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A processor has an mmproved architecture for multiple-
thread operation on the basis of a highly parallel structure
including multiple independent parallel execution paths for
executing 1n parallel across threads and a multiple-instruc-
tion parallel pathway within a thread. The multiple indepen-
dent parallel execution paths include functional units that
execute an instruction set including special data-handling
instructions that are advantageous 1n a multiple-thread envi-
ronment.
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MULITPLE-THREAD PROCESSOR FOR
THREADED SOFTWARE APPLICATIONS

BACKGROUND OF THE INVENTION
0001] 1. Field of the Invention

0002] The present invention relates to a processor archi-
tecture. More specifically, the present invention relates to a
single-chip processor architecture including structures for
multiple-thread operation.

0003] 2. Description of the Related Art

0004] For various processing applications, an automated
system may handle multiple events or processes concur-
rently. A single process 1s termed a thread of control, or
“thread”, and 1s the basic unit of operation of independent
dynamic action within the system. A program has at least
one thread. A system performing concurrent operations
typically has many threads, some of which are transitory and
others enduring. Systems that execute among multiple pro-
cessors allow for true concurrent threads. Single-processor
systems can only have 1llusory concurrent threads, typically
attained by time-slicing of processor execution, shared
among a plurality of threads.

[0005] Some programming languages are particularly
designed to support multiple-threading. One such language
1s the Java™ programming language that 1s advantageously
executed using an abstract computing machine, the Java
Virtual Machine™. A Java Virtual Machine™ 1is capable of
supporting multiple threads of execution at one time. The
multiple threads independently execute Java code that oper-
ates on Java values and objects residing 1n a shared main
memory. The multiple threads may be supported using
multiple hardware processors, by time-slicing a single hard-
ware processor, or by time-slicing many hardware proces-
sors 1n 1990 programmers at Sun Microsystems developed
a universal programming language, eventually known as
“the Java™ programming language”. Java™, Sun, Sun
Microsystems and the Sun Logo are trademarks or registered
trademarks of Sun Microsystems, Inc. 1n the United States
and other countries. All SPARC trademarks, including
UltraSPARC I and UltraSPARC 11, are used under license
and are trademarks of SPARC International, Inc. in the
United States and other countries. Products bearing SPARC
trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

[0006] Java™ supports the coding of programs that,
though concurrent, exhibit deterministic behavior, by
including techniques and structures for synchronizing the
concurrent activity of threads. To synchronize threads,
Java™ uses monitors, high-level constructs that allow only
a single thread at one time to execute a region of code
protected by the monitor. Monitors use locks associated with
executable objects to control thread execution.

[0007] A thread executes code by performing a sequence
of actions. A thread may use the value of a variable or assign
the variable a new value. If two or more concurrent threads
act on a shared variable, the actions on the variable may
produce a timing-dependent result, an inherent consequence
of concurrent programming.

|0008] Each thread has a working memory that may store
copies of the values of master copies of variables from main
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memory that are shared among all threads. A thread usually
accesses a shared variable by obtaining a lock and flushing
the working memory of the thread, guaranteeing that shared
values are thereafter loaded from the shared memory to the
working memory of the thread. By unlocking a lock, a thread
cguarantees that the values held by the thread in the working
memory are written back to the main memory.

[0009] Several rules of execution order constrain the order
in which certain events may occur. For example, actions
performed by one thread are totally ordered so that for any
two actions performed by a thread, one action precedes the
other. Actions performed by the main memory for any one
variable are totally ordered so that for any two actions
performed by the main memory on the same variable, one
action precedes the other. Actions performed by the main
memory for any one lock are totally ordered so that for any
two actions performed by the main memory on the same
lock, one action precedes the other. Also, an action 1s not
permitted to follow 1tself Threads do not interact directly but
rather only communicate through the shared main memory.

[0010] The relationships among the actions of a thread and
the actions of main memory are also constrained by rules.
For example, each lock or unlock 1s performed jointly by
some thread and the main memory. Each load action by a
thread 1s uniquely paired with a read action by the main
memory such that the load action follows the read action.
Each store action by a thread 1s uniquely paired with a write
action by the main memory such that the write action
follows the store action.

[0011] An implementation of threading incurs some over-
head. For example, a single processor system 1ncurs over-
head 1n time-slicing between threads. Additional overhead 1s
incurred 1n allocating and handling accessing of main
memory and local thread working memory.

[0012] What is needed 1s a processor architecture that
supports multiple-thread operation and reduces the overhead
assoclated with multiple-thread operation.

SUMMARY OF THE INVENTION

[0013] A processor has an improved architecture for mul-
tiple-thread operation on the basis of a highly parallel
structure 1ncluding multiple independent parallel execution
paths for executing in parallel across threads and a multiple-
instruction parallel pathway within a thread. The multiple
independent parallel execution paths include functional
units that execute an instruction set including special data-
handling instructions that are advantageous 1in a multiple-
thread environment.

[0014] In accordance with one embodiment of the present
invention, a general-purpose processor includes two 1nde-
pendent processor elements 1n a single mtegrated circuit die.
The dual imdependent processor elements advantageously
execute two mndependent threads concurrently during mul-
tiple-threading operation. When only a single thread 1is
executed on a first of the two processor elements, the second
processor element 1s advantageously used to perform gar-
bage collection, Just-In-Time (JIT) compilation, and the
like. Illustratively, the independent processor elements are
Very Long Instruction Word (VLIW) processors. For
example, one 1llustrative processor includes two indepen-
dent Very Long Instruction Word (VLIW) processor ele-
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ments, each of which executes an instruction group or
instruction packet that includes up to four instructions,
otherwise termed subinstructions. Each of the instructions in
an 1nstruction group executes on a separate functional unit.

[0015] The two threads execute independently on the
respective  VLIW processor elements, each of which
includes a plurality of powerful functional units that execute
in parallel. In the illustrative embodiment, the VLIW pro-
cessor elements have four functional units including three
media functional units and one general functional unit. All
of the 1llustrative media functional units include an instruc-
tion that executes both a multiply and an add in a single
cycle, either floating point or fixed point.

[0016] In accordance with an aspect of the present inven-
fion, an 1ndividual independent parallel execution path has
operational units including instruction supply blocks and
instruction preparation blocks, functional units, and a reg-
ister file that are separate and independent from the opera-
tional units of other paths of the multiple independent
parallel execution paths. The instruction supply blocks
include a separate 1nstruction cache for the mdividual 1nde-
pendent parallel execution paths, however the multiple inde-
pendent parallel execution paths share a single data cache
since multiple threads sometimes share data. The data cache
1s dual-ported, allowing data access 1n both execution paths
in a single cycle.

[0017] In addition to the instruction cache, the instruction
supply blocks 1n an execution path include an instruction
aligner, and an 1nstruction buffer that precisely format and
align the full instruction group to prepare to access the
register file. An individual execution path has a single
register file that 1s physically split into multiple register file
secgments, each of which 1s associated with a particular
functional unit of the multiple functional units. At any point
in time, the register file segments as allocated to each
functional unit each contain the same content. A multi-
ported register file 1s typically metal limited to the area
consumed by the circuit proportional with the square of the
number of ports. It has been discovered that a processor
having a register file structure divided into a plurality of
separate and independent register files forms a layout struc-
ture with an improved layout efficiency. The read ports of the
total register file structure are allocated among the separate
and 1ndividual register files. Each of the separate and indi-
vidual register files has write ports that correspond to the
total number of write ports in the total register file structure.
Writes are fully broadcast so that all of the separate and
individual register files are coherent.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The features of the described embodiments are
specifically set forth 1n the appended claims. However,
embodiments of the mnvention relating to both structure and
method of operation, may best be understood by referring to
the following description and accompanying drawings.

10019] FIG. 1 is a schematic block diagram illustrating a
single 1tegrated circuit chip implementation of a processor
in accordance with an embodiment of the present invention.

10020] FIG. 2 is a schematic block diagram showing the

core of the processor.

10021] FIG. 3 is a schematic block diagram that illustrates
an embodiment of the split register file that 1s suitable for

usage 1n the processor.
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10022] FIG. 4 is a schematic block diagram that shows a
logical view of the register file and functional units 1n the
Processor.

[10023] FIG. 5 is a pictorial schematic diagram depicting
an example of instruction execution among a plurality of
media functional units.

10024] FIG. 6 illustrates a schematic block diagram of an
SRAM array used for the multi-port split register file.

10025] FIGS. 7A and 7B are, respectively, a schematic
block diagram and a pictorial diagram that illustrate the
register file and a memory array insert of the register file.

[10026] FIG. 8 is a schematic block diagram showing an
arrangement of the register file mto the four register {file
segments.

10027] FIG. 9 is a schematic timing diagram that illus-
frates timing of the processor pipeline.

10028] FIGS. 10A, 10B, 10C, 10D, 10E and 10F illustrate
instruction formats.

10029]

FIG. 11 1illustrates operation of a bitext instruction.

0030] The use of the same reference symbols in different
drawings indicates similar or 1dentical items.

DESCRIPTION OF THE EMBODIMENT(S)

[0031] Referring to FIG. 1, a schematic block diagram
illustrates a processor 100 having an improved architecture
for multiple-thread operation on the basis of a highly parallel
structure 1ncluding multiple independent parallel execution
paths, shown herein as two media processing units 110 and
112. The execution paths execute 1n parallel across threads
and include a multiple-instruction parallel pathway within a
thread. The multiple independent parallel execution paths
include functional units executing an instruction set having
special data-handling instructions that are advantageous in a
multiple-thread environment.

[0032] The multiple-threading architecture of the proces-
sor 100 1s advantageous for usage 1n executing multiple-
threaded applications using a language such as the Java™
language running under a multiple-threaded operating sys-
tem on a multiple-threaded Java Virtual Machine™. The
illustrative processor 100 includes two 1independent proces-
sor clements, the media processmng units 110 and 112,
forming two 1ndependent parallel execution paths. A lan-
cuage that supports multiple threads, such as the Java™
programming language generates two threads that respec-
fively execute 1n the two parallel execution paths with very
little overhead incurred. The special instructions executed
by the multiple-threaded processor include instructions for

accessing arrays, and instructions that support garbage col-
lection.

[0033] A single integrated circuit chip implementation of
a processor 100 includes a memory interface 102, a geom-
etry decompressor 104, the two media processing units 110
and 112, a shared data cache 106, and several interface
controllers. The interface controllers support an interactive
ographics environment with real-time constraints by integrat-
ing fundamental components of memory, graphics, and
input/output bridge functionality on a single die. The com-
ponents are mutually linked and closely linked to the pro-
cessor core with high bandwidth, low-latency communica-
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fion channels to manage multiple high-bandwidth data
streams efliciently and with a low response time. The
interface controllers include a an UltraPort Architecture
Interconnect (UPA) controller 116 and a peripheral compo-
nent interconnect (PCI) controller 120. The illustrative
memory interface 102 1s a direct Rambus dynamic RAM
(DRDRAM) controller. The shared data cache 106 is a
dual-ported storage that 1s shared among the media process-
ing units 110 and 112 with one port allocated to each media
processing unit. The data cache 106 1s four-way set asso-
ciative, follows a write-back protocol, and supports hits in
the fill buffer (not shown). The data cache 106 allows fast
data sharing and eliminates the need for a complex, error-
prone cache coherency protocol between the media process-

ing units 110 and 112.

[0034] The UPA controller 116 is a custom interface that
attains a suitable balance between high-performance com-
putational and graphic subsystems. The UPA 1s a cache-
coherent, processor-memory interconnect. The UPA attains
several advantageous characteristics including a scaleable
bandwidth through support of multiple bused interconnects
for data and addresses, packets that are switched {for
improved bus utilization, higher bandwidth, and precise
mterrupt processing. The UPA performs low latency
memory accesses with high throughput paths to memory.
The UPA includes a buffered cross-bar memory interface for
increased bandwidth and improved scaleability. The UPA
supports high-performance graphics with two-cycle single-
word writes on the 64-bit UPA interconnect. The UPA
interconnect architecture utilizes point-to-point packet
switched messages from a centralized system controller to
maintain cache coherence. Packet switching improves bus
bandwidth utilization by removing the latencies commonly
associated with transaction-based designs.

[0035] The PCI controller 120 is used as the primary
system I/O 1nterface for connecting standard, high-volume,
low-cost peripheral devices, although other standard inter-
faces may also be used. The PCI bus effectively transfers
data among high bandwidth peripherals and low bandwidth
peripherals, such as CD-ROM players, DVD players, and
digital cameras.

[0036] Two media processing units 110 and 112 are
included 1n a single integrated circuit chip to support an
execution environment exploiting thread level parallelism 1n
which two independent threads can execute simultaneously.
The threads may arise from any sources such as the same
application, different applications, the operating system, or
the runtime environment. Parallelism 1s exploited at the
thread level since parallelism 1s rare beyond four, or even
two, 1nstructions per cycle 1 general purpose code. For
example, the illustrative processor 100 i1s an eight-wide
machine with eight execution units for executing instruc-
tions. A typical “general-purpose” processing code has an
instruction level parallelism of about two so that, on aver-
age, most (about six) of the eight execution units would be
idle at any time. The illustrative processor 100 employs
thread level parallelism and operates on two independent
threads, possibly attaining twice the performance of a pro-
cessor having the same resources and clock rate but utilizing
traditional non-thread parallelism.

[0037] Thread level parallelism is particularly useful for
Java™ applications, which are bound to have multiple
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threads of execution. Java™ methods including “suspend”,
“resume”’, “sleep”, and the like mnclude effective support for
threaded program code. In addition, Java™ class libraries
are thread-safe to promote parallelism. Furthermore, the
thread model of the processor 100 supports a dynamic
compiler which runs as a separate thread using one media
processing unit 110 while the second media processing unit
112 1s used by the current application. In the illustrative
system, the compiler applies optimizations based on “on-
the-fly” profile feedback information while dynamically
modifying the executing code to improve execution on each
subsequent run. For example, a “garbage collector” may be
executed on a first media processing unmit 110, copying
objects or gathering pointer information, while the applica-

fion 1s executing on the other media processing unit 112.

[0038] Although the processor 100 shown in FIG. 1
includes two processing units on an integrated circuit chip,
the architecture 1s highly scaleable so that one to several
closely-coupled processors may be formed in a message-
based coherent architecture and resident on the same die to
process multiple threads of execution. Thus, in the processor
100, a limitation on the number of processors formed on a
single die thus arises from capacity constraints of integrated
circuit technology rather than from architectural constraints
relating to the interactions and interconnections between
ProCessors.

[0039] The processor 100 1s a general-purpose processor
that includes the media processing units 110 and 112, two
independent processor elements 1n a single integrated circuit
die. The dual independent processor elements 110 and 112
advantageously execute two independent threads concur-
rently during multiple-threading operation. When only a
single thread executes on the processor 100, one of the two
processor elements executes the thread, the second proces-
sor element 1s advantageously used to perform garbage
collection, Just-In-Time (JIT) compilation, and the like. In
the 1llustrative processor 100, the independent processor
clements 110 and 112 are Very Long Instruction Word
(VLIW) processors. For example, one illustrative processor
100 1includes two independent Very Long Instruction Word
(VLIW) processor elements, each of which executes an
instruction group or instruction packet that includes up to
four 1nstructions. Each of the instructions 1n an instruction
group executes on a separate functional unit.

