a9y United States

US 20040221270A1

a2 Patent Application Publication o) Pub. No.: US 2004/0221270 Al

Witchel et al.

43) Pub. Date: Nov. 4, 2004

(54) METHOD FOR DETERMINING THE
DEGREE TO WHICH CHANGED CODE HAS
BEEN EXERCISED

(76) Inventors: Emmett Witchel, Boston, MA (US);
Christopher D. Metcalf, Ashland, MA

(US); Andrew E. Ayers, Amherst, NH
(US)

Correspondence Address:

B. Noel Kivlin

Meyertons, Hood, Kivlin, Kowert & Goetzel,
P.C.

P.O. Box 398

Austin, TX 78767 (US)

(21) Appl. No.: 10/862,048
(22) Filed: Jun. 4, 2004
Related U.S. Application Data

(63) Continuation of application No. 09/474,389, filed on
Dec. 29, 1999, now Pat. No. 6,748,584,

107

Publication Classification

(51) Int. CL7 oo GO6F 9/44; GO6F 9/45
632 LU T © R 717/124; 717/136
(57) ABSTRACT

A method for determining changed code 1n a second pro-
oram binary relative to a first or baseline program binary,
where the second program 1s a different version of the first
program, includes translating, responsive to symbol tables
and/or control flow representations, machine addresses of
both program binaries to symbols. The first and second
program binaries are disassembled using the translated sym-
bols. Differences between the two resulting disassemblies
are determined, and a list of the differences 1s created.
Ditferences between the program binaries can be determined
by textually comparing the disassemblies, or alternatively,
by determining the differences between the control flow
representations of the programs. The list of differences can
be presented to a user, or alternatively, can be passed to
another process for further processing, such as test coverage
analysis, code change analysis, or failure analysis, among,
other analyses.

| Disassembly
INST O
INST 1 101 111
INST 2
INST 3 C INST O
INST &4 Mark INST 1
Changed | INST 2
_ | Code C INST 3
lefgrence INST 4
List
109 C INST O
103~ Execute TOINSTT 3
In Test T INST 2
Environment CT INST 3
C INST 4
_ C INST O ’
Execute in | . TP INST 1|
105 115
N Production = TP INST2 |
Environment | CT INST 3|
) C P INST4 |

Patent Application Publication Nov. 4,2004 Sheet 1 of 3 US 2004/0221270 Al

version M Version N

SOURCE

| I

35

!

1S |
i
>3 —= Analyzer |
Symbm'\@. S
| Table 27 or
. ™~ Symbol

BINARY

JL) (Opfaonal) | CFG Table
3 Yo 41 .
/ 13w/ . (Optionat)
Disgssembier ’ Di sessemblerl [
i
\ 4
. -
X —

DISASSEMBLY

Patent Application Publication Nov. 4, 2004 Sheet 2 of 3 US 2004/0221270 Al

Version M version N
binary Dinary
-1 S

11 v

Difference
_ist

59 —

FIG. 2

Difference
46
™ List l

a7 " Filter(s)

Formatted
49~ and Filtered
List

- | v v
TO 10 To File
Display ¢ Application
FIG. 3 Te

Printer

Patent Application Publication Nov. 4, 2004 Sheet 3 of 3 US 2004/0221270 A1l

107

. Disassembly
INST O
INST 1 O 111
INST 2
INST 3 _: C INST O
INST 4 Mark | | INST 1 |
Changed | . INST 2

Difference
List

109
Execute
1 , 11
03 In Test 3
Environment
E xecute In 15

105
Production

Environment

US 2004/0221270 Al

METHOD FOR DETERMINING THE DEGREE TO
WHICH CHANGED CODE HAS BEEN EXERCISED

BACKGROUND OF THE INVENTION

[0001] For a number of software engineering applications,
it would be helptul to know how two related versions of a
computer program compare. In particular, if changes are
made to a “baseline version” of a program, resulting 1n a
newer or updated version, and if source code 1s available for
both versions, the source code difference of the baseline and
current versions 1s e€asy to obtain through standard textual
comparison tools, such as the UNIX “difl” command.

