US 20050246581A1

a9y United States
a2 Patent Application Publication o) Pub. No.: US 2005/0246581 Al

Jardine et al.

43) Pub. Date:

Nov. 3, 2005

(54) ERROR HANDLING SYSTEM IN A (22) Filed: Jan. 27, 2005
REDUNDANT PROCESSOR

Related U.S. Application Data

(75) Inventors: Robert L. Jardine, Cupertino, CA

(51) Int. CL7 e,
Correspondence Address: (52) US.ClL e,

HEWLETT PACKARD COMPANY

P O BOX 272400, 3404 E. HARMONY ROAD

INTELLECTUAL PROPERTY (57) ABSTRACT
ADMINISTRATION

FORT COLLINS, CO 80527-2400 (US)

(73) Assignee: Hewlett-Packard Development Com-
pany, L.P., Houston, TX

(21) Appl. No.:

11/045,401

PROCESSOR
ELEMENT

106

(US); James S. Klecka, Georgetown, (60) Provisional application No. 60/557,812, filed on Mar.
TX (US); William F. Bruckert, Los 30, 2004.
Gatos, CA (US); James R. Smullen,

Carmel, CA (US); David J. Garcia,

Los Gatos, CA (US)

Publication Classification

........... GO6F 11/00
...................... 714/12

In a redundant-processor computing device, an error han-

dling method comprises detecting equivalent disparity
among processor elements of the computing device operat-

ing and responding to the detected equivalent disparity by

PROCESSOR
ELEMENT

CONTROL

I:I ELEMENT

LOGICAL
SYNCHRONIZATION
UNIT

/0
INTERFACE

/0
INTERFACE

114A 114B

evaluating secondary considerations of processor fidelity.

100

112

Patent Application Publication Nov. 3, 2005 Sheet 1 of 7 US 2005/0246581 Al

PROCESSOR
ELEMENT

PROCESSOR
ELEMENT

102

100

110

106

CONTROL
l:l ELEMENT | OGICAL
SYNCHRONIZATION

UNIT
1/0 /0
INTERFACE INTERFACE
A\ A\

114A 114B

FIG. 1

112

Patent Application Publication Nov. 3, 2005 Sheet 2 of 7 US 2005/0246581 Al

200

PROCESSOR PROCESSOR /
ELEMENT ELEMENT

206 206

2028
202A

204

208 VOTER

CONTROL

ELEMENT

210

FIG. 2

Patent Application Publication Nov. 3, 2005 Sheet 3 of 7 US 2005/0246581 A1l

300

PROCESSOR PROCESSOR
ELEMENT ELEMENT

302B
302A

CONTROL LOGIC

304

FIG. 3

Patent Application Publication Nov. 3, 2005 Sheet 4 of 7 US 2005/0246581 Al

S
S
ﬂ-
l \
| O
| |
| |
| |
l |
| |
!					
	!	l ! ! !			
	e !	e l <t			
	<	1	&		
	y				
” .. ', '. ' O
l l |
O 2 | 1 = | 2| o FT
% ﬁ: a” o[| AT W :; ot w :| a” oW as
< | « 1 <+ 1 <+ 1 <+
Bs= 2 Dl =T] R ;l 1 - -:-l 1 = ﬁ-l
= o | I 1 1
=, =
Q <
O |
< |
@ | &
(1} @
C |€
S | ¢
o,

§ DI

A X
N ¥

TOVIHILNI - 0¢5

US 2005/02465381 Al

CIS

AHOMIIN
LINI — - —
NOLLVZINOYHONAS $¢$§
TVOIDOT —
JOVIUILNI VINA

909
VILOA TOYLNQD
¥0S

€S =
JOVAHYILNI Old

¥1S
WA

005

|
}
|
|
!
|
915!
|
]
|
|
]
|
..I\w..—]
0137 4301718 vaors | '01s
|

rll-I.IIIIII'IIIIIII'III"I'I'II"

Patent Application Publication Nov. 3, 2005 Sheet 5 of 7

US 2005/02465381 Al

Patent Application Publication Nov. 3, 2005 Sheet 6 of 7

8¢9

9 DId

9¢9.|S.3d OL YOI YOIVIN
(TOSTY ON) dO LY0gV

€S9

A N

8+9
_—

059.]

S.dd OL LdNYYA.LNI
VOWYT YONIW ANAS

¥(9

dIVNOI SLIF
NOILVIOYd

cC9

N

NOILYVYAdO Old
WHOJH9d *NOLLYFOYd

JWIL "DIINOD LIVM

NO LON dd MOT10O4d

INOC

99

9

S, dd OL LdNWYALNI
JOWYT YONIW ANFS

NOILLVY3IdO OId
LIO9V ‘NOILLYIOUd
NO LON 3d MOT104d

Cv9
N

8O
dNOd

2£9.1S.3d OL JOWYT YOIV
(1IAND 4O L9049V

N S

0%3

INOLLYVEOYd
NO OId Ol
LSanOIY Ad

125

dIvNOI S.LId
NOLLYEIOYd

2E9-

AWIL OIdINOD LIVM

0£9 s

AVAHL-HLL, ANAS

dd O.L LNI <ONIANdd

dd O.L LNI «ONIUNdd
AVILIG-dLL, ANAS

19

819

219 HOWYT ON

dO Old WdONdd

809

(1SINOTY ANCT
JAITDTY

909
HIWIL LYV.LS
$09
/_ 1S3nOIy ¥Iidingd _

09 3d ANO WOYA

LSANOTY OId FAITDAY

INLLOA OId

US 2005/02465381 Al

Nov. 3, 2005 Sheet 7 of 7

Patent Application Publication

144

D14 CEL
L) /mlm_zom

oﬁ/b WOWYd ON 8¢l
‘NOILLVYIJO TLITdNOD

vl ‘HOLYW V.LVQ
(3INOG .u — —

9L ‘_,
N~
S.4d OL LdNYYALNI

JOYHdd HONIW dN4S

YL
N

| NOLLVEO¥d NO LON Id
WO ISNOJSTH DNISN
| NOLLY¥AdO TLITIWOD

OvL S:dd OL LdINNTYYA.LNI

MOWET YOIVIN ANFS
*NOILLVYAdO LY0gV

F1YNnO3a S.Lid
NOLLYEOYd

el ——

el S.9d OL LdNYYALNI
SHNIANAJ
MVITUg 1L, ANIS

JWILL
dANOENOD LIVM

9tL

'y ¢ls

INOJ

S.dd OL LdNYYILNI
HOWYT YOIVIN ANAS
‘NOILVYAdO LYOgV

0CL

(L (|$.3d OL LNI YONIW ANAS

INOQ ASNOdSTY LSHId HLIM T

NOILVYddO dL9TdINOD

9CL

vV.L.vd
ASNOJdSTH FIVdWOD | A

(ISNOJSTYH ANC
dAIdOdY

o1/ AIWIL
14V1SIY - ISNOISTY

LS 44444
A

O1L

(ASNOJSTY LST
JAITO T

90L YAWIL LHV.IS u

S.3d HLOY OL
$OL. [AAVMAHOd ANY WOYA
LSINOMT ALVIITdIH

INAOVY
NVS WOYd LSTINOFY
Avad VNG JAIIDAY

t
OE/@ZFO> Ay YWQ)

cOL

US 2005/0246551 Al

ERROR HANDLING SYSTEM IN A REDUNDANT
PROCLESSOR

BACKGROUND

[0001] System availability, scalability, and data integrity
arc fundamental characteristics of enterprise systems. A
continuous performance capability 1s imposed in financial,
communication, and other fields that use enterprise systems
for applications such as stock exchange transaction han-
dling, credit and debit card systems, telephone networks,
and the like. Highly reliable systems are often implemented
in applications with high financial or human costs, 1n cir-
cumstances ol massive scaling, and in conditions that out-
ages and data corruption cannot be tolerated.