[0040] The usage of a VLIW processor advantageously
reduces complexity by avoiding usage of various structures
such as schedulers or reorder builers that are used 1n
superscalar machines to handle data dependencies. A VLIW
processor typically uses software scheduling and software
checking to avoid data conilicts and dependencies, greatly
simplifying hardware control circuits.

[0041] The two threads execute independently on the
respective VLIW processor elements 110 and 112, each of,
which includes a plurality of powerful functional units that
execute 1n parallel. In the illustrative embodiment shown 1n
FIG. 2, the VLIW processor elements 110 and 112 have four
functional units including three media functional units 220
and one general functional unit 222. All of the 1illustrative
media functional units 220 include an instruction that
executes both a multiply and an add 1n a single cycle, either
floating point or fixed point. Thus, a processor with two
VLIW processor elements can execute twelve tloating point
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operations each cycle. At a 500 MHz execution rate, for
example, the processor runs at an 6 gigaflop rate, even
without accounting for general functional unit operation.

10042] Referring to FIG. 2, a schematic block diagram
shows the core of the processor 100. The media processing
units 110 and 112 each include an 1nstruction cache 210, an
instruction aligner 212, an instruction buifer 214, a pipeline
control unit 226, a split register file 216, a plurality of
execution units, and a load/store unit 218. In the 1llustrative
processor 100, the media processing units 110 and 112 use
a plurality of execution units for executing instructions. The
execution units for a media processing unit 110 include three

media functional units (MFU) 220 and one general func-
tional unit (GFU) 222.

10043] An individual independent parallel execution path
110 or 112 has operational units including instruction supply
blocks and imstruction preparation blocks, functional units
220 and 222, and a register file 216 that are separate and
independent from the operational units of other paths of the
multiple independent parallel execution paths. The 1nstruc-
tion supply blocks include a separate instruction cache 210
for the individual independent parallel execution paths,
however the multiple independent parallel execution paths
share a single data cache 106 since multiple threads some-
times share data. The data cache 106 1s dual-ported, allowing
data access 1n both execution paths 110 and 112 1n a single
cycle. Sharing of the data cache 106 among independent
processor elements 110 and 112 advantageously simplifies
data handling, avoiding a need for a cache coordination
protocol and the overhead incurred in controlling the pro-
tocol.

10044] In addition to the instruction cache 210, the instruc-
tion supply blocks in an execution path include the mnstruc-
tion aligner 212, and the instruction bufier 214 that precisely
format and align a full instruction group of four mnstructions
to prepare to access the register file 216. An individual
execution path has a single register file 216 that 1s physically
split 1nto multiple register file segments, each of which 1s
assoclated with a particular functional unit of the multiple
functional units. At any point in time, the register file
secgments as allocated to each functional unit each contain
the same content. A multi-ported register file 1s typically
metal limited to the area consumed by the circuit propor-
tional with the square of the number of ports. The processor
100 has a register file structure divided mto a plurality of
separate and independent register files to form a layout
structure with an improved layout efficiency. The read ports
of the total register file structure 216 are allocated among the
separate and individual register files. Each of the separate
and individual register files has write ports that correspond
to the total number of write ports 1n the total register file
structure. Writes are fully broadcast so that all of the
separate and individual register files are coherent.

[0045] The media functional units 220 are multiple single-
instruction-multiple-datapath (MSIMD) media functional
units. Each of the media functional units 220 1s capable of
processing parallel 16-bit components. Various parallel
16-bit operations supply the single-instruction-multiple-
datapath capability for the processor 100 including add,
multiply-add, shift, compare, and the like. The media func-
tional units 220 operate in combination as tightly coupled
digital signal processors (DSPs). Each media functional unit
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220 has an separate and individual sub-instruction stream,
but all tree media functional units 220 execute synchro-
nously so that the subinstructions progress lock-step through
pipeline stages.

[0046] The general functional unit 222 1s a RISC proces-
sor capable of executing arithmetic logic unit (ALU) opera-
fions, loads and stores, branches, and various specialized
and esoteric functions such as parallel power operations,
reciprocal square root operations, and many others. The
general functional unit 222 supports less common parallel
operations such as the parallel reciprocal square root 1mstruc-
tion:

[0047] The illustrative instruction cache 210 is two-way
set-associative, has a 16 Kbyte capacity, and includes hard-
ware support to maintain coherence, allowing dynamic
optimizations through self-modifying code. Software 1s used
to i1ndicate that the instruction storage 1s being modified
when modifications occur. The 16K capacity 1s suitable for
performing graphic loops, other multimedia tasks or pro-
cesses, and general-purpose Java™ code. Coherency 1s
maintained by hardware that supports write-through, non-
allocating caching. Self-modifying code 1s supported
through explicit use of “store-to-instruction-space” instruc-
tion store21. Software uses the store21 mstruction to maintain
coherency with the instruction cache 210 so that the mstruc-
tion caches 210 do not have to be snooped on every single
store operation 1ssued by the media processing unit 110.

[0048] The pipeline control unit 226 is connected between
the 1nstruction buffer 214 and the functional units and
schedules the transfer of mstructions to the functional units.
The pipeline control unit 226 also receives status signals
from the functional units and the load/store unit 218 and uses
the status signals to perform several control functions. The
pipeline control unit 226 maintains a scoreboard, generates
stalls and bypass controls. The pipeline control unit 226 also
generates traps and maintains special registers.

10049] Each media processing unit 110 and 112 includes a
split register file 216, a single logical register file including
128 thirty-two bit registers. The split register file 216 1s split
into a plurality of register file segments 224 to form a
multi-ported structure that 1s replicated to reduce the inte-
orated circuit die area and to reduce access time. A separate
register file segment 224 1s allocated to each of the media
functional units 220 and the general functional unit 222. In
the 1llustrative embodiment, each register file segment 224
has 128 32-bit registers. The first 96 registers (0-95) in the
register file segment 224 are global registers. All functional
units can write to the 96 global registers. The global registers
are coherent across all functional units (MFU and GFU) so
that any write operation to a global register by any functional
unit 1s broadcast to all register file segments 224. Registers
96-127 1n the register file seements 224 are local registers.
Local registers allocated to a functional unit are not acces-
sible or “visible” to other functional units.

[0050] The media processing units 110 and 112 are highly
structured computation blocks that execute software-sched-
uled data computation operations with fixed, deterministic
and relatively short instruction latencies, operational char-
acteristics yielding simplification in both function and cycle
time. The operational characteristics support multiple
instruction 1ssue through a pragmatic very large instruction
word (VLIW) approach that avoids hardware interlocks to
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account for software that does not schedule operations
properly. Such hardware interlocks are typically complex,
error-prone, and create multiple critical paths. A VLIW
mstruction word always includes one instruction that
executes in the general functional unit (GFU) 222 and from
zero to three instructions that execute 1n the media func-
tional units (MFU) 220. A MFU instruction field within the
VLIW instruction word includes an operation code (opcode)
field, three source register (or immediate) fields, and one
destination register field.

[0051] Instructions are executed in-order in the processor
100 but loads can finish out-of-order with respect to other
instructions and with respect to other loads, allowing loads
to be moved up 1n the 1nstruction stream so that data can be
streamed from main memory. The execution model elimi-
nates the usage and overhead resources of an instruction
window, reservation stations, a re-order bufler, or other
blocks for handling instruction ordering. Elimination of the
instruction ordering structures and overhead resources 1s
highly advantageous since the eliminated blocks typically
consume a large portion of an integrated circuit die. For
example, the eliminated blocks consume about 30% of the
die area of a Pentium II processor.

[0052] To avoid software scheduling errors, the media
processing units 110 and 112 are high-performance but
simplified with respect to both compilation and execution.
The media processing units 110 and 112 are most generally
classified as a simple 2-scalar execution engine with full
bypassing and hardware interlocks on load operations. The
mnstructions 1nclude loads, stores, arithmetic and logic
(ALU) 1nstructions, and branch instructions so that sched-
uling for the processor 100 1s essentially equivalent to
scheduling for a simple 2-scalar execution engine for each of
the two media processing units 110 and 112.

[0053] The processor 100 supports full bypasses between
the first two execution units within the media processing unit
110 and 112 and has a scoreboard 1n the general functional
unit 222 for load operations so that the compiler does not
need to handle nondeterministic latencies due to cache
misses. The processor 100 scoreboards long latency opera-
tions that are executed in the general functional unit 222, for
example a reciprocal square-root operation, to simplily
scheduling across execution units. The scoreboard (not
shown) operates by tracking a record of an instruction
packet or group from the time the instruction enters a
functional unit until the instruction 1s finished and the result
becomes available. A VLIW instruction packet contains one
GFU instruction and from zero to three MFU 1nstructions.
The source and destination registers of all instructions 1n an
incoming VLIW instruction packet are checked against the
scoreboard. Any true dependencies or output dependencies
stall the enfire packet until the result 1s ready. Use of a
scoreboarded result as an operand causes 1nstruction 1ssue to
stall for a sufficient number of cycles to allow the result to
become available. If the referencing instruction that pro-
vokes the stall executes on the general functional unit 222 or
the first media functional unit 220, then the stall only
endures until the result 1s available for intra-unit bypass. For
the case of a load instruction that hits 1n the data cache 106,
the stall may last only one cycle. If the referencing mnstruc-
tion 1s on the second or third media functional units 220,
then the stall endures until the result reaches the writeback
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stage 1n the pipeline where the result 1s bypassed in trans-
mission to the split register file 216.

[0054] The scoreboard automatically manages load delays
that occur during a load hit. In an illustrative embodiment,
all loads enter the scoreboard to simplily software schedul-
ing and eliminate NOPs 1n the instruction stream.

[0055] The scoreboard is used to manage most interlock
conditions between the general functional unit 222 and the
media functional units 220. All loads and non-pipelined
long-latency operations of the general functional unit 222
are scoreboarded. The long-latency operations include divi-
sion 1div, fdiv instructions, reciprocal square root frecsqrt,
precsqrt mstructions, and power ppower 1nstructions. None
of the results of the media functional units 220 1s score-
boarded. Non-scoreboarded results are available to subse-
quent operations on the functional unit that produces the
results following the latency of the instruction.

[0056] The illustrative processor 100 has a rendering rate
of over fifty million triangles per second without accounting
for operating system overhead. Therefore, data feeding
specifications of the processor 100 are far beyond the
capabilities of cost-effective memory systems. Suilicient
data bandwidth 1s achieved by rendering of compressed
geometry using the geometry decompressor 104, an on-chip
real-time geometry decompression engine. Data geometry 1s
stored 1n main memory 1n a compressed format. At render
time, the data geometry 1s fetched and decompressed 1n
real-time on the integrated circuit of the processor 100. The
geometry decompressor 104 advantageously saves memory
space and memory transfer bandwidth. The compressed
geometry uses an optimized generalized mesh structure that
explicitly calls out most shared vertices between triangles,
allowing the processor 100 to transform and light most
vertices only once. In a typical compressed mesh, the
triangle throughput of the transform-and-light stage 1is
increased by a factor of four or more over the throughput for
1solated triangles. For example, during processing of tri-
angles, multiple vertices are operated upon in parallel so that
the utilization rate of resources 1s high, achieving effective
spatial software pipelining. Thus operations are overlapped
In time by operating on several vertices simultaneously,
rather than overlapping several loop iterations 1n time. For
other types of applications with high instruction level par-
allelism, high trip count loops are software-pipelined so that
most media functional units 220 are fully utilized.

[0057] Referring to FIG. 3, a schematic block diagram
illustrates an embodiment of the split register file 216 that 1s
suitable for usage 1n the processor 100. The split register file
216 supplies all operands of processor instructions that
execute 1n the media functional units 220 and the general
functional units 222 and receives results of the instruction
execution from the execution units. The split register file 216
operates as an mterface to the geometry decompressor 104.
The split register file 216 1s the source and destination of
store and load operations, respectively.

[0058] In the illustrative processor 100, the split register
file 216 1n each of the media processing units 110 and 112
has 128 registers. Graphics processing places a heavy bur-
den on register usage. Therefore, a large number of registers
1s supplied by the split register file 216 so that performance
1s not limited by loads and stores or handling of intermediate
results including graphics “fills” and “spills”. The 1llustra-
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tive split register file 216 includes twelve read ports and five
write ports, supplying total data read and write capacity
between the central registers of the split register file 216 and
all media functional units 220 and the general functional unit
222. The five write ports include one 64-bit write port that
1s dedicated to load operations. The remaining four write
ports are 32 bits wide and are used to write operations of the

general functional unit 222 and the media functional units
220).

[0059] A large total read and write capacity promotes
flexibility and facility 1n programming both of hand-coded
routines and compiler-generated code.

[0060] Large, multiple-ported register files are typically
metal-limited so that the register area 1s proportional with
the square of the number of ports. A sixteen port file 1s
roughly proportional in size and speed to a value 01 256. The
illustrative split register file 216 1s divided into four register
file segments 310, 312, 314, and 316, each having three read
ports and four write ports so that each register file segment
has a size and speed proportional to 49 for a total area for the
four segments that 1s proportional to 196. The total area 1is
therefore potentially smaller and faster than a single central
register file. Write operations are fully broadcast so that all
files are maintained coherent. Logically, the split register file
216 1s no different from a single central register file. How-
ever, from the perspective of layout efficiency, the split
register file 216 1s highly advantageous, allowing {for
reduced size and 1improved performance.

[0061] The new media data that is operated upon by the
processor 100 1s typically heavily compressed. Data trans-
fers are communicated 1n a compressed format from main
memory and input/output devices to pins of the processor
100, subsequently decompressed on the integrated circuit

holding the processor 100, and passed to the split register file
216.

[0062] Splitting the register file into multiple segments in
the split register file 216 1n combination with the character
of data accesses 1n which multiple bytes are transferred to
the plurality of execution units concurrently, results 1n a high
utilization rate of the data supplied to the integrated circuit
chip and effectively leads to a much higher data bandwidth
than 1s supported on general-purpose processors. The high-
est data bandwidth requirement 1s therefore not between the
input/output pins and the central processing units, but is
rather between the decompressed data source and the
remainder of the processor. For graphics processing, the
highest data bandwidth requirement 1s between the geometry
decompressor 104 and the split register file 216. For video
decompression, the highest data bandwidth requirement is
internal to the split register file 216. Data transfers between
the geometry decompressor 104 and the split register file
216 and data transters between various registers of the split
register file 216 can be wide and run at processor speed,
advantageously delivering a large bandwidth.

[0063] The register file 216 1s a focal point for attaining
the very large bandwidth of the processor 100. The processor
100 transfers data using a plurality of data transfer tech-
niques. In one example of a data transfer technique, cache-
able data 1s loaded into the split register file 216 through
normal load operations at a low rate of up to eight bytes per
cycle. In another example, streaming data 1s transferred to
the split register file 216 through group load operations,
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which transfer thirty-two bytes from memory directly into
eight consecutive 32-bit registers. The processor 100 utilizes
the streaming data operation to receive compressed video
data for decompression.

[0064] Compressed graphics data is received via a direct
memory access (DMA) unit in the geometry decompressor
104. The compressed graphics data 1s decompressed by the
geometry decompressor 104 and loaded at a high bandwidth
rate 1nto the split register file 216 via group load operations
that are mapped to the geometry decompressor 104.

[0065] Load operations are non-blocking and score-
boarded so that early scheduling can hide a long latency
inherent to loads.