[0002] There are two major problems with this approach.
First, the source code may not be available, especially for the
older baseline version. Second, and more fundamentally, a
source-code difference does not directly point out all the
portions of a program that may have different semantics. For
instance, 1f the type, or format, of a program variable is
changed, then all the executable code, 1.e., computation and
logic, that mentions or references that variable will 1n
general be different as well.

[0003] For software testing applications, it is desirable to
know which code should be re-tested when a program 1S
modified. As shown above, the source code difference 1s
generally msufficient. While this problem can be addressed
through additional source-level tools, such as datatlow slic-
ing, that 1s, determining the dataflow representation for a
program, a more direct approach 1s to compare the execut-
able program binaries obtained by compiling the source
code mto machine code which incorporates any changes
such as, for example, variable format changes.

SUMMARY OF THE INVENTION

[0004] Naively comparing program binaries leads to an
overwhelming number of “false positives,” or 1nsignificant
differences, since, for example, adding a line of source code
will tend to 1nduce large-scale differences 1in the new binary,
because 1nstruction displacements, that 1s, explicit distances
encoded 1n mstructions, and register assignments, which
define exactly which fast hardware memory locations are
used, will differ throughout the program.

[0005] An embodiment of the present invention accurately
finds the different and similar portions of two binaries
related by small changes, and can form a mapping between,
or correlating, the similar portions, such that information
pertaining to the baseline binary can be applied to the current
binary.

[0006] Therefore, in accordance with the present inven-
tion, a method for determining changed-code 1n a second
program binary relative to a first or baseline program binary,
where the second program 1s a different version of the first
program, 1ncludes the step of translating machine addresses
of both program binaries to symbols. The first and second
program binaries are disassembled using the translated sym-
bols. Differences between the two resultmg disassemblies
are determined, and a list of the differences 1s created.

[0007] The second program can be an updated version of
the first program, or more generally, the first and second
programs can simply be two different versions of a program.

|0008] Preferably, a symbol table, an address range table,
and/or a control flow structure are determined for each of the
program binaries, and used to translate machine addresses.

Nov. 4, 2004

[0009] Preferably, differences between the disassemblies,
which correspond to differences between the program bina-
ries, are determined by textually comparmg the disassem-
blies, with a utility such as the “diff” program prowded by
the UNIX operating system, or some other text comparison
program.

[0010] Each disassembly contains a sequence of instruc-
fions, and each 1nstruction occupies a line. For efficiency,
cach disassembly 1s preferably transformed into a sequence
of “block-mstructions,” where a block-instruction contains,
in a single line, all of the instructions from within a block,
and where a block contains a sequence of 1nstructions which
ends 1n a branch. The blocked-instructions from the two
versions are then compared using “diff,” or a similar pro-
gram or function.

[0011] The set of changed blocked-instructions thus deter-
mined can be further refined by breaking each changed
blocked-instruction into its component 1nstructions, so that
cach 1nstruction occupies a line. Again using diff on the
instructions within the blocks marked as changed, it 1is
determined which instructions have changed.

[0012] Alternatively, differences between the program
binaries can be determined by first determining control flow
oraphs of the disassemblies, and using graph-matching
techniques to determine the differences between the control
flow graphs.

[0013] The list of differences can be correlated to differ-
ences between the source statements, and presented to a
user, for example, in printed form or on a display, or
alternatively, the list can be saved 1 a file or passed to
another process for further processing. For example, the list
can be used to aid 1n test coverage analysis, code change
analysis, or failure analysis, among other analyses.

[0014] Changes in the second version relative to the first
or baseline version may result, for example, by inserting
instructions into the first program, or by moditying instruc-
fions 1n the first program, or by deleting instructions from
the first program. One change might be where a variable’s
size 1s different in the second program binary relative to the
first program binary. This could result, for example, from a
change 1n source code, or from use of a different compiler,
or even from the same compiler with different options
selected. Similarly, changes in the second version relative to
the first version may result from a change to a data struc-
ture’s definition.

[0015] In at least one embodiment, known attributes of the
compiler(s) which created the program binaries can be used
in ftranslating symbols and disassembling binaries. An
example 1s where a known attribute 1s a standard base
register.

