a9y United States
a2 Patent Application Publication o) Pub. No.: US 2005/0240806 Al

Bruckert et al.

US 20050240806A1

43) Pub. Date: Oct. 27, 2005

(54) DIAGNOSTIC MEMORY DUMP METHOD IN

(75)

(73)

(21)

(22) Filed:

A REDUNDANT PROCESSOR

Inventors: William F. Bruckert, Los Gatos, CA
(US); James S. Klecka, Georgetown,
TX (US); James R. Smullen, Carmel,

CA (US)

Correspondence Address:

HEWLETT PACKARD COMPANY

P O BOX 272400, 3404 . HARMONY ROAD

INTELLECTUAL PROPERTY

ADMINISTRATION
FORT COLLINS, CO 80527-2400 (US)

Assignee: Hewlett-Packard Development Com-

pany, L.P., Houston, TX

Appl. No.:

10/953,242

Sep. 28, 2004

Related U.S. Application Data

(60) Provisional application No. 60/557,812, filed on Mar.
30, 2004.

Publication Classification

(51) INte CL7 oo GO6F 11/00
62 TR U TS R 714/6; 714/718
(57) ABSTRACT

A plurality of redundant, loosely-coupled processor ele-
ments are operational as a logical processor. A logic detects
a halt condition of the logical processor and, 1n response to
the halt condition, reintegrates and commences operation in
less than all of the processor elements leaving at least one
processor element nonoperational. The logic also buffers
data from the nonoperational processor element in the
reloaded operational processor elements and writes the
buffered data to storage for analysis.

104

vy

SERVERNET

v v

SERVERNET
104

| — 112A — 112B - 2
" / S/
1 102
CPU] , cpu_|102 . cpu_JIV =
: 1B | : : 1t
SLICE SLICE SLICE
CPU N | MEM CPU / o ' | MEM Cru/| | - : ' | MEM
' | I | 110B 1 i I | 110C
1 oea || 1] 1104 ! 106R | t06C |1} |
CPU i : CPU | CPU | |
2 1 —— 2 ’, 1
CPU - cpu\ CPU
3 3 TNo2 3 Tio2 —
/)V
100
Y Y Y Y Y Y ¥ Yy V.V
LSU ~—~ (08— LSU LSU ~—~108 — L5U

| ||
v v vy

SERVERNET SERVERNET
104 104

1481 Y01 P01 1400
LANYAA YIS LANYAAYAES LANYTAYAIS LANYIALAS

o]

nsT | — 801 /_ NsT
:

US 2005/0240806 Al

1-F

!
—— — =i

001

| VOl 1
11dD WAIW

dO11
WHW

zo1| [1dO

JCl1 dell Vil

Patent Application Publication Oct. 27, 2005 Sheet 1 of 13

US 2005/0240806 Al

Patent Application Publication Oct. 27, 2005 Sheet 2 of 13

9CC
NOILVHOAdLNIdY 4 LVILINI

¥(C
7114 FDOVHOLS 450710

C¢CC
MOUNIM AJOWIW JSOTO

0CC
dOVIO0LS OL VLlvd
JASSTAdWOD dLI"IM

81¢
VLV SSTAIdWOD

¢ Ol

91¢
YIWA LNIOYIAIA A JOITS
O.L OT'TS V.LVA 445NV Y.L

14X
NOILLLYVd
dIAO MOUNIM FAON

clc
MOANIM AdOWHIIW N3dO

Olc¢
SY444Nd 4LVOOTIV

80¢

JT1Id dJIWNA JLVAYHO

4 _ dIWNA FATADFY TITIVHVd

00¢

N

8C(
AOTI'IS

A4 LLINO dLVYdD4dLNIdYd

90¢
dINTA JAIFO3Y
TATIVIVd 4 LVLLINI

¥0¢

SADI'TS HOSSd00dd
TTV NVHL SS3'T AVOTdY

4414
NOILIANOO L'1VH

Patent Application Publication Oct. 27, 2005 Sheet 3 of 13 US 2005/0240806 A1

300

DETECT HALT CONDITION

302

MAINTAIN DOWN PROCESSOR
IN HALT CONDITION
304

RELOAD AND RESTART
REMAINING PROCESSORS
306

COPY DATA DUMP FROM

DOWN TO UP PROCESSORS
308

RELOAD AND RESTART DOWN COMPRESS DUMP DATA AND

PROCESSOR WRITE TO STORAGE
310 312

FIG. 3

Patent Application Publication Oct. 27, 2005 Sheet 4 of 13 US 2005/0240806 A1

Patent Application Publication Oct. 27, 2005 Sheet 5 of 13 US 2005/0240806 A1

404
PROCESSOR SLICE
402
uPO uP1 0000 uF’N__1
404 04
408 1y
412 .
10 BRIDGE/MEMORY CONTROLLER _ 10 LINKS
- TO LSU
REINTEGRATION REINTEGRATION
LINK IN LINK OUT
REINTEGRATION LOGIC .
410
MEMORY
406

FIG. 4B

OV DI

US 2005/0240806 Al

o ¢ LAXDOS |
| ndd
WIIC | eeee | WWIA
YO
7 ¢ LAMDOS
1NO MNIT
Nndo
NOILLVYODTLNITY L _
LAOWINW g ———— 80¥
- AdOD - 19014y
Olv || AMOWIW | [1IXDOS
Nndod

T _ o
NS
N wom | L] 04mw0s
P e
ANYId
w S on

-dIN
L]

NOILLVYOALNITY JOT'IS cly
NI JINI'T

LN AN «/
NOILLYYOHLNITY 20

KHOWINW

Patent Application Publication Oct. 27, 2005 Sheet 6 of 13

Patent Application Publication Oct. 27, 2005 Sheet 7 of 13 US 2005/0240806 A1

M
ME 506

520

500

LOGICAL
GATEWAY

SAN INTERFACE ' -
522 ARBITER | | INITIATOR | | TARGET

FIG. 5

514

JOI'TS HOT'IS A0I'TS
¥19

US 2005/0240806 Al

AdOWHNW

I/
I/

f
AJOWHW
019
V009

2009 d002

Patent Application Publication Oct. 27, 2005 Sheet 8 of 13

Patent Application Publication Oct. 27, 2005 Sheet 9 of 13 US 2005/0240806 A1

TRIPLEX EXECUTION
702

v
HALT
704
!
I
\ 4
SELECT OMITTED
PROCESSOR AND RELOAD Q
706
l
!
v
RUN DUPLEX O
708
l
I
v

START COPY PROCESS m
1o (O

v
COMPLETED COPY O O Q
712
|
|
REINTEGRATION O
714
v
RUN TRIPLEX O O O |
716 '

US 2005/0240806 Al

Patent Application Publication Oct. 27, 2005 Sheet 10 of 13

g DI
I LdVAVY
O/1 808

808
708

MIOMLIN VIIY WIALSAS

= —— | XXX

LT HOSSFOO0Ud TYVOID O]

T

01 HOSSTD0Ud TVIIDOT
6 HOSS54004dd 'TVOIDOT

L 4OSSTDOUd T
8 WOSSTOOUd TVIIDOT OSSID0¥d TVOIDOT

9 YOSSTDOUd TVIIDOT |

$ HOSSTD0Ud TVIIDOT

XITAWOI MOSSIIOU || | o SeeaoMd TVOIDOT

) \

¢08 XA TdWOD "HOSSTD0dd

d41dvayv

Q/1

AHOMLAN VAUV WHILSAS

£ 4OSS3O0dd TVIIDOT
¢ HOS53004d TVOIOO]
[4OSSHOOYd TVOID O

0 HOSS4D00Yd TVDIDO] |

)

XATdIWOD d0OS5300dd

v_ ...,...