[0066] General purpose applications often fail to exploit
the large register file 216. Statistical analysis shows that
compilers do not effectively use the large number of regis-
ters 1n the split register file 216. However, aggressive
in-lining techniques that have traditionally been restricted
due to the limited number of registers 1n conventional
systems may be advantageously used in the processor 100 to
exploit the large number of registers in the split register file
216. In a software system that exploits the large number of
registers in the processor 100, the complete set of registers
is saved upon the event of a thread (context) switch. When
only a few registers of the entire set of registers i1s used,
saving all registers in the full thread switch 1s wasteful.
Waste 1s avoided 1n the processor 100 by supporting indi-
vidual marking of registers. Octants of the thirty-two reg-
isters can be marked as “dirty” if used, and are consequently
saved conditionally.

[0067] In various embodiments, dedicating fields for glo-
bals, trap registers, and the like leverages the split register

file 216.

[0068] Referring to FIG. 4, a schematic block diagram
shows a logical view of the register file 216 and functional
units 1n the processor 100. The physical implementation of
the core processor 100 1s simplified by replicating a single
functional unit to form the three media functional units 220.
The media functional units 220 include circuits that execute
various arithmetic and logical operations 1including general-
purpose code, graphics code, and video-image-speech (VIS)
processing. VIS processing includes video processing,
image processing, digital signal processing (DSP) loops,
speech processing, and voice recognition algorithms, for
example.

[0069] Referring to FIG. 5, a simplified pictorial sche-
matic diagram depicts an example of nstruction execution
among a plurality of media functional units 220. Results
generated by various internal function blocks within a first
individual media functional unit are immediately accessible
internally to the first media functional unit 510 but are only
accessible globally by other media functional units 512 and
514 and by the general functional unit five cycles after the
instruction enters the first media functional unit 510, regard-
less of the actual latency of the instruction. Therefore,
instructions executing within a functional unit can be sched-
uled by software to execute 1mmediately, taking 1nto con-
sideration the actual latency of the instruction. In contrast,
software that schedules instructions executing 1n different
functional units 1s expected to account for the five cycle
latency. In the diagram, the shaded areas represent the stage
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at which the pipeline completes execution of an instruction
and generates final result values. A result 1s not available
internal to a functional unit a final shaded stage completes.
In the example, media processing unit instructions have
three different latencies—tour cycles for instructions such as
fmuladd and fadd, two cycles for instructions such as
pmuladd, and one cycle for instructions like padd and xor.

[0070] Although internal bypass logic within a media
functional unit 220 forwards results to execution units
within the same media functional unit 220, the internal
bypass logic does not detect incorrect attempts to reference
a result before the result 1s available.

[0071] Software that schedules instructions for which a
dependency occurs between a particular media functional
unit, for example 512, and other media functional units 510
and 514, or between the particular media functional unit 512
and the general functional unit 222, 1s to account for the five
cycle latency between entry of an instruction to the media
functional unit 512 and the five cycle pipeline duration.

[0072] Referring to FIG. 6, a schematic block diagram
depicts an embodiment of the multiport register file 216. A
plurality of read address buses RA1 through RAN carry read
addresses that are applied to decoder ports 616-1 through
616-N, respectively. Decoder circuits are well known to
those of ordinary skill in the art, and any of several imple-
mentations could be used as the decoder ports 616-1 through
616-N. When an address 1s presented to any of decoder ports
616-1 through 616-N, the address 1s decoded and a read
address signal 1s transmitted by a decoder port 616 to a
register in a memory cell array 618. Data from the memory
cell array 618 1s output using output data drivers 622. Data
1s transferred to and from the memory cell array 618 under
control of control signals carried on some of the lines of the

buses of the plurality of read address buses RA1l through
RAN.

[0073] Referring to FIGS. 7A and 7B, a schematic block
diagram and a pictorial diagram, respectively, 1llustrate the
register file 216 and a memory array insert 710. The register
file 216 1s connected to a four functional units 720, 722, 724,
and 726 that supply information for performing operations
such as arithmetic, logical, graphics, data handling opera-
tions and the like. The illustrative register file 216 has twelve
read ports 730 and four write ports 732. The twelve read
ports 730 are 1llustratively allocated with three ports con-
nected to each of the four functional units. The four write
ports 732 are connected to receive data from all of the four
functional units.

|0074] The register file 216 includes a decoder, as is
shown 1n F1G. 6, for each of the sixteen read and write ports.
The register file 216 1ncludes a memory array 740 that 1s
partially shown 1n the 1nsert 710 1llustrated in F1G. 7B and
includes a plurality of word lines 744 and bit lines 746. The
word lines 744 and bit lines 746 are simply a set of wires that
connect transistors (not shown) within the memory array
740. The word lines 744 seclect registers so that a particular
word line selects a register of the register file 216. The bit
lines 746 are a second set of wires that connect the transis-
tors 1n the memory array 740. Typically, the word lines 744
and bit lines 746 are laid out at right angles. In the 1llustra-
tive embodiment, the word lines 744 and the bit lines 746 are
constructed of metal laid out in different planes such as a
metal 2 layer for the word lines 744 and a metal 3 layer for
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the bit lines 746. In other embodiments, bit lines and word
lines may be constructed of other materials, such as poly-
silicon, or can reside at different levels than are described 1n
the illustrative embodiment, that are known 1n the art of
semiconductor manufacture. In the illustrative example, a
distance of about lm separates the word lines 744 and a
distance of approximately 1 um separates the bit lines 746.
Other circuit dimensions may be constructed for various
processes. The 1illustrative example shows one bit line per
port, other embodiments may use multiple bit lines per port.

[0075] When a particular functional unit reads a particular
register 1n the register file 216, the functional unit sends an
address signal via the read ports 730 that activates the
appropriate word lines to access the register. In a register file
having a conventional structure and twelve read ports, each
cell, each storing a single bit of information, 1s connected to
twelve word lines to select an address and twelve bit lines to
carry data read from the address.

[0076] The four write ports 732 address registers in the
register flle using four word lines 744 and four bit lines 746

connected to each cell. The four word lines 744 address a
cell and the four bit lines 746 carry data to the cell.

[0077] Thus, if the illustrative register file 216 were laid

out 1n a conventional manner with twelve read ports 730 and
four write ports 732 for a total of sixteen ports and the ports
were 1 um apart, one memory cell would have an integrated
circuit area of 256 um* (16x16). The area is proportional to
the square of the number of ports.

[0078] The register file 216 is alternatively implemented
to perform single-ended reads and/or single-ended writes
utilizing a single bit line per port per cell, or implemented to
perform differential reads and/or differential writes using
two bit lines per port per cell.

[0079] However, in this embodiment the register file 216
1s not laid out in the conventional manner and 1nstead 1s split
into a plurality of separate and individual register file
scoments 224. Referring to FIG. 8, a schematic block
diagram shows an arrangement of the register file 216 nto
the four register file segments 224. The register file 216
remains operational as a single logical register file 1 the
sense that the four of the register file segments 224 contain
the same number of registers and the same register values as
a conventional register file of the same capacity that 1s not
split. The separated register file segments 224 differ from a
register flle that 1s not split through elimination of lines that
would otherwise connect ports to the memory cells. Accord-
ingly, each register file segment 224 has connections to only
three of the twelve read ports 730, lines connecting a register
file segment to the other nine read ports are eliminated. All
writes are broadcast so that each of the four register file
secoments 224 has connections to all four write ports 732.
Thus each of the four register file segments 224 has three
read ports and four write ports for a total of seven ports. The
individual cells are connected to seven word lines and seven
bit lines so that a memory array with a spacing of 1 um
between lines has an area of approximately 49 um~. In the
illustrative embodiment, the four register file segments 224
have an area proportion to seven squared. The total area of
the four register file segments 224 1s therefore proportional
to 49 times 4, a total of 196.

|0080] The split register file thus advantageously reduces
the area of the memory array by a ratio of approximately
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256/196 (1.3x or 30%). The reduction 1n area further advan-
tageously corresponds to an 1improvement in speed perfor-
mance due to a reduction 1n the length of the word lines 744
and the bit lines 746 connecting the array cells that reduces
the time for a signal to pass on the lines. The improvement
in speed performance 1s highly advantageous due to strict
time budgets that are 1mposed by the specification of high-
performance processors and also to attain a large capacity
register file that 1s operational at high speed. For example,
the operation of reading the register file 216 typically takes
place 1n a single clock cycle. For a processor that executes
at 500 MHz, a cycle time of two nanoseconds 1s imposed for
accessing the register file 216. Conventional register files
typically only have up to about 32 registers 1n comparison to
the 128 registers 1n the illustrative register file 216 of the
processor 100. A register file 216 substantially larger than
the register file 1n conventional processors 1s highly advan-
tageous 1n high-performance operations such as video and
ographic processing. The reduced size of the register file 216
1s highly useful for complying with time budgets 1n a large
capacity register file.

[0081] Referring to FIG. 9, a simplified schematic timing
diagram 1llustrates timing of the processor pipeline 900. The
pipeline 900 includes nine stages including three initiating,
stages, a plurality of execution phases, and two terminating
stages. The three 1nitiating stages are optimized to include
only those operations necessary for decoding instructions so
that jump and call instructions, which are pervasive in the
Java™ language, execute quickly. Optimization of the 1ni-
fiating stages advantageously facilitates branch prediction
since branches, jumps, and calls execute quickly and do not
introduce many bubbles.

|0082] The first of the initiating stages is a fetch stage 910
during which the processor 100 fetches mstructions from the
16 Kbyte two-way set-associative istruction cache 210.
The fetched instructions are aligned 1n the mstruction aligner
212 and forwarded to the instruction buifer 214 1n an align
stage 912, a second stage of the imitiating stages. The
aligning operation properly positions the instructions for
storage 1n a particular segment of the four register file
secgments 310, 312, 314, and 316 and for execution in an
associated functional unit of the three media functional units
220 and one general functional unit 222. In a third stage, a
decoding stage 914 of the mitiating stages, the fetched and
aligned VLIW mstruction packet 1s decoded and the score-
board (not shown) is read and updated in parallel. The four
register file segments 310, 312, 314, and 316 cach holds
either floating-point data or integer data. The register files
are read 1n the decoding (D) stage.

[0083] Following the decoding stage 914, the execution
stages are performed. The two terminating stages include a
trap-handling stage 960 and a write-back stage 962 during
which result data 1s written-back to the split register file 216.

[0084] While the invention has been described with ref-
erence to various embodiments, 1t will be understood that
these embodiments are 1llustrative and that the scope of the
invention 1s not limited to them. Many variations, modifi-
cations, additions and improvements of the embodiments
described are possible. For example, those skilled 1n the art
will readily implement the steps necessary to provide the
structures and methods disclosed herein, and will understand
that the process parameters, materials, and dimensions are
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orven by way of example only and can be varied to achieve
the desired structure as well as modifications which are
within the scope of the 1nvention. Variations and modifica-
fions of the embodiments disclosed herein may be made
based on the description set forth herein, without departing
from the scope and spirit of the 1nvention as set forth in the
following claims.

|0085] For example, while the illustrative embodiment
specifically discusses advantages gained 1n using the Java™
programming language with the described system, any suit-
able programming language 1s also supported. Other pro-
cramming languages that support multiple-threading are
generally more advantageously used 1n the described sys-
tem. Also, while the illustrative embodiment specifically
discusses advantages attained 1n using Java Virtual
Machines with the described system, any suitable processing
engine 1s also supported. Other processing engines that
support multiple-threading are generally more advanta-
geously used 1n the described system.

[0086] Furthermore, although the illustrative register file
has one bit line per port, 1n other embodiments more bit lines
may be allocated for a port. The described word lines and bat
lines are formed of a metal. In other examples, other
conductive materials such as doped polysilicon may be
employed for mterconnects. The described register file uses
single-ended reads and writes so that a single bit line 1s
employed per bit and per port. In other processors, ditfer-
ential reads and writes with dual-ended sense amplifiers may
be used so that two bit lines are allocated per bit and per port,
resulting 1n a bigger pitch. Dual-ended sense amplifiers
improve memory fidelity but greatly increase the size of a
memory array, imposing a heavy burden on speed perfor-
mance. Thus the advantages attained by the described reg-
ister file structure are magnified for a memory using ditfer-
ential reads and writes. The spacing between bit lines and
word lines 1s described to be approximately 1 um. In some
processors, the spacing may be greater than lam. In other
processors the spacing between lines 1s less than 1 um.

0087] Exemplary Instruction Set Architecture

0088] The material that follows provides a detailed
description of an exemplary instruction set suitable for use
in a processor architecture such as 1llustrated 1n the above-
referenced drawings and described elsewhere herein.

[0089] Except for symbols reserved for registers, Café
assembler symbols are just like those for the SPARC assem-
bler. See the SPARC assembler manual for those details.

[0090] The Café assembler uses the .proc pseudo-op simi-
lar to SPARC’s, but defines no operand for it. This pseudo-
op should be used to mark the beginning of a function so the
assembler can know to require the beginning of an instruc-
tion word. This only makes a practical difference 1f an
immediately preceding function ends with an instruction that
does not appear to consummate an instruction word, but
using the .proc pseudo-op 1s a good habit 1n any case.

0091] General Purpose Registers

0092] Café has 256 32-bit general purpose registers,

numbered O through 255. The assembler reserves symbols of
the form:

| Rr]<digit><digit>*
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[0093] for general purpose register specifiers. That is, the
letter R 1n either case followed by a non-empty string of
decimal digits denotes a general purpose register. Strings of
digits indicating values greater than 255 are diagnosed as
eITOrS.

10094] In addition to these canonical register names, a few
symbols are reserved for aliases of registers that have special
uses.

Sp Stack Pointer, an alias for rl.

1p Link Pointer. The call instruction puts the return
address 1n 1p, which 1s an alias for 2.

fp Frame Pointer, an alias for r3.

gmr GPU-to-MPU by-pass register, an alias for 6.

mgr MPU-to-GPU by-pass register, an alias for r7.

Others register alias symbols may be defined as
register use conventions evolve. None of these
symbols 1s case-sensitive.

[0095] In addition to register symbols, a general purpose
register can be denoted by a register expression of the form:

% % |Rr]?<constant-expressions>

[0096] That is, double percent sign, optionally followed
the letter R in either case, followed by the first pass (no
forward references, no relocations) constant expression in
the range of zero to 255. The optional R 15 of no value to the
the assembler, but some users believe 1t’s useful to see 1t 1n
the source.

[0097] 10 is a fiat-zero source operand and a result-
sink registers.

0098] Control and Status Registers

0099 In order to provide an extensible namespace for
control and status registers, symbols denoting them begin
with %. None of these symbols 1s case-sensitive.

0100] Program Counters

0101] Documentation refers to a program counter, % pc,
and 1ts sidekick % npc, but it’s not apparent that either 1s
used by the assembler.

[0102] Processor Status Register

[0103] Café has a program status register, for which this
assembler uses the symbol % psr. The layout of % psr
follows. % psr can be read and modified by the getir and set
ir 1nstructions using its 1nternal register ordinal, 1.

10104] Bit 24 of % psr specifies The processor 1D. Clear
denotes cpu0, and set denotes cpul.

[0105] Bits 23 and 22 of % psr specify the current Trap
Level.

