a9 United States
a2 Patent Application Publication o) Pub. No.: US 2003/0105799 Al

Khan et al.

US 20030105799A1

43) Pub. Date: Jun. §, 2003

(54)

(75)

(73)

(21)
(22)

(51)
(52)

DISTRIBUTED PROCESSING
ARCHITECTURE WITH SCALABLE
PROCESSING LAYERS

Inventors: Shoab Ahmad Khan, Rawalpindi (PK);
Muhammad Mohsin Rahmatullah,
Islamabad (PK)

Correspondence Address:

O’MELVENY & MYERS LLP
400 So. Hope Street
Los Angeles, CA 90071-2899 (US)

Assignee: Avaz Networks, Inc.
Appl. No.: 10/004,753
Filed: Dec. 3, 2001

Publication Classification

(57) ABSTRACT

The present mvention 1s a system on chip architecture
having scalable, distributed processing and memory capa-
bilities through a plurality of processing layers. In a pre-
ferred embodiment, a distributed processing layer processor
comprises a plurality of processing layers, a processing layer
controller, and a central direct memory access controller.
The processing layer controller manages the scheduling of
tasks and distribution of processing tasks to each processing
layer. Within each processing layer, a plurality of pipelined
processing units (PUs), specially designed for conducting a
defined set of processing tasks, are in communication with
a plurality of program memories and data memories. One
application of the present mvention i1s in a media gateway
that 1s designed to enable the communication of media
across circuit switched and packet switched networks. The
hardware system architecture of the said novel gateway 1s
comprised of a plurality of DPLPs, referred to as Media
Engines that are interconnected with a Host Processor or
Packet Engine, which, 1n turn, 1s 1n communication with
interfaces to networks. Each of the PUs within the process-
ing layers of the Media Engines are specially designed to
perform a class of media processing specific tasks, such as

Int. CL7 oo, GO6k 9/00 line echo cancellation, encoding or decoding data, or tone
US. CLoo e, 709/201 signaling.
1 100
06) 104 /1 07
135 5= = i 110
130 E_,_k,gj i
140 v x 170

115

147

]
+
.

5
CI-_EF
O

»

160

US 2003/0105799 Al

Jun. 5, 2003 Sheet 1 of 28

Patent Application Publication

Lyl ‘

091

Patent Application Publication Jun. 5, 2003 Sheet 2 of 28 US 2003/0105799 Al

©
Q¥
O
[

Patent Application Publication Jun. 5, 2003 Sheet 3 of 28 US 2003/0105799 Al

- .
> Q|
< <f
N N

S

S O

o L0 L2 tr'Q)

N % O
9 N
_ l a
- O
N\
O
- O
N O
N 2
Y
A .
L)
C'J
N
T © '
- O I
N o

Patent Application Publication Jun. 5, 2003 Sheet 4 of 28 US 2003/0105799 Al

310

FIG. 3

!||
1

305

315 320 325 330 335 340

Patent Application Publication Jun. 5, 2003 Sheet 5 of 28 US 2003/0105799 Al

~ | [o]
< . 5 _

465
|

455

Patent Application Publication Jun. 5, 2003 Sheet 6 of 28 US 2003/0105799 Al

- o
M
-)
-
N
-
‘d-
@

505

FIG. 5

Ha * PR T i mp srms Bl MBSER RS
JFe B¢ preyvin WARRS Eh o4 B FREIE = i v wr mnePd ppme g Fip shadd a1 &b r w wwws b4 phpdaals » FEk dbEHIE pppFibieprens HigdMiPbaindir sndi= AV d IR wd B aadEld P pddide mmumm SRRk eay 2y TR roavarg PR kdgkldh rtwpg B R BARI TR b v p it hag p bk TRt A ek AR 5 bppp B hankid s PR R A diibmar iy iridme i bade F b A ArEREr nda fernk g LR S B rardu ddRYRIE "o ’M