¢O8

J08

Patent Application Publication Oct. 27, 2005 Sheet 11 of 13 US 2005/0240806 A1

PROCESSOR COMPLEX

REINTEGRATION LINKS

900
PRC PRC PRC
SLC SLC SLC
A B C

906

SYSTEM AREA NETWORKS
914

FIG. 9

Patent Application Publication Oct. 27, 2005 Sheet 12 of 13 US 2005/0240806 A1

PROCESSOR COMPLEX
1000
PROCESSOR | | PROCESSOR | | PROCESSOR
SLICE A SLICE B SLICE C
uPO
PEp,
1002 ' 1002
1002 ' 1002
PE PE; I

1004 1004

FIG. 10A

Patent Application Publication Oct. 27, 2005 Sheet 13 of 13 US 2005/0240806 Al

PROCESSOR COMPLEX
1000
PROCESSOR PROCESSOR PROCESSOR
SLICE A SLICE B SLICE C
uP0
uP1 uP1
Pkg) PEC
_________________ \
I
uP2 uP2 |
l
~—
1006
________ /
uP 3
PEC3
1004 1004

FIG. 10B

US 2005/0240806 Al

DIAGNOSTIC MEMORY DUMP METHOD IN A
REDUNDANT PROCESSOR

BACKGROUND OF THE INVENTION

[0001] System availability, scalability, and data integrity
arec fundamental characteristics of enterprise systems. A
nonstop performance capability 1s 1imposed 1n financial,
communication, and other fields that use enterprise systems
for applications such as stock exchange transaction han-
dling, credit and debit card systems, telephone networks,
and the like. Highly reliable systems are often implemented
in applications with high financial or human costs, 1n cir-
cumstances of massive scaling, and in conditions that out-
ages and data corruption cannot be tolerated.

[0002] In a continuously available system, a user expects
and desires end-to-end application availability, a capability
to achieve a desired operation within an acceptable response
time. A scalable system 1s expected to achieve near 100%
linear scalability, scaling from a few processors to thousands
in a manner that the amount of useful work done when the
nth processor 1s added to a cluster 1s essentially the same as
the incremental amount of work accomplished when the
second, third, or additional processors are added.

[0003] One aspect of a highly available and reliable sys-
tem 1S a capability to analyze failure events, enabling
treatment and possible prevention of such failure conditions.
A usetul tool for diagnosing system ditficulties in a com-
puting system 1s a memory dump, an output file generated by
an operating system during a failure for usage 1n determin-
ing the cause of the failure.

[0004] Unfortunately, capture, handling, and storage of
diagnostic information all can 1impose on performance and
availability of a system. For a sophisticated, complex, or
large system, acquisition and handling of diagnostic infor-
mation can last for many minutes or possibly hours, thereby
compromising system availability.

[0005] Various techniques are used to reduce time
expended 1n writing debugeing information and limit the
storage space for storing a crash dump file 1in the event of a
fatal error. For example, the stored debug information may
be reduced to cover only the operating system or kernel level
memory, allowing analysis of nearly all kernel-level system
errors. Unfortunately the kernel-level system dump remains
large enough to compromise availability. An even smaller
memory dump may be acquired to cover only the smallest
amount of base-level debugging information, typically suf-
ficient only to i1denfily a problem.

SUMMARY

[0006] In accordance with an embodiment of a computing
system, a plurality of redundant, loosely-coupled processor
clements are operational as a logical processor. A logic
detects a halt condition of the logical processor and, in
response to the halt condition, reintegrates and commences
operation 1n less than all of the processor elements leaving
at least one processor element nonoperational. The logic also
buffers data from the nonoperational processor element in
the reloaded operational processor elements and writes the
buffered data to storage for analysis.

Oct. 27, 2005

BRIEF DESCRIPITION OF THE DRAWINGS

[0007] Embodiments of the invention relating to both
structure and method of operation, may best be understood
by referring to the following description and accompanying
drawings whereby:

[0008] FIG. 1 is a schematic block diagram depicting an
embodiment of a computing system that includes a plurality
of redundant, loosely-coupled processor elements arranged
and operational as a logical processor;

[0009] FIG. 2 is a flow chart that illustrates an embodi-

ment of a sequence of operations for performing an asym-
metric memory dump operation;

[0010] FIG. 3 is a flow chart showing an alternative
embodiment of a method for performing a diagnostic
memory dump operation;

[0011] FIGS. 4A, 4B, and 4C are schematic block dia-

grams respectively showing an embodiment of a computer
system,

[0012] FIG. 5 is a schematic block diagram depicting
another embodiment of a synchronization unait;

[0013] FIG. 6 1s a schematic block diagram showing a
functional view of three processor slices operating in duplex

mode with one processor slice omitted from running the
operating system;

[0014] FIG. 7 is a block timing diagram that illustrates an
embodiment of the technique for performing a diagnostic
memory dump;

[0015] FIG. 8 is a schematic block diagram illustrating an
embodiment of a processor complex in a processor node;

[0016] FIG. 9 is a schematic block diagram showing an
embodiment of a processor complex that includes three
processor slices; and

[0017] FIGS. 10A and 10B are schematic block diagrams
depicting an embodiment of a processor complex and logical
ProOCESSOL.

DETAILED DESCRIPTION

[0018] Various techniques may be used to capture a
memory dump of a computing system. In one example, a
computing system composed of multiple redundant proces-
sors can capture a memory dump by having a central
processing unit, for example running an operating system
that supports multiple redundant processors such as the
NonStop Kernel™ made available by Hewlett Packard
Company of Palo Alto, Calif., copy the memory of a
non-executing central processing unit. In a particular
example, the non-executing or “down” processor can run a
Halted State Services (HSS) operating system. The execut-
ing processor copies the memory dump data from the
non-executing processor back to the executing processor’s
memory and subsequently writes the data to a storage
device, such as a disk file.

[0019] In a specific example, a pre-Fast-Memory-Dump
(pre-FMD) technique can be used in which the running
processor copies raw data from the down processor memory
and compresses the raw data 1n the running processor. In an
alternative post-FMD method, the raw data 1s compressed 1n
the down processor, for example under HSS, and the com-

US 2005/0240806 Al

pressed data 1s moved via network communications, such as
ServerNet™ to the running processor which writes the
compressed data to storage, such as a memory dump disk. A
further alternative Fast-Memory-Dump enhancement
involves copying only part of the memory, either com-
pressed or noncompressed data, from the down processor to
the running processor, then reloading the operating environ-
ment to the memory part to begin execution, then copying
the remainder of the memory after completion of the reload
that returns the memory to the running system.

