ogeneral, the background remains relatively static in each
frame. However, objects are depicted 1n different image
regions 1n different frames. Several methods for separating
objects 1n a video frame from the background of the frame,
referred to as object or blob extraction, are known 1in the art.
A common approach 1s to use a technique called “back-
oground subtraction.” Of course, other techniques can be
used.

[0010] A robust tracking system faces many difficulties.
Changes 1n scene lighting can affect the quality of object
extraction, causing foreground elements to be misshapen or
omitted completely. Object occlusions can cause objects to
disappear or merge together, leading to difficulties 1n corre-
spondence between frames. Further, tracked objects can
change shape or color over time, preventing correspondence
even though the objects were properly extracted.

[0011] In addition, even under ideal conditions, single-
view tracking systems invariably lose track of monitored
objects that leave the field-of-view of the camera. When
multiple cameras are available, as in many close-circuit
television systems, 1t 1s theoretically possible to reacquire
the target when 1t appears 1n a different camera. This ability
to perform automatic “camera hand-off” 1s of significant
practical interest.

SUMMARY OF THE INVENTION

[0012] In one aspect, the invention relates to a computer-
1zed method of video analysis that includes receiving several
serics of video frames generated by a number of 1mage
sensors. In one embodiment, the 1mage sensor 1s a video
camera. Each image sensor has 1ts own field-of-view which
can, but does not have to, overlap with another image
sensor’s field-of-view. The 1mage sensors monitor a portion
of a monitored environment. The computerized method also
includes concurrently tracking, independent of calibration,
multiple objects within the monitored environment as the
objects move between fields-of-view, and multiple objects
within one field-of-view. The tracking 1s based on the
plurality of received series of video frames.
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[0013] In one embodiment, the method of video analysis
also includes tracking objects based on a probability that an
object included 1n one video frame generated by a first image
sensor at a first point in time will be included 1n a video
frame generated by a second 1mage sensor at a second point
in time. In another embodiment, the method of video analy-
sis includes storing a plurality of blob states over time. Each
blob state includes a number of objects included 1n the blob
and a blob signature. The method of video analysis can also
store a plurality of transition likelihood values representing
the probability that objects within one blob at one instant in
time correspond to objects within other blobs at other
instants 1n time. In one embodiment, the transition prob-
abilities can be updated as new information 1s gleaned from
subsequent video frames.

[0014] In one embodiment, the method of video analysis
includes storing object data indicating correspondences
between objects and blob states. The method can also
include generating a tracking solution based on the blob
states and transition probabilities.

[0015] In one embodiment, the method of video analysis
includes generating tracking metadata. Tracking metadata
can 1nclude, without limitation, object track data, tracking
solutions, object feature data and ficld-of-view data. In
another embodiment, the method further includes selecting
a rule set to analyze the generated tracking metadata and
evaluating the tracking metadata, based on the rule set, using
a rules engine. Rule sets may include rules for monitoring
parking lot security, detecting property theft, detecting haz-
ards to children, monitoring public safety, and determining
merchandizing and operations statistics.

[0016] In another aspect, the invention relates to a com-
puterized system for video analysis which includes a receiv-
ing module configured to receive a plurality of series of
video frames and a calibration independent tracking module
in communication with the receiving module. The series of
video frames are generated by a plurality of 1mage sensors
which monitor portions of a monitored environment and
have a field-of-view. The tracking module 1s configured to
both concurrently track a plurality of objects within the
monitored environment as the objects move between fields-
of-view and to concurrently track a plurality of objects
within one field-of-view based on the plurality of received
series of video frames. The tracking module also can output
tracking metadata.

[0017] In one embodiment, the video analysis system also
includes a rules engine, which i1s 1n communication with the
tracking module and receiving the tracking metadata.

[0018] In another aspect, the invention relates to a system
for monitoring parking lot security which includes a receiv-
ing module configured to receive a plurality of series of
video frames and a calibration independent tracking module
in communication with the receiving module. The series of
video frames are generated by a plurality of 1mage sensors
which monitor portions of a monitored environment and
have a field-of-view. The tracking module 1s configured to
both concurrently track a plurality of objects within the
monitored environment as the objects move between fields-
of-view and to concurrently track a plurality of objects
within one field-of-view based on the plurality of received
series of video frames. The tracking module also can output
tracking metadata. The system also includes a rules engine
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utilizing a parking lot security rule set configured to receive
and evaluate the tracking metadata.

[0019] In another aspect, the invention relates to a system
for property theft detection which includes a receiving
module configured to receive a plurality of series of video
frames and a calibration independent tracking module in
communication with the receiving module. The series of
video frames are generated by a plurality of 1mage sensors
which monitor portions of a monitored environment and
have a field-of-view. The tracking module 1s configured to
both concurrently track a plurality of objects within the
monitored environment as the objects move between fields-
of-view and to concurrently track a plurality of objects
within one field-of-view based on the plurality of received
series of video frames. The tracking module also can output
tracking metadata. The system also includes a rules engine
utilizing a theft detection rule set configured to receive and
evaluate the tracking metadata.

[0020] In another aspect, the invention relates to a system
for child hazard detection which includes a receiving mod-
ule configured to receive a plurality of series of video frames
and a calibration imndependent tracking module 1n commu-
nication with the receiving module. The series of video
frames are generated by a plurality of 1mage sensors which
monitor portions of a monitored environment and have a
field-of-view. The tracking module 1s configured to both
concurrently track a plurality of objects within the moni-
tored environment as the objects move between fields-of-
view and to concurrently track a plurality of objects within
one field-of-view based on the plurality of received series of
video frames. The tracking module also can output tracking
metadata. The system also includes a rules engine utilizing
a child safety rule set configured to receive and evaluate the
tracking metadata.

[0021] In another aspect, the invention relates to a system
for property theft detection which includes a receiving
module configured to receive a plurality of series of video
frames and a calibration independent tracking module 1in
communication with the receiving module. The series of
video frames are generated by a plurality of 1mage sensors
which monitor portions of a monitored environment and
have a field-of-view. The tracking module 1s configured to
both concurrently track a plurality of objects within the
monitored environment as the objects move between fields-
of-view and to concurrently track a plurality of objects
within one field-of-view based on the plurality of received
serics of video frames. The tracking module also can output
tracking metadata. The system also includes a rules engine
utilizing a public safety monitoring rule set configured to
receive and evaluate the tracking metadata.

[0022] In another aspect, the invention relates to a system
for merchandizing and operations statistical analysis which
includes a receiving module configured to receive a plurality
of series of video frames and a calibration independent
tracking module in communication with the receiving mod-
ule. The series of video frames are generated by a plurality
of 1mage sensors which monitor portions of a monitored
environment and have a field-of-view. The tracking module
1s coniigured to both concurrently track a plurality of objects
within the monitored environment as the objects move
between fields-of-view and to concurrently track a plurality
of objects within one field-of-view based on the plurality of
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received series of video frames. The tracking module also
can output tracking metadata. The system also includes a
rules engine utilizing a merchandizing and operations sta-
fistical rule set configured to receive and evaluate the
tracking metadata.

10023] In another aspect, the invention relates to a method
of analyzing video data that includes receiving tracking
metadata from a calibration-independent tracking module
and analyzing the metadata using a regular expression
representation of a specified pattern. An event 1s generated
if a portion of the metadata exhibits the specified pattern. In
one embodiment, the method also includes comparing the
regular expression of the specified pattern to the portion of
the metadata by utilizing a software implemented represen-
tation of a finite state machine.

BRIEF DESCRIPTION OF THE DRAWINGS

10024] The foregoing discussion will be understood more
readily from the following detailed description of the inven-
tion, when taken in conjunction with the accompanying
drawings.

10025] FIG. 1 is a block diagram of an illustrative overall

computer-assisted surveillance (“CAS”) system utilizing
one aspect of the 1nvention.

10026] FIG. 2 is a high-level block diagram of an illus-

trative CAS computer according to one embodiment of the
invention.

10027] FIG. 3 is block diagram of a video analysis system
according to one embodiment of the invention.

10028] FIG. 4 1s a flow chart that depicts an illustrative
tracking methodology according to one embodiment of the
invention.

10029] FIG. 5 is an illustrative track graph according to
one embodiment of the invention.

10030] FIGS. 6A and 6B are schematic depictions of a
monitored environment.

10031] FIG. 7A includes schematic depictions of two
series of video frames.

10032] FIG. 7B includes two illustrative transition prob-
ability tables according to one embodiment of the invention.

10033] FIG. 8 is a series of schematic depictions of partial
track graphs according to one embodiment of the invention.

10034] FIG. 9 is a flow chart of a method of determining
node matches according to one embodiment of the inven-
tion.

10035] FIG. 10 includes two illustrative data association
matrices according to one embodiment of the mvention.

10036] FIG. 11 is a flow chart of a method for counting

objects 1n a monitored environment according to one
embodiment of the 1nvention.

10037] FIG. 12 is a flow chart of a method of determining

a tracking solution according to one embodiment of the
invention.