[0106] Bit 21 of % psr determines the endianness of loads
and stores. The 1nitial state of this bit 1s clear, which means

big-endian. When set 1t means little-endian.

10107] Bit 20 of % psr is the Instruction Address Check
Enable flag. Its description is yet to be supplied.

[0108] Bit 19 of % psr is the Data Address Check Enable
flag. Its description 1s yet to be supplied.

[0109] Bit 18 of % psr is the Garbage Check Enable flag.
Its description 1s yet to be supplied.
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[0110] Bit 17 of % psr i1s the Data Cache Enable flag.
When set, the data cache 1s enabled; when clear, data cache
1s disabled.

[0111] Bit 16 of % psr is the Instruction Cache Enable flag.

When set, the 1nstruction cache 1s enabled; when clear,
mstruction cache 1s disabled.

[0112] Bit 15 of % psr is the Supervisor Mode flag. When
set 1t indicates the processor 1s 1n supervisor mode, which
allows certain privileged activities. Among these privileged
activities 1s the ability to change all but the two right-most
fields of % psr. The Supervisor Mode flag 1s most often set
during trap handling, which 1s explained in the Traps section
of the microarchitecture manual.

[0113] Bit 14 of % psr is the Interrupt Enable flag. When

set, mterrupts are enabled. Its use 1s explained 1n the Traps
section of the microarchitecture manual.

[0114] Bits 13 through 10 of % psr is the Processor

Interrupt Level, which 1s explained in the Traps section of
the microarchitecture manual.

[0115] The % psr fields that can be set when the Super-

visor Mode flag 1s clear are grouped together at the low-
order end. They follow.

[0116] A 2-bit field of % psr specifies the mode in effect
for the saturated arithmetic performed by some of the
parallel mteger operations. The bounds for saturation are
orven 1n the adjacent table. Modes 00 and 01 are expressed
as two’s-complement 16-bit integers. Mode 10 1s expressed
in S.15 fixed-pomnt. Mode 11 1s S2.13 fixed-point. The
simulator 1s using bits 8 and 9 of % psr for this specification.

bounds
mode low high
00 000000000 ... 0 011111111 . . .
01 100000000 ... 0 011111111 . . . °
10 100000000 . .. 0 011111111 . . .
11 111000000 . .. 0 001000000 ... 0

[0117] (For those of us habituated to the common floating-
point representation, the Si.f notation in the preceding
paragraph can be confusing. In these fixed point formats, the
sign-bit S 1s one bit of the mteger part of the number. For
example, 1n S2.13 format, the integer part 1s a two’s comple-
ment 3-bit number. There 1s no “dedicated” sign-bit as with
the floating-point representation, and thus no negative zero
to worry about.)

[0118] The low-order eight bits of % psr are used as dirty
bits for octants of the general purpose register file. A new
process begins with all the dirty bits clear, and a octant’s
dirty bit 1s set when a register 1n that octant 1s written. Café’s
large register file 1s a formidable lot of state to manage
during a context-switch. An 1solated region of a long-
running program that causes dirty bits to be set should clear
them when 1t’s safe to do so. Within this 8-bit field a given
register number N corresponds to the bit (1<<(N>>5)).

0119] Trap Base Register

0120] A vector of trap handler addresses is pointed-to by
a trap base register, for which the assembler uses the symbol
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% tbr. Only the high-order 19 bits of % tbr are used to
address the vector, so the vector must be positioned at an
8192-byte boundary. Details for use of the vector are
described 1n the “Traps™ chapter of the Calé Architecture
Manual.

[0121] The assembler’s only concern is the ability to read
or set % tbr using the getir and setir instructions. Reads of
the low-order 13 bits of % tbr always return zero, and writes
to the low-order 13 bits of % tbr are always 1gnored.

[0122] No other control or status registers are described
yet. Those that will be defined that can be read or set will be
accessible using the getir and setir instructions.

0123]
0124]

0125] Note: Since this document was written the term
“SFU” has evolved to “GFU”, and the term “UFU” has

evolved to “MFU”. Until there’s no problem more important
than changing all occurrences of the old terms here, the
author apologizes for the mmconvenience.

Instruction Set

Instruction Formats

[0126] Café instructions are issued in instruction words
composed of one SFU instruction and zero to three UFU
mnstructions. An SFU 1instruction begins with a 2-bit header
field that 1s a count of the UFU 1nstructions that follow 1n the
mnstruction word. All of the instructions 1n an instruction
word are 1ssued 1n the same cycle.

[0127] When there isn’t useful work to do on all the UFUS,

UFU 1nstructions need not be present. However, the UFU on
which an instruction executes 1s determined by the position
of the instruction in the mstruction word. To cause an
mstruction to execute on the second or third UFU, there
must have been instructions in the previous slots of the
instruction word. This 1s an 1ssue when trying to avoid the
latency of propagating a result from one FU to another.

[0128] The assembler infers the beginning of an instruc-
fion word from the presence of an SFU instruction. UFU
instructions that follow form the rest of the instruction word.
More than three consecutive UFU instructions are reported
as a fatal error, since the assembler cannot create a well-
formed Café mstruction word from that.

[0129] Several mnemonics denote instructions imple-
mented both as SFU and UFU operations. These mnemonics
indicate an SFU 1nstruction only when used at the beginning
of an 1nstruction word. An instruction word boundary 1is
established when the immediately preceding instruction

opcode| 7:3]

11ixx

11100
11101
11110
11111
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word uses all three of 1ts UFU slots or by the presence of two
adjacent semicolons (;;), the instruction word delimiter.

[0130] Algebraicly, if not lexically, the double semicolon
1s a full colon, meaning 1t’s time to flush the instruction
word. For example:

[0131] ;; add r6,1,r6; add r7,1,r7;; is a single instruc-
tion word beginning with an SFU add operation and
having a single UFU operation, also an add. But the
similar pattern:

[0132] ;; add 16,1,r6;; add r7,1,r7;; 1s to instruction
words, each consisting of an SFU add operation.

[0133] SFU Instruction Formats

[0134] An SFU instruction begins with a 2-bit header
(labeled hdr in the instruction format diagrams appearing
later in this section) that gives the number of UFU instruc-
tions that follow the SFU 1nstruction in the 1nstruction word.
That 1s, the header vaules and instruction word contents they
indicate are:

header value imstructions in instruction word

00 SFU only

01 SFU + UFUI1

10 SFU + UFU1 + UFU2

11 SFU + UFU1 + UFU2 + UFU3

[0135] The first two bits of an SFU opcode determine the
class of the operation. The values and classes are:

00 Call and branch

01 Compute

10 Memory (uncacheable)
11 Memory (cacheable)

[0136] Generally, the third bit of an SFU opcode, the 1-bit,
1s set when an operation uses an 1immediate for its second
source operand and clear when it does not. SFU opcodes
beginning with 00 (call and branch) are 6 bits, and all others
are 8 bits.

[0137] Opcodes for the memory operations can be shown
in a matrix where the bits usually indicate cacheability,
signedness, size, and direction:

Memory (cacheable, leading 11) Opcodes

opcode[2.0]

Oxx-(unsigned) 1xx-(signed)
byte short word long byte  short word long
000 001 010 011 100 101 110 111
Idub  Idus Iduw Idpair Idb  Ids ldw  (Idg)
— Iduso lduwo 1d_diag — Idso ldwo prefetch
stb sts stw stpair cstb  csts cstw = —
s2ib  stso stwo st_diag — — cas = —
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[0138]
Memory (uncacheable, leading 10) Opcodes
opcode|2.0]
Oxx-(unsigned) 1xx-(signed)

opcode [7:3] byte short word long byte short word long
101xx 000 001 010 011 100 101 110 111
10100 ncldub  necldus  nclduw ncldg  ncldb nclds ncldw  —
10101 — nclduso nclduwo — — — ncldso  ncldwo —
10110 ncstb nests ncstw ncstpalr — — — —
10111 — ncstso  nestwo — — — — —

[0139] Opcodes in the compute (leading 01) quadrant of
the SFU opcode space generally are not assigned 1n ways
where the bit patterns reveal much other than where the 1-bit
1s used. Mnemonics 1n both the upper and lower halves of

this table are those for opcodes that are the same except for
a clear or set 1-bit. Note that there are only three free spaces

in the upper half and sixteen free in the upper half.

Compute (leading 01) Opcodes

opcode| 7:3] opcode|2:0
01ixx 000 001 010 011 100 101 110 111
1=0 01000 add — sub — not or and XOT
01001  1div rem ppower cmovenz  sethi cmovez Dblockaddr —
01010  shll shrl shra — cmpeq cmplt  frecsqrt —
01011  fempeq femplt fecmple cmpult fdiv precsqrt getir sefir
1=1 01100 add — sub — — o1 add X0t
01101  1wdiv rem — cmovenz = — cmovez — —
01110  shll shrl shra — cmpeq cmplt  — —
01111  — — — cmpult — — — —

[0140] Opcodes in the call and branch (leading 00) quad-
rant of the SFU opcode space have some 1irregularities
compared to other SFU opcodes. Since call and nop opcodes
must be unique in their higher-order six bits, they have
effective footprints of four opcodes each. Similarly, bz and
bnz, with their prediction qualifiers, each use up four opcode
slots. This quadrant does not use the 1-bit as the other three

do.

Call and branch (leading 00) Opcodes
opcode| 7:3] opcode[2:0]
00xxx 000 001 010 011 100 101 110 111
00000 call n/a n/a n/a bz bz, pt bz, ph bz, ph, pt
00001 bnz bnz, pt bnz, ph bnz, ph, pt jmpl done retry S1T
00010 softtrap 1flush  — — — — — —
00011 — — — — — — — —
00100 nop nop nop nop — — — —
00101 — — — — — — — —
00110 softtrap membar — — — — — —
00111 — — — — — — — —
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[0141] The SFU instruction formats are: [0151] Only the bz and bnz instructions use this
|0142] memory and compute format.
[0143] (See FIG. 10A) [0152] UFU Instruction Formats
. 0153]| three-source operand
[0144] sethi | p
[0145] (Sce FIG. 10B) [0154]  (See FIG. 10E)
[0146] Only the sethi instruction uses this format. [0155]  two-source operand
[0147] call [0156] (See FIG. 10F)
_ [0157] The immediate field of the UFU two-source
[0148] - (See FIG- 10C) instruction 1s 14 bit to be consistent with very similar
[0149] Only the sethi instruction uses this format. operations using the SFU compute format.

[0150] (See FIG. 10D)

mnemonic

add

addc

CIMOVeNZ
CIMOVEZ
cmpeq
cmplt
cpicknz
cpickz

cmpult

genborrow

gencarry
getir
1div
moveind
mul
muladd
mulsub

padd
padds

Pcmovens

PCmMoves

pempeq
pcmplt
pmul

pmuladd
pmuladds

pmulsub
pmulsubs

psub
psubs

rem
sethi
setir

sub

subc

[0158]

Instruction Categories

Integer Instructions

argument list opcode
rsl,reg or_imml4,rd S$-01100000
UJ-000000
rs1,rs2,r83,rd UJ-000001
rsl,reg or_1mml4,rd S-01101011
rsl,reg or__immg&,rd U-pseudo-op
rs1,reg or_1mml4,rd S5-01101101
rsl,reg or__immg&,rd U-pseudo-op
rs1,reg or_1mml4,rd S5-01110100
U-101100
rsl,reg or_imml4,rd S5-01110101
U-101110
rsl,reg or_1mm&,;reg or_ 1mm&8,rd U-101010
rsl,reg or_imm&,reg or_1mm&,rd U-101011
rsl,reg or_imml4,rd S-01111011
U-101111
rsl,reg or_imml4,rd U-101000
rs1,reg or_1mml4,rd U-101001
rsl,rd S-01011110
rsl,reg or_imml4,rd S$-01101000
rsl,|rs2 ] U-100010
rsl,reg or-tmm14,rd UJ-000110
rsl,reg or_1mmg&,reg or_1mmg,rd U-001000
rsl,reg or_imm&,reg or 1mm8,rd U-001001
rsl,reg or_1mml4,rd U-000100
rs1,rs2,rd UJ-110100
rs1,rs2,rd U-111100
rs1,rs2,rd U-111101
rsl,reg or_1mml4,rd U-110001
rsl,reg or_imml4,rd U-110011
rsl,reg or_imml4,rd UJ-000111
rs1,rs2,rs3,rd U-001010
rs1,rs2,rs3,rd U-111010
rs1,rs2,rs3,rd UJ-001011
rs1,rs2,rs3,rd U-111011
rsl,reg or__imml4,rd UJ-000101
rs1,rs2,rd U-110101
rsl,reg or_imml4,rd S5-01101001
1mm?22,rd S-01001100
rsl,rd S-01011111
rsl,reg or_imml4,rd S$-01100010
UJ-000010
rs1,rs2,rs3,rd U-000011

1

1

1

SGTN NG T N6 T N T N5 T RN iy S WY

S I AV

operation

Add

Add with carry
Move if not zero

Move it zero
Compare equals
Compare less than

Conditionally (non-
zero) pick
Conditionally (zero)
pick

Compare less than

Generate borrow
(Generate carry

Get internal register
Division

Move indirect
Multiply
Multiply add
Multiply add
Parallel add
Saturating parallel
add

Parallel move 1if not
Zero

Parallel move 1if zero
Parallel compare
equal

Parallel compare less
than

Parallel multiply
Parallel multiply add
Saturating parallel
multiply add

Parallel multiply
subtract

Saturating parallel
multiply subtract
Parallel subtract
Saturating parallel
subtract

Remainder

Sethi

Set internal register

Subtract

Subtract with carry
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[0159]
Logical Instructions
mnemonic  argument list opcode [. operation
add rsl,reg_or_imml4rd S-01100110 1 Add
U-010110
ceehb rsl,reg_or _imml4,rd U-111110 1 Count
consecutive
clear bits
not rs1,rd S5-01100100 1 Not
U-010100
or rs1,reg_or__1mml4,rd S-01100101 1 Or
U-010101
pshll rs1,reg_or__1mml4,rd U-011100 1 Parallel shift
left logical
pshra rsl,reg_or_1mml4,rd U-011110 1 Parallel shift
right arithmetic
pshrl rs1,reg_or_1imml4,rd U-011101 1 Parallel shift
right logical
shll rs1l,reg_or__1mml4,rd S-01110000 1 Shift left
U-011000 logical
shra rsl,reg_or__imml4,rd S-01110010 1 Shift right
U-011010 arithmetic
shrl rsl,reg_or__imml4,rd S-01110001 1 Shift right
U-011001 logical
XOr rsl,reg_or_1mml4,rd S-01100111 1 Exclusive or
U-010111
[0160]
Floating Point Instructions
mnemonic argument list opcode L. operation
clip rs1,rs2,rs3,rd U-011111 1 Clip
fadd rs1,rs2,rd U-001100 4 Single precision addition
fempeq rs1,rs2,rd S-01011000 1 FP compare equals
femple rs1,rs2,rd S-01011010 1 FP compare less than or
equals
femplt rs1,rs2,rd S-01011001 1 FP compare less than
fdiv rs1,rs2,rd S-01011100 6 Single precision division

mnemonic

bndck

bnz

bz
call
done
jmpl
nop
retry
refurn
SIT

softtrap

Jan. 13, 2005
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-continued

Floating Point Instructions

mnemonic argument list opcode I. operation

fmul rs1,rs2,rd U-001110 4 Single precision
multiplication

fmuladd  rsl,rs2,rs3,rd U-010000 4 Single-precision multiply-
add

fmulsub  rsl,rs2,rs3,rd U-010001 4 Single precision multiply-
subtract

frecsqrt rs1,rd S-01010110 6 Single precision reciprocal
square root

fsub rs1,rs2,rd U-001101 4 Single precision subtraction

0161] Fixed-Point Instructions

0162] The fixed-point operands of these instructions are
in S2.13 format; that 1s, these 1nstructions are unatfected by
the fixed-point mode bits of the psr. Precision may be lost as
a result 1s rendered 1n that format. Overflows saturate.

mnemonic  argument list  opcode [. operation

ppower rs1,rs2,rd S-01101010 6 Parallel
exponentiation

precsqrt rs1,rd S-01011101 6 Parallel reciprocal

square root

[0163]
Convert Instructions
mnemonic argument list opcode L. operation
fx2ft rsl,reg or_imml4,rd U-100111 4 Fixed point to
single precision
Ht2 fix rsl,reg or_1mml4,rd U-100110 4 Single precision to
fixed point
[0164]
Control Flow Instructions

argument list opcode [. operation
rsl,reg or_1mm&,reg or_1mm8 U-011011 7 Bound check
rd.label S-000010ht 1 Branch if not zero
rd,label S-000001ht 1 Branch if zero
label S-000000 1 Call
no arguments S-00001101 7 Skip trapped 1nstruction
rs1,rd S-00001100 2 Jump and link
no arguments S-001000xx 1 Null operation
no arguments 5-00001110 7 Reftry trapped instruction
rsl pseudo-op 2 Return
no arguments S5-00001111 7 Software-initiated reset
rsl,reg or__1mml4 5-00110000 7 Software-initiated trap
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0165] Memory Access Instructions

14

[0169]

0166] Café memory accesses can be done either big- or

little-endian, with big-endian being the default. Endianness
1s controlled by a bit 1n % psr.