US 2003/0105799 Al

-
P,
(0,

N\

ﬂ

l

ﬁ

=9 bid g e ayiery 11

Jun. 5, 2003 Sheet 7 of 28

[
|
|
|
A

%+ wrn

L%) vl gy 7

-
-
-
»
L
-
-
-
-
-
-
-
-
L
-
[
-
-
L]
-
e
-
-
-
-
-
— gt 4 vy el e el e U Bl s B ey

Patent Application Publication
A
-
o
{8
O
LL

‘tlll'lllllllulll-l- il rih=vre ah pwd
]

Patent Application Publication Jun. 5, 2003 Sheet 8 of 28 US 2003/0105799 Al

L g A RE mpeh rwA N awt s g By s et b R PR PR o EE ATy N T T BTN o pr— e B = g rmrbnaow

[
[

- **fid> =g

-
mm o sl o pNy B JPpng P

]
T .
TEAFPE v PR bba TEAAY e R

r liﬂt 14 da
—

730

t*ﬂiﬂkliiihiiiiu i W oW ERRhwwh v Wakdy vy pRERE FpRin eRdh hiSaw

] L

iy .

i pkhsrs

il

M jilves

:
i

X

Nirw e e A I 5 bl bl o E A Y o e S e] T P e At i — -), e - i E LT Rt e I Y LT LT 1 AR R S e e T Ty A g b

O_»

N

bl R L LRI IR EFRT M TN) BAE o el e Py By R A MR B R A R T el Foflae-lem - waagmh ey pia A ey Rl o S g B-iep] e e T P oan TR by B R R mr whRirrd gl T

.
¥
-
“ L]
. ¥
H -
-
H -
. -
-
4 []
i v
»
.
L]
»
oy 3
[Y
. o
"
. *
« .
-
-
- 3
1 [9
[
)
H
]
‘
. -
.
* ¥
3 [
. I
-
*
-
.
T H
" N
*
- i
- #*
-
» 5
H
: L]
-
[9
b +
*
* 3
-
1 [
- *
-
- -
»
»
L]
-
-
e .
- -
/ : -
*
- H
. "
» o
" -
L‘) - »
. -
P - 2
3 .
- "
r"l - -
- L 2
-
-
.
»
H
' :
' §
x -
-
-
b]
}
L] -,
-
: &
- L |
‘ -
. H
3 :
* i
-
. H
H
-
Y
= :
M
1-
-
.
]
L]
’ ¥
L3
4
- [
-
L] -
-
’ O ’
. a
2 -r-— 1
-
-

N wmy [T]
el LN I TRIITY .

LI

FIG. 7

E
L 3
x
H
"
- ¥
: L]
. -
- -
' H
f H
E t
Iy
; ;

FAYTE SERE am At abERe M AR et R AW pplhy VR i bl SR B e g VA Ttk A= ATl D e bRk B e S el gty gy il n 8 g gt g i T o Bl N Ao Ay T gl e g I

Patent Application Publication Jun. 5, 2003 Sheet 9 of 28 US 2003/0105799 Al

A ikl BFIJEE = RERRRTET kw gl

Erded AN J A VPR rp i P R e et a bkl B s P e sk] » Bl geg oy w g ¥ g ey il B g B - P 1.-‘-!-'11

mtirmws b o B0l B s g § D Sl E 4 el | i g ey) Sy gopatiel f B TRl T ety) R e g s B At PR R F i S S eyl e u B Sl g "n*!-;

i Empl o S gl iyl MY TR EE B

Y ww = -

A ey S e
LEF R J L,

Ll X ot Ap ik A o " JFaAE ty apry vy & F ii‘ i A rPE R kAl vp el oy wmmar AW ¥ # ¥ Sy Big Tm - -

L L TN LIS T FY TR | e

830

ek 4

o apr el

Lo

wrrm gk A Ry B ek by Bk

dfEpagssaftbiptbd i =444 ¥

ol

WEAPEp w s A [B ot L]