[0038] FIG. 13 is a flow chart of another method of
determining a tracking solution according to one embodi-
ment of the invention.
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[0039] FIG. 14 is a more detailed version of a portion of
the general video analysis system depicted in FIG. 3.

10040] FIG. 15 is an illustrative finite state machine
implementing a regular expression according to one embodi-
ment of the invention.

[0041] FIG. 16 1s an illustrative data structure correspond-
ing to a monitored object according to one embodiment of
the 1nvention.

DETAILED DESCRIPTION

[0042] In a surveillance system, cameras capture image
data that depicts the interaction of people and things 1n a
monitored environment. Types of cameras include analog
video cameras, digital video cameras, or any device that can
generate 1mage data. The word “camera,” 1s used as a
generic term that encompasses any sensor that can output
image data. In one embodiment, the CAS system observes a
monitored environment through a number of 1mnput sensors
although 1ts primary sources of information are cameras.
The majority of CCTV i1nstallations use common visible-
light video cameras. In such installations, the CAS system
employs advanced video analysis algorithms for the extrac-
tion of 1nformation from analog NTSC or PAL video. These
algorithms, however, are not limited to the visible light
spectrum; they can also be applied to infrared video or even
imagery from radar or sonar installations 1f available.

10043] FIG. 1 shows an illustrative computer-assisted
surveillance (“CAS”) system 100. A plurality of cameras or
other 1mage 1nput devices 102 provide 1image inputs to a
computer 104 programmed to provide 1image analysis. CAS
computer 104 can include a display 106 providing a graphi-
cal user interface for setup, control and display. CAS com-
puter 104 can also include one or more user mput devices
(not shown) such as keyboards, mice, etc. to allow users to
input control signals.

10044] CAS computer 104 performs advanced image pro-
cessing including image feature extraction and tracking.
CAS computer 104 can automatically detect objects and
activity and can generate warning and other information that
can be transmitted over a digital communications network or
other interface 108. CAS computer 104 also uses interface
108 to retrieve data, such as previously recorded video
stored on recorder 112 or information stored on other
computers. CAS computer 104 provides the outputs of the
vartous cameras 102 to a multiplexer 110 for recording,
typically continuous or stop-frame, by recorder 112 and for
display on one or more displays 114 via a switcher 116. An
additional user interface (e.g., provided by another computer
118 and user input including, for example, a joystick 120)
can be used to allow an operator to control switcher 116 to
select 1mages to view and to control other parts of system
100 mcluding CAS computer 104. Mutiplexer 110 and/or
switcher 116 can respond to external alarms that occur when
certain types of activity have been automatically detected
(e.g., an alarm generated by a motion sensor) and record or
display video appropriately. These alarms can also be gen-
erated by CAS computer 104 based on detected activities in
the video streams.

[0045] The illustrative CAS Computer 104 system inte-
orates scamlessly 1nto any existing security infrastructure.
The 1llustrative embodiment CAS system 100 1s compatible
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with, for example, legacy analog video sources, 1n addition
to newer digital video sources such as USB, FireWire, or 1P
cameras on wired or wireless networks. The CAS computer
104 acts as a passive repeater of 1ts input signals, so that 1n
the unlikely event of a CAS computer 104 failure, the
remainder of the security infrastructure continues to function
without the CAS computer 104.

[0046] While video cameras 102 are the typical primary
sensors for the CAS system 100, the system can also
accommodate other commonly-used sensors, such as motion
detectors, smoke detectors, spill detectors, microphones,
point-of-sale (POS) recordings, electronic article surveil-
lance (EAS) systems, and access control systems. The
llustrative CAS system 100 combines information from
these sensors with the video analysis results to provide an
even richer description of activities 1n the world. For
example, POS 1nformation may be used with video 1images
to verily that a customer purchased a particular product.

10047] FIG. 2 shows a high-level block diagram of an
illustrative CAS computer 104. For illustrative purposes, the
computer components are grouped i1nto two main classes:
single-view processing blocks 202 (SVPs) and multi-view
processing blocks 204 (MVPs). Each image input source 1s
attached to a SVP 202. Image input sources include cameras
102 as well as a variety of storage devices including, for
example, computer disks, VHS tapes, and digital videotapes.
For purposes of data analysis, 1mage data outputted by a
video storage device 1s the equivalent of 1mage data gener-
ated by a camera. Each SVP 202 typically performs video
processing tasks that require only a single video stream. The
outputs of the SVP 202 are connected to a MVP 204 that
processes multiple video streams at once. Depending on the
embodiment, a processing module includes a MVP 204, or
a combination of one or more SVPs 202 and one or more
MVPs 204. The CAS computer also includes memory
modules (not shown) for receiving and storing incoming
image data. The memory modules can be a part of the
processing module, or they can be separate from the pro-
cessing module.

[0048] The single-view processing components 202 and
the multi-view processing components 204 typically analyze
data as a series of video frames depicting a scene. In one
embodiment, image data 1s analyzed directly from a camera.
In another embodiment, the analyzed image data can origi-
nate from a storage device. Some cameras and video storage
devices create and store 1mage data on a frame-by-frame
basis. Other storage systems may only store video frame
updates, 1.e. detected changes to the scene. To carry out
analysis of 1mage data, the CAS computer 104 constructs a
video frame (e.g., with a frame grabber) from stored image
data that may be stored in a variety of devices and formats.

10049] FIG. 3 is a block diagram of an illustrative video

analysis system according to one embodiment of the mven-
tion. In this embodiment, the video analysis system 300 may
include a receving module 302, a tracking module (also
referred to as a “tracker”) 304, a classifier 306, and a rules
engine 308.

[0050] In one embodiment, the receving module receives
a plurality of series of video frames from a plurality of
cameras 310 (e.g., cameras 102 of FIG. 1). In the case that
the video analysis system 300 1s implemented on the CAS
computer 104, described above, each series of video frames
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1s forwarded to a respective SVP 202. In one embodiment,
a central receiving module receives a plurality of series of
video frames and distributes the series to a plurality of SVPs
202. In another embodiment, each SVP 202 has 1ts own
receiving module for a single series of video frames gener-
ated by a single camera 310. A receiving module 302 can
include a data input port, such as a parallel port, a serial port,
a firewire port, an ethernet adapter, a coaxial cable mput, an
RCA jack, an S-video jack, composite video jacks, a VGA
adaptor or any other form of port for receiving video data.

[0051] The tracking module 304 is a logical construct that
receives video data from a receiving module 302, and, in
some embodiments, may concurrently track a pluarlity of
objects both within a single camera 310 field-of-view and
among multiple camera 310 ficlds-of-view. In some embodi-
ments, the tracking module functionality 1s distributed
among a plurality of processing elements. For example, 1n
onc embodiment implemented on the CAS computer 104,
the functionality 1s distributed between the SVPs 202 and
the MVP 204. In other embodiments, the functionality of the
tracking module 304 1s aggregated into a single processing
clement. The functionality of the tracking module 304,
regardless of how 1t 1s distributed, can be implemented in
either software or in hardware. The output of the tacking
module 304 may be stored as tracking metadata in, for
instance, a database (not shown).

[0052] In some embodiments, the system 300 may also
include a classifier 306. The classifier can be an 1ndependent
processing module, or its functionality can be combined
within the tracking module 304 or rules engine 308. The
information created by the classifier 306 may also be stored
in a database. In some embodiments, the classifier 306 may
perform two different types of classification, static classifi-
cation and dynamic classification.

[0053] Static classification refers to a classification proce-
dure that operates on a group of pixels from a single instant
in time (i.e., from a single frame of video). This type of
classification may include assigning instantaneous proper-
ties of the pixel group to the pixel group. These properties
may 1nclude, for example, size, color, texture, or shape to
determine if the group of pixels i1s interesting or not. It
should be understood that the particular properties and
threshold used to classify may vary depending on the
specific environment 1n which the system 1s operating. This
1s also true for dynamic classification.

[0054] Dynamic classification refers to classification rules
that examine a pixel group over a period of time to make a
classification. Examples of dynamic classification properties
include velocity, acceleration, change in size, change 1n area,
change 1n color, lack of motion, or any property that includes
some time dependence. These properties, and others, may be
considered predetermined characteristics that may be evalu-
ated by the rules engine 308.