[0020] The described dump techniques use capture of
memory contents prior to reloading the processor, for
example by copying the memory to the system swap files or
special dump files. The copying time may be mitigated, for
example by copying part of memory and reloading into only
that copied part, then recopying the remainder of the data
after the processor 1s reloaded, returning memory to normal
usage alter the copy 1s complete. The method reduces the
time expenditure, and thus system down-time, for capturing
and storing the memory dump data, but significantly impacts
processor performance since only a subset of the memory 1s
available for normal operation. The techniques further
involve a significant delay before normal operation can be
started.

[0021] In an illustrative example embodiment, a logical
processor may include two or three processor elements
running the same logical instruction stream. A dual-modular
redundant (DMR) logical processor and/or a tri-modular
redundant (TMR) logical processor can capture and save a
logical processor memory dump while concurrently running
an operating system on the sample logical processor. In a
fully parallel technique that begins following a computing
system halt condition, less than all of the processor elements
are reloaded and made operational, leaving at least one
processor element 1n a non-running or “down” condition,
not integrated mto the logical processor. Memory dump data
1s copied from the down processor element, for example

using a dissimilar data exchange direct memory access
(DMA) transfer.

10022] Referring to FIG. 1, a schematic block diagram
depicts an embodiment of a computing system 100 that
includes a plurality of redundant, loosely-coupled processor
clements 102 that are arranged and operational as a logical
processor. A logic, for example executable in the processor
clements 102, detects a halt condition of the logical proces-
sor and, 1n response to the halt condition, reloads and
commences operation 1n less than all of the processor
clements, leaving at least one processor element nonopera-
tional. The logic also buifers data from the nonoperational
processor element in the reloaded operational processor
clements and writes the buflered data to storage for analysis.

[10023] The loosely-coupled processors 102 form a com-
bined system of multiple logical processors, with the indi-
vidual processors 102 assuring data integrity of a computa-
tion. The 1llustrative computing system 100 operates as a
node that can be connected to a network 104. One example
of a suitable network 104 1s a dual-fabric Hewlett Packard
ServerNet cluster™. The computing system 100 1s typically
configured for fault 1solation, small fault domains, and a
massively parallel architecture. The computing system 100
1s a triplexed server which maintains no single point of
hardware failure, even under processor failure conditions.

Oct. 27, 2005

The 1illustrative configuration has three instances of a pro-
cessor slice 106A, 106B, 106C connected to four logical
synchronization units 108. A logical synchronization unit
108 1s shown connected to two network fabrics 104.

[0024] Individual logical computations in a logical pro-
cessor are executed separately three times in the three
physical processors. Individual copies of computation
results eventually produce an output message for input/
output or interprocess communication, which 1s forwarded
to a logical synchronization unit 108 and mutually checked
for agreement. If any one of the three copies of the output
message 1s different from the others, the differing copy of the
computation 1s “voted out” of future computations, and
computations on the remaining instances of the logical
processor continue. Accordingly, even after a processor
failure, no single point of failure proceeds to further com-
putations. At a convenient time, the errant processing ele-
ment can be replaced online, remntegrating with the remain-
ing processing elements, restoring the computing system
100 to fully triplexed computation.

[0025] In the illustrative configuration, the individual pro-
cessor slices 106 A, 106B, 106C are cach associated respec-
tively with a memory 110A, 110B, 110C and a reintegration
element 112A, 112B, 112C. The data can be buffered or
temporarily stored, typically in the memory associated with
the running processor slices. The individual processor slices
106 A, 106B, 106C also can include a logic, for example a
program capable of execution on the processor elements 102
or other type of control logic, that reloads and reintegrates
the nonoperational processor element or slice 1nto the logical
processor after the data 1s buflfered.

[0026] An asymmetric data dump is desirable to enable
analysis into causes of a failure condition. Diagnostic infor-
mation 1s more likely to be collected 1f acquisition can be
made without compromising performance and availability.

[10027] The computing system 100 can activate capture of
diagnostic memory dump information upon a logical pro-
cessor halt condition. Diagnostic memory dump collection
logic reloads the logical processor but does not include all
processor slices 106A, 106B, 106C in the reload. In some
implementations and 1n some conditions, the processor slice
selected to omit from reload 1s arbitrarily selected. In other
implementations or conditions, the omitted processor slice
can be selected based on particular criteria, such as mea-
sured performance of the individual slices, variation 1in
capability and/or functionality of the particular processor
slices, or the like. The processor slice omitted from the
reload 1s maintained 1n the stopped condition with network
traffic neither allowed 1nto the stopped processor elements
102 nor allowed as output.

[0028] No matter the reason that the processor element is
halted, the element may remain stopped and the associated
memory may be dumped prior to reintegrating the element.

[10029] Referring to FIG. 2, a flow chart illustrates an
embodiment of a sequence of operations for performing an
asymmetric memory dump operation 200. Upon a halt
condition 202 of a logical processor, a response logic or
program reloads the operating system 204 1n less than all of
the processor slices. In a specific example, one processor
slice 1s omitted from reload while the operating system 1s
reloaded 1n the other two processor slices. One technique for

US 2005/0240806 Al

reloading less than all processor slices i1s performed by
1ssuing a command to place the logical processor 1n a “ready
for reload” state that denotes which processor slice and/or
processor element 1s to be omitted from the reload. The
omitted processor slice or processor element 1s voted out and
the remaining two processor elements 1 a tri-modular
redundant (TMR) logical processor, or the remaining single
processor element in a dual-modular redundant (DMR)
logical processor, are reloaded. Criteria for selection of the
omitted processor may be arbitrary or based on various
conditions and circumstances.

[0030] After completing the partial reload, a parallel
receive dump (PRD) program is automatically initiated 206.
A separate 1nstruction stream of the PRD program typically
executes 1n all reloaded processor slices, although other
implementations may execute from logic located 1n alterna-
tive locations.

[0031] The parallel receive dump (PRD) program creates
208 a dump file and allocates 210 buffers; typically memory
associated with the processor slices. All architectural state of
the processor elements 1s typically saved 1in the memory so
that separate collection of the mnformation 1s superfluous.

[0032] The parallel receive dump (PRD) program opens
212 a memory window on a physical partition of memory
associated with the particular processor slice executing the
PRD program. The parallel receive dump (PRD) program
moves 214 the window over the entire partition. In the
illustrative embodiment, all processor elements of the logi-
cal processor generally have identical partitions so that the
window also describes the partition of the omitted processor
clement.

[0033] The parallel receive dump (PRD) program per-
forms a divergent data direct memory access (DMA) 216
operation that transfers data from one processor slice to
another via DMA. A specific embodiment can use high order
address bits of the source memory address to identify the
particular omitted processor slice and/or processor element.
For example, four memory views are available using Serv-
erNet™ including the logical processor as a whole, proces-
sor slice A, processor slice B, and processor slice C. A direct
memory access device reads data from the omitted processor
slice and copies the data to a bufler in memory of the two

executing processor slices, for example running the Non-
Stop Kernel™.

10034] In a particular implementation of the DMA opera-
tion, the source physical address high-order bits denote the
one speciiic processor slice omitted from the reload. The
target bufller for the DMA operation 1s 1n memory associated
with the reloaded processor slices running the operating,
system and not the memory associated with the stopped
processor slice.