[0002] Some systems combine multiple redundant proces-
sors running the same operations so that an error 1n a single
processor can be detected and/or corrected. Results attained
for each of the processors can be mutually compared. If all
results are the same, all processors are presumed, with high
probability of correctness, to be functioning properly. How-
ever, 1f results differ analysis 1s performed to determine
which processor 1s operating incorrectly. Results from the
multiple processors can be “voted” with the “winning” result
determined to be correct. For example, a system with three
processor elements typically uses the result attained by two
of the three processors.

[0003] A difficulty arises for duplex systems with two
executing processors since the even number of processor
clements can result in a “voting tie” situation that may lead
to aborted operation and outage. Ties can be avoided by
running an odd number of processors, although a single
processor does not have the fault detection capability pro-
vided by voting. A three or more processor system adds
product cost.

SUMMARY

10004] In accordance with an embodiment of a redundant-
processor computing device, an error handling method com-
prises detecting equivalent disparity among processor ele-
ments of the computing device operating and responding to
the detected equivalent disparity by evaluating secondary
considerations of processor fidelity.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Embodiments of the invention relating to both
structure and method of operation may best be understood
by referring to the following description and accompanying,
drawings:

[0006] FIG. 11s a schematic block diagram that illustrates
an embodiment of a control apparatus for usage 1n a redun-
dant-processor computing device and having capability to
resolve a mutual disparity or tie condition;

10007] FIG. 2 is a schematic block diagram depicting an
embodiment of a computing system with capability to
resolve disparity and break ties among a plurality of pro-
cessor elements using a probation vector;

[0008] FIG. 3 is a schematic block diagram illustrating an
embodiment of a computing system configured 1n a redun-
dant-processor arrangement that imposes a selected-duration
short delay 1n the event of a disparity or tie condition;

Nov. 3, 2005

[0009] FIG. 4 is a schematic block diagram showing an
embodiment of a processor complex within which the 1llus-
trative error handling system may be implemented;

[0010] FIG. 5 is a schematic block diagram showing an
embodiment of a computing system capable of detecting
equivalent disparity among the processor elements and
responding by evaluating secondary considerations of pro-
cessor fidelity;

[0011] FIG. 6 is a flow chart depicting an embodiment of
an error handling method 1n a redundant-processor comput-
ing device that has tie-breaking capability during pro-
grammed input/output (PIO) voting in a duplex configura-
tion; and

[0012] FIG. 7 is a flow chart illustrating an embodiment
of an error handling method 1n a redundant-processor com-
puting device during direct memory access (DMA) read
voting 1 a duplex configuration.

DETAILED DESCRIPTION

[0013] A processor may incorporate multiple, redundant,
loosely-coupled processor elements for error detection. A
duplex arrangement using two processor elements 1s sus-
ceptible to a“voting tie” situation. Ties may be avoided by
using an odd number of processors at the expense of fault
detection capability 1f a single processor element 1s used and
by adding costs for incorporation of additional processor
clements. The illustrative system and method may use other
information to resolve contlicts and break ties. Accordingly,
an elfective processor may be configured using only two
processor elements for voting or comparison.

[0014] Referring to FIG. 1, a schematic block diagram

illustrates an embodiment of a control apparatus 100 for
usage 1n a redundant-processor computing device 102. The
control apparatus 100 1s operative in a configuration with a
plurality of processor elements 104A and 104B and can
resolve a mutual disparity or “tie” condition among proces-
sor elements. The control apparatus 100 can be used to break
fies 1n the case of voting error, for example with an even
number of processor elements, using other available infor-
mation. The control apparatus 100 includes a control ele-
ment 106 that detects equivalent disparity among the pro-
cessor elements 104A, 104B and responds by evaluating
secondary considerations of processor fidelity.

[0015] The control element 106 determines whether
evaluation of the secondary considerations 1s insuflicient to
resolve the disparity among the processor elements 104 A,
104B and, if so, terminates computing device operations.

[0016] The computing device 102 can be a computer
processor that uses multiple, redundant, loosely-synchro-
nized processor elements 104A, 104B to detect and manage
errors. A configuration with an even number of processor
clements 104A, 104B 1s susceptible to a voting “tie” con-
dition 1n which actions or results from the processor ele-
ments differ. For example, a computing device 102 may have
two processor elements 104A, 104B so that any disparity 1s
equivalent and results 1n a tie condition. Typically, an odd
number of processing element, for example three, can be
used at added cost to avoid ties.

[0017] Insome situations, other information which may be
called secondary considerations of fidelity may be available

US 2005/0246551 Al

to resolve the disparity and break the tie. The other infor-
mation 1s heuristic data which 1s sufficiently predictive to be
trusted for disparity resolution. If the tie cannot be broken by
use of the other information, then the error 1s considered
sufficiently serious that the processor 1s halted due to an
inability to guarantee correctness of either of the unequal
voted data items.

[0018] Some embodiments may include a control element
106 that evaluates the secondary conditions of processor
fidelity while the processor elements 104A, 104B are
executing before equivalent disparity 1s detected and sets a
probation vector 108 according to the evaluation. For
example, the probation vector 108 may be implemented 1n
a voting unit 110 and used by the voting unit 110 to resolve
disparities and break ties 1n predetermined conditions. In a
particular example, the probation vector 108 can have one
bit of state per processor element 104A, 104B. Control logic,
such as software, executing 1n each processor element 104 A,
104B can set the bit in conditions that the logic has accu-
mulated information for usage 1n breaking future ties, or
very recent ties. The control logic can periodically reset the
probation vector bits.

[0019] The voting unit 110, upon detecting a disparity or
tie condition, may delay acting upon the condition or declar-
ing a fatal error situation. Instead, the voting unit 110 can
hold the compared values for a short duration time period
before acting. Accordingly, the control element 106 can
interject a delay between equivalent disparity detection and
termination of computer device operation. The delay enables
control logic, for example software, to possibly detect other
errors or gather information pertinent to resolving the dis-
parity or breaking the tie. The delay can also break potential
race conditions. For example, if a self-detectable error
occurs simultaneously or nearly the same time as a misvote,
the delay enables further collection of information or analy-
sis before the voter declares the misvote condition, enabling
recognition of the error and resolution of the vote. In a
particular duplex embodiment, 1f the control logic sets one
of the two bits 1 the probation vector 108 during the short
delay 1mposed by the voting unit 110, then the voting unit
110 resolves the disparity or breaks the tie 1n favor of the
processor element, either 104A or 104B, that 1s not on
probation. While the condition remains an error condition,
the error 1s made recoverable. If the control logic does not
set the bit 1n the probation vector prior to or during the delay,
the error 1s considered to be fatal to the computing device
102, and operation 1s halted.