[0055] Any classifier may be used in the present invention.
A particularly useful classifier may operate as described
below. The classifier 306 may include a first pass classifier
that 1s used to remove noisy pixels and other artifacts or
external variables. A second pass classifier 1s used in cor-
relation with the output of the tracking module 304. This
interaction 1ncludes but 1s not limited to any combination of
spatial, temporal, 1mage feature, and motion output from a
tracking system. This classification of objects may be
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applied on a per frame basis. In more detail, the first pass
classifier 1s used to {ilter out any pixel groups in an image
which are visibly noise or remnants and determines, there-
fore that those pixel groups are not interesting. This basi-
cally 1s similar to a more conventional noise classifier
approach. The classifier 306 may then rely on the tracking
module to create a matching between every remaining pixel
group and a certain object for each video frame. The second
pass classifier then looks at the data from the tracking
module 304 and compares it with data from other frames.
Characteristics of followed objects are analyzed along with
a state history of that particular object. In some embodi-
ments, the classifier may keep an active memory of how a
given object (now correlated to pixel group) was created. If
that particular object has been seen on this or another camera
in the past, all of its history 1s remembered. If an object 1s
new, very little 1s known about 1t so any decisions the
classifier makes will have a lower probability of correctness
than an object that has been tracked for several frames. In
some embodiments, various predetermined characteristics
of the pixel group may help 1n the classification process.
This example may include, for example: Motion information
(has the object moved and, if so, how fast?); Grouping
information; and Appearance/Signature information.

[0056] The system 300 may also include a rules engine
308. This optional rules engine 1s described 1n greater detail
below. In general, however, the rules engine 308 evaluates
tracking metadata to determine whether specific conditions
have been met and may also allow users to search for
specific 1information created by the tracking module 304
that, 1n some 1nstances, may also been processed by the

classifier 306.

10057] FIG. 4 1s a flow chart that depicts an illustrative
tracking methodology 400 employed by the tracking module
304 according to one embodiment of the invention. In brief
overview, 1n one embodiment of the mnvention, tracking 400
includes two steps, constructing a track graph representing
the movement of “blobs” through a monitored environment,
and solving the track graph to correspond the blobs to
specific objects. A blob 1s a plurality of substantially con-
ticuous pixels that are determined not to be part of the
background of a video frame. To create a track graph, the
tracking module 304 determines new nodes (step 402),
determines possible edges connecting candidate nodes to the
new nodes (step 404), determines the strength of the possible
edges (step 406), and matches the new nodes to the candi-
date nodes (step 408). The tracking module 304 then deter-
mines a tracking solution (step 410). These steps will be
decribed in greater detail with reference to FIGS. 5-13.

[0058] FIG. 5 shows an illustrative data structure referred
to as “track graph”500, that may be used by the tracking
module 304 1 carrying out its tracking functionality 400. Ot
course, other data structures or methods of tracking may be
used. In general, a track graph 500 records observations of
blobs from multiple 1image sensors for a substantially long
period of time. In some embodiments, the track graph 500
records blob observations for the entire time the tracking
module 304 monitors a monitored environment. Since blob
data 1s stored for a substantially long period of time, a
tracking algorithm operating on a track graph 500 can use
information far in the past rather than, for example, just from
the previous frame. In one embodiment, at least some
information 1n the track graph 500 never changes, only the
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interpretation does (e.g., as new information is added). In
this way, decisions made by the tracking module 304 using
the track graph 500 can be “undone” or changed without
losing information. As discussed above, information created
by the tacking module may be stored in a database as
metadata.

[0059] Specifically, the track graph 500 consists of nodes
502 and edges 504. Nodes 502 represent the appearance of
an object or group of objects 1n an 1image sensor. Each node
502 corresponds to the state of a blob at an instant 1n time
(e.g., in a single video frame) or over a period of time (e.g.,
a sequence of video frames). A blob could represent one or
more objects, and, conversely, a single object may corre-
spond to one or more blobs. For example, if a number of
persons are standing closely together, blob extraction may
only detect a single continuous blob that includes all of the
persons. Similarly, 1f a monitored person stands behind an
obstruction, such as a railing, that only partially obstructs a
camera’s view of the person, the person might appear to a
CAS camera as two blobs on either side of the obstruction.
Edges 504 connect together nodes 502 and represent pos-
sible trajectories that objects may have taken through the
monitored environment. Edges 504 are directed and point
from older nodes 502 to newer nodes 502. In one embodi-
ment, older nodes 502 are nodes that appear above newer
nodes 1n a track graph 500. For example, 1n track graph 500
nodes at time t are older than nodes at time t+2.

[0060] In the example track graph 500, cach node 502 and
cdge 504 1s annotated with a number. In the case of nodes
502, the number represents the number of objects at that
node 502 (the “node count™). In the case of edges 504, the
number represents the number of objects “moving” along
that edge 504 to the next node 502 (the “edge 504 count™).
For a track graph 500 to be consistent, these numbers may
nced to satisfy certain properties. First, the number of
objects entering the most recently detected nodes 502 may
neced to equal the number of objects leaving previously
existing nodes 502. Second, for a newly detected node, the
number of objects at a node 502 may need to equal the sum
of the number of objects entering the node 502. In some
embodiments, the number of objects entering the most
recently detected nodes 502 must equal the number of
objects leaving previously existing nodes and the number of
objects at a node 502 equals the sum of the number of
objects entering the node. When annotated in this way, the
track graph 500 has many of the properties of a “flow
oraph,” which 1s a commonly studied graph in computer
science. In one embodiment, multiple connected consecu-
tive nodes which each only have single edges leaving the
nodes can be combined 1nto one node with an associated
duration equal to the number of nodes combined.

[0061] The track graph 500 can also includes at least one
source node 506 and at least one sink node 508. Source
nodes 506 are nodes 502 that have no incoming edges 504,
and sink nodes 510 are nodes 502 that have no outgoing,
edges 504. Source and sink nodes 506 and 508 generally
correspond to the beginning or end of the track graph 500,
or the beginning and end of an object 1n the track graph 500,
such as an entrance or exit of a monitored environment.

[10062] Some edges, referred to as alias edges 510, are used
to connect two nodes 502 that represent the same physical
object. Alias edges 510 connect nodes 502 corresponding to
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objects concurrently included in the fields-of-view of mul-
tiple cameras and nodes in a single video frame if the nodes
502 correspond to the same object (e.g., an object divided by
a pole). Nodes 502 connected by alias edges 510 essentially
become a single node 502 (referred to as a “supernode”514).
The edges 504 into and out of a supernode 514 are the union
of the edges 504 into and out of the constituent nodes 502.
In some embodiments, alias edges 510 do not enter into any
calculations (such as flow calculations), and flow constraints

apply to the supernode 514 as a whole rather than the
individual nodes 502.

[0063] In general, it is useful to store various data at the
nodes 502 and edges 504 of the track graph 500, for
example, the edge and node counts, described above. In
addition, 1n some embodiments, an “edge 504 strength” 1s
stored 1n association with an edge 504. An edge strength 1s
a real number that represents the likelihood of an edge 504
being correct. In one embodiment, the strength 1s con-
strained to be between 0 and 1, and represents the probabil-
ity that a blob transitioned from an older node 502 to a newer
node 502. In other embodiments, the track graph 500 stores
the log of such a transition likelihood.

[0064] With respect to nodes 502, in addtion to the node
count, in one embodiment, the tracking module 304 stores a
variety of information about the blob and/or object(s) to
which the node 502 corresponds. The node 502 stores the
duration (e.g., seconds or number of frames) that the node
502 has existed, an 1dentification of the camera that gener-
ated the video frame(s) that includes the blob that corre-
sponds with the node 502, and the location(s) of the corre-
sponding blobs 1n the video frames. In other embodiments,
nodes 502 also contain additional properties about the
blob/object(s) included in the node 502, such as the size,
color histogram, velocity, acceleration, classification mfor-
mation (e.g., human vs. car), etc. of the object(s). The stored
properties, taken together, are referred to as the signature of
the blob, and can be used to make decisions during the
tracking process.

10065] FIG. 6A-6B are schematic depictions of a moni-
tored environment 600 at times t and t+1, respectively. The
monitored environment includes two cameras 602 and 604.
Each camera has 1ts own field-of-view 606 and 608. The
fields-of-view 608 and 610 overlap 1n one overlapping arca
610 of the monitored environment 600. The monitored
environment 600 also includes four objects, 612, which are
moving through the monitored environment 600 from time
t to time t+1.

[0066] FIG. 7A includes schematic depictions of the two
series of video frames 702a-b and 704a-b generated by the
cameras 602 and 604, respectively, 1n the monitored envi-
ronment 600, at times t and t+1. The first video frames 7024
and 704a were generated at time t, and the second video
frames 702b and 704b were generated at time t+1. Video
frame 702a 1s empty. Video frame 704a includes three blobs
706a,-a;. Video frame 702a includes two blobs 7065, and
706b,. Video frame 704b also includes three blobs 706b;-b..

10067] KIG. 8 includes illustrative partial track graph
updates 800, 802, 804 and 806 demonstrating the construc-
tion of the track graph 808 that that is created by the tracking
module 304 as it applies the tracking methodology 400 to the
serics of video frames 702 and 704, according to one
embodiment of the mmvention. The partial track graph 800
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depicts the lowest level of the track graph at time t. The
partial track graph 800 includes three nodes 810a,-a,, 1.¢.,
one node for each blob 706a,-a; included 1n video frames
702a and 704a. For illustrative purposes, it will be assumed
that the node counts for the nodes 810a,-a, are all equal to
one.