[0035] The computing system that executes the asymmet-
ric memory dump operation 200 may further include a
reintegration logic that restarts and resynchronizes the plu-
rality of processor elements following a failure or service
condition. A remtegration process 1s executable on at least
one of the operating processor elements and delays reinte-
oration of the nonoperational processor element until dump
processing 1s complete.

[0036] When the input/output operations for transferring
the memory dump to buflers in the executing processor

Oct. 27, 2005

slices are complete, the parallel receive dump program
compresses 218 the data into a compressed dump format,
and writes 220 the compressed data to a storage device, for
example a dump file on an external disk storage. Transfer of
the compressed dump data 1s similar to the dump operation
of the pre-Fast-Memory-Dump (pre-FMD) technique
receive dump operation.

[0037] When the parallel receive dump program has com-
pleted copying, compressing, and writing the dump data to
storage, the parallel receive dump program closes 222 the
window to physical memory, closes 224 the storage file, and
initiates 226 reintegration of the dumped processor slice.

[0038] The omitted processor slice is reintegrated 228 and
the dump operation completes.

[0039] Referring to FIG. 3, a flow chart shows an alter-
native embodiment of a method for performing a diagnostic
memory dump operation 300. When a processor halts, a
diagnostic dump of processor memory contents can be taken
to determine the cause of the halt condition. A processor that
includes multiple redundant loosely-coupled processor ele-
ments 1s called a logical processor. When a logical processor
halts, the diagnostic dump can be taken without delaying the
reloading —the return to service—ot the logical processor,
for example by reloading all but one of the multiple loosely-
synchronized processor elements, leaving the one processor
unchanged or “down” until the logical processor 1s reloaded.

[0040] The diagnostic memory dump operation 300 is
invoked as a result of the halt condition. The condition
causes one of the logical processors to halt while the other
logical processors continue to run and do not require reload-
ing. Data from the halted logical processor 1s dumped to one
of the running logical processors, and the dump data is
written to storage, such as a disk. The halted processor 1s
then reloaded. Only one logical processor 1s halted and only
one reload takes place. In a reload of a logical processor, a
new copy of the operating system 1s brought up 1n the logical
processor. For reintegration of a processor element, a pro-
cessor 1s merged back 1nto a running logical processor.

[0041] The diagnostic memory dump method 300 can be
implemented 1n an executable logic such as a computer
program or other operational code that executes i1n the
processor elements or 1n other control elements. The opera-
tion begins on detection 302 of a halt condition of at least
onc processor element of multiple redundant processor
clements. In a particular example, a system may implement
a pointer to a linked list of various fault and operating
conditions that causes execution to begin at a servicing logic
for a particular condition. Various conditions may evoke a
response that generates a diagnostic memory dump. One
processor element, termed a “down” processor element, 1s
maintained 304 1n a state existing at the halt condition and
the other processor elements are reloaded 306 and enabled
to commence execution, for example restarting an operating
system such as Hewlett Packard’s NonStop Kemel™. One
technique for imitiating a response to the halt condition
1ssues a command to place the logical processor 1n a “ready
for reload ” state 1n which the command designates the
processor element to be omitted from the reload. The
command causes ‘“voting-out” of the omitted processor
clement and reloads the remaining processor elements for
execution.

[0042] The state of the down processor maintained at the
halt condition 1s copied 308 to a storage while the reloaded

US 2005/0240806 Al

other processors continue executing. For example, once
reloading of the processor elements other than the down
processor element 1s complete, the reloaded processor ele-
ments can automatically initiate a parallel receive dump
program that creates a dump file, allocates buffers in
memory assoclated with the reloaded processors for usage in
temporarily storing the memory dump data, and saves the
architectural state of all processor elements in memory
buffers. In some embodiments, a special direct memory
access (DMA) operation can be started that copies memory
of the down processor element to buflers 1n the running
processor elements. The divergent data Direct Memory
Access (DMA) operation uses a self-directed write whereby
a designated source memory address i1dentifies the one
processor element maintained 1n the halt condition.

[0043] On completion of the Input/Output operation of the
divergent DMA operation, the parallel receive dump pro-
oram compresses data into dump format, writes 312 the
compressed memory dump data to a storage device, and
closes the memory window. The divergent data DMA opera-
fion can be used to write 312 the memory dump from the
buffers to a storage device, for example an external disk
storage device for subsequent analysis.

10044] After the data dump i1s copied from the down
processor to the executing processors 308 and possibly
concurrent with memory dump 1s transfer from the down
processor to storage, such as the dump file and/or temporary
buffer, the down processor element 1s reintegrated 310 1nto
the logical processor.

10045] The illustrative technique enables the logical pro-
cessor to 1mmediately return to service following a halt
condition, eliminating or avoiding delay otherwise involved
for copying of the diagnostic dump memory to disk. The
illustrative technique further enables functionality as a
highly available system, eliminating or avoiding removal of
a logical processor from service for collection of diagnostic
information which may take a substantial amount of time.
Commonly the transferring of the data to disk can take
several minutes, a large amount of time 1n a highly-available
system. The illustrative technique reduces the latency effec-
tively to zero.

10046] Referring to FIGS. 4A, 4B, and 4C, schematic

block diagrams respectively show an embodiment of a
computer system 400, for example a fault-tolerant Non-
Stop™ architecture computer system from Hewlett-Packard
Company of Palo Alto, Calif., and two views of an indi-
vidual processor slice 402. The 1llustrative processor slice
402 1s an N-way computer with dedicated memory and clock
oscillator. The processor slice 402 has multiple micropro-
cessors 404, a memory controller/IO interface 408, and a
memory subsystem 406. The processor slice 402 further
includes reintegration logic 410 and an interface to voter
logic.

10047] In the event of a halt condition, a logical processor
halts. The computer system 400 1s an entire process made up
of multiple logical processors. The halted logical processor
ceases functioning under the normal operating system, for
example the NonStop Kernel system, and enters a state that
allows only abbreviated functionality. In one example, the
halt condition causes the system to function under halted
state services (HSS). A failure monitoring logic, such as
software or firmware operating in control logic, detects the

Oct. 27, 2005

halt condition, and selects from among the processor slices
402 for a processor slice to omit from reloading. In various
implementations the omitted processor may be selected
arbitrarily or based on functionality or operating character-
istics, such as performance capability considerations asso-
clated with the different processor slices 402. The control
logic reloads the operating system 1nto memory for proces-
sor slices that are not selected for omission so that the
processor slices return to execution. The omitted processor

slice remains 1nactive or “down”, confinuing operations
under halted state services (HSS).

[0048] The reloaded processor slices request capture of a
memory dump from the omitted processor memory while
the omitted processor slice remains functionally 1solated
from the operating processor slices. The reloaded processors
begin a copy process, for example that executes on the
reloaded processors and stores the memory dump data from
the omitted processor to memory 406 associated with the
operating processor slices 402. The diagnostic dump data
passes from the omitted processor slice to the reloaded and
operating processor slices via a pathway through a logical
synchronization unit 414. The logical synchronization unit
414 1s an nput/output interface and synchronization unit that
can be operated to extract the memory dump data from the
omitted processor slice including a copy of the data and a
copy of a control descriptor associated with the data. The
reintegration logic 410 generally operates 1n conditions of
processor slice failure to reintegrate the operations of the
failed slice 1nto the group of redundant slices, for example
by replicating write operations of memory for one processor
slice to memory of other processor slices 1n a redundant
combination of processor slices.