[0020] In a particular embodiment, the computing device
102 can include a logical synchronization unit 112 that
contains the voting umit 110 and input/output interfaces
114A and 114B. For example, the interfaces 114A and 114B
may include a programmed input/output (PIO) interface and
a direct memory access (DMA) interface. A possible equiva-
lent disparity or tie condition may include a condition of a
first processor element that performs a programmed mput/
output (PIO) action while a second processor element does
not. A second example of a equivalent disparity or tie
condition may be a miscompare on voted data whereby data
supplied by the two processor elements 104A, 104B does
not match on a programmed input/output (PIO) action or a
direct memory access (DMA) action. Other equivalent dis-
parity or tie conditions include a first processor element
performing a PIO read while a second processor element

Nov. 3, 2005

performs a PIO write, or first and second processors reading
or writing different addresses.

[0021] Referring to FIG. 2, a schematic block diagram
depicts an embodiment of a computing system 200 with
capability to resolve disparity among a plurality of processor
clements 202A, 202B configured 1n a redundant-processor
arrangement. The computing system 200 further includes a
probation vector 204 coupled to the processor elements
202A, 202B and has a signal allocated to each of the
processor elements 202A, 202B. A control element 206 1s
coupled to the processor elements 202A, 202B and evaluates
processor fidelity, setting the probation vector 204 according
to results of the evaluation.

[0022] The probation vector 204 is used to monitor sec-
ondary considerations of processor element fidelity before
an error 1s detected, when more abundant information relat-
ing to processor element conditions and functionality are
available. In contrast, a system that does not begin acquiring,
status information until an error 1s detected may have more
limited functional capabilities, and a possible 1nability to
perform actions diagnostic of processor element fidelity.
Acquisition of status and operational information while the
processor elements 202A, 202B are executing 1in due course
simplifies operation because i1nformation is merely noted
when available. Higher complexity algorithms that execute
following error or disparity detection and require informa-
tion to be evoked or stimulated, as well as monitored, can be
avolided.

[0023] The computing system 200 also includes a voter
208 that 1s coupled to the plurality of processor elements
202A, 202B and compares actions taken by the processor
clements 202A, 202B to determine disparity in processor
actions. A control element 210 responds to disparity among,
the processor elements 202A, 202B based on the probation
vector 204. In some embodiment, the control element 210
can Interject a delay between disparity detection and com-
puter device operation termination to allow monitoring of
additional information that may be useful i1n resolving
disparity and breaking ties. The control element 210 can also
determine whether evaluation of processor fidelity 1s msui-
ficient to resolve the disparity among the processor elements
202A, 202B and, if so, terminate computing system opera-
tions.

[10024] Referring to FIG. 3, a schematic block diagram
illustrates an embodiment of a computing system 300
including a plurality of processor elements 302A, 302B
configured 1n a redundant-processor arrangement, and con-
trol logic 304 that imposes a selected-duration short delay in
the event of a disparity or tie condition. The control logic
304 compares actions taken by the processor elements
302A, 302B and determines disparity in the actions, then
waits the selected delay duration after equivalent disparity
detection before nitiating an action 1n response to the
disparity condition. The control logic 304 may respond after
the delay according to evaluation of secondary consider-
ations of processor fidelity.

[0025] The selected delay has duration sufficient to enable
near-simultaneous arrival of information for usage 1n resolv-
ing the disparity condition. The delay 1s imposed 1n case of
processor disparity or tie, to enable simultaneous or near-
simultaneous arrival of mformation that can be used in

disparity resolution and/or tie-breaking. The delay has suit-

US 2005/0246551 Al

able duration to enable logic to receive a high priority
mterrupt and perform a few computations and 1s sufficiently
long to enable mformation to be acquired at the same time
or very close to occurrence of an error. Typical delay
duration, using current processor operating speeds and tech-
nology, 1s on the order of tens or hundreds of microseconds,
sufficient to handle the imterrupt and execute hundreds or
thousands of instructions. The delay may assist 1n avoiding
or breaking race condifions.

[0026] The selected delay also has an upper limit. A
lengthy examination of error state or diagnostic execution
may not be acceptable. During the time between disparity
and selection of the winning processor, the parallel mput/
output (PIO) operation or direct memory access (DMA)
operation 1s suspended, possibly disrupting communications
with other processors as well as communications on the
interprocessor network due to backpressure. Such disruption
1s generally not desirable and i1s avoided by imposing an
upper limit on the delay duration.

10027] Referring to FIG. 4, a schematic block diagram
shows an embodiment of a processor complex 400 within
which the 1llustrative error handling system may be imple-
mented. In a redundant-processor arrangement, the proces-
sor complex 400 includes a plurality of logical processors
408, cach a computing engine capable of executing pro-
cesses and implemented using one or more processor ele-
ments 402, each 1n a different processor slice 410, combined
with one or more logical synchronization units (LSUs) 412.
Each processor element 402 1s a single microprocessor or
microprocessor core capable of executing a single instruc-
tion stream. A processor slice 410 typically comprises one or
more processor clements 402, each with a dedicated
memory 414 or sharing a partitioned memory. A processor
complex 400 comprises one or more logical processors 408.
A processor complex 400 comprises one or more processor
slices 410. Within a complex 400, each slice 410 has the

same number of processor elements.

[0028] A processor complex with one slice is called a
simplex complex. A two-slice processor complex 1s called a
duplex, dual modular redundant, or DMR complex. A three-
slice processor complex 1s called a triplex, tri-modular
redundant, or TMR complex. A processor complex 400
includes both processor elements 402 and corresponding
logical synchronization units 412.

[10029] A computing system comprises one or more logical
processors 408. The computing system also comprises one
or more processor complexes 400. The processor complexes
400 are mterconnected via a network, for example a System
Area Network (SAN), a local area network (LLAN), a wide
area network (WAN), or the like, or simply a connection to
a bus. The network 1s used for connection to both other
processors and to input/output (I/O) devices. Voting or
output data comparison 1s performed for all data transfers
between the logical processor and the network or the net-
work I/0 adapter.

[0030] In a logical processor 408, one, two, three, or
possibly more processor elements cooperate to perform
logical processor operations. Cooperative actions include
coordinating or synchronizing mutually among the proces-
sor elements, exchanging data, replicating input data, and
voting on operations and output data selection. In the
illustrative embodiment, the various cooperative actions can

Nov. 3, 2005

be 1mplemented within or supported by implementation of
the logical synchronization units 412.