[0068] Upon receiving video frames 702b and 704b, the
tracking module 304 adds new nodes 812b to the track graph
800 (step 504). The tracking module 304 analyzes the video
frames 7026 and 704b to detect blobs. The tracking module
304 adds new nodes 812 (e.g., new nodes 812b,-bs) to the
track graph 800 to correspond to the detected blobs 7065 -
b., resulting 1n partial track graph 802. Nodes 810a,-a,, no
longer being the newest nodes, are now considered candi-
date nodes.

[0069] The tracking module 304 finds potential edges

814e -¢,5 that could connect the new nodes 812bH,-bs to
candidate nodes 810a,-a, (step 504), as depicted in partial
track graph 804. After the possible edges 814¢,-¢,- are
added to the track graph (step 504), the tracking module 304
determines the edge strengths for the possible edges 814e -
¢, between the candidate nodes 810a,-a, and the new nodes
812bH,-bs (step 506). In one embodiment, the tracking mod-
ule 304 determines the strength of edges that connect
candidate nodes from one camera’s ficld-of-view to new
nodes from that same camera’s field-of-view (e.g., edge ¢€s)
by using predictive tracking techniques known in the art,
such as applying a Kalman filter. To take into account the
possibility that the new blobs 1n a camera’s field-of-view
may correspond to a candidate node 1in a second camera’s
field-of-view, the tracking module 304 determines the
strength of edges connecting nodes from different camera
fields-of-view (e.g., edge ¢,), refferred to as trans-camera
edge strengths.

[0070] Inone embodiment, the tracking module 304 deter-
mines trans-camera edge strengths using a dynamic field-
of-view relationship determination technique as described in
U.S. patent application Ser. No. 10/660,955 (referred to
hereafter as the “’955 application™), entitled “Computerized
Method and Apparatus for Determing Field-of-View Rela-
tionships Among Multiple Image Sensors,” filed on Sep. 11,
2003. Among other things, the 955 application describes
determining a pluarlity of probabilities and statistical values
relating to observations of object appearances in video
frames generated by a pluarlity of cameras. The probabilities
include, for example, the probability that an object 1s seen 1n
a first location 1, p;, the probability that an object is seen 1n
a second locationy, p;, and the probability that an object is
secen 1n location 1 followed by an object bemng seen 1n
location) after a period of time At, p;(At). The statistical
values 1nclude the lift and correlation coetficients between
image regions of video frames generated by the same or
different cameras over various time periods Af.

[0071] Trans-camera scores can be based on the lift val-
ues, the correlation coeflicients described 1n the “955 appli-
cation, or on a transition probability calculated based on the
probabilities described therein. In one embodiment, the
transition probability 1s defined as:
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10072] FIG. 7B includes illustrative transition probability
tables determined for a subset of the 1mage regions included
in video frames 702 and 704. The first table 708 includes the
transition probabilities between pairs of 1mage regions at
At=0, 1.¢., the probability that blobs concurrently seen 1n the
two 1mage regions correspond to the same object. For
example, the transition probability between 1mage regions
A2 and B2 at At=0 1s 1 indicating that those 1mage regions
correspond to the overlapping area 610. Nodes correspond-
ing to blobs 1 such 1mage regions are joined with an alias
edge 510 to form a super node 514. The second table 710
includes the transition probabilities between pairs of 1mage
at At=1, 1.e., the probability that a blob corresponding to an
object 1n a first frame will correspond to a blob 1n a second
frame one time instant later. For example, the transition
probability between Al and B1 at At=1 1s 0.8, indicating, for
example that objects are highly likely to move from image
region Bl to image region Al one time instant later. In one
embodiment, the trans-camera edge strength 1s equal to the
transition probability at At=1. In other embodiments, the
transition probability 1s one factor used 1n calculating the
trans-camera edge strength.

[0073] The above described trans-camera edge strength
determination techniques are based on the analysis of
appearances of objects within video frames over time, and
not on the calibration of the cameras, or on a fused or
calibrated scene. Therefore, the tracking module can deter-
mine trans-camera edge strengths independent of camera or
environment calibration. If the cameras or the scene are
calibrated, however, such imnformation can be used. How-
ever, calibration data 1s unnecessary to provide satisfactory
tracking results. Because calibration is unnecessary (but
could be included), a tracking module operating as described
above may be referred to as “calibration-independent.”

[0074] In the illustrative embodiment, if the edge strength
for a give edge is below a threshold (e.g., <0.1), the tracking
module 304 1mmediately removes the edge from the track
oraph. Partial track graph 806 1llustrates the state of the track
graph after the edge strengths have been calculated (step
406) and highly unlikely edges are removed.

[0075] Based on the edge strengths, the tracking module
304 matches the new nodes 810 with the candidate nodes
812 (step 408). The matching process is similar to the
standard abstract data association problem. In the standard
abstract data association problem, two sets, A and B, contain
objects to be matched. Each object 1n A 1s allowed to map
to one object in B and vice versa. Each potential match (a,b)
has a score associated with 1t, and some potential matches
may be disallowed. The task 1s to find a set of matches that
satisfies these constraints and has a maximum (or minimum)
score. The problem 1s commonly visualized as a matrix, with
the elements of A corresponding to columns and the ele-
ments of B corresponding to rows. X’s denote disallowed
matches. A valid matching (denoted with circles) includes
only one element from each row and column. This standard
data association problem 1s well-known, and it can be solved
cificiently.
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[0076] Standard data association problem solutions, how-
ever, cannot readily be applied in the video surveillance
context. In the video surveillance context, the objects to be
matched are blobs (represented by nodes). Single nodes
from one set can, and often do, correspond to multiple nodes
in a sccond 810 set, and visa versa. For example, considering
FIGS. 6A, 6B, 7A, and 7B, blob 7064, node a, 1n video
frame 704a corresponds to two objects, a man and a woman.
At time t+1, the two objects have separated and the tracking
module 304 detects two blobs 706, 1nstead of one. As a result
the track graph updated for time t+1 includes two nodes
8125 and 812b5 that that the tracking module 304 should
determine to correspond to candidate node a5. In general, a
ogroup of 1ndividuals, considered by the tracking module as
a single node, may split, resulting 1n several nodes. Similarly
individuals can converge into group, resulting in a single
new node corresponding to several candidate nodes. The
video surveillance data association problem should handle
one-to-many, many-to-one, and many-to-many correspon-
dences.

10077] FIG. 9 is a flow chart of one illustrative method of
solving the video surveillance data association problem, 1.¢.,
determining node matches (step 408), according to one
embodiment of the invention. At the beginning of the
association problem, no new nodes 812 have been matched
with candidate nodes 810 (step 902). Unmatched candidate
nodes 810 are then matched with new nodes 812 (step 904)
using a standard data association solution, where the edge
strengths are used as matching scores. If any new nodes 812
are still unmatched after initial attempts to match the new
nodes 812 to candidates nodes 810 (step 905), the tracking
module 304 executes the data association algorithm on a
smaller set of data that only includes edge strengths between
the unmatched new nodes 812 and all the candidate nodes
810 (step 804). If any candidate nodes 810 or new nodes 812
remain unmatched (step 907), the tracking module 304
returns to step 802 and runs the data association algorithm
only taking consideration of the unmatched candidate nodes
810. The process continues untill all candidate nodes and
new nodes have been matched. If a new node cannot be
matched to a corresponding candidate node 810, the tracking
module 304 links the new node 812 to a source node 506 or
to another new mode through an alias edge. Similarly, if a
match cannot be found for a candidate node 810, 1n one
embodiment, the candidate node 1s linked to a sink node 508.
In another embodiment, the tracking module attempts to
match the unmatched candidate node 810 to new nodes 812
received over a predetermined number of subsequent time
instants before the candidate node 810 is linked to the sink
node 508. In one embodiment, after all nodes are matched,
cdges 814 that correspond to unselected matching pairs are
removed from the track graph 806.

[0078] FIG. 10A is a matrix 1000 that depicts an initial
solution to matching the new nodes 812b,-b. with the
candidate nodes 810a,-a; according to step 904. Cell values
in the matrix 1000 correspond to the strength of edges
814¢ -e, connecting the nodes. Note that new nodes 8125,
and b, are matched to candidate nodes 810a., and a, respec-
tively, even though the edge strength between 8104, and
812b 1s larger than the selected edge strengths. The selec-
tion, however, leads to a higher total score, 1.¢., 2.1, for the
set than 1f 8104, were matched 812b, and 810a, were
matched with 812b; (the next highest edge score after
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812b,), 1.e., 2.0. The data association solution depicted in
matrix 1000 has left new nodes 812b, or 812b. without

matching candidate nodes.

[0079] No edges connect to new node 812b,, indicating
that 1t either represents a new object, originating from a
source node, or that it corresponds to a node 1n an overlap-
ping 1mage region from another camera. As mentioned
above, the transition probability between 1mage region A2
and 1mage region B2 at At=0 1s 1, indicating overlap. As a
result, an alias edge 1s added to the track graph 808 to
connect new nodes 8125, and 81253 (a node located in that
overlapping image image region).