[0049] In a specific example, software executing in one or
more of the reloaded and running processor slices performs
asymmetric input/output operations that copy memory dump
data from the omitted processor slice to memory buifers in
both of the operating, reloaded processor slices. Accord-
ingly, the two reloaded processor slices 402 operate tempo-
rarily 1n duplex mode while acquiring and storing the
diagnostic dump information before returning to triplex
operation.

[0050] In a particular embodiment, the microprocessors
404 may be standard Intel Itanium Processor Family mul-
tiprocessors that share a partitioned memory system. Each
microprocessor may have one or more cores per die. A
processor slice 402 with an N-Way Symmetrical Multi-
Processor (SMP) supports N logical processors. Each logical
processor has an individual system 1mage and does not share
memory with any other processor.

[0051] Reintegration logic 410 can replicate memory
write operations to the local memory and sends the opera-
tions across a reintegration link 412 to another slice. The
reintegration logic 410 1s configurable to accept memory
write operations from the reintegration link 412. The rein-
tegration logic 410 can be interfaced between the I/O
bridge/memory controller 408 and memory 406, for
example Dual In-line Memory Modules (DIMMs). Alterna-
fively, the reintegration logic 410 may be integrated into the
I/O bridge/memory controller 408. Reintegration logic 410
1s used to bring a new processor slice 402 online by bringing
memory state 1n line with other processor slices.

[0052] In an illustrative example, the computer system
400 uses loosely lock-stepped multiprocessor boxes called

US 2005/0240806 Al

slices 402, each a fully functional computer with a combi-
nation of microprocessors 404, cache, memory 406, and
interfacing 408 to mput/output lines. All output paths from
the multiprocessor slices 402 are compared for data integ-
rity. A failure 1n one slice 402 1s transparently handled by
continuing operation with other slices 402 continuing 1in
operation. The computer system 400 executes 1n a “loose-
lock stepping” manner 1n which redundant microprocessors
404 run the same 1nstruction stream and compare results
intermittently, not on a cycle-by-cycle basis, but rather when
the processor slice 402 performs an output operation. Loose-
lockstep operation prevents error recovery routines and
minor non-determinism conditions 1n the microprocessor
404 from causing lock-step comparison errors.

[0053] Referring to FIG. 5, a schematic block diagram
depicts an embodiment of a synchronization unit 500 includ-
ing a logical gateway 514 that prevents divergent operations
from propagating to the mput/output stream. The synchro-
nization unit 500 i1s capable of connecting to one, two, or
three processor slices 504 through a serialized 1nput/output
bus. The synchronization unit 500 performs transaction-
level checking on input/output transactions and forwards
data to a host-side input/output device 522, for example a
host bus adapter or storage array network (SAN) controller.
The synchronization engine 520 enables the multiple pro-
cessor slices 504 to synchronize and exchange asynchronous
data such as interrupts and can also control exchange of
private and dissimilar data among slices.

10054] Logical gateway 3514 has two independent voter
subunits, one for voting Programmed Input/Output (PIO)
read and write transactions 516 and a second for voting
Direct Memory Access (DMA) read responses 518. The
Direct Memory Access (DMA) read response subunit 518
verifles mput/output controller-initiated DMA operations or
responses from memory and performs checks on read data
with processors performing voted-write operations. DMA
write traffic 1s originated by the input/output controller 522
and 1s replicated to all participating processor slices 504.
DMA read traffic 1s originated by the input/output controller

522. DMA read requests are replicated to all participating
slices 504.

[0055] Referring to FIG. 6, a schematic block diagram
illustrates a functional view of three processor slices 600A,
600B, and 600C. The logical gateway supports single slice
sourced read transactions 1n which a read response of one
processor slice alone 1s transferred from the processor,
enabling performance of a memory dump operation. For
example, the single slice sourced read can be used to transfer
data 1n a pathway 608 from omitted processor slice memory

610 to memory 612 and 614 in the executing processor
slices.

[0056] Referring to FIG. 7, a block timing diagram illus-
frates an embodiment of the technique for performing a
diagnostic memory dump 700. The computing system runs
in a triplex mode 702 with the three individual processor
slices executing a common instruction stream redundantly. A
halt condition 704 terminates execution of the processor
slices and entry of all slices into halted state services (HSS).
A processor slice 1s selected to omit from running of the
processor slices in duplex and the two processor slices not
selected for omission are reloaded 706. After reload, the two
processor slices run the operating system in duplex 708.

Oct. 27, 2005

After reload 1s complete and the processor slices run in
duplex, a copy process starts 710, for example 1n a logical
synchronization unit that operates as a pathway for copying
data from the omitted processor slice memory to a buifer
memory 1n one or both of the running processor slices under
management of control information received from the run-
ning processor slices. Data can be copied through a scan of
the entire memory partition of the omitted processor slice
memory. When the diagnostic dump data copy 1s completed
712, reintegration 714 of the omitted processor slice with the
two running processor slices begins, enabling upon comple-
tion of integration triplex mode operation 716 of the three
processor slices.

[0057] Referring to FIG. 8, a schematic block diagram
illustrates an embodiment of a processor complex 802 in a
processor node 800. A computer system runs a single
application on multiple logical processors, each executing,
the same 1nstruction stream by different microprocessors on
different processor boards. The 1ndividual processor com-
plexes 802 implement multiple logical processors. An 1llus-
trative processor node 800 has three processor complexes
802, each with four logical processors so that the entire node
800 has twelve logical processors. In an example implemen-
tation inter-processor communication and processor-to-10
communication may use redundant System Area Networks
(SANs) 804. Individual logical processors in the processor
complex 802 have interfaces 806 to the SANs 804. Logical
processors use the SANs 804 for interprocessor communi-
cation and connectivity with shared input/output (I/O) adapt-

ers 808.

[0058] Referring to FIG. 9, a schematic block diagram

illustrates an embodiment of a processor complex 900 that

includes three processor slices, slice A 902, slice B 904, and
slice C 906, and N voting blocks 908 and System Area

Network (SAN) interfaces 910. The number of voting blocks
N 1s the number of logical processors supported in the
processor complex 900. A processor slice 902, 904, 906 1s
illustratively a multiprocessor computer with contained
caches, a memory system, a clock oscillator, and the like.
Each microprocessor 1s capable of running a different
instruction stream from a different logical processor. The N
voting blocks 908 and N SAN interfaces 910 are mutually
paired and included within N respective logical synchroni-
zation units (LSUs) 912. An illustrative processor complex
900 has one to two logical synchronization blocks 912, with
assoclated voting block unit 908 and SAN interface 910, per
logical processor.

[0059] During operation, the processor slices A 902, B
904, and C 906 generally are configured as multiple tri-
modular logical processors that execute 1 loose lockstep
with I/O outputs compared by the voter units 908 before data
1s written to the System Area Network 914.

[0060] The term processor complex 900 is merely descrip-
five term and does not necessarily define a system enclosed
within a single housing. A processor complex 1s generally
not a single field-replaceable unit. In a typical minimum
coniliguration, a field-replaceable unit can include one LSU
and one slice.