[0167]

and linker assume that relocations and other initializations in

Jan. 13, 2005

Instructions are stored big-endian. The assembler

mnemonic

sections other than code sections should also be treated as
big-endian.

[0168] Most memory access instructions use a two-com-
Tective address specification, denoted 1n this docu-
may be [rsl+rs2], [rsl+
1s specified, the assembler

ponent €
ment by [ac
simm14], or

dress|. [address
rs1]. When [rs1

bitext
byteshuitle
pack

pdist

pmean

infers an 1mmediate zero for the second address component
of the instruction.

mnemonic

cas
csth
csis
cstw

iflush
Idpair

ldso
ldub
ldus
lduso
lduw
lduwo

ST« VNN & VRN = TR = VN « VRN = VR = PR VRN = PR

ldwo

membar
ncldb
ncldg
nclds
ncldso
ncldub

ncldus

nclduso

nclduw

nclduwo

ncldw
ncldwo
ncstb
ncstpair
nCsts
ncstso
ncstw
ncstwo
s21b
sth
stpair
Sts

S{80
Stw

stwo

argument list

rs1,{rs2],rd
rd,rs1,|rs2
rd,rs1,[rs2]
rd,rs1,[rs2]
no arguments

|address|,rd

|address |, rd

|address |,rd

|address |,rd

|address |, rd

|address |,rd

|address |,rd

Iress |,rd

§
s
s
s
|address |,rd
s
s
|add

§

|address |, rd

|address],rd
no arguments
|address |,rd
|address |,rd
|address |, rd
|address |,rd

|address |, rd

§
$
$
|address |,rd
§
§

|address |,rd
|address |, rd
|address |,rd

|address |, rd
|address |,rd
rd,] address|
rd,|address]
rd,] address]
rd,|address]
rd,|address]
rd,] address]
rd,|address]
rd,] address|
rd,|address]
rd,] address]
rd,] address]
C
C

rd,|address]

rd,] address|

—

operation

Compare and swap(atomic)

Conditional
Conditional
Conditional

| store byte
| store short
| store word

Flush instruction pipe

Load
Load
Load
Load
Load
Load
Load
Load
Load

byte
pair
short

short other-endian

unsignec
unsigned
unsigned
unsignec
unsignec

| byte

| short

| short other-endian
| word

| word other-endian

opcode
S-11011110
S-11010100
S5-11010101
S-11010110
S-00010001
S-11100100
S-11100011
S-11100101
S-11101101
S-11100000
S-11100001
S-11101001
S-11100010
S-11101010
S-11100110
S-11101110
S-00110001
S-10100100
S-10100011
S-10100101
S-10101101
S-10100000
S-10100001
S-10101001
S-10100010
S-10101010
S-10100110
S-10101110
S-10110000
S-10110011
S-10110001
S-10111001
S-10110010
S-10111010
S-11111000
S-11110000
S-11110011
S-01110001
S-01111001
S-10110010
S-10111010

RN TR P T T T P T P T P TR D R N S (N TR SN0 T A0 R N T L T N0 TR W B (N TR O TR B T W SR B TR N S F T P T

R WO O T T T T, R, R R R

L.oad

L.oad

word

Memory barrier

Non-cac]
Non-cac]
Non-cac]
Non-cac]
Non-cac]

Non-cac.

1Cd

1€d

1€d

1ca

1Cd

Non-cac]

endian

1ca

neal

o o o o o O

o]l

e load
load
load
load
load

load

® o O @ @ O

load

word other-endian

byte

group
short

short other-endian

unsignec

unsigned

| byte

| short

unsignec

| short other-

Non-cacheable load unsigned word

Non-cacheable load unsigned word other-

endian

Non-cac!
Non-cac]
Non-cac]
Non-cac]
Non-cac]
Non-cac]

Non-cac.

1€d

Non-cac]

neal
nea
nea
nea

neal

neal

heal

Store byte to

Store byte

Store pair

Store short

le load word

D
.
ble store byte
ble store pair

ble store short
.
.
D

le store word

instruction

Store short other-endian

Store word

Store word other-endian

le load word other-endian

le store short other-endian

le store word other-endian

|still missing pefetch, 1d__diag and st diag, at least]

argument list

I's

I's

I's

I's

I's

Pixel Instructions

1,rs2,rs3,xrd
1,rs2,rs3,rd
1,rs2,rs3,rd
1,rs2,rd
1,rs2,rd

opcode

111111

100001
100000
100101

100100

N N L

operation

Bit extract
Byte extract
Pack

Pixel distance

Parallel mean
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0170] more as I learn more . . .

0171] Scheduling

0172] Note: This section 1s superseded by the “Code
Scheduling Guidlines” section of the Caté Microprocessor
Architecture Manual. Please feel free to recommend
improvements or corrections to this material, but refer to the
manual for the definitive treatment.

[0173] None of the results of UFU operations 1S score-
boarded. All loads and a few non-pipelined long-latency
SFU operations such as i1div, fdiv, frecsqrt, precsqrt, and
ppower (the complete list is not determined) are score-

boarded.

[0174] Non-scoreboarded results are available to subse-
quent operations on the unit that produces them after their
latencies; earlier use 1s erroneous. Latencies are shown 1n the
columns labeled “L” 1n the tables in the preceding section.

[0175] A result produced on one unit is available as an
operand on another unit when 1t 1s being written to the
register file (that is, when it reaches pipe stage W1). Earlier
use 1s erroneous. This takes 5 cycles on a UFU. On the SFU
this takes one cycle more than the latency of the producing
operation. The difference 1s because UFU results have to
pass through all 4 E-stages of a pipe before reaching W1,
and SFU results do not.

[0176] Use of a scoreboarded result register as an operand
causes 1nstruction 1ssue to stall for as many cycles as it takes
for that result to become available. If the referencing mstruc-
tion that provokes the stall 1s also on the SFU, the stall 1s
only until the result 1s available for intra-unit bypass. In the
case of a load that hits 1n the cache, the stall could be as short
as a single cycle. If the referencing mnstruction i1s on a UFU,
stall lasts until the result reaches stage W1, where it can be
bypassed on its way to the register file.

0177] To help improve the latency of feeding operations
not available on all units, special bypass registers are avail-
able. A completed (that is, finished but not yet in W1)
instruction’s result can be bypassed from the first UFU to the
SFU 1if 1ts destination register 1s r4. Likewise, a completed
instruction’s result can be bypassed from the SFU to the the
first UFU 1f 1ts destination register 1s r5.

[0178] Multiple writes to the same register of the register
file 1n the same same cycle 1s an erroneous condition with an
undefined result. More generally, any time a given register
1s the destination of more than operation in progress, the
program 1s erronecous. Suppose that unit’s 4-E-stage pipe
sees a sequence of operations like:

cycle operation

0 4-cycle op — r10
1 4-cycle op — 110
2 anything

3 anything

4

5

any op using cycle zero’s 110 as a source
any op using cycle one’s r10 as a source

[0179] Before being too awestruck by this tight schedul-
ing, consider what happens if 1ssue has to stall, say for
icache fill, 1n cycle two or three: both uses of r10 will get the
result produced by the op that started in cycle one. Never
1ssue a redefinition of a register’s value between a definition
and a use. The value that will reach the use 1s not deter-
ministic.
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0180] Instruction Details
0181] add
0182] add 1s an integer instruction that computers

“r[rsl]+r[rs2]” or “r[rs1 |+sign ext(imm14) ”. The use of an
immediate for the second source operand sets the 1-bit of the

opcode of the SFU version or the first header bit of the UFU
version. The resulting sum 1s left in rfrd].

[0183] The suggested assembler syntax is:

[0184]

[0185] The SFU version of this instruction uses the SFU
compute format, and the UFU wversion uses the UFU
2-source format.

0186]

0187] addc and subc are integer instructions that compute
“flrs1 |+r|rs2 |+ rs3]” or “r rs1|-r[rs2|-r{ rs3]”, respectively.
Only the least significant bit of 1 rs3], which is expected to

be the result of a gencarry or genborrow, 1s used. The result
is left in rfrd].

add rsl1, reg or 1imm14, rd

addc, subc

[0188] The suggested assembler syntax is:
[0189] addc rsl, rs2, rs3, rd
[0190] subc rs1, rs2, rs3, rd
[0191] addc and subc are UFU instructions that use the
UFU 3-source format.
0192] and
0193] and 1s a logical instruction that computes “rffrs1] &

frs2]” or “rf rs1] & imm14”. The use of an immediate for the

second source operand sets the 1-bit of the opcode of the
SFU version or the first header bit of the UFU version. The
result 1s left in rfrd].

[0194] The suggested assembler syntax is:
[0195] and rsl, reg or 1imm14, rd

[0196] The SFU version of and uses the SFU compute
format, and the UFU version uses the UFU 2-source format.

0197] Bitext

0198] bitext 1s a pixel instruction that extracts bits from
the pair of registers r[rs1] and r[rs2]. The extracted field is
described by a 6-bit length in bits 21 . . . 16 of r{rs3]and a
5-bit skip count in bits 4 . . . 0 of r{rs3]. The skip count is
applied at the left-most (high-order) end of r{rs1]. The

extracted field is right justified with r{rd] without sign-
extension.

[0199] (The illustration below is appropriated from a
someone else’s slide. I hope the stylistic change 1s not too
jarring, but prose description has not been lucid for some
readers.)

0200] See FIG. 11

0201] The suggested assembler syntax is:

[0202] bitext rs1, rs2, rs3, rd

[10203] bitext 1s an UFU operation that uses the UFU
3-source format.

0204] bndck

0205] bndck 1s a control flow instruction that causes a
trap if “rfrs1]==0", the second source operand is less than
zero, of 1f the second source operand 1s greater than or equal
to the third source operand. What 1t means to trap 1s not yet

defined.
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[0206] The second source operand can be either r[rs2] or
sign ext(imm§), and the third source operand can be either
r[rs3] or sign ext(immgy). The use of an immediate for either
causes the appropriate header bit to be set 1n the instruction.

[0207] The suggested assembler syntax is:

[0208] bndckrsl,reg or imms8, reg or imm& bndck
1s a UFU operation that uses the UFU 3-source
format. The operation has no use for this format’s
r|rd]|, which the assembler will make appear to be
ZETO.

0209] bnz

0210] bnz is a control flow instruction for a branch to the
offset implied by the difference between the program
counter and the specified label if the value in “r[rd]” is not
equal to the integer zero. “label” 1s a label at the branch
target; the assembler will either determine the displacement
or generate relocation information so a linker can determine
it. Whenever the displacement 1s determined, it must be
expressible 1n a signed 22-bit field.

[0211] The mnemonic may be followed optionally by the
qualifier,pt, which means this conditional branch is staticly
predicted to be taken. The use of this qualifier sets the T-bit

1n the 1nstruction.

[0212] The suggested assembler syntax is:

[0213] bnz rd, label
[0214] bnz, pt rd, label
[0215] bnz 1s an SFU operation that uses the branch

mstruction format.

0216] byteshufile

0217] byteshuffle is a pixel instruction that copies the
bytes from its sources r{rs1] and rfrs2] to byte positions of
rlrd] according to the pattern described by the bits of the
least significant two bytes of r[rs3].

10218] Each group of four contiguous bits the lower-order
two bytes of r{rs3] is the ordinal of the byte position of the
eight bytes of the register pair 1| rs1]-r[rs2] from which a
byte is copied to the corresponding byte of rfrd]. An out-
of-range byte ordinal (that is, a value greater than 7) means
the corresponding byte of r[rd] will be zeroed.

[0219] The suggested assembler syntax is:

[0220] byteshuffle rs1, rs2, rs3, rd

10221] byteshuffle is a UFU operation that uses the UFU
3-source format.

[0222] bz

[10223] bz is a control flow instruction for a branch to the
offset implied by the difference between the program
counter and the specified label if the value 1n “rff rd |’ 1s equal
to the integer zero. “label” 1s a label at the branch target; the
assembler will either determine the displacement or generate
relocation information so a linker can determine 1t. When-
ever the displacement 1s determined, 1t must be expressible

in a signed 22-bit field.

10224] The mnemonic may be followed optionally by the
qualifier, pt, which means this conditional branch 1s staticly
predicted to be taken. The use of this qualifier sets the T-bit

1n the mstruction.
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[0225] Unconditional branches are commonly coded using
bz with rO for the register operand. When the assembler sees
this “unconditional conditional” branch without prediction,
it will infer the “,pt” qualification, which can i1mprove
instruction prefetching.

[0226] The suggested assembler syntax is:

[0227] bz rd, label
[0228] bz, pt rd, label

[0229] bz is an SFU operation that uses the branch instruc-
tion format.

0230] call

0231] call is a control flow instruction causes a control
transier to the address speciiied by its label operand. A call
to address zero 1s an 1llegal 1nstruction.

[0232] The return address (% npc at the time of the call)

1s left 1n r2, an 1mplicit operand of this instruction. For that
reason the assembler has the alias Ip (“link pointer™) for r2.

[0233] The suggested assembler syntax is:
0234 call label

[0235] call 1s an SFU operation that uses a format of its
OWIL.

0236] cas

0237] casisamemory access instruction that compare the

content of register r{ rs1 | with the content of the 32-bit word
in memory addressed by 1 rs2]. If those values are equal, the
content of register r[rd] is swapped with the word addressed
by 1{rs2]. Otherwise, the content of the addressed memory
word 1s unchanged, but the value at that memory address
replaces the content of register rfrd].