[0080] KIG. 10B is a matrix 1002 that depicts a solution

to the secondary node matching step (step 906) that matches
unmatched new nodes to candidate nodes. Node 8125 1s the
only unmatched new node 812, and the tracking module 304
matches node 812b. to candidate node 810a,. After all
candidate nodes 810 and new nodes 812 are matched,
unselected edges 814¢,-¢,. are removed from the track
oraph 806, yielding the updated track graph 808.

[0081] Referring back to FIG. 4 and FIG. 5, based on a

track graph 500, the tracking module 304 determines a
tracking solution (step 410). The track graph 500 includes
nodes 502 and possible links between the nodes over a
period of time (i.e., edges 504). The track graph 500 does not
track specific objects. For example, as objects converge and
diverge as they move through a monitored environment, so
too do the nodes 502 that correspond to those objects. In
terms of a track graph 500, an object 1s a path through the
track graph 500. In one embodiment, paths start at a source
node 506 (where objects are “created” or enter) and end at
a sink node 508 (where objects are “destroyed” or exit). If
the track graph 500 is incomplete (e.g., it is being con-

structed from live video), then the partial paths may not end
in sink nodes 508.

[0082] A solution to the track graph 500 is a set of paths
that satisfy the flow properties of the track graph 500
described above. Each path i1n the solution represents a
different object that has been observed. In one embodiment,
to reduce the size of the solution space, a number of
constraints are applied. First, the size of the solution (in
terms of the number of objects) is required to be minimum.
That 1s, the number of paths i1s limited to the minimum
number required to explain all edges 504 with greater than
a certain edge weight (e.g., 0.1). Second, the solution is
required to be “optimal.” Each path in the solution can be
assigned a score that measures its likelihood (or, equiva-
lently, a cost that measures its unlikelihood). In one embodi-
ment, an optimal solution maximizes (minimizes) the sum of
the scores (costs) over all paths. In another embodiment, an
optimal solution maximizes (minimizes) the average of the
scores (costs) over all paths. Even with these constraints,
more than one minimal, optimal solution may exist. In these
cases, simply finding one solution 1s sufficient. Any errors 1n
the chosen solution can be corrected later by the user if
needed.

|0083] The tracking module 304 can operate in real-time,
or 1n a forensic mode. In forensic operation, the tracking
module analyzes previously recorded video (e.g., from a
video cassette or a digital video recorder, etc.) of a moni-
tored environment. If the tracking module 304 1s tracking
objects 1n real-time, the tracking module can update the
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tracking solution after the track graph construction process
(steps 402-408) 1s completed for each time instant analyzed,
or the tracking module 304 can update the the track graph
500 periodically (e.g., every 2, 5,10, etc. time instants). For
forensic tracking, the tracking module 304 can build the
entire track graph 500 before determining a tracking solu-
tion.

[0084] As finding the true optimal solution for all but the
smallest track graphs 1s an intractable problem, the tracking
module 304 utilizes heuristic algorithms for approximating
optimal solutions Although computing the optimal solution
1s 1ntractable, computing the size of the optimal solution
(i.c., the number of paths) can be done efficiently. This
algorithm 1s described 1n the next paragraph, followed by
two algorithms for approximating optimal solutions.

[0085] The algorithm for counting objects relies on a
property of minimal solutions: each path in a minimal
solution must contain at least one edge that 1s not shared
with any other path. That 1s, each path 1n the minimal
solution must contain at least one edge with an edge count
of 1. If a minimal solution did contain a path that violated
this property, then one could remove a copy of this path from
the solution (reducing the edge counts along the path by 1),
resulting 1n a smaller solution. Thus, the original solution
was not minimal.

[0086] FIG. 11 1s a flow chart of a method 1100 of

counting the number of objects 1n a track graph 500. The
tracking module 304 1nitializes the edge counts of the track
graph 500 to O (step 1102). The tracking module 304 then
adds paths to track graph 500 until all edge counts are
greater than or equal to 1 (step 1104). The tracking module
304 then removes paths that do not contain at least one edge
with an edge count equal to 1 until 1t 1s no longer possible
to do so (step 1106), that is, until all paths include at least
one edge with an edge count equal to 1. At this point, the
paths satisty the minimal solution property, and the number
of paths 1s the desired answer (the size of the minimal
solution) (step 1108). In one embodiment the number of
paths, 1f not known explicitly, can be found by summing the
number of paths leaving each source node 506 1n the track

ograph 500.

[0087] FIG. 12 is a flow chart of an illustrative method of
tracking an object based on a track graph 1200. The method
1200 1s similar to the above described counting algorithm.
The basic approach 1s the same: add paths to the solution
until all edges 504 have an edge count greater than 1. Then
paths are removed until the minimal criterion 1s achieved.
The difference 1s 1n deciding which paths are added and
removed. In the counting algorithm, any valid path could be
added or removed. However, 1n the case of trying to find an
“optimal” solution, the decision of which paths should be
added or removed 1s based on path costs.

|0088] In one embodiment, the cost of a path 1s defined in
terms of the signatures in its constituent nodes. As described
above, data related to several properties of blobs are stored
in the nodes corresponding to those blobs. The properties
can 1nclude, color, size, velocity, acceleration, etc. A low-
cost path contains nodes whose signatures are similar. A
high-cost path contains nodes whose signatures are dissimi-
lar.

[0089] Measuring the similarity/dissimilarity of a pair of
signatures depends on the particular representation of the
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signature. In one embodiment, blob properties are treated as
feature vectors (i.e., arrays of numbers). A single feature
might be described with multiple numbers (e.g., the average
color may be represented with three numbers: red, green,
and blue). Similarity can be measured by the distance (often
FEuclidean distance or Mahalanobis distance) between the
feature vectors in high-dimensional space (e.g., 3-dimen-
sional 1n the case of RGB colors, 4-dimensional if size 1s
considered, as well, etc.). A small distance implies similarity
and a large distance otherwise. In another embodiment, for
signatures with multiple features, the distances between
vectors representing each feature are combined (e.g., added
or averaged) to arrive at a single distance. Similarity can also
be measured by the dot-product of the feature vectors. A
larger dot-product corresponds to a greater similarity. In one
embodiment, to improve the robustness of the signature
comparison of signatures including many features, some
features that have large distances are 1gnored. For example,
if a signature has 15 different features, then the 2 “worst”
matching features could be 1ignored 1 a comparison.

[0090] The cost of a path can be measured by combining
(e.g., adding or averaging) the costs of all pairs of signatures
in the path. This procedure could become computationally
prohibitive for long paths, so a simpler approach is to
average the costs of pairs of adjacent nodes in the path.
Alternatively, one could average the costs of nearby adjacent
nodes 1n the graph.

[0091] Given a way of scoring paths, the algorithm pro-
ceeds as follows. The tracking module 304 initializes the
track graph’s 500 edge counts to 0 (Step 1202). The tracking
module 304 creates a new path by selecting a starting edge.
In the 1llustrative embodiment, the tracking module selects
a starting edge with an edge count equal to O (step 1204).
The starting edge and the nodes that the starting edge
connects form an 1nitial path. The tracking module 304 adds
to the path using a greedy decision rule. That 1s, when
adding edges to the path, the lowest cost edges are added
first. Paths are “grown” from the starting edge by adding
nodes 502 that result 1n the lowest cost path. Nodes 502 are
added incrementally to the beginning (step 1206) and end of
the path (step 1208). At any point at which there is a decision
to make (i.e., more than one edge leave or enter a node 502),
the tracking module 304 computes the cost of adding each
node 502, and the tracking module 304 selects the node 502
that adds the minimun cost to the path. The tracking module
304 adds nodes 502 1n this way until the path reaches a
source and a sink. In one embodiment, multiple nodes 503
are added at a time. In this case, the algorithm considers the
cost of adding all of the nodes 502 as a whole. Adding
multiple nodes 502 has the advantage that a single poorly
matching node 502 cannot cause the path to divert to even
poorer matching nodes 502. After a given path 1s completed,
the tracking module 304 determines whether any edges 504
remain with edge counts less than one (step 1209). If there
are any such edges 504, the traker 304 repeates the process
(steps 1204-1208) until all edge counts are greater than O.

[0092] Once all edge counts are greater than zero, excess
paths may need to be removed. Each path has a cost, and the
paths can be sorted 1n order of decreasing cost. Redundant
paths (i.e., those having no edge counts equal to 1) are
removed 1n order of decreasing cost until no redundant paths
remain (step 1210). After all redundant paths are removed,
cach remaining path corresponds to an object that was
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included 1n the monitored environment at some point in
fime. After a solution set 1s determined, the track graph 500
1s updated to include the appropriate edge and node counts.