[0061] The voter units 908 are logical gateways of opera-
fion and data crossing from the logical synchronization
blocks 912 unchecked domain to a self-checked domain.
DMA read data and PIO reads and write requests that

US 2005/0240806 Al

address the self-checked domain are checked by the voter
unit 908 1n order of receipt. Operations are not allowed to
pass one another and complete before the next 1s allowed to
start. DMA read response data are also checked in the order
received and then forwarded to the system area network
interface 910, for example a Peripheral Component Inter-
connect Extended (PCI-X) interface. PIO requests and DMA
read responses are processed in parallel with no ordering
forced or checked between the two streams.

10062] Referring to FIG. 4 in combination with FIG. 9, a
processor complex includes reintegration links 412 that copy
memory contents from a functioning slice or slicess to a
non-operating or newly added slice. Reintegration 1s used
after some errors or repair operations 1n conditions that
recovery 1s served by resetting a slice and returning to
operation with other running slices. In various embodiments,
the reintegration link 412 may copy over the memory of a
single processor element, multiple processor elements, or all
processor elements within a processor slice.

[0063] Referring to FIG. 10A, a schematic block diagram
depicts an embodiment of a processor complex 1000. A
processor element 1002 1s defined herein as hardware that
executes an individual mstruction stream running on a single
processor slice 1004. The 1illustrative processor complex
1000 may be considered a matrix with three columns A, B,
and C, representing three processor slices 1004 and N rows
representing N logical processors. In the illustrative dia-
oram, the notation PEA ,; refers to the processor element
that 1s the third microprocessor in slice A. The processor
clement 1002 1s one logical processor, for example execut-
Ing one 1nstruction stream, on one processor slice 1004.

[0064] If the microprocessor used in the processor slice
1004 has multiple cores, for example the microprocessor die
has multiple processor cores, each running an independent
mstruction stream. The term processor element refers to a
single core.

[0065] Referring to FIG. 10B, a schematic block diagram
illustrates the embodiment of the processor complex 1000,
depicting a logical processor 1006. Within a processor slice
1004, for example the N-way SMP processor slice, each
instruction stream 1s assoclated to a different logical pro-
cessor 1006. Each logical processor 1006 can execute a
processor-dedicated copy of an operating system, for
example the NonStop Kernel (NSK)™ operating system
from Hewlett-Packard Company of Palo Alto, Calif. Within
the processor slice 1004 are N logical processors 1006 that
mutually share neither private memory nor peripheral stor-
age, but otherwise all run out of the same physically-shared
memory. Except for a small amount of initialization code
that segments the processor slice memory, each logical
processor runs mdependently of the others from different
regions of the same memory.

[0066] The logical processor 1006 is formed from one or
more processor elements 1002, for example three in the
illustrative embodiment, depending on the number of pro-
cessor slices 1004 available. A stmplex logical processor has
only one processor element (PE) per logical processor. A
dual-modular redundant (DMR) logical processor has two
processor elements (PEs) per logical processor. A tri-modu-
lar redundant (TMR) logical processor has three. Each
processor element 1002 1n a logical processor 1006 runs the
same 1nstruction stream, 1n loosely lock-stepped operation,

Oct. 27, 2005

and output data from multiple processor elements 1s com-
pared during data input/output (I/O) operations.

[0067] Referring again to FIG. 5 in combination with
FIGS. 9, 10A, and 10B, the logical synchronization unit
(LSU) 500 functions as part of a logical processor 1006 in
a fault tolerant interface to a system area network 914 and
performs voting and synchronization of the processor ele-
ments 1002 of the logical processor 1006. In an illustrative
implementation, each logical synchronization unit 500 is
controlled and used by only a single logical processor 1006.

[0068] In the illustrative embodiment, one or two logical
synchronization units 500 are combined with one, two, or
three processor elements 1002 to create varying degrees of
fault tolerance 1n the logical processors 1006. A system may
optionally be configured with a second logical synchroni-
zation unit 500 per logical processor 1006.

[0069] The logical synchronization unit 500 may use fully
self-checked logic. The logical synchronization unit 500
resides between the replicated processor slices 902, 904, 906
and the system area network 914 and, in some implemen-
tations, may not have data compared to preserve data
integrity such as for the processor slices. Accordingly,
appropriate redundancy techniques may be used in the
logical synchronization unit 500 to ensure data integrity and
fault 1solation.

[0070] The voter logic 908 connects the processor slices
902, 904, 906 to the SAN interface 910 and supplies
synchronization functionality for the logical processor. More
specifically, the voter logic 908 compares data from pro-
grammed input/output (PIO) reads and writes to registers in
the logical synchronization unit 912 from each of the
processor elements. The comparison 1s called voting and
ensures that only correct commands are sent to logical
synchronization unit logic. Voter logic 908 also reads out-
bound data from processor slice memories and compares the
results before sending the data to the system area network
(SAN), ensuring that outbound SAN traffic only contains
data computed, or agreed-upon by voting, by all processor
clements 1n the logical processor. The voter logic 908 also
replicates and distributes programmed input/output (PIO)
data read from the system area network and registers 1n the
logical synchronization unit 912 to each of the processor
clements. The voter logic 908 further replicates and distrib-
utes mbound data from the system area network to each of
the processor elements. The voter logic 908 can supply
fime-of-day support to enable processor slices to simulta-
neously read the same time-of-day value. The voter logic
908 supports a rendezvous operation so that all processor
slices can periodically check for mutual synchrony, and
cause one or more processor elements to wait to attain
synchrony. The voter logic 908 also supports asymmetric
data exchange buffers and inter-slice interrupt capability.

[0071] The voter logic, shown as the logical gateway 514
in F1G. 5, includes interface logic, for example programmed
input/output (PIO) 516 and direct memory access (DMA)
read mnterface 518, and state logic. The state logic designates
cither an asymmetric state or a symmetric state. The asym-
metric state 1s specific to one processor element 504. The
symmetric state 1s common to the enfire logical processor.
Examples of processor element-specific logic and data are
the rendezvous registers and logic shown as synchronization
engine 520, dissimilar data exchange buifers, and the inter-

US 2005/0240806 Al

slice interrupts. Parallel read and write operations to the
asymmetric logic are from a single processor element 504.
Processor element-initiated read and write operations to the
asynchronous registers are not voted or compared. Data 1s
sent back only to the specific processor element requesting
the operation.

[0072] The logical gateway 514 forwards data to the
processor element memories 506 at approximately the same
time. However, the processor elements 504 do not execute
in perfect lockstep so that data may arrive 1n memory 506
carly or late relative to program execution of the particular
processor element 504. No data divergence results among,
the processor elements since the SAN programming model
does not allow access to an inbound buifer until after arrival
notification receipt.

[0073] The system area network (SAN) interface 522 is
generally used for all input/output, storage, and interproces-
sor communications. The SAN mterface 522 communicates
with the three processor slices through the logical gateway
514. System area network (SAN) traffic passes to and from
a logical processor and not individual processor elements.
The logical gateway 514 replicates data from the system
arca network to the memory of all processor elements 504
participating in the logical processor. The logical gateway
514 also performs the voting operation, comparing data
from the slices before passing the data to the SAN 1nterface.