[0016] Machine addresses can be, but are not limited to,
for example, register names, memory addresses mncluding
both virtual and physical addresses, and address offsets.

[0017] According to another aspect of the present inven-
fion, a method for analyzing changed code coverage of a
second version of a program relative to a first version,
includes marking code in the second program which 1is
changed or different from the first program. The second
program 1s then executed 1n a test environment, and code
which 1s executed 1s marked as having been executed. Next,

US 2004/0221270 Al

the second program 1s executed 1n a non-test environment,
such as a production environment, and code which 1is
executed 1n this second environment 1s marked accordingly.
Finally, from the variously marked code, a list of changed
code which have not executed 1n the test environment but
have executed 1n the non-test environment 1s provided.

[0018] Code can be marked by various groupings, such as,
for example, individual code lines, or basic blocks.

[0019] In certain applications, coverage results can be
obtained on a production run of a baseline program and
mapped to a program under test, to determine which portions
of the program under test have not executed in the produc-
fion environment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The foregoing and other objects, features and
advantages of the invention will be apparent from the
following more particular description of preferred embodi-
ments of the invention, as 1llustrated in the accompanying
drawings 1n which like reference characters refer to the same
parts throughout the different views. The drawings are not
necessarily to scale, emphasis instead being placed upon
illustrating the principles of the invention.

10021] FIG. 1 1s a schematic flow diagram illustrating an
embodiment of the present invention.

10022] FIG. 2 is a schematic flow diagram illustrating an
embodiment of the present invention using graph-matching
techniques.

10023] FIG. 3. is a schematic diagram illustrating, in an
embodiment of the present invention, the filtering of the
difference list.

10024] FIG. 4 1s a schematic flow diagram illustrating an
embodiment of the present invention which analyzes
changed coverage of an updated version of a program.

DETAILED DESCRIPTION OF THE
INVENTION

[0025] A description of preferred embodiments of the
invention follows.

10026] FIG. 1 is a schematic flow diagram illustrating an
embodiment of the present invention. Assume that initially,
source code 11, shown as a line representing a sequence of
source-level 1nstructions, exists for some program. The
source code 11 can be written 1n a high-level language such
as C, Pascal, Fortran, etc., or in a lower level language such
as assembly language.

[10027] Typically, the program source 11 is processed by a
compiler 25 (or an assembler if the source code is in
assembly language) to produce an executable program
binary 11', comprising machine-readable instructions. The
executable 11' can then be used for testing or production, or
for some other purpose.

10028] Eventually, the program source 11 is updated, due
to, for example, bug fixes, enhancements, introduction of
new features, deletion of obsolete features, etc. In the
illustrative example of FIG. 1, the first or baseline version
11, Version M, 1s updated to produce a second version 13,
Version N, by inserting (step 15) one or more instructions A
19 at location X, and by replacing or modifying (step 17)

Nov. 4, 2004

instructions B 21 with mstructions C 23. Note that the
insertion of instructions A 19 shifts the instructions which
follow, such that the C instructions 23 are at a location Y,
which 1s offset relative to the location Y, in the baseline
program 11.

[10029] The source code 13 for Version N is then processed
by the compiler 26 or assembler to produce a Version N
program binary 13'. The compiler 26 may or may not be the
same compiler 25 used to compile the baseline Version M
program. Note that instructions A, B and C are compiled mto
respective binary instructions A', B' and C', each of which 1s
likely to comprise several machine instructions for each line
of source code. Furthermore, the location of each compiled
source line 1n the source code 11, 13 has a corresponding
location or address 1n the binary code 11', 13'. Thus lines X,

Y, and Y, 1n the program source codes 11, 13 correspond to
addresses X', Y,' and Y,' 1n the binaries 11', 13'.

[0030] In addition to producing executable program code
11', 13', a compiler often generates a symbol table 31, 39
respectively, which 1s a data stricture used to track names
(symbols) used by the program, by recording certain infor-
mation about each name. Symbol tables are described at
pages 429-440 and 475-480 of Aho, Sethi and Ullman,
Compilers Principles lechniques and Tools (1988), incor-
porated herein by reference in its entirety. The symbol table
1s sometimes mcluded with the executable program binary.