[0093] FIG. 13 is a flow chart of another method 1300 of
determining a tracking solution. In the method 1300, the
tracking module 304 derives a tracking solution 1incremen-
tally, using a data association solution algorithm similar to
the one described above with respect to matching new nodes
812 to candidate nodes 810. For 1llustrative purposes, refer-
ring back to FIGS. 4 and 8, upon completion of the track
graph 808 for video frames received at time t+1 (steps

402-408) (step 1302), the tracking module 304 solves the
newly updated track graph 808 (step 410/steps 1304-1310).
The tracking module 304 determines the currently known
number of paths, N, in the track graph 808 (i.c., the sum of
the node counts at time t) (step 1304). The tracking module
304 then determines the number of new nodes 812, M,
which have been connected to the track graph 808 (step
1306). The tracking module 304 calculates the incremental
path costs associated with adding each node 812 m to each
path n that m is connected to by an edge (step 1308). The
tracking solution problem can be set up as an NxM data
association problem and solved (step 1310) in the manner
discussed previously (see method 900); however, instead of
using edge scores and candidate nodes to solve the data
assoclation problem, the tracking module 304 uses the
calculated incremental path costs and paths n..

[10094] After solving the data association problem, it is
possible that a simngle path matches to more than one new
node 812. For example, referring back to FI1G. 8, the node
counts for nodes 810a,, a,, and a, were all 1 at time f,
indicating the existence of only three paths. At time t+1,
however, the path passing through node a; matches to nodes
812b, and b.. In such cases, a new object needs to be created
for each additional node detected, as a single object cannot
be 1n multiple places at once. A new object 1s assigned a path
corresponding to the old object’s path plus the new node 812
that matched 1t. The prior node counts and edge counts are
updated to indicate the additional object traversing the path.
The case 1n which multiple paths match with a single node
812 simply means that those objects coincide at that point in
fime and no special treatment 1s necessary other than assign-
ing the single node a node count equal to the number of paths
matching the node.

[0095] In another embodiment, it 1s possible to consider
more than one new time instant, (i.e., multiple levels of
nodes) in determining a solution. In such embodiments, all
possible sub-paths (chains of new nodes connected by
edges) must be enumerated. The subpaths are then input to
the data association problem instead of the single nodes. The
matching algorithm, then proceeds as previously described
above. Considering small sub-paths, as opposed to single
nodes, 1s more resilient to anomalous nodes that would
otherwise cause an 1ncorrect decision to be made.

[0096] In another embodiment, the tracking module cal-
culates matches using sub-paths, but the tracking module
only adds a portion of a matched sub-path to a given known
path. In the next iteration of the algorithm (i.e., when new
nodes are available for matching), new sub-paths are formed
from the new nodes and the previous nodes that were not
added to the object paths. This approach provides the
algorithm with some “look ahead” capability but does not
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commit to large increases i1n the paths prematurely. In
another embodiment, a user can select both the size of the
sub-path to be analyzed and the number of nodes from the
analyzed sub-paths to add to the already known paths (e.g.,
look ahead 3 time instants, add one node). It is possible to
use these look ahead approachs in the greedy path determi-
nation method 1200, as well.

[0097] In one embodiment, a separate data structure,
referred to as an object store, stores tracking metadata
corresponding to each object within the monitored environ-
ment, including the path the object follows through the track
oraph. The object store maintains one entry for each object
or path tracked by the tracking module 304. Other tracking
metadata may include, without limitation, the size, color,
velocity, and acceleration of the object over time. Further
tracking metadata may include classifications assigned by
the classifier. The tracking module 304 can output any or all
of the tracking metadata to a classifier or to a rules engine
for further analysis.

[0098] The previous description related generally to a
CAS system and was directed primarily to the operation of
the tracking module. The following description relates to
ways 1n which the tracking metadata produced by the
tracking module and the classifier may be used to provide
real-world functionality. To that end, 1n one embodiment, the
CAS system described herein may include the capability to
scarch metadata created by the tracking module by use of a
rules engine.

10099] FIG. 14 shows a more detailed version of a portion
of the general system shown in FIG. 3 and includes further
dataflow connections. In particular, FI1G. 14 includes the
tracking module, classifier and rules engine shown in FIG.
3. In this example, the classifier 1s part of the tracking

module but, of course, the classifier could be a stand alone
module.

[0100] The portion of the CAS system 1400 shown in
FIG. 14 includes a tracking module 1402, a rule engine
1404, and a tracking metadata database 1406. The tracking
metadata may be produced, for example, by the tracking
module that 1s described above and further classified by the
classifier 1410. Of course, other tracking modules or clas-
sifiers could be used as will be readily understood by one of

skill 1n the art.

[0101] Regardless of the tracking module used, the output
thereof may be archived 1n a meta database 1406 and, in
some embodiments, may also be directly analyzed by the
rule engine 1404. In general, the rule engine 1404 evaluates
rules against the tracking metadata and generates events if a
rule matches some pattern in the metadata. These events
may be archived in the database and, thus, also be made

available to a user for review as indicated by the event data
flow line 1412.

10102] In general, the system shown in FIG. 14 may
provide two types of searches: queries and alerts. A query 1s
a one-time search that 1s evaluated on (possibly subsets of)
all of the metadata 1in the metadata database 1402. A query
may return many search results, which may, for example, be
ranked and presented to the user. Executing a query 1is
typically a user-interactive experience with many potential
matches that may be reduced with further queries. To this
end, the rules engine 1404 may be provided with access to
the metadata database as indicated by data line 1414.
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[0103] Alerts are searches that the system continually
performs. Whenever the metadata database 1406 receives
new metadata from the tracking module 1402, the new
metadata 1s checked by the rule engine 1404 to see 1f 1t
satisfies any of the pending alert criteria. The rule engine
1404 may perform this analysis on data that i1s in the
metadata database 1406 or directly on the metadata as it 1s
received from the tracking module 1402.

[0104] In either case, alerts are used to search for excep-
tional conditions 1n the tracking metadata that may be of
interest to a human user. In some embodiments, executing an
alert 1s not interactive but, rather, 1s based on previously
specified alert criteria. When an alert fires (i.e., some data is
found that meets the search criteria), the system may gen-
erate some sort of alert notification, such as a page, an email,
a flashing screen, a sound, etc.

[0105] While used in different ways, queries and alerts
may be 1mplemented similarly. Each 1s a search that is
executed on the tracking metadata stored in the metadata
database 1406. The two merely differ 1n the frequency with
which the search 1s executed and how the search results are
presented to the user. As such, they will collectively be
referred to as “scarches” below.

[0106] As discussed above, searches may be conducted in
tracking metadata stored 1n the metadata database 1406 and
which was received from the tracking module 1402. At the
highest level, the metadata 1n the metadata database 1406
may contain information about the contents of each video
frame. For example, the metadata might record whether
objects are 1n the frame or not, 1t might record the average
color of the scene (e.g., for detecting lighting changes), or it
might record the state of an object 1n the scene. In general,
the tracking metadata records the properties of scene objects,
background or foreground, considered independently or as a
whole. However, because it i1s tracking metadata (i.e.,
received from the tracking module), it can contain dynamic
properties as well as static properties. These dynamic prop-
erties may include, for example, motion characteristics such
as velocity, acceleration and direction of an object.

[0107] The tracking module 1402 may produce properties
for any object in the scene (or for the whole video frame
itself). In general, the properties can be organized on a
per-object basis (e.g., the entire video frame can be consid-
ered an object for sake of generality). Thus, when discussing,
a property, it can be assumed that the property 1s associated
with some object that 1s being tracked by the system.

[0108] It is often the case that tracking engines, such as
tracking module 1402, produce metadata for moving objects
in the scene. Some interesting properties of these objects
might imnclude velocity, acceleration, direction, size, average
color, gait, centroid, position, areca, or other properties
directly calculable from pixel intensities.

[0109] Tracking engines often include various classifica-
tion algorithms, the output of which can also be included as
object properties 1n the tracking metadata. Such classifica-
fion properties might be one of car, human, animate, 1nani-
mate, employee, customer, criminal, victim, animal, child,
adult, shopping cart, box, liquid, indeterminate, etc. A single
object may be assigned many different classifications. For
example, a young boy might be classified as human, ani-
mate, customer, child. A shopping cart might be inanimate,
shopping cart.
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[0110] The classification might also determine gender,
cthnicity, age, etc. Other classification systems might deduce
the state of the object, such as loitering, running, falling,
walking, hiding, crashing, moving backwards, appeared,
disappeared, etc. These designations can also be stored 1n the
metadata.

[0111] Some tracking systems might be location-aware, in
which case location information can be stored 1 the meta-
data. For example, each object may have a property that
describes 1n which aisle or which department 1t 1s currently
located.

[0112] The tracking system can also annotate an object
with a list of other objects that are 1n close proximity to the
first object. For example, an object might be close to a

doorway, which could be recorded as a property (it could
also be interpreted as a location, since doorways do not
move). Also, an object might be close to another moving
object; both objects could be annotated with the other’s
identifier. Sometimes objects might be nearby one another
very often. It 1s possible that these objects are somehow
associated (e.g., girlfriend and boyfriend, shopper and shop-
ping cart, etc.) Associated objects can also be stored in
metadata.