[0031] Referring to FIG. 5, a schematic block diagram
illustrates an embodiment of a computing system 500 com-
prising a plurality of processor elements S02A, 502B con-
figured 1n a redundant-processor arrangement, and a voter
504 coupled to the plurality of processor elements 502A,
502B that compares actions taken by the processor elements
and determines disparity in the actions. The computing,
system 500 further includes a control element 506 coupled
to the processor elements S02A, 502B and the voter 504 that
detects equivalent disparity among the processor elements
S02A, 502B and responds by evaluating secondary consid-
erations of processor fidelity. The illustrative computing
system 500 may comprise a single logical processor of
multiple logical processors in a complex or system.

[0032] The computing system 500 may also include a
logical synchronization unit 512 comprising the voter 504
and a network interface 520, such as a SAN interface that
can be confligured to connected to the network 518 by one or
more ports. For example the network connection may be
made as shown 1n FIG. 5 via an X-fiber port and a Y-fiber
port, although wire ports may otherwise be used.

[0033] The logical synchronization unit 512 maintains
multiple bit sets that represent, at any point in time, the set
of processor elements that are enabled to perform selected
operations. The voter 504 includes a plurality of multiple-bat
conflguration registers to indicate which processor elements
are expected and enabled to participate 1 selected opera-
tions, for example including programmed input/output (P1O)
operations with the processor elements 502A, 502B, and
network interface 520 DMA operations including direct
memory access (DMA) output voting and DMA input rep-
lication.

[0034] The voter configuration bits represent which pro-
cessor eclements are meant to be “assigned” to a logical
processor and are therefore eligible for performing various
operations such as output voting operations. Coniigured
processor elements are defined, for any particular operation
type, as the set of processor elements enabled by the
conflguration bits in the logical synchronization unit 512 to
perform that operation type. The logical synchronization
unit 512 1gnores operations of non-configured processor
clements on an operation-type basis. Configuration bits are
set whenever processor elements “join” the configuration of
a logical processor 508. Configuration bits are reset or
cleared when processor elements leave the configuration, for
example by being voted out.

[0035] Participating processor elements are the set of
coniigured processor elements, for a particular instance of an
operation, that actually perform the operation at a particular
fime, within a timeout period. The set of configured proces-
sor elements 1s related to a type of operation while the set of
participating processor elements 1s related to an individual
instance of an operation. The configured processor elements
have outbound data transfers voted. Participating processor
clements are the elements that actually 1ssue a particular
outbound data transfer.

[0036] For a particular voted operation, all configured
processor elements are expected to participate. A processor
clement that does not participate times out on the operation.

US 2005/0246551 Al

[0037] Generally, voted operations can result in conditions
including full agreement, timeout, simple miscompare, tie
miscompare, and full miscompare. In full agreement, all
configured processor elements participate within a reason-
able time and supply 1dentical data for an 1dentical operation
so that all voted data matches. In a timeout condition, one or
more coniigured processor elements do not participate in
time. For a simple miscompare, a strict majority of config-
ured processor elements supplies identical data, and a strict
minority supplies different data. A strict majority 1s greater
than half, for example one 1n simplex, two 1n duplex, and
two or three 1n triplex. A tie miscompare occurs with an even
number of processor elements, for example two, configured
in which the data does not compare. For a full miscompare,
all sets of voted data, for example all three in triplex,
miscompare pair-wise so that no strict majority results. The
different types of conditions are mapped into one of three
error conditions 1ncluding no error, minor error, and major
eITOr.

[0038] For no error, the operation proceeds and no error 1s
reported. For a minor error, the operation proceeds but an
error 1s reported. Minor errors include such timeouts or
disagreements among voted data 1n which available infor-
mation 1s suificient to enable resolution. Triplex configura-
tions 1n which two processors are 1 agreement and duplex
confligurations 1n disagreement when other information is
available to resolve the disagreement are examples of minor
error conditions. For a major error, the operation does not
proceed, but rather 1s aborted, and an error 1s reported. Major
errors 1nclude such timeouts and disagreements among
voted data that the condition cannot be resolved. Triplex
coniigurations with three-way disagreement or timeouts in
two of the three processors, and duplex configurations with
disagreeing processors and no available information for
resolution are examples of major error conditions.

[0039] In addition to timeouts and disagreement among
redundant processors, other errors that may be handled using
the 1llustrative techniques include breaks in cabling, for
example between the processor elements and voter. Such
errors can often be self-signaling. Self-signaling errors are
defined as errors detected by an explicit detection element or
mechanism as distinguished from implicit detection tech-
niques such as voting. Various types of errors may be
self-signaling. Examples of self-signaling errors include
direct memory access (DMA) read timeouts, errors detected
by parity or other error checking codes, loss-of-signal in
optical signals, and loss of electrical continuity for electrical
signals. With respect to the various illustrative systems,
voting detects errors, but 1n a duplex configuration voting,
alone does not distinguish which voted data 1s correct and
which incorrect. Self-signaling errors designate which of the
two data suppliers 1s incorrect.

10040] The processor elements S02A, 502B each have a
memory 3514 or share a partitioned memory with other
processor elements 1n the same slice.

[0041] The PIO operations are processor-initiated reads
(loads) or writes (stores) to any part of the processor’s
address space other than “main memory”. The address space
may contain registers, pseudo-registers, and memory other
than main memory. PIO operations may be targeted to

resources 1n either the voter 504 or to a network interface
520. Operations targeted to the voter 504 may be either

Nov. 3, 2005

unvoted or voted (compared), depending on the address of
the register bemng accessed. Operations to the network
interface 520 may always be voted in some 1mplementa-
fions.

[0042] When any configured processor element initiates a
voted PIO read, the voter 504 captures the operation and
read address and sets a timer. The voter 504 waits for all
configured processor elements to perform the same opera-
tion. When all configured processor eclements initiate the
operation, the operation and address are compared, for
example a bit-by-bit comparison of the entire operation and
address. If one or more of the configured processor elements
fails to initiate the operation within a configurable timeout
period, a P10 timeout condition exists. In circumstances that
the 1llustrative error handling and tie-breaking technique is
not implemented or 1s disabled, operation can be described
as follows. It all configured processor elements participate,
then for the case of full agreement or simple miscompare,
the operation proceeds, ignoring miscompared data, 1f any.
A simple miscompare 1s handled as a minor error. Otherwise
(not full agreement or simple miscompare), the operation is
aborted—mnot performed, and a “bus error” 1s returned to all
requesting processor elements, and a major error 1s reported.
If the operation 1s not aborted, then 1f the PIO read 1is
targeted to the network interface 520, the voter 504 forwards
the operation and address to the network interface 520 and
waits for a response. If the operation 1s targeted to the voter
504, then the voter 504 accesses data directly. The response
data, when available, 1s replicated by the voter 504 and sent
as a response to all participating processor elements at
approximately the same instant.