[0238] The effective address from which to load must be
word-aligned, but the consequences of failing to do that are
not defined.

[10239] Note that cas uses dcache, which makes it unsuit-
able for thread synchronization in a multi-Caté configura-
tion.

[0240] The suggested assembler syntax is:
0241 cas rsl, [rs2], rd

[0242] cas 1s an SFU operation that use the 2-source
register variant of the SFU memory format. Since 1t always
uses two source registers, the 1-bit of 1ts opcodes 1s always
clear.

0243] cccb

0244] cccb is a logical instruction that counts consecutive
clear bits 1s its first source operand, r{rs1], beginning from
the high-order bit, first skipping the number of bits specified
by the second source operand. The second source operand
my be either a register or an immediate. In either case, only
the the low-order 5 bits of the skip-count are used. The count
of clear bits 1s left in rfrd].

[0245] The suggested assembler syntax is:
[0246] cccb rsl, reg or imm14, rd

10247] cccb is an UFU operation that uses the UFU
2-source format.
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0248]
0249]

[0250]  ((r[rs1] > r[rs2]? 1:0) <<1) |

clip

clip 1s a floating point 1nstruction that computes:

[0251] (r[rs1] < —1[rs2]? 1:0) |
[0252] (r[rs3] << 2)
[0253] and leaves the result in rf rd]. The practical effect of

this operation is to return a copy of 1| rs3] shifted left 2 bits
with the two least significant bits occupied by indications of
how the single-precision floating point numbers in r[rs1 | and
rlrs2] compare.

[0254] The suggested assembler syntax is:

[0255]

[0256] clip is a UFU operation that uses the UFU 3-source

format, but the variants of that format that allow immediates
for the second and third source operand are not used.

0257]

0258] cmovenz i1s an integer instruction that copies the
value of the second source operand, specified by “r[rs2]” or
“sign ext(imm)”, to the result register rf rd ] only if the first
source operand, r{rsl], is non-zero. Note that cmovenz
allows a 14-bit immediate on the SFU but only an 8-bit
immediate on a UFU.

clip rs1, rs2, rs3, rd

CINOVCIZ

[0259] The suggested assembler syntax is:

SEU
UFU

CIMOVENYZ
CIMOveEns

rsl,reg or_1mml4,rd !
rsl,reg or__1mm&,rd !

[0260] The SFU version of the cmovenz uses the SFU

compute format. The UFU version of cmovenz 1s a pseudo-
op for the cpicknz instruction with rfrd] replicated in the

r|rs3] field.
10261 ]

0262] cmove z is an integer instruction that copies the
value of the second source operand, specified by “r[rs2]” or
“sign_ext(imm)”, to the result register rf rd | only if the first
source operand, r[rsl], is zero. Note that cmovez allows a

14-bit immediate on the SFU but only an 8-bit immediate on
a UFU.

CINOVCA

[0263] The suggested assembler syntax is:

SEFU
UFU

CINOVEL
CINOVECZA

rsl,reg__or__1imml4,rd !
rsl,reg_or__imms8,rd !

10264] The SFU version of cmovez uses the SFU compute
format. The UFU version of cmovez 1s a pseudo-op for the
cpickz instruction with 1| rd] replicated in the r[rs3] field.

0265]

0266] cmpeq is an integer instruction that computes
“r[rs1]==1]rs2]” or “1| rs1]=sign ext(imm14)”. The use of an
immediate for the second source operand sets the 1-bit of the
opcode. The resulting zero or one is left in r{rd].

cmpeq
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[0267] The suggested assembler syntax is:

cmpeq rs1,reg or_1mml4,rd

[0268] The SFU version of this instruction uses the SFU
compute format, and the UFU wversion uses the UFU
2-source format.

0269]

0270] cmpltis an integer instruction that computes “r|rs1]
<r[rs2]” or “r|rsl J<sign ext(imm14)”. The use of an imme-
diate for the second source operand sets the 1-bit of the
opcode. The resulting zero or one is left in r{rd].

cmplt

[0271] The suggested assembler syntax is:

cmplt rs1,reg or__1mml4,rd

10272] The SFU version of this instruction uses the SFU

compute format, and the UFU wversion uses the UFU
2-source format.

0273]

0274] cmpult is an integer instruction that computes
“(unsigned) r|rsl J<(unsigned) r[rs2]” or “(unsigned) r[rsl]
<(unsigned) imml 4”. The use of an immediate for the
second source operand sets the 1-bit of the opcode. The
resulting zero or one 1s left in 1| rd].

cmpult

[0275] The suggested assembler syntax is:

cmpult rsl,reg or_1mml4,rd

[0276] The SFU version of this instruction uses the SFU
compute format, and the UFU wversion uses the UFU
2-source format.

0277]

0278] cpicknz is an integer instruction that assigns its
second source operand to r[rd] if the first source operand,
r{rs1], is non-zero; otherwise, the third source operand is
assigned to rfrd]. Each of the second and third source
operands can be either a register or a sign-extended 8-bit
immediate.

cpicknz

[0279] The suggested assembler syntax is:

cpicknz rsl,reg or__imm§,reg or_imm8,rd
[0280] cpicknz i1s a UFU operation that uses the UFU
3-source format.
0281] cpickz
0282 cpickz is an integer instruction that assigns its

second source operand to r[rd] if the first source operand,
rffrs1], is zero; otherwise, the third source operand is
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assigned to rfrd]. Each of the second and third source
operands can be either a register or a sign-extended 8-bit
immediate.

[0283] The suggested assembler syntax is:

cpickz rsl,reg or imm&,reg or__imm&,rd

10284] cpickz is a UFU operation that uses the UFU
3-source format.

[0285]

[0286] cstb, csts, and cstw are memory access instructions
that, if the value in the register r[rs1] is non-zero, store the
value the register r[rd] at the address in register 1| rs2].

cstb, csts, cstw

10287] The effective address to which to store must be
aligned to a natural boundary for the size of the store, but the
consequences of failing to do that are not defined.

[0288]

The suggested assembler syntax is:

cstb rd rsl,|rs2]
csts rd,rs1,|rs2 |
cstw rd,rs1,[rs2 ]

[0289] cst|[b, s, w]are SFU operations that use the 2-source
register variant of the SFU memory format. Since they
always use two source registers, the 1-bit of their opcodes 1s
always clear.

0290] done

0291] done is a control flow instruction causes a control
transfer from a trap handler to the next mnstruction word after
the 1nstruction that caused the trap. Please refer to the Traps
chapter of the Café Microarchitecture specification for the
complete description.

[0292] The suggested assembler syntax is:
[0293] done

10294] done is a SFU operation that uses the SFU compute
format, but 1s has no use for any operand.

0295]  fadd

0296]| fadd is a floating point instruction that computes
“frs1]+r|rs2]’, where the values of the source operands are

IEEE single-precision floating point numbers. The result 1s
delivered in r|rd].

[0297] The suggested assembler syntax is:

fadd rs1,rs2,rd

10298] fadd is a UFU operation that uses the UFU
2-source format.

0299] fcmpeq

0300] fcmpeqis afloating point instruction that compares
the single-precision floating point operands 1n its source
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registers rfrs1] and r[rs2] for equality. The destination reg-
ister 1 rd ] set set to the integer value 1 if the source operands
are equal and zero otherwise. If either source operand is a
NaN, they are not equal.

[0301] The suggested assembler syntax is:

fcmpeq rs1,rs2,rd

[10302] fcmpeq is a SFU operation that uses the SFU
compute format.

10303] fcmple

10304] fcmple 1s a floating point instruction that set its
destination register r[rd] to the iteger value 1 if the single-
precision floating point value in r{rs1] is less than or equal
to the single-precision floating point value in r{rs2] and to

zero otherwise. If the value of either source operand 1s a
NaN, the result 1s zero.

[0305] The suggested assembler syntax is:

fcmple rs1,rs2,rd

[0306] fcmple is a SFU operation that uses the SFU
compute format.

[0307] fcmplt

[0308] fcmpit 1s a floating point instruction that set its
destination register r[rd] to the integer value 1 if the single-
precision floating point value in r|rsl] is less than the
single-precision floating point value in r{rs2] and to zero
otherwise. If the value of either source operand 1s a NalN, the
result 1s zero.

[0309] The suggested assembler syntax is:

femplt rs1,rs2,rd

[0310] fcmpit is a SFU operation that uses the SFU
compute format.

[0311]  fdiv

[0312] fdiv is a floating point instruction that computes
“r[rs1]|r[rs2]”, where the value of the source operands are
IEEE single-precision floating point numbers. The result 1s

delivered in rfrd].

[0313] The suggested assembler syntax is:

fdiv rs1,rs2,rd
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[0314] fdiv is a SFU operation that uses the SFU compute
format.

[0315] fix2flt

[0316] fix2 fit is a convert instruction that converts a fixed
point value in r{rsl1], with its binary point specified by the
low-order 5 bits of rrs2]| or imm14, to a single precision
floating point result in r[rd].

[0317] The suggested assembler syntax is:

fix2 it rs1,reg_or__imml4,rd

[0318] fix2flt is an UFU operation that uses the UFU
2-source format.

[0319] fit2fix

10320] fIt2fix 1s a convert instruction that converts a single
precision floating point value in 1] rs1] to a fixed point result

in r[rd] with the binary point as specified by the low-order
5 bits of r[rs2]| or imm14.

[0321] The suggested assembler syntax is:

flt2fix rs1l,reg or__1imml4,rd

10322] flt2fix 1s an UFU operation that uses the UFU
2-source format.

[0323] fmul

10324] fmul is a floating point instruction that computes
“fIrs1]*r{rs2]”, where the values of the source operands are
IEEE single-precision floating point numbers. The result 1s

delivered 1in rfrd].

[0325] The suggested assembler syntax is:

fmul rs1,rs2,rd

10326] fmul is a UFU operation that uses the UFU
2-source format.

10327] fmuladd

[0328] fmuladd i1s a floating point instruction that com-
putes “(r[rsl [*r[rs2])+r[rs3]’, where the values of the source
operands are IEEE single-precision floating point numbers.
The result is delivered in rf rd].

[0329] The suggested assembler syntax is:

fmuladd rsl,rs2,rs3,rd
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[0330] fmuladd is a UFU operation that uses the UFU
3-source format.

0331] fmulsub

0332] fmul sub is a floating point instruction that com-

putes “(rf rs1[*r[rs2])-r[ rs3]’, where the values of the source
operands are IEEE single-precision floating point numbers.
The result is delivered in rrd].

[0333] The suggested assembler syntax is:

fmulsub rs1,rs2,rs3,rd

[0334] fmulsub is a UFU operation that uses the UFU
3-source format.

0335] frecsqrt

0336]| frecsqrt is a floating point instruction that computes
the reciprocal square root of the single-precision floating-
point number in | rs1] and puts that result in rf rd |. What will
this do with an argument less than or equal to zero?

[0337] The suggested assembler syntax is:

frecsqrt rs1,rd

[0338] frecsqrt 1s an SFU operation uses the SFU compute
format, but has no use for the second source operand of that
format.

0339] fsub

0340] fsub i1s a floating point instruction that computes
“r[rs1]-r[rs2]’, where the values of the source operands are
IEEE single-precision floating point numbers. The result 1s

delivered in rfrd].
[0341] The suggested assembler syntax is:

fsub rs1,rs2,rd

[0342] fsubis a UFU operation that uses the UFU 2-source
format.

0343] genborrow, gencarry

0344| genborrow and gencarry are integer instructions
that generate a one or zero in r{rd] if subtracting or adding,
respectively, the source operands generates a borrow or
carry, respectively. The result would be usetful as the third
source operand of sesequent addc and subc operations.

[0345] The suggested assembler syntax is:

genborrow
gencarry

rs1l,reg or__1mml4,rd
rs1,reg_or__imml4,rd

[0346] genborrow and gencarry are are UFU operations
that use the UFU 2-source format.

0347 getir

0348]| getir is an integer instruction that gets the value of
the internal register the ordinal of which is its r{ rs1] operand
and puts that value in the register specified by r[rd].
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[0349] The suggested assembler syntax is:

getir rs1,rd

[0350] getir is an SFU operation that uses the SFU com-
pute format, though in an 1rregular way. It has no use for the
second source field, and the first source operand 1s an
internal register number, NOT one of the general purpose
registers.

[0351] idiv

0352] 1idiv is an integer instruction that computes “r[rsl]
f[rs2]” or “r[rs1]|sign ext(imm14)”. The use of an imme-
diate for the second source operand sets the 1-bit of the
opcode. The result is left in r{rd].

0353 If the second source operand is zero, idiv will trap.
0354] The suggested assembler syntax is:

1div rsl,reg_or__imml4,rd
[0355] 1divis an SFU operation that uses the SFU compute
format.
0356] iflush
0357] iflush is a memory access instruction that is used to

make sure that modifications to code space are visible by the
processor executing the iflush iflush mvalidates all younger
instructions that have already entered the pipe.

[0358]
[0359]

0360| 1flush 1s an SFU operation that uses the com-
P
pute 1nstruction format, but uses none of that for-
mat’s operands.

0361] jmpl

0362] jmpl 1s a control flow instruction that causes a
register-indirect control transfer to the address in r[rs1]. The
current value of % npc is left in r{rd].

[0363] Ifthe branch target is an entry-point that might also
expect to be reached by a call instruction, a register other
than Ip is a poor choice for r[rd].

The suggested assembler syntax is:

1flush

[0364] The suggested assembler syntax is:

jmpl rs1,rd

[0365] jmpl is an SFU operation that uses the compute
instruction format. The second source operand of that format
1s not used by jmpl.

0366] 1db, Ids, Idw

0367 Idb, 1ds, and ldw are memory access instructions
that load an 8-bit byte, a 16-bit short, or a 32-bit word from
address into the destination register rfrd]. The value loaded
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1s a sign-extended 1n the destination register. The use of an
immediate for the second component of the address sets the
1-bit of the opcode.

[0368] The effective address from which to load must be
aligned to a natural boundary for the size of the load, but the
consequences of failing to do that are not defined.

[0369] The suggested assembler syntax is:

Idb |address|,rd
Ids |address |, rd
ldw |address |,rd

[0370] 1d[b, s, w]instructions are SFU operations that use
the SFU memory format.

[0371] 1dso, Idwo

[0372] 1dso and ldwo are memory access instructions that

load a 16-bit short or a 32-bit word from address into the
destination register r| rd | using the opposite endianness from
that indicated by the endian-bit of % psr. The value loaded
1s sign-extended 1n the destination register. The use of an
immediate for the second component of the address sets the
1-bit of the opcode.

[0373] The effective address from which to load must be
aligned to a natural boundary for the size of the load, but the
consequences of failing to do that are not defined.

[0374] The suggested assembler syntax is:

Idso [address |, rd
ldwo |address |,rd

[0375] 1dso and Idwo are SFU operations that use the SFU
memory format.

0376] Idpair

0377] Idpair is a memory access instruction that performs

a load into a pair of adjacent registers beginning at the
register specified by r|rd| from address. The use of an
immediate for the second component of the address sets the
i-bit of the opcode, 1| rd | must be an even-numbered register.

[0378] The effective address from which to load must be
even word-aligned, but the consequences of failing to do that
are not defined.

[0379] The suggested assembler syntax is:

Idpair rd,|address]

[0380] Idpair is an SFU operation that uses the SFU
memory format.