[0113] Often the properties of objects may change over
time. For example, the classification may change from
walking to running, or the location may change as the object
moves through the environment. Because of this, the track-
ing metadata must also include timing information to accu-
rately encode the series of the properties associated with
cach object. In many cases, a single property 1s not 1mpor-
tant, but a particular sequence of properties 1s interesting.

[0114] Searching the metadata database 1406 by the rule
engine 1404 may entail finding objects that have certain
properties or combinations of properties. These combina-
tions of properties are expressed as “rules.” For example, the
rule “s1ze=BIG and color=RED” will find all big, red objects
that have been tracked. Another rule might be “objectlD=
14327 which retrieves the object that 1s labeled with 1D
#1432 1n the metadata database. In this way, the metadata
database 1406 1s treated like a conventional database, and
searches (queries, alerts, or rules-all the same) can be
structured 1n similar ways. In this document, the terms
“search” and “rule” are largely interchangeable, and “query”
and “alert” have the distinctions described previously.

[0115] It is also useful to search the metadata for
sequences of properties. For example, the search “state=
RUNNING then FALLING” will find all objects that fell
after running. It might be desired to find property transitions
that are not consecutive but whose relative order 1s still
preserved. For example, the search “location=HOUSE-
WARES followed by CHECKOUT” will find all people (and
objects) that moved from the location identified as “house-
wares” to the location 1dentified as “checkout,” regardless of
the locations visited 1in between the two specified locations.

[0116] Example Scenarios

[0117] Some searches are fairly generic (e.g., searching by
objectID), but other searches are useful in specific scenarios.
The following paragraphs describe a series of scenarios and
some of the searches that are useful 1n those cases.
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0118] Detecting Theft Activities

0119] Many theft activities in retail environments follow
familiar patterns. Criminals may move through stores in
well-known ways or do things that are out-of-the-ordinary.
Careful specification of search criteria can often 1denftily a
retail theft before 1t finishes or allow a detective to find such
activities during an investigation. Examples of such searches
might be:

[0120] location=RETAIL FLOOR
RETURNS DESK

[0121] (location=ENTRANCE followed by (not
POINT-OF-SALE) then EXIT) and (location

10122] =EXIT and
SHOPPING CART)

[0123] (location=EXIT and associated object.classi-
fication=SHOPPING CART and duration>3 min)

followed by

associated object.classification=

0124]

0125] Parking lots present a huge liability problem to the
businesses that own and maintain them. Visitors and cus-
tomers may be mugged or raped while 1n the parking lot, or
cars and property may be stolen. Often, these criminal
activities are preceded by suspicious behaviors of one or
more 1ndividuals. For example, a mugger might be seen
loitering 1n a parking lot before he attacks a victim. Auto-
mated searching of tracking metadata can be used to 1identily
these behaviors before a crime 1s committed. For example:

[0126] classification=HUMAN and duration>5 min-
utes

[0127] classification=HUMAN and nearby object-
.classification=HUMAN and nearby object.state=
RUNNING

[0128] (classification=CAR) and (state=sMOVING
then STOPPED) and (nearby object.classification=
CAR) and (nearby object.state=sMOVING then
STOPPED)

[0129] (classification=HUMAN) and (state=MOV-
ING then STOPPED then MOVING then STOPPED
then MOVING then STOPPED) and (nearby object-
.classification=CAR)

[0130] classification=CAR and state=MOVING and
speed>25 mph

Improving Parking Lot Security

[0131]

[0132] Protecting the safety of children is one of the top

priorities of security professionals, especially in retail and
entertainment venues. Metadata searches can be used to find
lost children, children that are being kidnapped, or children
that are near dangerous equipment. Some searches for
protecting children are as follows:

[0133] classification=CHILD and location=DAN-
GEROUS AREA

[0134] classification=CHILD
NONE

[0135] classification=CHILD and nearby object
not equal associated object and nearby object.clas-
sification=HUMAN,ADULT

Improving Child Safety

and nearby object=
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[0136] classification=CHILD and nearby object
not equal associated object and nearby object.clas-
sification=HUMAN,ADULT and location=EXIT

0137]

0138] Protecting the safety of people in general is also a
primary concern. People can fall down in public places (e.g.,
slip-and-fall events), walk too close to dangerous areas (e.g.,
platform edge in a subway), or go the wrong way through an
exit or on an escalator. These events are useful to flag as
sources of 1njury to people and source of liability to busi-
nesses. Some example searches follow.

[0139] classification=HUMAN and location=DAN-
GEROUS AREA

[0140] classification=INANIMATE and location=
WALKWAY and state=sAPPEARED

[0141] classification=HUMAN and ((location=0U'I-
SIDE EXIT followed by INSIDE EXIT) or (loca-
tion=INSIDE ENTRANCE followed by OUT-
SIDE_ENTRANCE))

[0142] classification=HUMAN and state=FALLING
erations and Merchandisin
[0143] Operati d Merchandising,

Improving Public Safety

[0144] Often a business not only wants to ensure the
security of 1ts customers and products, but 1t also wants to
know how those customers behave and react inside the
business’ environment. The statistics of how customers
move throughout a store 1s very important for marketing and
advertising purposes. Searching through tracking metadata
1s a very uselul tool for acquiring those statistics. In this
scenario, the specific search results are not particularly
interesting, but the numbers of them are. So, a ‘count’
operator 1s introduced that simply counts the number of
returned search results. By counfting many different
scarches, interesting and useful statistics can be generated.
Other usetul operators can mnclude ‘SUM’ and ‘AVG’ yield-
ing the sum or the average, respectively, of returned search
results. Here are a few examples:

[0145] count(location=ENTRANCE and state=AP-
PEARED)

[0146] count(location=ENTRANCE then AISLE1)

[0147] count(location=ADVERTISING DISPLAY
and state=STOPPED and duration>30 s and duration
<=1 min)

[0148] count(location=CHECKOUT LINE and
state=WAITING and duration>1 min)

[0149] Implementation

[0150] Many of the queries described above are easily
implemented in standard database query languages. How-
ever, some of the “sequential” queries (e.g., then and fol-
lowed by) do not have a direct correspondence with tradi-
tional database searches. Fortunately, as long as the tracking
metadata 1s encoded 1n an appropriate format, these sequen-
tial queries can be 1implemented using a well-known com-
puter science search technique known as “regular expres-
sions.”

[0151] Regular expressions are traditionally used for
matching strings. A string 1s simply a sequence of characters
(or tokens) taken from some finite alphabet. For example,
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ABCBCA 1s a string from the alphabet of capital letters. A
regular expression 1s just a shorthand for describing large
sets of strings with a single small expression. A regular
expression 1s said to match a string 1f that string 1s a member
of the set of strings that the regular expression describes.

[0152] As an example, consider the regular expression
A(BC)*[AD] over the alphabet of capital letters. In words,
this expression says “match any string that starts with an ‘A’
followed by any number of ‘BC’ segments and then ends 1n
an ‘A’ or a ‘D.”” In regular expression syntax, the paren-
theses group B and C mto a single unit, the brackets mean
“A or D,” and the asterisk denotes “zero or more of the
preceding unit.” Thus, this expression matches AA, ABCD,
and ABCBCA, but 1t does not match ABA, ABCBA, or
AAA.

[0153] Regular expressions can be evaluated very simply
using finite state machines (FSMs). A finite state machine
consists of a set of states and a transition rule that describes
how to transition from one state to another given some input.
Some of the states are designated as “accepting” states. If, at
the end of the mput, the FSM state 1s an accepting state, then
the FSM is said to accept (or match) the input.

[0154] When matching strings, the input to the FSM is the
string. For each token 1n the string, the FSM transitions to a
state. At the end of the string, the state of the FSM (accepting
or not) determines is the string is matched or not.

[0155] For example, an FSM 1500 that implements the
previously describe regular expression 1s shown in FI1G. 15.
FSM’s for use 1n the system of the present invention may be
implemented 1 software, hardware, firmware or combina-
tions thereof as will be readily apparent to one of skill 1n the
art. Each edge 1s annotated with the mput that causes that
transition to be taken from that state. Accepting states are
shown with double lines.

[0156] In particular, different states are shown as nodes
1502, 1504, 1506 and 1508, and the transition rule 1is

illustrated with edges, 1510, 1512, 1514, 1516, 1518, 1520,
and 1522 between the nodes. In this example, node 1502
represents the start state. If, while 1n the start state of node

1502 the rule engine detects the appearance of an A, the
FSM 1500 moves to node 1504 as indicated by edge 1512.