[0043] When any configured processor element initiates a
voted PIO write operation, the voter 504 captures the
operation, write address, and write data, then sets a timer and
waits for all configured processor elements to perform the
same operation. When all configured processor elements
initiate the operation, the operation, write address, and write
data are bit-by-bit compared. If one or more of the config-
ured processor elements fails to 1nifiate the operation within
a configurable timeout period, a PIO timeout condition
exists. In circumstances that the illustrative error handling
and tie-breaking technique 1s not implemented or 1s dis-
abled, the operation 1s as follows. If all configured processor
clements participate, in the case of full agreement or simple
miscompare, the operation proceeds, 1gnoring miscompared
data. A simple miscompare 1s handled as a minor error.
Otherwise (not full agreement or simple miscompare), the
operation 1s aborted—mnot performed. No direct response 1s
made to the processor element because no response or
acknowledgement 1s normally made to write operations.
When the operation 1s aborted, a major error 1s reported. An
operation that 1s not aborted 1s handled according to the
target address of the write operation. For a PIO write to the
network interface 520, the voter S04 forwards the operation,
address, and data to the network interface 520. For a PIO
write to the voter 504, the voter 504 performs the write
operation directly. No response 1s made to the processor
clement. Because of the possible side-effects with PIO write
operations, and because software does not necessarily verily
the effect, or success, of each write operation, when a PI1O
write operation 1s aborted due to a major voting error, the
voter 504 suspends all future PIO write operations, which
are also aborted, until the software detects the error and
re-enables PIO voting. Typically the error i1s detected by

US 2005/0246551 Al

handling an error interrupt. Note, however, that 1n the triplex
case for a simple miscompare such as one processor element
write and two processor elements time out, no requirement
1s made to abort all future programmed I/0O write operations.

10044] PIO operations are initiated by the processor ele-
ments, as contrasted to DMA operations which are initiated
by the network interface 520. Therefore, PIO timeouts are
possible 1 two different circumstances. In a first circum-
stance, one or two processor elements, operating correctly,
initiate a PIO operation, and one processor element, oper-
ating mcorrectly or stopped, fails to perform the PIO opera-
tion. The error 1s detected when the timer expires. Without
further mnformation, the processor element operating incor-
rectly may be indeterminable, for example when two pro-
cessor elements are configured and one times out.

[0045] In a second circumstance, one processor element,
operating incorrectly, mitiates a PIO operation that should
not occur, and the other processor element or processor
clements, operating correctly, do not 1nitiate a PIO opera-
tion. Again the error i1s detected when the timer expires,
although without further information the processor element
operating incorrectly may be indeterminable, for example
for two active processor elements, one of which times out.
Accordingly, the processor elements that do not participate
are not necessarily 1ncorrect.

[0046] In the triplex case, the strict majority is always
trustworthy so that i1if one processor element times out and
the remaining two processor elements perform a PIO opera-
tion, then the processor element that times out 1s 1n error and
ignored, while the PIO operation proceeds and the data
voted with a minor error indicated. Also 1n the triplex case,
if two processor elements time out when a single processor
clement performs a PIO operation, then the processor ele-
ment that performs the PIO operation 1s 1 error and the P10
1s 1ignored. The lone processor element can be considered a
“rogue processor element” and the attempted PIO operation
1s called a “rogue operation”.

10047] In the duplex case, whether the processor element
performing the PIO or the processor element that i1s not
participating 1s 1n error cannot be determined, without other
evidence. Accordingly a tie or disparity condition exists.

[0048] Some embodiments of the computing system 500
further comprise a two-processor elements configuration
S502A, 502B, the programmed input/output (PIO) interface
522, and a direct memory access (DMA) interface 524
coupled to the voter 504. An action disparity that 1s detect-
able by the control element 506 1s a miscompare on voted
data with non-matching data supplied by two processor

clements 502A, 502B either on a PIO action or a DMA
action.

[0049] Direct memory access (DMA) reads are outbound
operations 1nitiated by the network interface 520. The voter
504 replicates and forwards the DMA read operation and
address to all configured processor elements at approxi-
mately the same 1nstant, subject to congestion delays 1n the
different slices that may cause an operation to arrive at the
processor elements at slightly different times. The voter 504
then starts a timer and waits for the responses. Response data
flows from the processor elements 502A, 5028, through the
voter 504, to the network interface 520. Responses arriving,
from the configured processor elements are buifered in the

Nov. 3, 2005

voter 504 rather than being sent immediately to the network
interface 520. The later responses, upon arrival, are com-
pared with the earlier responses saved 1n the data buflers.
When a strict majority of the responses agree, one copy of
the data, from one of the agreeing responses, 1S communi-
cated to the network interface 520. If a strict majority of the
responses do not agree, then data 1s not sent to the network

interface 520 1n a manner that can be interpreted as valid
data.

[0050] Any processor clement that does not respond
within the timeout period 1s declared to have timed out.
Unlike PIO timeouts, no rogue situations can occur with
DMA timeouts because the DMA operation i1s 1nitiated
through the network interface 520. Accordingly, if one
processor element times out, that processor element 1s
necessarily erroncous 1n both duplex and triplex cases. The
condition 1s considered a minor error, and the DMA opera-
tion proceeds using data supplied by the processor element
or processor elements that do not time out. If two processor
clements time out, or the only processor element in a
simplex case, then a major error 1s 1mndicated and the DMA
operation 1s aborted. The voter 504 generates an error
notification mterrupt to all configured processor elements 1n
the case of any disagreement or timeout, whether data 1s
successfully forwarded to the network interface 3520 or
otherwise. The interrupt indicates which processor elements
did time out, 1f any, and all comparison results.

[0051] Direct memory access (DMA) writes are inbound
operations with data flowing from the network interface 520
through the voter 504 to the processor elements S02A, 502B.
DMA write operations are 1nitiated by the network interface
520. The voter 504 replicates and forwards the operation,
address, and data to all configured slices at approximately
the same instant. No response 1s made to the network
interface 520.

[0052] The voted PIO operations and DMA responses are
protected by timeouts. PIO and DMA timeout values are
both configurable by control logic, such as software, and
may be different.

[0053] For PIO timeouts, the timer is started when the first
PIO operation arrives. The timer 1s restarted when each
operation arrives, giving a full timeout period for the later
arrivals relative to the earlier ones, a behavior used 1n all
implementations due to the possibility of a PIO operation
being mitiated by a “rogue processor element”. PIO opera-
fions can never time out in the simplex case because the
operation originates from the processor element.

[0054] For DMA read response timeouts, DMA operations
can time out 1 simplex, duplex, and triplex configurations
because the operation 1s originated from the network inter-
face 520. The timer 1s started when the DMA request 1s
forwarded by the voter 504 to memories of all processor
clements. The timer may optionally be restarted when each
response arrives, giving a full timeout period for the later
responses. Alternatively, a single timeout interval may be
applied to all configured processor elements. Either option 1s
possible since no rogue DMA operations can occur.