0381 Idub, ldus, Iduw

0382 Idub, ldus, and lduw are memory access instruc-
tions that load an unsigned 8-bit byte, an unsigned 16-bit
short, or an unsigned 32-bit word from address into the
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destination register r{rd]. The use of an immediate for the
second component of the address sets the 1-bit of the opcode.

|0383] The effective address from which to load must be
aligned to a natural boundary for the size of the load, but the
consequences of failing to do that are not defined.

|0384] While Café registers are 32-bits the behavior of

lduw and ldw 1s identical. Future extension 1s liable to to
change that, so appropriate consideration should be used
when choosing between these instructions.

[0385] The suggested assembler syntax is:

Idub |address],rd
Idus |address],rd
Iduw |address],rd

[0386] 1du [b, s, w] instructions are SFU operations that
use the SFU memory format.

0387]

0388] Iduso, and lduwo are memory access instructions
that load an unsigned 16-bit short or an unsigned 32-bit word
from address into the destination register r{rd] using the
opposite endianness from that indicated by the endian-bit of
% psr. The use of an immediate for the second component
of the address sets the 1-bit of the opcode.

lduso, 1duwo

|0389] The effective address from which to load must be
aligned to a natural boundary for the size of the load, but the
consequences of failing to do that are not defined.

[0390] While Café registers are 32-bits the behavior of

lduwo and ldwo 1s 1dentical. Future extension 1s liable to to
change that, so appropriate consideration should be used
when choosing between these istructions.

[0391] The suggested assembler syntax is:

Iduso |address]|,rd

luwo |address],rd

10392] Iduso and Isuwo are SFU operations that use the
SFU memory format.

0393] membar

0394] membar is memory access instruction that specifies
that all memory reference mstructions already 1ssued must
be performed before any subsequent memory reference
instruction may be initiated.

[0395] The suggested assembler syntax is:
[0396] membar

[0397] membar is an SFU operation that uses the compute
instruction format, but uses none of that format’s operands.

0398] moveind

0399] moveind 1s an integer instruction that copies the
content of its first source operand, rfrsl], to the register
indicated by the least significant eight bits of i1ts second
source register, rf rs2].
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[0400] The suggested assembler syntax is:
[0401] moveind rsl, [rs2]

[0402] moveind 1s a UFU operation that uses the UFU
2-source format, but 1t has no use for the destination register
field and does not accept an immediate for the second source
operand.

0403] mul

0404] mul is an integer instruction that computes “r[rs1]
*11rs2]” or “r[rs1]* sign ext(imm14)”. The use of an imme-
diate for the second source operand sets the first bit of the
instruction header. The result 1s left in 1| rd].

[0405] The suggested assembler syntax is:
[0406] mul rs1, reg or imm14, rd
10407 ]

format.

0408] muladd

0409] muladd is an integer instruction that computes
“(f[s1]*r[s2])+1]s3]7, “(r[s1 *1s2])+sign ext(imm8)”, “(r
[s1]*sign ext(imm&))+1]s3]”, or “(r[s1]* sign ext(imm8))+
sign ext(imm8)” and puts the result in r{rd]. The use of an
immediate for the second or third source operand sets the
first or second bit, respectively, of the instruction header.

mul 1s a UFU operation that uses the UFU 2-source

[0410] The suggested assembler syntax is:

[0411] muladd rsl1, reg or immS§, reg or imm§, rd
muladd 1s a UFU operation that uses the UFU
3-source format.

0412] mulsub

0413] mulsub is an integer instruction that computes
“(f[s1]*r[s2 -1 s3]“(r[s]*1][s2])-sign ext(imm8)”, “(r[s1]
*sign ext(imm&))-1s3]7, or “(r[sl1]* sign ext(imm&))-
sign ext(immg8)” and puts the result in r{rd]. The use of an
immediate for the second or third source operand sets the
first or second bit, respectively, of the instruction header.

[0414] The suggested assembler syntax is:

[0415] mulsub rsl, reg or immS§, reg or imm§, rd

[0416] mul sub is a UFU operation that uses the UFU
3-source format.

[0417] ncldb, nclds, ncldw

[0418] ncldb, nclds, and ncldw are memory access instruc-
tions that perform a non-cacheable load of an 8-bit byte, a
16-bit short, or a 32-bit word from address 1nto the desti-
nation register rrd]. The value loaded is sign-extended in
the destination register. The use of an immediate for the
second component of the address sets the 1-bit of the opcode.

[0419] The effective address from which to load must be
aligned to a natural boundary for the size of the load, but the
consequences of failing to do that are not defined.

[0420] The suggested assembler syntax is:

ncldb |address |,rd
nclds |address|,rd
ncldw |address |, rd
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[0421] ncld[b, s, w] instructions are SFU operations that
use the SFU memory format.

0422] ncldg

0423] ncldg 1s a memory access instruction that does an
uncached load of a group of eight consecutive 32-bit words
from address 1nto eight consecutive registers beginning with
the one specified by r[rd]. The use of an immediate for the
second component of the address sets the 1-bit of the opcode.
rlrd] must be 8-register aligned.

|0424] The effective address from which to load must be

eight-word-aligned, but the consequences of failing to do
that are not defined.

[0425] The suggested assembler syntax is:
[0426] ncldg [address], rd

[0427] ncldg was formerly known as ldg. The assembler
temporarily knows the former name as an alias for the new
name to ease the transition.

[0428] Note that there is no complementary ncstg instruc-
tion.

[0429] ncldg 1s an SFU operation that use the SFU
memory format.

0430] ncldso, ncldwo

0431] ncldso and ncldwo are memory access instructions
that perform a non-cacheable load of a 16-bit short or a
32-bit word from address into the destination register rfrd]
using the opposite endianness from that indicated by the
endian-bit of % psr. The value loaded 1s sign-extended 1n the
destination register. The use of an immediate for the second
component of the address sets the 1-bit of the opcode.

[0432] The effective address from which to load must be

aligned to a natural boundary for the size of the load, but the
consequences of failing to do that are not defined.

[0433] The suggested assembler syntax is:

ncldso |address],rd
ncldwo |address]|,rd

[0434] ncldso and ncldwo are SFU operations that use the
SFU memory format.

[0435] ncldub, ncldus, nclduw

[0436] ncldub, ncldus, and nclduw are memory access
instructions that perform a non-cacheable load an unsigned
8-bit byte, an unsigned 16-bit short, or an unsigned 32-bit
word from address into the destination register rfrd]. The use
of an 1immediate for the second component of the address
sets the 1-bit of the opcode.

[0437] The effective address from which to load must be

aligned to a natural boundary for the size of the load, but the
consequences of failing to do that are not defined.

|0438] Note that while Café registers are 32-bits the

behavior of nclduw and ncldw 1s 1dentical, future extension
1s liable to to change that, so appropriate consideration
should be used when choosing between these mstructions.
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[0439] The suggested assembler syntax is:

ncldub |address|,rd
ncldus |address |, rd
nclduw |address |,rd

[0440] ncldu|b, s, w] instructions are SFU operations that
use the SFU memory format.

0441] nclduso, nclduwo

0442] nclduso and nclduwo are memory access instruc-
fions that perform a non-cacheable load an unsigned 16-bit
short or an unsigned 32-bit word from address into the
designation register r[ rd] using the opposite endianness from
that indicated by the endian-bit of % psr. The use of an
immediate for the second component of the address sets the
1-bit of the opcode.

[0443] The effective address from which to load must be
aligned to a natural boundary for the size of the load, but the
consequences of failing to do that are not defined.

|0444] Note that while Café registers are 32-bits the

behavior of nclduwo and ncldwo 1s identical, future exten-
sion 1s liable to to change that, so appropriate consideration
should be used when choosing between these instructions.

[0445] The suggested assembler syntax is:

[address |, rd
|address |,rd

nclduso
nclduwo

[0446] nclduso and nclduwo are SFU operations that use
the SFU memory format.

0447 ncstb, ncsts, ncstw

0448]| ncstb, ncsts, and ncstw are memory access instruc-
tion that perform a non-cacheable store an 8-bit byte, a
16-bit short, or a 32-bit word from the register speciiied by
r{rd] to address. The use of an immediate for the second
component of the address sets the 1-bit of the opcode.

[0449] For ncsts and ncstw the effective address to which
to store must be 2-byte aligned or 4-byte aligned, respec-
fively, but the consequences of failing to do that are not

defined.
[0450] The suggested assembler syntax is:

ncstb rd,|address]
ncsts rd,] address |
ncstw rd,|address]

[0451] ncst|[sb, s, w] are SFU operations that use the SFU
memory format.

0452] ncstso, ncstwo

0453]| ncsts and ncstw are memory access instruction that
perform a non-cacheable store of a 16-bit short or a 32-bit
word from the register specified by r{rd ] to address using the
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opposite endianness from that indicated by the endian-bit of
% psr. The use of an immediate for the second component
of the address sets the 1-bit of the opcode.

|0454] For ncstso and ncstwo the effective address to
which to store must be 2-byte aligned or 4-byte aligned,
respectively, but the consequences of failing to do that are
not defined.

[0455] The suggested assembler syntax is:

ncstso rd,|address]
Ncstwo rd,] address |

[0456] ncstso and ncstwo are SFU operations that use the
SFU memory format.

[0457] ncstpair

[0458] ncstpair is a memory access instruction that per-
forms an uncached store of a pair of adjacent registers
beginning at the register specified by rrd] to address. The
use of an immediate for the second component of the address
sets the 1-bit of the opcode. 1l rd | must be an even-numbered
register.

[0459] The effective address to which to store must be
even word-aligned, but the consequences of failing to do that
are not defined.

[0460] The suggested assembler syntax is:

rd,|address]

ncstpair

[0461] ncstpair is an SFU operation that uses the SFU
memory format.

0462] nop

0463| nop 1s a control flow instruction that does nothing.
It has the special property of being unique 1n its leading byte
with 1ts remaining bytes 1gnored.

0464| The suggested assembler syntax is:
0465] nop

[0466] nop 1s an SFU operation that uses the branch
instruction format, but only the leading 6 bits of its opcode
are significant and none of the other fields 1s used.

0467] not

0468]| not is a logical instruction that computes the bit-
wise complement of r[rsl], leaving the result is rf rd].

not rsl,rd

[0469] The SFU version of not uses the SFU compute

format, and the UFU version uses the UFU 2-source format.
This 1nstruction has no use for a second source operand; the
assembler 1nfers r0 in 1ts place for purely neurotic reasons.
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0470] or

0471] or is a logical instruction that computes “r[rsl]
f[rs2]” or “r[rs1]limm14”. The use of an immediate for the
second source operand sets the 1-bit of the opcode of the
SFU version or the first header bit of the UFU version. The
bit-wise logical result is left in r[rd].

[0472] The suggested assembler syntax is:
[0473] or rsl, reg or imm14, rd

[0474] The SFU version of or uses the SFU compute
format, and the UFU version uses the UFU 2-source format.

0475] pack

0476] pack is a pixel instruction that treats its first two
source operands, rfrs1] and r[rs2], as two pair of unsigned
16-bit operands. Each 16-bit operand 1s shifted right by the
the value of the the low-order 4 bits of the third source
operand, r[rs3].

[0477] The low-order 8 bits of the resulting values are

packed into the result register r[rd], with the value derived
from 31:16 of r[rs1] in bits 31:24, the value derived from

15:0 of 1 rs1] in bits 23:16, the value derived from 31:16 of
rlrs2] in bits 15:8, and the value derived from 15:0 of r[rs2]
in bits 7:0.

[0478]

The suggested assembler syntax 1s:

pack rs1,rs2,rs3.rd

[0479] pack 1s a UFU operation that uses the UFU
3-source format.

0480 padd, padds

0481] padd and padds are integer instructions that com-
pute “rfrs1]+r[rs2]”’, where each of the sources is treated as
a pair of independent 16-bit quantities yeilding a pair of
independent 16-bit sums in r|rd]. padd also can have a 14-bit
immediate as 1ts second source operand, 1n which case the
sign-extended immediate 1s added to each of 16-bit numbers
in r{rs1] and the two 16-bit sums are left in r{rd].

[0482] padd produces ordinary two’s complement integer
results, and padds produces saturated results.

[0483] The suggested assembler syntax is:

padd rs1, reg _or__1mml4, rd
padds rsl, rs2, rd

[0484] padd and padds are UFU operations that use the
UFU 2-source format.

0485] pcmovenz

0486] pcmovenz is an integer instruction that uses two
16-bit flags in 1| rs1] to control whether the corresponding
16-bit fields of r{rs2] are copied to the same positions of
i rd]. A field of r[rs2]1s copied to 1| rd] is the corresponding
flag field of r[rs1] is non-zero. The flags in r{ rs1] will most
likely be the result of a preceding pcmpeq or pcmplt.
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[0487] The suggested assembler syntax is:

pCINoOvenz rsl,rs2,rd

|0488] pcmovenz is a UFU operation that uses the UFU
2-source format.

[0489] pcmovez

[0490] pcmove z is an integer instruction that uses two
16-bit flags in 1|rs1] to control whether the corresponding
16-bit fields of r{rs2] are copied to the same positions of
rlrd]. A field of r[rs2] is copied to r[rd] is the corresponding
flag field of r[rs1]is zero. The flags in rf rs1 | will most likely
be the result of a preceding pcmpeq or pcmplt.

[0491] The suggested assembler syntax is:

pCmMovez rsl,rs2,rd

[0492] pcmovez 1s a UFU operation that uses the UFU
2-source format.

[0493] pcmpeq

10494] pcmpeq is an integer instruction that compares for
equality the pair of shorts 1n 1ts first source register with

either a pair of shorts 1n its second source register or with a
signed 14-bit immediate.

[0495] That is, when the second source operand is a
register, the short in bits 31:16 of r|rd] is set to one if
“fIrs1]<31.16>==r|rs2]<31:16>" and zero otherwise, and
the short in bits 15:0 of r[rd] is set to one if “r{rs1 |<15:0>==
r|rs2]<15:0>" and zero otherwise. When the second source
operand 1s an immediate, the short in bits 31:16 of r[rd] is
set to one if “r[rs1]<31:16>==sign ext(imm14)” and zero
otherwise, and the short in bits 15:0 of r|rd] is set to one if
“1[rs1]<15:0>==sign ext(imm14)” and zero otherwise.

[0496] The suggested assembler syntax is:

rs1,reg_or__imml4,rd

pempey

[0497] pcmpeq is a UFU operation that uses the UFU
2-source format.

0498 pcmplt

0499] pcmplt 1s an integer instruction that does a “com-
pare less than” of pair of shorts in its first source source
register with either a pair of shorts 1n its second source
register or with a signed 14-bit immediate.

[0500] That is, when the second source operand is a
register, the short in bits 31:16 of r[rd] is set to one if
“ffrs1]<31:16><r{rs2]<31:16>" and zero otherwise, and the
short in bits 15:0 of r[rd] is set to one if “rfrs1]<15:0><r
[rs2]<15:0>" and zero otherwise. When the second source
operand is an immediate, the short in bits 31:16 of r|rd] is
set to one if “r[rsl1]<31:16><sign ext(imm1l4)” and zero
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otherwise, and the short in bits 15:0 of r[rd] is set to one if
“r[rs1]<15:0><sign ext(imm14)” and zero otherwise.