If an A is not detected (i.e., ~A) the FSM 1500 remains at
node 1502 as indicated by edge 1510. From node 1504 the
FSM 1400 will move to the accepting state 1506 1if 1t
receives either an A or a D as indicated by edge 1514. The
FSM will remain at node 1504 unless 1t receives an 1nput
that 1s not an A, a B or a D at which point 1t returns to start
node 1502 as indicated by edge 1516 or 1t will transition to
node 1408 if it receives a B as indicated by edge 1520. From
state 1508 the FSM will return to the start node 1502 1f 1t
receives anything other than a C (as indicated by edge 1524)
or will transition to state 1504 1f it receives a C. In all cases,
if the FSM 1500 reaches node 1506 the criteria 1s met, an
alarm or other notification may be presented to a user and the
FSM 1500 returns to start state 1502. The fact that an alarm
was created may also be stored 1n the metadata database for
further searching if desired.

[0157] In order to use regular expressions to search track-
ing metadata, the metadata may need to be encoded as
strings. This encoding can be accomplished as follows. Each
object property can be assigned a value from a finite set of
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values (i.e., the alphabet). Then, the time-ordered sequence
of property values (i.e., tokens) for each object can be
considered a string over the alphabet of property values.
Certain sequences ol property values can then be matched
eficiently using regular expressions and FSMs.

[0158] For example, consider the object illustrated in FIG.
16. The object has three properties, location (row 1602),
state (row 1604), and duration (row 1606) and each property
can take on a different value at each time step. As shown 1n
FIG. 16, cach row 1608, 1610, 1614 and 1616 represents a
different time period. The sequences of properties result in
three strings that describe the evolution of the object prop-
erties as 1t 1s tracked by the tracking module. These strings
can be searched for patterns of properties using regular
expressions and finite state machines.

[0159] For example, consider the query location=EN-
TRANCE followed by (not POINT-OF-SALE) then EXIT.

[0160] Written as a regular expression, this query is
ENTRANCE(~POS)*EXIT. In this case, ~is a negation
operator that means “any token except POS.” The FSM
implementing this regular expression i1s shown i FIG. 17.

[0161] Sometimes, it 1s useful search for property
sequences that involve combinations of properties (e.g.,

location=ENTRANCE, state=WAILKING followed by loca-
tion=DANGEROUS AREA, state=FALLING). Cases like
this can be accommodated by combining the two property
strings 1n a single combined property string. In the combined
string, each token consists of two sub-tokens from each
individual string. The alphabet of the combined string 1s the
cross-product of the two individual alphabets (i.e., it consists
of all unique pairs (a,b) of tokens, where a 1s from the first
alphabet and b is from the second alphabet). This technique
can be extended to three or more properties as needed.

10162] For example, the combining the first two properties
of the object in FIG. 16 for all time references (e.g., rows
1608-1616 respectively) results in the string <ENTRANCE,
WALKING> <AISLE2, WALKING> <DVD’s,STOPPED>
<RETURNS,WAITING> <EXIT,RUNNING>. One might
be mterested 1n regular expressions containing the token
<EXIT,RUNNING:> to determine if a person recently stole
a DVD from a store and ran out of the store.

[0163] One skilled in the art will realize the invention may
be embodied 1n other specific forms without departing from
the spirit or essential characteristics thereof. The foregoing
embodiments are therefore to be considered 1n all respects
illustrative rather than limiting of the invention. The scope
of the invention 1s not limited to just the foregoing descrip-
tion.

What 1s claimed 1s:
1. A computerized method of video analysis comprising:

receiving a plurality of series of video frames generated
by a plurality of 1mage sensors, each having a field-
of-view, which monitor portions of a monitored envi-
ronment; and

concurrently tracking, independent of calibration (i) a
plurality of objects within the monitored environment
as the objects move between fields-of-view, at least two
of which overlap, and 1i) a plurality of objects within
one field-of-view based on the plurality of received
series of video frames.
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2. The method of claim 1 wherein the 1mage sensors are
cameras.

3. The method of claim 1 further comprising tracking
objects based on a probability that an object included 1n one
video frame generated by a first image sensor at a first point
in time will be included 1n a video frame generated by a
second 1mage sensor a second point 1n time.

4. The method of claim 1 further comprising;:

storing a plurality of blob states over time, each state
including a number of objects included 1n the blob and
a blob signature; and

storing a plurality of transition likelihood values repre-
senting the probability that objects within one blob at
one 1nstant 1n time correspond to objects within other
blobs at other instants in time.

5. The method of claim 4 further comprising altering the
stored transition probabilities upon analysis of additional
video frames.

6. The method of claim 4 further comprising storing
object data indicating correspondences between objects and
blob states.

7. The method of claim 4 generating a tracking solution
based on the blob states and transition probabilities.
8. The method of claim 1 generating tracking metadata

including at least one of object track data, tracking solutions,
object feature data and field-of-view data.

9. The method of claim 8 further comprising:

selecting a rule set to analyze generated tracking meta-
data; and

evaluating, using a rules engine, the tracking metadata-
based on the rule set.

10. The method of claim 9 further comprising selecting
the rule set to monitor parking lot security.

11. The method of claim 9 further comprising selecting
the rule set to detect property theft.

12. The method of claim 9 further comprising selecting
the rule set to detect hazards to children.

13. The method of claim 9 further comprising selecting
the rule set to monitor public safety.

14. The method of claim 9 further comprising selecting
the rule set to determine merchandizing and operations
stafistics.

15. A computerized system for video analysis comprising:

a receiving module configured to receive a plurality of
series of video frames, the series of video frames
generated by a plurality of 1image sensors which moni-
tor portions of a monitored environment and have a
field-of-view; and

a calibration-independent tracking module 1n communi-
cation with the receiving module and configured to 1)
concurrently track a plurality of objects within the
monitored environment as the objects move between
fields-of-view at least two of which overlap and ii)
concurrently track a plurality of objects within one
field-of-view based on the plurality of received series
of video frames, the tracking module outputting track-
ing metadata.

16. The system of claim 15 further comprising a rules
engine In communication with the tracking module and
receiving the tracking metadata.
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17. A system for monitoring parking lot security com-

prising:

a recewving module configured to receive a plurality of
series of video frames, the series of video frames
generated by a plurality of image sensors which moni-
tor portions of a monitored environment and have a
field-of-view;

a calibration-independent tracking module 1n communi-
cation with the receiving module and configured to 1)
concurrently track a plurality of objects within the
monitored environment as the objects move between
fields-of-view at least two of which overlap and ii)
concurrently track a plurality of objects within one
field-of-view based on the plurality of received series
of video frames, the tracking module outputting track-
ing metadata; and

a rules engine utilizing a parking lot security rule set
configured to receive and evaluate the tracking meta-
data.

18. A system for property theft detection comprising:

a recewving module configured to receive a plurality of
series of video frames, the series of video frames
generated by a plurality of image sensors which moni-
tor portions of a monitored environment and have a
field-of-view;

a calibration-independent tracking module 1n communi-
cation with the receiving module and configured to 1)
concurrently track a plurality of objects within the
monitored environment as the objects move between
fields-of-view at least two of which overlap and ii)
concurrently track a plurality of objects within one
field-of-view based on the plurality of received series
of video frames, the tracking module outputting track-
ing metadata; and

a rules engine utilizing a theft detection rule set config-
ured to recerve and evaluate the tracking metadata.
19. A system for child hazard detection comprising:

a recewving module configured to receive a plurality of
series of video frames, the series of video frames
generated by a plurality of 1mage sensors which monai-
tor portions of a monitored environment and have a
field-of-view;

a calibration-independent tracking module 1n communi-
cation with the receiving module and configured to 1)
concurrently track a plurality of objects within the
monitored environment as the objects move between
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fields-of-view at least two of which overlap and ii)
concurrently track a plurality of objects within one
field-of-view based on the plurality of received series
of video frames, the tracking module outputting track-
ing metadata; and

a rules engine utilizing a child safety rule set configured
to receive and evaluate the tracking metadata.

20. A system for property theft detection comprising:

a receiving module configured to receive a plurality of
series of video frames, the series of video frames
generated by a plurality of 1image sensors which moni-
tor portions of a monitored environment and have a
field-of-view;

a calibration-independent tracking module 1n communi-
cation with the receiving module and configured to 1)
concurrently track a plurality of objects within the
monitored environment as the objects move between
fields-of-view at least two of which overlap and ii)
concurrently track a plurality of objects within one
field-of-view based on the plurality of received series
of video frames, the tracking module outputting track-
ing metadata; and

a rules engine utilizing a public safety monitoring rule set
configured to receive and evaluate the tracking meta-
data.

21. A system for merchandizing and operations statistical

analysis comprising:

a receiving module configured to receive a plurality of
series of video frames, the series of video frames
generated by a plurality of 1image sensors which moni-
tor portions of a monitored environment and have a
field-of-view;

a calibration-independent tracking module 1n communi-
cation with the receiving module and configured to 1)
concurrently track a plurality of objects within the
monitored environment as the objects move between
fields-of-view at least two of which overlap and ii)
concurrently track a plurality of objects within one
field-of-view based on the plurality of received series
of video frames, the tracking module outputting track-
ing metadata; and

a rules engine utilizing a merchandizing and operations
statistical rule set configured to receive and evaluate the
tracking metadata.
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