[0055] In an illustrative embodiment, special case han-
dling can be used when a PIO timeout occurs or a miscom-
pare occurs on voted data 1n a duplex configuration. In the
illustrative example, duplex tie handling generally 1s 1nap-

US 2005/0246551 Al

plicable to DMA timeouts, and to simplex or triplex con-
figurations. Two disparity or tie conditions include a PIO
fimeout 1 which one processor element performs a PIO
operation and the other processor element does not, and a
miscompare on voted data in which data supplied by the two
processor elements does not match, either on a PIO opera-
tion or a DMA read operation.

[0056] In the absence of any other information, a tie or
disparity condition 1n a duplex configuration 1s ambiguous
whereby the trustworthiness of each processor element 1s not
obvious, leading to a typical policy of halting the logical
ProCessor.

[0057] However, occasionally, other information, termed
secondary considerations of processor fidelity, may exist.
The other information may be considered sufficiently strong,
even 1f circumstantial, to 1implicate one of the two processor
clements. For example, a recent logged history of other
detected recoverable errors may be indicative of a degrada-
tfion of processor element reliability.

[0058] Another example of pertinent reliability informa-
fion 1s a recent history of processor replacement. A newly-
reintegrated processor element or a new slice may be a more
likely source of error than an element that has long been
installed without a history of error. Such early life problems
are frequently discovered within a short time, on the order
of minutes, following installation.

[0059] A further example of reliability information is
inherent in the multiple-dimensional configuration of logical
and physical processors, for example as shown 1n FIG. 4.
Processor slices with multiple processor elements connected
physically but not logically include hardware that 1s shared
within a processor slice. Hardware may be shared among
logical processors. When shared hardware ceases function-
ing correctly, errors such as intermittent errors can occur. If
errors are detected 1n one logical processor but not another,
information about the errors can be communicated between
processor elements 1n a processor slice so that all processor
clements within the slice have sufficient information to
break any ties that occur.

[0060] Some embodiments of the computing system 500
further comprise a probation vector 526 coupled to the voter
504 and coupled to the processor elements 502A, 502B. The
probation vector 526 holds a signal for each processor
clement S02A, 502B. A processor control policy executable
on the processor elements S02A, 502B evaluates the sec-
ondary conditions of processor fidelity during processor
clement execution. The processor control policy sets bits 1n
the probation vector according to the evaluation of second-
ary considerations before determining whether a major or
minor error has occurred. In a particular embodiment, the
probation vector 526 enables implementations to supply the
other information to the voter 504 1n such a way that duplex
tfie conditions can be simply resolved. The probation vector
526 comprises one bit for each processor element 502A,
502B. The logical synchronization unit 512 uses the proba-
tion vector 526 as a tie-breaker in some conditions.

[0061] In an illustrative embodiment, PIO writes to the
probation vector 526 are not voted. The 1nitial or reset value
of the probation vector 526 1s all zero. Each processor
clement 502A, 502B can set or reset the probation bit only
for the processor slice associated with the processor element,

Nov. 3, 2005

and not for any other slice. The probation vector 526 1s not
used 1n simplex and triplex modes for which the bits may
still be set by the control logic, but are ignored.

[0062] The probation vector 526 is ignored if both pro-
cessor slices agree, indicating no error. The probation vector
526 1s also 1gnored 1n the case of self-signaling errors, which
indicate the error source so that tie-breaking 1s superfluous.
Self-signaling errors are thus classified as minor errors. The
errors occur when the voter 504 can be certain that one slice
should be 1gnored, for example in an outbound DMA read
response, when one slice does not respond and times out, or
when the slice supplies data marked as “known bad”.
“Known bad” data relates to another example of seli-
signaling error and 1s data returned from a processor
clement’s memory or cache that generates a detected error,
such as a parity or other detected error, when accessed.

[0063] Control logic in each processor element sets the
assoclated probation bit independently of the other processor
clements; reaching an agreement among processor elements
1s not required. Accordingly, both probation bits may be
asserted at any time. The control logic resets the probation
bits after some amount of time. The time duration i1s an
implementation-defined parameter or policy.

[0064] In some circumstances, the probation bits may be
set for all processor elements on a processor slice due to an
error that places behavior of the entire slice in doubt.
Accordingly, the control logic can propagate the probation
bits from one processor element, where an error has been
detected, to other processor elements in the slice by an
implementation-defined technique. Examples of an imple-
mentation-defined system include exchanging probation bits
via a register 1n a slice application-specific integrated circuit
(ASIC), and/or using inter-processor, intra-slice interrupts.

[0065] In some embodiments of the computing system
500, the control element 506 1interjects a delay between
equivalent disparity detection and computing device opera-
fion termination. When a duplex, non-self-signaling error
occurs, a delay 1s imposed prior to declaring the situation an
error condition. During the delay period, operation 1s held in
limbo. The operation 1s neither completed nor aborted. The
delay enables the tie to be broken by control logic setting the
probation bit after the error but before the timeout elapses.
The delay does not occur, and therefore does not add any
latency, 1n full agreement cases, and 1n simplex and triplex
cases.

[0066] The delay period in a tie-breaker situation is main-
tained sufficiently small to avoid excessive network back-
pressure, therefore preventing an i1ncrease in congestion 1n
the network. For current technology, a sufficiently small
delay may be of the order of the range of tens or hundreds
of microseconds.

[0067] In an illustrative embodiment, when the delay
period begins, the logical synchronization unit 512 sends an
interrupt to all participating slices to inform the slices that a
miscomparison has occurred, although an error has not been
declared. The interrupt 1s in addition to the interrupt that 1s
generated at the end of the delay, when the voting error 1s
final, either major or minor.

[0068] In a tie-breaker or disparity condition, if after the
delay interval has elapsed, both probation bits are enabled or
both probation bits are disabled, then a major error exists

US 2005/0246551 Al

and the operation 1s aborted. If the bits are 1n opposite states,
then the slice with the probation bit off or reset 1s obeyed,
and the slice with the probation bit 1s on or set 1s 1gnored. If
the probation bits are used to break the tie, then a minor error
1s declared.

[0069] The policy for setting probation bits and duration
that the bit setting 1s maintained 1s implementation-speciiic.

[0070] In the illustrative embodiment, the logical synchro-
nization unit S12 reports all errors, both major and minor, to
control logic, such as software via an interrupt and status
register. In one 1implementation, status register bits indicate
that the tie-break mechanism has been mvoked and desig-
nate which processor element or slice 1s obeyed.

[0071] Referring to FIG. 6, a flow chart depicts an

embodiment of an error handling method 600 1n a redun-
dant-processor computing device during programmed mput/
output (PIO) voting in a duplex configuration. The method
600 comprises detecting equivalent disparity 612, and 610,
614 among processor elements of the computing device, and
responding to the detected equivalent disparity by evaluating
624, 634 sccondary considerations of processor fidelity.

[0072] The method can further comprise determining
whether evaluation 624, 634 of the secondary considerations
1s 1nsuificient to resolve the disparity among the processor
clements. If so, computing device operations are terminated
626 and 628, 636 and 638. Delay can be mserted 620 and
622, 630 and 632 between equivalent disparity detection and
computer device operation termination 626, 636.