[0074] In an illustrative configuration, each logical pro-
cessor has a dedicated SAN 1nterface. To avoid failures or
bugs that can affect multiple logical processors, redundant
execution paths can be implemented to avoid a single failure
from disabling multiple logical processors.

[0075] The system performs according to a loose lock-step
fault tolerance model that enables high availability. The
system 1s tolerant of hardware and many software faults via
loosely-coupled clustering software that can shift workload
from a failing processor to the other processors in the cluster.
The model tolerates single hardware faults as well as soft-
ware faults that affect only a single processor. The model
uses processor self-checking and 1mmediately stopping,
before faulty data 1s written to persistent storage or propa-
gated to other processors.

[0076] After a failure or a service operation on a multiple-
slice system the new processor or processors are reinte-
orated, mcluding restarting and resynchronizing with the
existing running processors. Steps to restore the processor
memory state and return to loose lock-step operation with
the existing processor or processors 1s called reintegration.
Unlike a logical processor failure, multiple-redundant hard-
ware failures and the subsequent reintegration of the
replacement or restarted hardware are not detectable to
application software. Reintegration 1s an application-trans-
parent action that incorporates an additional processor slice
into one or more redundant slices 1n an operating logical
ProCessor.

[0077] In the reintegration action, all memory and proces-
sor state of a running slice 1s copied to the second slice and
both slices continue operation. The basic approach 1s com-
plicated because reintegration 1s to have minimal duration,
performance, and availability impact on the running proces-
sor, for example the reintegration source that continues to
execute application programs.

Oct. 27, 2005

[0078] In some embodiments, special hardware called a
reintegration link 1s used to copy memory state from the
reintegration source to the target. Since the processor on the
reintegration source continues executing application code
and updating memory, the reintegration link allows normal
operations to modily memory and still have modifications
reflected to the reintegration target memory.

[0079] Reintegration link hardware can be implemented
so that reintegration occurs 1n groups of one or more logical
processors. For example, an implementation can reintegrate
an entire slice even if only one processor element of one
logical processor 1s restarted. A reintegration scheme that
affects only a single logical processor reduces or minimizes
the amount of time a system runs on less than full capability.

|0080] Reintegration is triggered by a condition such as a
processor slice replacement, receipt of a command for a
system management facility, and/or occurrence of an mput/
output voting error or other error detected by other processor
clements 1n the logical processor. For processor slice
replacement, each new processor elements 1s reintegrated by
the currently running logical processors. For a detected
€ITor, remaining executing processor elements can reset the
faulty processor element and reintegrate. For a transient
error, the processor element can be brought back to a fully
functional state.

[0081] The logical processor that can reintegrate a new
processor element determines whether to begin the reinte-
gration process. For reintegration of an entire slice, control
resides 1n the processor complex. In both cases reintegration
control 1s below the system level function. If reintegration
fails, the logical processor simply logs the error and con-
finues to attempt the reintegration process. The logical
processor may reduce the frequency of reintegration, but
confinues to try until success.

[0082] Referring again to FIGS. 4A, 4B, and 4C, reinte-
gration control 1s performed by the reintegration logic 410
that 1s positioned between the processors 404 and memory
406. A reintegration link 412 connects the multiple proces-
sor slices 402 and can reflect memory writes from one slice
to an adjacent neighbor slice. In an 1llustrative embodiment,
the reintegration logic 410 can be a double data rate syn-
chronous dynamic random access memory (DRAM) inter-
face. The reintegration logic 410 performs multiple func-
tions.

[0083] During normal operation the reintegration logic
410 transparently passes memory operations between the
microprocessors 404 and local memory 406. Reintegration

link 412 usage 1s generally limited to scrubbing of latent
faults.

|0084] During the reintegration operation, reintegration
logic 410 at the source processor slice duplicates all main
memory write operations, sending the operation both to the
local memory 406 and across the reintegration link 412. At
the target processor slice, reintegration logic 410 accepts
incoming writes from the reintegration link 412 and writes
target local memory 406. During reintegration the target
does not execute application programs but rather executes a
tight cache resident loop with no reads or writes to target
local memory 406.

|0085] The reintegration link 412 is a one-way connection
from one processor slice to one adjacent neighbor processor

US 2005/0240806 Al

slice. For a system that includes three processor slices A, B,
and C, only slice A can reintegrate slice B, only slice B can
reintegrate slice C, and only slice C can reintegrate slice A.
Starting from one processor slice with two new processor
slices, reintegration can be done 1n two steps. The first
reintegration cycle brings the second processor slice online
and the second reintegration cycle brings the third online.

|0086] For reintegration of a single processor slice, rein-
tegration logic 410 on the source and target slices are
initialized. The logical synchronization unit 414 is sct unre-
sponsive to the target, no interrupts are delivered to the
target and 1nput/output operations do not include the target.
The target 1s set to accept writes from the reintegration link
412. The target executes an in-cache loop waiting for
reintegration to complete. While maintaining local process-
ing, the source reads and writes back all memory local to the
source, 1n an atomic operation since the SAN interface may
simultaneously be updating target source memory. A single
pass operation reads each cache block from memory and
then tags the cache block as dirty with an atomic operation
without changing contents. Then, target memory 1s updated
except for the state contained in the remaining dirty cache
blocks on the source cache. All processes are suspended and
architectural state, for example the processor registers, are
stored. Caches are flushed and can be validated. Cache
validation 1s optional but facilitates synchronization of the
reintegration source and target after completion of reinte-
gration. Without validation, the source would consistently
have a cache hit while the target would miss. All writes are
reflected to the target processor, reintegrating the final bytes
of dirty cache data into the target processor slice. The logical
synchronization unit 414 1s enabled to read and write to the
target, stop write reflecting, spin 1mm a cache loop, and
perform the rendezvous operation. After the rendezvous
operation completes, the target should have the exact same
state as the source. Architectural state 1s restored from
memory 406, and operation resumes.

[0087] In the illustrative implementation, reintegration
alfects all processor elements 1n a slice. Alternatively stated,
even 1f a failure 1 a triple-redundant processor system
affects only one processor element of one logical processor,
reintegration 1s performed to the entire memory of the
affected processor slice. In the triple-redundant system, the
processor complex executes applications with two processor
slices active during reintegration so that no loss of data
Integrity occurs.

|0088] In the illustrative implementation, reintegration is
performed on an entire processor slice. In other implemen-
tations, a single processor element of the processor slice may
be remtegrated.

[0089] Reintegration enables hardware to recover from a
hardware fault without application acknowledgement of the
failure. An alternative to reintegration may be to halt the
logical processor and allow the application workload to shift
to other logical processors. The halted processor can then be
restarted, effectively reintegrating the failing processor ele-
ment 1n a logical processor.

[0090] While the present disclosure describes various
embodiments, these embodiments are to be understood as
illustrative and do not limit the claim scope. Many varia-
tions, modifications, additions and improvements of the
described embodiments are possible. For example, those

Oct. 27, 2005

having ordinary skill in the art will readily implement the
steps necessary to provide the structures and methods dis-
closed herein, and will understand that the process param-
cters, materials, and dimensions are given by way of
example only. The parameters, materials, components, and
dimensions can be varied to achieve the desired structure as
well as modifications, which are within the scope of the
claims. Variations and modifications of the embodiments
disclosed herein may also be made while remaining within
the scope of the following claims. For example, the speciiic
embodiments described herein 1dentify various computing
architectures, communication technologies and configura-
tions, bus connections, and the like. The various embodi-
ments described herein have multiple aspects and compo-
nents. These aspects and components may be 1implemented
individually or in combination in various embodiments and
applications. Accordingly, each claim 1s to be considered
individually and not to include aspects or limitations that are
outside the wording of the claim.