[0031] The executable can also contain other types of
“debug information,” such as information that relates binary
instructions to source lines, or registers used within a given
range ol instructions to the source variable name.

[0032] Furthermore, compilers are capable of analyzing a
program to create a control flow representation 29, 37 of the
program. Alternatively, or in addition, an analyzer 27 can
produce a control flow representation directly from the
respective binary 11', 13'. An example of such an analyzer 1s
described 1n Schooler, “A Method for Determining Program
Control Flow, ” U.S. Ser. No. 09/210,138, filed on Dec. 11,

1998 and incorporated by reference herein 1n its enfirety

[0033] The present invention seeks to discover the
changes or differences between the program binaries 11,
13'of the different versions. In some cases, the source for one
or both versions may no longer be available. Thus, the
sources 11, 13 and the compilation step 25, 29 are shown
inside dashed box 9 to indicate that they occur prior to the
operation of the present invention.

[0034] As mentioned previously, a naive comparison of
the two binaries will yield a near useless number of false
differences. The key 1s to distinguish between those ditfer-
ences that are semantically significant, in terms of the
inducing source code differences, and those that are not.

[0035] An insignificant difference occurs, for example,
where a different register 1s assigned for the same purpose.
All of the mstructions that use the new register are impacted,
yet 1t makes little difference which register 1s actually used.
Another example 1s where the precise layout of instruction
sequences, that 1s their location 1n a binary or program
executable, differs. Yet another example 1s where the precise
offset, or distance from a base location, used to address
program variables by the executable instructions, differs.

[0036] On the other hand, a significant difference occurs,
for example, where the data length 1n a memory load or store

US 2004/0221270 Al

instruction 1s changed, from, for example, a load byte
instruction 1n one version, to a load long word 1nstruction in
the other version. Another example 1s where the two ver-
sions have a different sequence of computational instruc-
tions, or where they have a different control-flow structure.

[0037] Referring again to FIG. 1, a disassembler 33, 41

converts the program binaries 11', 13' into human-readable
assembly code, referred to herein as a disassembly 11", 13",
Disassemblers are commonly used to disassemble binary
programs to determine how the programs work when no
source 1s available.

[0038] Inthe embodiment of FIG. 1, the disassemblers 33,
41, which may be the same, use the control flow represen-
tations 29, 37 and, optionally, symbol tables 31, 39 and/or
debug mformation, obtained by the prior analysis, to trans-
late low-level machine addresses such as “(r5)128,” 1.e., the
address stored 1n register r5 offset by 128 bytes, into
higher-level symbolic addresses such as “(TCB) 128” for
128 bytes from the start of the task control block, or
“(SP)12” for 12 bytes from the stack pointer. Many of these
base address names, such as start of the task control block,
the stack base, the stack frame base and the heap base, are
known statically from a knowledge of the computer and/or
the 1nstruction set. In addition, this step uses distinguished
variable addresses, for example, memory base addresses,

contained 1n certain registers or memory locations. See, for
example, Schooler, U.S Ser. No. 09/210,138, cited above.

[0039] Each program binary 1s “disassembled.” A high-
level disassembly, the result of converting the binary code
into human-readable assembly code by a disassembly pro-
cess, 1S then produced, eliding 1nsignificant details such as
register numbers and memory offsets, and retaining signifi-
cant details such as opcodes and symbolic bases. Thus, for
cach machine instruction, a corresponding opcode 1s deter-
mined, along with a symbolic representation of any memory
locations referenced, where a symbolic representation 1s
typically some character string which serves as the name of
a variable.

[0040] As can be seen from FIG. 1, each disassembly has
code sections A", B" and C" corresponding to the machine
code sections A', B'0 and C' respectively, which 1n turn
correspond to source code sections A, B and C respectively,
cach section having one or more instructions.

[0041] A text comparison utility 43, such as the “diff”
command provided by the UNIX operating system, 1s then
used to produce a list 45 of differences between the two
disassemblies 11", 13". Since there 1s a one-to-one corre-
spondence between 1nstructions in the binaries 11', 13' and
the disassembled instructions 1n the disassemblies 11", 13",
the listed differences correspond to differences between the
binaries.