[0073] In the illustrative method 600, control logic
receives 602 a programmed input/output (PIO) request from
one processor element (PE), buffers 604 the request, and
starts 606 a timer. If a second request 1s recerved 608, the
two requests are compared 610. Otherwise, 1f the timer has
not elapsed 612, whether the second request 1s received 1s
determined 608. If the timer has elapsed 612, analysis of
secondary considerations of processor fidelity begins.

[0074] In conditions that a second request is received 608,
following comparison 610 of the requests, if the requests
match 614, the control logic performs the PIO operation 616
and no error 1s 1ndicated, and the method 1s complete 618.
Otherwise, an equivalent disparity condition exists in the
form of a miscompare on voted data whereby command,
address, or data supplied by two processor elements does not
match on a programmed input/output (PIO) action. Opera-
tion, address, and, for a write operation, data are compared
to determine a match condition. Secondary consideration
analysis begins with the control logic sending 620 a “tie
break pending” interrupt to the processor elements, and
waiting 622 the configured time. Generally, the secondary
conditions of processor fidelity can be evaluated during
processor element execution, and a probation vector can be
set according to the evaluation prior to determination of
major or minor error. If probation bits are equal 624, the
operation 1s aborted 626 since the tie or disparity condition
cannot be resolved and a major error interrupt 1s sent to the
processor elements. The method 1s terminated 628.

[0075] Otherwise, if the probation bits are not equal 624,
the control logic follows direction 648 of the processor
clement that 1s not on probation, and the PIO operation
specified by the non-probation processor element 1s per-
formed. A minor error interrupt 1s sent 650 to the processor

Nov. 3, 2005

clements, and the method completes 652 with a suitable
minor error handling technique. In some embodiments, the
minor error 15 addressed by marking the loser of the voting
decision as no longer participating in the logical processor.
Subsequent mput/output operations or other accesses to the
voter are 1gnored. In other embodiments, software process-
ing 1n the loser 1s interrupted and software executing in
remaining processor elements shuts down the offending
processor element.

[0076] For analysis of secondary considerations of pro-
cessor fidelity after the timer elapses 612, an equivalent
disparity condition occurs 1n which a first processor element
performs a programmed input/output (PIO) action while a
second processor element does not. Control logic sends 630
a “fie break pending” mterrupt to the processor elements,
and waits 632 the configured time. If probation bits are equal
634, the operation 1s aborted 636 since correct operation
cannot be determined. A major error interrupt 1s sent to the
processor elements. The method 1s terminated 638.

[0077] Otherwise, if the probation bits are not equal 634,
control logic determines whether the processor element
requesting the PIO operation 1s on probation 640. If the
processor element 1s on probation 640, the control logic
follows direction 642 of the processor element that 1s not on
probation and 1gnores or aborts the PIO operation, sends 644
a minor error interrupt to the processor elements, handles the
minor error, and terminates 646 the method. If the processor
clement requesting the PIO 1s not on probation 640, the
control logic follows direction 648 of the processor element
that 1s not on probation, and the PIO operation specified by
the non-probation processor element 1s performed. A minor
error 1nterrupt 1s sent 650 to the processor elements, and the
method 1s complete 652.

[0078] Referring to FIG. 7, a flow chart depicts an
embodiment of an error handling method 700 1 a redun-
dant-processor computing device during direct memory
access (DMA) read voting in a duplex configuration. The
method 700 comprises detecting equivalent disparity 726
and 728 among processor element memories of the com-
puting device, and responding to the detected equivalent
disparity by evaluating 738 secondary considerations of
processor fidelity.

[0079] The method can further comprise determining
whether evaluation 738 of the secondary considerations 1s
insuflicient to resolve the disparity among the processor
clements. If so, computing device operations are terminated
740 and 742. Delay can be 1nserted 736 between equivalent

disparity detection and computer device operation termina-
tion 740, 742.

[0080] In the illustrative method 700, control logic
receives 702 a direct memory access (DMA) read request
from a network agent such as a system area network (SAN)
agent, replicates and forwards 704 the request to both
processor elements, and starts 706 a timer. If a first response
1s received 708, the first response 1s buflered 716. In some
embodiments, the timer may be restarted as the first response
1s buffered 716. If the timer has not timed out 710, whether
the first response 1s received 1s again determined 708. If the
timer has timed out 710, the operation 1s aborted 712 and a
major error interrupt 1s sent to both processor elements. The
major error interrupt 1s mndicative of a double timeout. The
method 1s then terminated 714.

US 2005/0246551 Al

[0081] In conditions that the first response is received 708
and the first response 1s buffered 716, whether a second
response has been received 1s determined 718. If the second
response has been received 718, the first and second
response data are compared 726. Otherwise, if the timer has
not timed out 720, whether the second response has been
received 1s again determined 718. If the timer has timed out
720, the operation 1s completed 722 using data from the first
response and a minor error interrupt 1s sent to both processor
clements. The single timeout condition 1s indicative of a
“self-signaling error”. The method 1s then terminated 724.

|0082] In conditions that the second response is received
718 and data from the first and second responses 1S com-
pared 726, 1f the first and second response data are equal 728
the data match so that the operation 1s completed 730 with
no error. The method completes successtully 732. Other-
wise, the first and second response data are unequal 728 and
a “tie break pending” interrupt 734 1s sent to the processor
clements. A delay 1s inserted 736 to wait for a configured
fime. Probation bits are read to determine whether the
probation bits are equal 738. If so, the operation 1s aborted
740 since the tie cannot be resolved using the probation bits
and a major error interrupt 1s sent to the processor elements.
The method terminates unsuccessfully 742. Otherwise, the
probation bits are not equal 738 and the operation 1s com-
pleted 744 using the response from the processor element
that 1s not on probation. A minor error 1nterrupt 1s sent 746
to the processor elements, the minor error handled by
marking the loser for removal or shutting down the offend-
ing processor element, and the method 1s terminated 748.

|0083] While the present disclosure describes various
embodiments, these embodiments are to be understood as
illustrative and do not limit the claim scope. Many varia-
tions, modifications, additions and improvements of the
described embodiments are possible. For example, those
having ordinary skill in the art will readily implement the
steps necessary to provide the structures and methods dis-
closed herein, and will understand that the process param-
cters, materials, and dimensions are given by way of
example only. The parameters, materials, and dimensions
can be varied to achieve the desired structure as well as
modifications, which are within the scope of the claims. For
example, although the i1llustrative structures and methods are
most applicable to multiple-processor systems in a duplex
conflguration, various aspects may be implemented 1n con-
figurations with more or fewer processors. Furthermore, the
illustrative embodiments depict particular arrangements of
components. Any suitable arrangement of components may
be used. The various operations performed may be 1mple-
mented 1n any suitable matter, for example 1n hardware,
software, firmware, or the like.

What 1s claimed 1s:
1. A control apparatus for usage 1n a redundant-processor

computing device including a plurality of processor ele-
ments, the control apparatus comprising;:

a control element that detects equivalent disparity among
the processor elements and responds by evaluating
secondary considerations of processor fidelity.