[0501] The suggested assembler syntax is:

pcmplt

rsl,reg or__imml4,rd

[0502] pcmplt 1s a UFU operation that uses the UFU
2-source format.

[0503] pdist

[0504] pdist is a pixel instruction that treats each of its two
source registers, rfrsl1] and r|rs2], as four unsigned 8-bit
values, subtracts the corresponding pairs, and adds the sum
of the absolute values of those differences to the value in the
register specified by rfrd].

[0505] The suggested assembler syntax is:

pdist rs1,rs2,rd

[0506] pdist is a UFU operation that uses the UFU
2-source format.

[0507] pmean

[0508] pmean is a pixel instruction that treats its source
operands 1| rs1] and r[rs2] as pairs of unsigned 16-bit inte-
gers and computes a pair of mean values in r{rd]|. These
means are rounded high according to the formula: “r{rd]

<15:0>=(1[rs1]<15:0>+1[rs2]<15:0>+1)>>1" and likewise
for the other halves.

[0509] The suggested assembler syntax is:

pmean rsl,rs2,rd

[0510] pmean is a UFU operation that uses the UFU
2-source format.

[0511] pmul

[0512] pmul is an integer instruction that multiplies the
pair of 16-bit operands in r[rs1| with either a a pair of 16-bit
operands in 1] rs2 ] or with a sign-extended 14-bit immediate,
placing a pair of independent 16-bit products in 1| rd].

[0513] That i1s, when the second source operand is a
register, bits 31:16 of r[rd] are set to the product bits 31:16
of rrs1] and bits 31:16 of rfrs2] and bits 15:0 of 1| rd] are set

to the product bits 15:0 of r{rs1] and bits 15:0 of rfrs2].
When the second source operand 1s an immediate, bits 31:16

of rfrd] are set to the product bits 31:16 of rrsl] and
sign ext(imm14) and bits 15:0 of r{rd] are set to the product

bits 15:0 of r[rs1] and sign ext(imm14).

|0514] The format of the operands and results is indicated
by the saturation field of the Processor Status Register, but
this operation does not saturate.



US 2005/0010743 Al

[0515] The suggested assembler syntax is:
[0516] pmul rs1, reg or imm14, rd

[0517] pmul 1s a UFU operation that uses the UFU
2-source format.

0518] pmuladd, pmuladds

0519] pmuladd and pmuladd are integer instructions that
compute “(rfrs1]*r[rs2])+1[s3]’, where each of the sources
1s treated as a pair of independent 16-bit quantities yeilding
a pair of independent 16-bit results in r{rd]. The format of
the operands and results 1s indicated by the saturation field
of the Processor Status Register, but pmuladd does not
saturate and pmuladds does.

[0520] The suggested assembler syntax is:

rsl,rs2,rs3,rd
rsl,rs2,rs3,rd

pmuladd
pmuladds

[0521] pmuladd and pmuladd are UFU operations that use
the UFU 3-source format.

[0522] pmulsub, pmulsubs

10523] pmulsub and pmulsub are integer instructions that
compute “(r[rs1]*1[rs2])-r[s3]’, where each of the sources
1s treated as a pair of independent 16-bit quantities yeilding
a pair of independent 16-bit results in r[rd]. The format of
the operands and results 1s indicated by the saturation field
of the Processor Status Register, but pmulsub does not
saturate and pmulsubs does.

[0524] The suggested assembler syntax is:

rsl,rs2,rs3,rd
rs1,rs2,rs3,rd

pmulsub
pmulsubs

[0525] pmul sub and pmul subs are UFU operations that
use the UFU 3-source format.

0526] ppower

0527] ppower is an fixed-point instruction that computes
“frs1]**r[rs2]”, where each of the sources is treated as a
pair of independent 16-bit quantities yeilding a pair of
independent 16-bit powers in r|rd].

[0528]

By stipulation, zero to any power 1S zZero.

ppOWer rs1,rs2,rd

[0529] ppower is a SFU operation that uses the SFU
compute format.

0530] precsqrt

0531] precsqrt is a fixed-point instruction that computes a
pair of fixed-point reciprocal square roots of the 16-bit
values of r{rs1]. The results are delivered in rfrd].
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[0532] The suggested assembler syntax is:

precsqrt rs1,rd

[0533] precsqrt is a SFU operation that uses the SFU
compute format. The second source operand for the format
1s unused by this instruction.

0534] pshll

0535] pshll is a logical instruction that shifts each of the
the pair of 16-bit operands in r{rsl] left by either the
lower-order 4 bits of the corresponding half of r[rs2] or the
low-order 4 bits of its immediate. The shifted results are left

in r{rd].
[0536] The suggested assembler syntax is:

pshll rs1,reg or_1mml4,rd

[0537] pshll is a UFU operation that uses the UFU
2-source format.

0538] pshra

0539] pshra is a logical instruction that performs a right
arithmetic shift of the pair of 16-bit operands in r[rs1]. The
shift count of each is either the low-order 4 bits of the
corresponding half of r{rs2] or the low-order 4 bits of its
immediate. The shifted results are left in r[rd].

[0540] The suggested assembler syntax is:

pshra rsl,reg or_1mml4,rd

|0541] pshra 1s a UFU operation that uses the UFU
2-source format.

10542] pshrl

[0543] pshrl is a logical instruction that performs a right
logical shift of the pair of 16-bit operands in r{ rs1]. The shift
count of each 1s either the low-order 4 bits of the corre-

sponding half of r[rs2] or the low-order 4 bits of its imme-
diate. The shifted results are left in r{rd].

[0544] The suggested assembler syntax is:

pshrl rsl,reg or__imml4,rd

[0545] pshrl is a UFU operation that uses the UFU
2-source format.

[0546] psub, psubs

[0547] psub and psubs are integer instructions that com-
pute “r{rs1]-r[rs2]”’, where each of the sources is treated as
a pair of mdependent 16-bit quantities yielding a pair of
independent 16-bit differences in rfrd]. psub also can have a
14-bit immediate as 1ts second source operand, in which case
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the sign-extended immediate 1s subtracted from each of
16-bit numbers 1n r|rs1] and the two 16-bit differences are

left in rf rd].

[0548] psub produces ordinary two’s-complement integer
results, and psubs produces saturated results.

[0549] The suggested assembler syntax is:

psub rs1,reg or__1imml4,rd
psubs rs1,rs2,rd

[0550] psub and psubs are UFU operations that use the
UFU 2-source format.

0551] rem

0552] rem is an integer instruction that computes “r[rs1]
% t[rs2]” or “r[rsl] % sign ext(imm14)”. The use of an
immediate for the second source operand sets the 1-bit of the
opcode. The result is left in r{rd].

[0553]
[0554]

If the second source operand 1s zero, rem will trap.

The suggested assembler syntax is:

rem rs1,reg_or__imml4,rd

[0555] rem is an SFU operation that uses the SFU compute
format.

0556] retry

0557] retry 1s a control flow instruction causes a control

transfer from a trap handler to the instruction word that
caused the trap. Please refer to the Traps chapter of the Café
Microarchitecture specification for the complete description.

[0558] The suggested assembler syntax is:

[0559] retry

[0560] retry is a SFU operation that uses the SFU compute
format, but 1t has no use for any operand.

[0561] return

[0562] returnis a control flow instruction that causes a

register-indirect control transfer to the address in “rfrs1]”.

[0563] The suggested assembler syntax is:

return rsl

[0564] return is a pseudo-op. What it really means is “jympl
rlrs1]+0, r0”.

[0565]

[0566] Note: s2 is and s2iw might be removed. This
section will be rewrtten when the matter 1s settled.

[0567] s2ib, s2is, and s2iw are memory access instruction
that store an 8-bit byte, a 16-bit short, or a 32-bit word from
the register specified by r[rd] to address. The use of an

s21b, s2 18, S21W
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immediate for the second component of the address sets the
1-bit of the opcode. The intent 1s that these are the instruc-
tions to be used to modily code on the fly, so these stores
guarantee instruction cache consistency.

[0568] For s2 is and s2iw the effective address to which to
store must be 2-byte aligned or 4-byte aligned, respectively,
but the consequences of failing to do that are not defined.
Because of this alignment requirement and the fact that Café
instructions can be at any byte boundary, care must be taken
in choosing the right instruction.

[0569] The suggested assembler syntax is:

s21b rd,]address ]
218 rd,|address]
S2IW rd,]address ]

[0570] s2i1[sb, s, w] are SFU operations that use the SFU
memory format.

[0571] sethi

[0572] sethi is an integer instruction that places its imme-
diate operand in the high-order 22 bits of 1| rd ] and clears the
low-order 10 bits. It 1s frequently used with the % hi operator
to form base addresses for subsequent memory references.

[0573] The suggested assembler syntax is:

sethi imm?22,rd

sethi P%hi(label),rd
[0574] sethi is an SFU operation that uses a format of its
OWI.

[0575] setir

[0576] setir is an integer instruction that sets the internal
register the ordinal of which is its r[rd ]| operand to the value
in its r[rs1] operand.

[0577] The suggested assembler syntax is:

setir rsl,rd

[0578] setir 1s an SFU operation that uses the SFU com-
pute format 1n an wrregular way. It has no use for the second
source operand, and the destination register 1s an internal
register number, NOT one of the general purpose registers.

[0579] shll

|0580] shll is a logical instruction that computes “r[rsl]
<<t rs2]” or “rf rs1 |]<<imm”. The use of an immediate for the
second source operand sets the 1-bit of the opcode of the
SEFU version or the first header bit of the UFU version. The
result is left in r[rd]. Only the low-order 5 bits of the second
source operand are used.
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[0581] The suggested assembler syntax is:

shll rs1,reg_ or_ 1imm,rd

|0582] The SFU version of sh 1 uses the SFU compute
format, and the UFU version uses the UFU 2-source format.

[0583] shra

|0584] shra is a logical instruction that computes “r[rs1]
>>1[rs2 |7 or “r[rsl [>>imm”. The use of an immediate for the

second source operand sets the 1-bit of the opcode of the
SFU version or the first header bit of the UFU version. The

result is left in r{ rd]. The first source operand is treated as a
signed 1nteger, so the result 1s sign-extended. Only the
low-order 5 bits of the second source operand are used.

[0585] The suggested assembler syntax is:

shra rs1,reg_or__imm,rd

|0586] The SFU version of shra uses the SFU compute
format, and the UFU version uses the UFU 2-source format.

[0587] shrl

|0588] shrl is a logical instruction that computes “r[rs1]
>>1[rs2 ] or “r[rs1]|>>1mm”. The use of an immediate for the
second source operand sets the 1-bit of the opcode of the
SFU version or the first header bit of the UFU version. The
result is left in 1 rd]. The first source operand is treated as an
unsigned mteger, so the result 1s not sign-extended. Only the
low-order 5 bits of the second source operand are used.

[0589] The suggested assembler syntax is:
[0590]

shrl rs1, reg or 1imm, rd

[0591] The SFU version of shri uses the SFU compute
format, and the UFU version uses the UFU 2-source format.

[0592] sir

[0593] sir i1s a control flow instruction that resets the
machine. sir 1s a privileged instruction; executing 1t when the
Supervisor Mode flag of % psr 1s clear causes a privileged
instruction trap.

[0594] The suggested assembler syntax is:
[0595] sir

[0596] sir is an SFU operation that uses the SFU compute
format, but has no use for any of that format’s operands.

[0597]

[0598] softtrap is a control flow instruction that generates
a trap. The ordinal of the trap is specified by rfrsl |- rs2] or
r[rs1]-sign ext(imm14). For details on how traps work, see
the Traps chapter of the Café Microarchitecture specifica-
tion.

softtrap
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[0599] The suggested assembler syntax is:

softtrap rs1,reg_or__1mm14

[0600] softtrap i1s an SFU operation that uses the SFU
compute format but has no use for the destination register
field of that format.

0601]

0602] stb, sts, and stw are memory access instruction that
store an 8-bit byte, a 16-bit short, or a 32-bit word from the
register specified by rfrd] to address. The use of an imme-
diate for the second component of the address sets the 1-bit
of the opcode.

stb, sts, stw

[0603] For sts and stw the effective address to which to
store must be 2-byte aligned or 4-byte aligned, respectively,
but the consequences of failing to do that are not defined.

[0604] The suggested assembler syntax is:

sth rd,] address |
sts rd,| address]
stw rd,] address |

[0605] St [sv, s, w]| are SFU operations that use the SFU
memory format.

[0606] stg

[0607] stg would be the mnemonic for a store group
mstruction if the were one, but there 1s not. Most careful
readers notice this asymmetry and ask whether 1t 1s an
oversight, so this note hopes to explain and forestall that
question.

[0608] Since the register file read port can deliver no more
than 64 bits per cycle, a store of a group would 1nduce a
3-cycle stall. Doing the stores with four stpair mstructions
would make better use of the 1ssue bandwidth because that
would allow work to proceed on the other units.

[0609]

[0610] sts and stw are memory access instruction that store
a 16-bit short or a 32-bit word from the register specified by
rfrd]| to address using the opposite endianness from that
indicated by the endian-bit of % psr. The use of an 1imme-
diate for the second component of the address sets the 1-bit
of the opcode.

Stso, Stwo

[0611] For stso and stwo the effective address to which to
store must be 2-byte aligned or 4-byte aligned, respectively,
but the consequences of failing to do that are not defined.

[0612] The suggested assembler syntax is:

stso rd,|address]
Stwo rd,] address |
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[0613] stso and stwo are SFU operations that use the SFU
memory format.

0614]| stpair

0615] stpair is a memory access instruction that performs

a store of a pair of adjacent registers beginning at the register
specified by r[rd] to address. The use of an immediate for the
second component of the address sets the 1-bit of the opcode.
rlrd] must be an even-numbered register.

[0616] The effective address to which to store must be
even word-aligned, but the consequences of failing to do that
are not defined.

[0617] The suggested assembler syntax is:

stpair rd,]address]

[0618] stpair is an SFU operation that uses the SFU
memory format.

[0619] sub

[0620] sub 1s an integer instruction that computes r|rs1]-

r[rs2] or r[rsl]-sign ext(imml4). The use of an immediate
for the second source operand sets the 1-bit of the opcode of
the SFU version or the first header bit of the UFU version.
The result is left in rfrd].

[0621] The suggested assembler syntax is:

sub rs1l,reg or__1imml4,rd
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[0622] The SFU version of sub uses the SFU compute
format, and the UFU version uses the UFU 2-source format.

0623] xor

0624]| xor is a logical instruction that computes “r[rs1]
“1frs2]” or “r{rs1] imm]4”. The use of an immediate for the
second source operand sets the 1-bit of the opcode of the
SEFU version or the first header bit of the UFU version. The
bit-wise logical result 1s left in rfrd].

[0625] The suggested assembler syntax is:

XOT rs1,reg or_1mml4,rd

[0626] The SFU version of xor uses the SFU compute
format, and the UFU version uses the UFU 2-source format.

What 1s claimed 1s:
1. A processor comprising:

a plurality of independent processor elements 1n a single
integrated circuit chip capable of executing a respective
plurality of threads concurrently 1n a multiple-thread
mode of operation; and

at least some of the independent processing elements
including plural processing units,

wherein at least some of the threads are executable in
parallel on plural ones of the processing units 1n
accordance with an 1instruction set that encodes the
parallel execution.
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