10042] The textual difference of the high-level disassem-
bly for the two program versions provides the desired result:
those portions that are different, and those that are the same,
as well as a map from the similar portions from the baseline
to the current version.

10043] For example, the difference list 45 of FIG. 1 shows

that Version N’s binary 13' contains new code A at location
X' which Version M’s binary 11' does not contain. In
addition, the difference list 45 shows that Version M con-

Nov. 4, 2004

tains code B at location Y,', while Version N instead
contains code C at location Y,'.

|0044] For efficiency, each disassembly is preferably
transformed 1nto a sequence of “block-instructions,” where
a block-instruction contains, in a single line, all of the
mstructions from within a block, and where a block contains
a sequence of mstructions which ends 1n a branch. The
blocked-instructions from the two versions are then com-
pared using “diff,” or a similar program or function.

[0045] The set of changed blocked-instructions thus deter-
mined can be further refined by breaking each changed
blocked-instruction 1nto its component instructions, so that
cach 1nstruction occupies a line. Again using diff on the
mnstructions within the blocks marked as changed, 1t is
determined which instructions have changed.

[0046] This simple textual difference operation will fail if
the source-level differences between the two versions are
ogreat enough. For some types of differences, more sophis-
ficated algorithms can continue to make an effective com-
parison. For example, if the current version i1s mostly
re-arranged from the baseline, but retains mostly the same
computations 1n different order, then algorithms that solve
the linear assignment problem can be used to discover the
correspondence. Algorithms exist for this “linear assignment
problem” See, for example, Cormen, T. H., Leiserson, C. E.
and Rivest, R. L., Introduction to Algorithms, The MIT
Press, 1990, incorporated herein by reference.

[0047] Sometimes, graph matching algorithms of the two
control flow graphs can yield the correspondences. Sece
Cormen, Leiserson and Rivest.

10048] FIG. 2 illustrates such an embodiment of the
present invention which uses graph-matching techniques.
Each source or binary version (binary shown 11',13' is
analyzed and a respective control flow graph representation
51, 53 1s produced for each. In this example, assume that
some portion 55 of the second program graph 53 1s different
from the first program graph 51. The graphs 51, 53, or their
representations (not shown) are compared by a graph-
matching comparator 57, and a list of differences 59 1is
produced.

10049] In, FIG. 3, a difference list 46, which corresponds
to the list 45 of FIG. 1, or the list 59 of FIG. 2, or another
list produced by another comparison technique, 1s filtered by
one or more filter processes 47 to provide a more desirable
format 49 to a user or another computer application, or to
filter the 1nformation so as to provide only certain 1nforma-
fion a user wishes to see or that an application needs to use,
for example, for a particular routine. Of course, no filter 1s
necessarily required, which 1s equivalent to a null filter.

[0050] The final formatted and filtered list 49 or lists can

then be presented to a user via a display, or a printer, or
stored 1n a file for later use, or can be sent to another
application for further processing.

[0051] One key application of the present invention is in
test coverage analysis used to determine what portions of a
software program have been exercised 1n testing. Ideally,
100% of a program should be exercised, or “covered”. In
practice this 1s extremely difficult, for instance, because
some statements are reached only 1n rare, exceptional cir-
cumstances.

US 2004/0221270 Al

[0052] In practice, it 1s desirable to focus and measure
testing on the most 1mportant portions of an application.
Empirically, the portions that have recently changed, and all
the code 1mpacted by those changes, deserve special atten-
tion. The binary comparison algorithm of the present inven-
tion described above points out precisely those areas.

[0053] Another way to focus testing is to concentrate on
those areas of the program that are actually run 1n real use,
or “production”. Many parts of a program, especially a
larger, older program, may not 1n fact be used 1n production,
since those parts relate to formats or 1ssues no longer
relevant. With the present invention, coverage results
obtained on a production run of a baseline program, can be
mapped to a current program under test, and determine
which portions have been exercised i production, but not
yet exercised 1n test.