2. The apparatus according to claim 1 further comprising;:

a control element that determines whether evaluation of
the secondary considerations 1s msufficient to resolve

Nov. 3, 2005

the equivalent disparity among the processor elements
and, 1f so, terminates operations of the computing
device.

3. The apparatus according to claim 2 further comprising:

a control element that 1nterjects a delay between equiva-
lent disparity detection and the evaluation of secondary
considerations of processor fidelity.

4. The apparatus according to claim 1 further comprising;:

a control element that determines whether the evaluation
of the secondary considerations 1s suflicient to resolve
the equivalent disparity among the processor elements
and, 1f so, completes an operation according to the
resolution.

5. The apparatus according to claim 1 further comprising;:

a control element that evaluates the secondary conditions
ol processor fidelity and sets a probation vector accord-
ing to the evaluation.

6. The apparatus according to claim 1 further comprising:

a processor element that evaluates the secondary condi-
tions of processor fidelity and sets a probation vector
according to the evaluation.

7. The apparatus according to claim 1 wherein an equiva-

lent disparity condition comprises one or more of conditions
including:

a condition of a {first processor element performing a
programmed 1nput/output (PIO) action while a second
processor element does not;

a condition of a first processor element performing a PI1O
read while a second processor element performs a P10
write;

a condition of a first processor and a second processor
reading different addresses;

a condition of a first processor and a second processor
writing different addresses; and

a miscompare on voted data whereby data supplied by
two processor elements does not match on a pro-
grammed 1nput/output (PIO) action or a direct memory

access (DMA) action.
8. An error handling method 1n a redundant-processor

computing device comprising:

detecting equivalent disparity among processor elements
of the computing device; and

responding to the detected equivalent disparity by evalu-
ating secondary considerations of processor fidelity.
9. The method according to claim 8 further comprising:

determining whether the evaluation of the secondary
considerations 1s insufficient to resolve the equivalent

disparity among the processor elements; and

if so, terminating operations of the computing device.
10. The method according to claim 9 further comprising:

inserting a delay between equivalent disparity detection
and termination of computer device operation.
11. The method according to claim 8 further comprising:

determining whether evaluation of the secondary consid-
erations 1s sufficient to resolve the equivalent disparity
among the processor elements; and

if so, completing an operation according to the resolution.

US 2005/0246551 Al

12. The method according to claim 8 further comprising:

evaluating the secondary conditions of processor fidelity;
and

setting a probation vector according to the evaluation.
13. The method according to claim 8 wherein an equiva-
lent disparity condition one or more of conditions including:

a condition of a first processor element performing a
programmed input/output (PIO) action while a second
processor element does not;

a condition of a first processor element performing a PIO
read while a second processor element performs a P10
write;

a condition of a first processor and a second processor
reading different addresses;

a condition of a first processor and a second processor
writing different addresses; and

a miscompare on voted data whereby data supplied by
two processor elements does not match on a pro-
grammed input/output (PIO) action or a direct memory

access (DMA) action.
14. A computing system comprising;

a plurality of processor elements configured 1n a redun-
dant-processor arrangement;

a voter coupled to the plurality of processor elements that
compares actions taken by the processor elements and
determines disparity in the actions; and

a control element coupled to the processor elements and
the voter that detects equivalent disparity among the
processor elements and responds by evaluating second-
ary considerations of processor fidelity.

15. The system according to claim 14 further comprising:

a two-processor element configuration; and

a programmed input/output (PIO) interface coupled to the
voter whereby an action disparity that 1s detectable by
the control element 1s a PIO timeout with one processor
clement performing a PIO action and one processor
clement not performing the PIO action.

16. The system according to claim 14 further comprising:

a two-processor element configuration; and

a programmed input/output (PIO) interface and a direct
memory access (DMA) interface coupled to the voter
whereby an action disparity that 1s detectable by the
control element 1s a miscompare on voted data with
non-matching data supplied by two processor elements
either on a PIO action or a DMA action.

17. The system according to claim 14 further comprising:

a probation vector coupled to the voter and coupled to the
processor elements and having a signal allocated to
cach of the processor elements; and

a control element that evaluates the secondary conditions
of processor fidelity and sets the probation vector
according to the secondary considerations of processor

fidelity.
18. The system according to claim 14 further comprising:

a control element that determines whether evaluation of
the secondary considerations 1s msufficient to resolve

Nov. 3, 2005

the disparity among the processor elements and, 1if so,
terminates computing device operations.

19. The system according to claim 18 further comprising:

a control element that mterjects a delay between equiva-
lent disparity detection and evaluation of secondary
considerations of processor fidelity.

20. A computing system comprising:

a plurality of processor elements configured in a redun-
dant-processor arrangement;

a probation vector coupled to the processor elements and
having a signal allocated to each of the processor
elements; and

a logic that evaluates processor fidelity and sets the
probation vector according to the evaluation.

21. The system according to claim 20 further comprising:

a control element that evaluates processor fidelity and sets
a probation vector according to the evaluation.

22. The system according to claim 20 further comprising:

a processor element that evaluates processor fidelity and
sets a probation vector according to the evaluation.

23. The system according to claim 20 further comprising:

a voter coupled to the plurality of processor elements that
compares actions taken by the processor elements and
determines disparity in the actions; and

a control-element that responds-to disparity among the
processor elements based on the probation vector.

24. The system according to claim 23 further comprising:

a control element that interjects a delay between disparity
detection and computer device operation termination.

25. The system according to claim 20 further comprising:

a control element that determines whether evaluation of
processor fidelity 1s insutficient to resolve the disparity
among the processor elements and, i1f so, terminates
computing system operations.

26. The system according to claim 20 wherein for a
two-processor system a disparity condition comprises one or
more conditions selected from a group consisting of:

a condition of a first processor element performing a
programmed 1nput/output (PIO) action while a second
processor element does not;

a condition of a first processor element performing a PIO
read while a second processor element performs a PIO
write;

a condition of a first processor and a second processor
reading different addresses;

a condition of a first processor and a second processor
writing different addresses; and

a miscompare on voted data whereby data supplied by
two processor elements does not match on a pro-
grammed input/output (PIO) action or a direct memory

access (DMA) action.
27. A computing system comprising:

a plurality of processor elements configured in a redun-
dant-processor arrangement; and

US 2005/0246551 Al Nov. 3, 2005
10

control logic coupled to the processor element plurality control logic that responds after the delay according to
that mutually compares actions taken by ones of the evaluation of secondary considerations of processor
processor elements and determines equivalent disparity fidelity.
in the actions, and waits a selected delay after equiva- 29. The computing system according to claim 27 wherein:
lent disparity detection before initiating an action the selected delay has a duration sufficient to enable
responsive to the disparity condition. near-simultaneous arrival of information for usage in

28. The computing system according to claim 27 further resolving the disparity condition.

comprising: £ % % k%

	Front Page
	Drawings
	Specification
	Claims