What 1s claimed 1s:

1. A method for performing a diagnostic memory dump
comprising;:

detecting a halt condition of at least one processor ele-
ment of multiple redundant processor elements;

maintaining one processor element 1n a state existing at
the halt condition;

reloading others of the processor elements whereby the
others commence execution;

copying the state of the maintained one processor element
to a storage while the others continue executing; and

reintegrating the one processor element when the halt
condition copying 1s complete whereby the one pro-
cessor element commences execution.

2. The method according to claim 1 wherein:

the multiple redundant processor elements are loosely-
synchronized processor elements.

3. The method according to claim 1 further comprising;:

copying memory of the maintained one processor element
to buffers 1n the executing others of the processor
clements using a Direct Memory Access (DMA) opera-
tion; and

subsequently writing the copied memory to a storage
device for later analysis.

4. The method according to claim 1 further comprising:

initiating a response to a halt condition of a logical
processor that comprises a plurality of redundant pro-
cessor elements;

issuing a command to place the logical processor 1n a
“ready for reload” state, the command designating a
processor element that 1s omitted from reintegration;
and

executing the command further comprising:

voting-out the designated omitted processor element;
and

reintegrating remaining processor elements.

US 2005/0240806 Al

5. The method according to claim 1 further comprising:

detecting completion of reintegrating the others of the
processor elements; and

automatically 1nitiating a parallel receirve dump program;
and

executing the parallel receive dump program further com-
prising;:

creating a dump file;

allocating buffers; and

saving architectural state of all processor elements 1n
memory.

6. The method according to claim 5 wherein executing the
parallel receive dump program further comprises:

opening a memory window on a memory physical parti-
tion; and

moving the window over the partition.

7. The method according to claim 5 wherein executing the
parallel receive dump program further comprises:

executing a divergent data Direct Memory Access (DMA)
operation with a self-directed write whereby a desig-
nated source memory address identifies the one pro-
cessor element maintained 1n the halt condition.

8. The method according to claim 6 wherein executing the
parallel receive dump program further comprises:

upon completion of the Input/Output operation of the
divergent DMA operation, compressing data into dump
format and writing the compressed data to a dump {ile;
and

closing the memory window.
9. A computing system comprising:

a plurality of redundant, loosely-coupled processor ele-
ments operational as a logical processor; and

a logic that detects a halt condition of the logical proces-
sor and, 1n response to the halt condition, reintegrates
and commences operation 1n less than all of the pro-
cessor elements leaving at least one processor element
nonoperational, buifers data from the nonoperational
processor element 1n the reintegrated operational pro-
cessor elements, and writes the buffered data to storage
for analysis.

10. The computing system according to claim 9 further
comprising:

a logic that reloads and reintegrates the nonoperational
processor element 1nto the logical processor after the
data 1s buffered.

11. The computing system according to claim 9 further
comprising;

a parallel receive dump program that 1s mmtiated after
reload and commencement of the operational processor
clements, the parallel recerve dump program that cre-
ates a dump file and allocates the buflers, and saves
architectural state of the processor elements 1n a
memory.

12. The computing system according to claim 11 further
comprising:

Oct. 27, 2005

the parallel receive dump program that opens a memory
window on a physical partition allocated to a processor
clement upon which the parallel receive dump program
executes, and that moves the memory window over the
entire physical partition.
13. The computing system according to claim 12 further
comprising;

a direct memory access device coupled to the processor
clement plurality; and

the parallel receive dump program that executes a diver-
gent data 1nput/output operation using the direct
memory access device that identifies the nonopera-
tional processor element and transfers data from the
nonoperational processor element to at least one opera-
tional processor element by direct memory access.

14. The computing system according to claim 13 wherein:

the parallel receive dump program identifies the nonop-
erational processor element using address bits.

15. The computing system according to claim 13 further
comprising:

an engine that generates data transfer request packets and
tracks associated response packets;

an access validation and translation module that verifies
legitimacy of incoming data transfer packets and trans-
lates addresses of legitimate packets into internal
memory space; and

the parallel receive dump program that holds block trans-
fer engine descriptors and access validation and trans-
lation tables 1n the operational processor elements for
managing the direct memory access operation.

16. The computing system according to claim 13 further
comprising;:

a reintegration logic that restarts and resynchronizes the
plurality of processor elements following a failure or
service condition; and

a reintegration process executable on at least one of the
operating processor elements that delays reintegrating
the nonoperational processor element until dump pro-
cessing 1s complete.

17. The computing system according to claim 13 wherein:

the parallel receive dump program determines when data
transfer from the nonoperational processor element to
the at least one operational processor element 1s com-
plete and, upon completion, compresses the transferred
data into a dump format and writes the compressed data
to a dump file.

18. The computing system according to claim 17 wherein:

the parallel receive dump program determines when writ-
ing of the compressed data to the dump file 1s complete
and, upon completion, closes the window to physical
memory, closes the dump file, and mitiates remtegra-
tion of the nonoperational processor element.

19. An interface for usage 1n a redundant processor
comprising;

a direct memory access device coupled to a plurality of
redundant, loosely-coupled processor elements opera-
tional as a logical processor; and

US 2005/0240806 Al

a data transfer program that executes a divergent data
input/output operation using the direct memory access
device that transfers data from one source processor
clement of the processor element plurality to at least
one target processor element of others 1n the plurality
of processor elements by direct memory access.

20. The mterface according to claim 19 wherein:

the data transfer program identifies the source processor
clement using address bits.
21. The interface according to claim 19 further compris-
Ing:

an engine that generates data transfer request packets and
tracks associated response packets;

an access validation and translation module that verifies
legitimacy of incoming data transfer packets and trans-
lates addresses of legitimate packets into 1nternal
memory space; and

the data transfer program that holds block transfer engine
descriptors and access validation and translation tables
in the operational processor elements for managing the
direct memory access operation.
22. The interface according to claim 19 further compris-
Ing:

a reintegration logic restarts and resynchronizes the plu-
rality of processor elements following a failure or
service condition; and

Oct. 27, 2005

a remntegration process executable on at least one of the
processor elements that delays reintegrating a selected
nonoperational processor element.

23. A method for performing a diagnostic memory dump

comprising:

detecting a halt condition of at least one processor ele-
ment of multiple redundant processor elements;

maintaining one processor element 1n a state existing at
the halt condition;

reloading others of the processor elements whereby the
others commence execution;

copying the state and memory of the maintained one
processor element, the state being copied to a storage
while the others continue executing, the memory being
copied to buifers 1n the executing others of the proces-
sor elements using a Direct Memory Access (DMA)
operation; and

subsequently writing the copied memory to a storage
device for later analysis.

24. The method according to claim 23 further comprising:

reintegrating the one processor element when the halt
condition copying 1s complete whereby the one pro-
cessor element commences execution.

	Front Page
	Drawings
	Specification
	Claims