10054] FIG. 4 is a schematic flow diagram of an embodi-
ment of the present 1nvention for analyzing changed code
coverage of the second or updated program version. At Step
101, using a disassembly listing 107 of mstructions INST
O-INST 4 for the updated version, and the list 109 of
differences between the two versions produced as described
above, code 1n the second program which 1s changed or
different from the first program 1s marked, as shown at 111.
In this example, changed instructions are marked with a
character “C”, however other markings such as flags could
also be used. Code markings can be on an instruction by
instruction, 1.¢., line by line, basis as shown, or can be based
on some other grouping, for example, on a block by block
basis.

[0055] At Step 103, the second program is executed in a
test environment, and code which 1s executed 1s marked as
having been executed, here with the character “T7, as shown
at 113. The order 1n which the “changed,”listed” or “run 1n
production” markings are made can be interchanged. Simi-
larly, marking can happen before or after the program 1s run
in test or production.

[0056] Next, at Step 105, the second program is executed
in a non-test environment, such as a production environ-
ment, and code which 1s executed 1n this environment 1s
marked accordingly, with a “P”, as shown at 115. The
information at 115 thus simultaneously indicates which
instructions have changed, which have been tested, and
which have been executed 1n a production environment.

[0057] Code can be marked by various groupings, such as,
for example, individual code lines, or basic blocks. Of
course, 1f source code 1s available, source lines can be shown
mstead of, or 1n addition to, the disassembled instructions.

|0058] The markings can also be shown to the user along-
side the program source code. For this we make use of
information such as, for example, a listing file, a symbol
table, debug information, or other means, that relates the
assembly 1nstruction to source code.

[0059] In addition, or alternatively, lines of code in the
second program which are impacted due to changes relative
to the baseline program are similarly marked. Directly
impacted lines, that 1s, those which are textually changed or
added relative to the baseline program are marked with one
mark, for example, the character “D”, while indirectly
impacted lines can are marked with a different mark, for
example, the character “I”.

Nov. 4, 2004

[0060] Indirectly impacted code results where the text of
statement has not been changed, but where the statement
itself 1s nevertheless 1mpacted. For example, assume the
baseline version “Version 1”and updated version (“Version
2”) of some program are as follows, the only difference
being the assignment of the value 32 to variable A 1n Version
1, and the assignment of the value 16 to variable A 1in Version

B:

[0061] Version 1:

Integer A=32;
Y=P+Q;
B=A+C;

X=R+S;
[0062] Version 2:

Integer A=16;
Y=P+Q;
B=A+C;
X=R+5;

[0063] The line “B=A+C” in Version 2 (actually in either
version relative to the other) is impacted by the change 1n the
integer declaration but 1s not textually changed itself. A
dataflow analysis will relate the declaration of variable A to
its use 1n the instruction “B=A+C".

[0064] Many other software tools can benefit from binary
comparison information as well. For instance, failure analy-
sis tools can highlight changed code (relative to a baseline)
that was 1n the path to a failure, since empirically recently-
changed code 1s often the cause of such failures. This
highlighting can guide diagnostic engineers more quickly to
the root cause of a program failure.

[0065] The changed and/or impacted code is itself also
useful to the user. It can also be shown to the user at a source
code level on described previously, without the “test” or
“production” mformation.

[0066] It will be apparent to those of ordinary skill in the
art that methods involved 1n the present system for deter-
mining the degree to which changed code has been exercised
may be embodied 1n a computer program product that
includes a computer usable medium. For example, such a
computer usable medium can include a readable memory
device, such as a hard drive device, a CD-ROM, a DVD-
ROM, or a computer diskette, having computer readable
program code segments stored thereon. The computer read-
able medium can also include a communications or trans-
mission medium, such as a bus or a communications link,
either optical, wired, or wireless, having program code
segments carried thereon as digital or analog data signals.

[0067] While this invention has been particularly shown
and described with references to preferred embodiments
thereof, 1t will be understood by those skilled in the art that
various changes 1n form and details may be made therein
without departing from the scope of the mvention encom-
passed by the appended claims.

US 2004/0221270 Al

What 1s claimed 1s:

1. A method for determining changed code in a second
program binary relative to a first program binary, the second

program being a different version of the first program,
comprising:

translating machine addresses of the first and second
program binaries to symbols;

dis-assembling the first and second program binaries to
create a respective first and second disassembly, using
the ftranslated symbols; determining differences
between the first and second disassemblies; and pro-
viding a list of said differences.

2. The method of claim 1, wherein the second program 1s
an updated version of the first program.

3. The method of claim 1, further comprising;:

determining a control flow structure of the first program
binary;

determining a control flow structure of the second pro-
oram binary, wherein the step of translating machine
addresses 1s responsive to the determined control flow
structures.

4. The method of claim 1, further comprising:

providing symbol tables for the first and second program
binaries, wherein the step of translating machine
addresses 1s responsive to the symbol tables.

5. The method of claim 4, further comprising:

determining a control flow structure of the first program
binary;

determining a control flow structure of the second pro-
oram binary, wherein the step of translating machine
addresses 1s further responsive to the determined con-
trol tlow structures.

6. The method of claim 1, wherein translating further
COMprises:

finding a correlation between the first and second versions
that provides a minimal number of differences.

™

7. The method of claim 1, wherein determining differ-
ences comprises textually comparing the disassemblies.

8. The method of claim 1, wherein determining diifer-
€NCES COMPIISES:

determining control flow graphs of the disassemblies; and
oraph-matching the control flow graphs.

9. The method of claim 1, wherein the list of differences
1s correlated to differences 1n source statements.

10. A method for determining changed code 1n a second
program binary relative to a first program binary, the second
program being an updated version of the first program,
comprising;

determining control flow structures of the first and second
program binaries;

providing symbol tables for the first and second program
binaries, responsive to the determined control flow
structures and to the symbol tables, translating machine
addresses of the first and second program binaries to
symbols;

Nov. 4, 2004

dis-assembling the first and second program binaries to
create a respective first and second disassembly, using
the translated symbols;

determining differences between the first and second
disassemblies; and providing a list of said differences.

11. The method of claim 10, wherein the list of differences
1s provided to a user.

12. The method of claim 10, where the list of differences
1s provided to a processor for further processing.

13. The method of claim 12, wherein further processing
comprises test coverage analysis.

14. A computer memory coniigured for determining
changed code 1n a second program binary relative to a first
program binary, the second program being a different ver-
sion of the first program, comprising:

a disassembler which translates machine addresses of the
first and second program binaries to symbols, and
which disassembles the first and second program bina-
ries to create a respective first and second disassembly,
using the translated symbols; and

a comparator which determines differences between the
first and second disassemblies, and which provides a
list of said differences.

15. The computer memory of claim 14, wherein the
disassembler further translates machine addresses respon-
sive to determined control flow structures of the first and
second program binaries.

16. The computer memory of claim 14, wherein the
disassembler further translates machine addresses respon-
sive to symbol tables for the first and second program
binaries.

17. The computer memory of claim 16, wherein the
disassembler further translates machine addresses respon-
sive to determined control flow structures of the first and
second program binaries.

18. A computer program product for determining changed
code 1n a second program binary relative to a first program
binary, the second program being a different version of the
first program, the computer program product comprising a
computer usable medium having computer readable code
thereon, including program code which:

translates machine addresses of the first and second
program binaries to symbols;

disassembles the first and second program binaries to
create a respective first and second disassembly, using
the translated symbols;

™

determines differences between the first and second dis-
assemblies; and

provides a list of said differences.

19. A method for analyzing changed code coverage of a
second program relative to a first program, the second
program being a different version of the first program,
comprising:

marking lines of code in the second program which are
changed from the first program;

executing the second program 1n a test environment, and
marking lines of code which are executed,;

US 2004/0221270 Al Nov. 4, 2004

executing the second program in a non-test environment, 20. The method of claim 19, wherein the non-test envi-
and marking lines of code which are executed; and ronment 1s a production environment.
providing, responsive to the markings, status indications 21. The method of claim 20, turther comprising:

for the lines of code in the second program, a status

indication comprising any or all of mapping coverage results, obtained on a production run of

the first program, to the second program; and
an 1ndication as to whether code has changed;

determining which portions of the second program have

been exercised 1 production but have not yet been
exercised 1n the test environment.

an 1ndication as to whether code has executed 1n the test
environment; and

an mdication as to whether code has executed 1n the
non-test environment. % %k % % %

	Front Page
	Drawings
	Specification
	Claims