O

N a4 LAa e B R AP 4k B8 Gl i erray A1 Bl ds SRRl g v mgd it m e egpgaeieiekw g b Bl Rl R et R AR ERR ARl B ieern S & A IS wm A PidpaER PR R et W
L]
. r
-

L
.
)
.
[}
¥
H
L L]
* »
- I
- >
- -
-
™

ppde+ g m

*

m g UF pp & wy mggFt S kfapd

N Fh pgrdy a®

st wudmapp A NEERE - v oy

=

| 5
r ' :
o
X
| o0
‘ i
3 -

-
spanws il F gy wsEe g R P RS R W Y el T b et Bl S i ey AW 5 B - d e dap v rpapeirinigd ey Peieeingpll B 0 ey P R R el R T e Dl N R T AR i e il A e e PR LA

pibdprs snjipgpftdd dibigy

[T EEETT T -

ppgind &

870 865

kg Fes ah ey LE RS RN Rk e ey bl m E Bk e g S e b e s nn Ak d Rl S o NSRBI], T el T e [g e S Y e S P b et R R,

'y mph

[
- []
™ P
Qi :
N &+
H []
[]
r :
- L]
- L
QD : ;
¥
r
- o
L]
- I :
b :
[]
- L)
: i
: :
. L]
: I :
iy
ﬂ ‘
N !
L
. 4
: !
H ¥
- L 3
*
1 «
& o
- I |
- []
H E“
n ; 3
A '
*
: f :
L]
: }
* "
i
.]
L]

T i »
" i
L]
= t

U— X E
; i
3 M
l L J
' 3
M
. L
l: L)
* !
. H

T Rk ey 8 Al TR k0w B g mg S S b R B ok e g el w4 F Sy PR R AR Al mw R per kg g ey e, ' ‘g e Bl Yl B P g e e b A - T i i g et o g Sy Sy S

Patent Application Publication Jun. 5, 2003 Sheet 10 of 28 US 2003/0105799 A1l

975

950
980

955

US 2003/0105799 Al

Jun. 5, 2003 Sheet 11 of 28

Patent Application Publication

1601

0L 9Ol

Patent Application Publication Jun. 5, 2003 Sheet 12 of 28 US 2003/0105799 A1l

Patent Application Publication Jun. 5, 2003 Sheet 13 of 28 US 2003/0105799 A1l

—

O |
- E—
- |
) - ,
|
< ->l1— ‘
- J
J O I L1 |
- R -
- e S T e e
A e T
I i
1
-
F
~ -—
F
@, o
STEm—) ‘wa
LL. A
F

L0Z1 90z}
€ 10|S awi . C 10IS By

US 2003/0105799 Al

‘ 4 |
400i 4]

Jun. 5, 2003 Sheet 14 of 28

Patent Application Publication

09C1
€ [puueyn

oA
Z [duueyn

05z
| [auuey)

Patent Application Publication Jun. 5, 2003 Sheet 15 of 28 US 2003/0105799 A1l

1300

1306
1305
—
v

US 2003/0105799 Al

Jun. 5, 2003 Sheet 16 of 28

Patent Application Publication

BQOS L
i 10|S awi |

EN

_ 100l

€/0E}
€ 0[S sWli |

10dI

E90E}
¢ 10|S swl])

L

eGOL|
L 10]S aWwi |

e0SE)
b [suueyn

209€ |
€ [uueyD

eGGE L
Z [euuey)

20SE |
| [uLEyD

qogc]
1

| qS6¢<]
- ¢I £g

Jun. 5, 2003 Sheet 17 of 28

Patent Application Publication

<

A

0

= qozel ASLEL doLEl

,,m Nd YHNno4 Nd Py Nd puUco8g

a\

s 9 ——eee.

= qzee) aleéel | | [qie€L |
eq ¥ | ol=

qaLeci q96¢1 d06¢|

2d £ bg

4soc |
Nd 184l
~ | Dwmwpg _ as/g |
. O]10|S sWl |
ay8elL | qGo.g!
GV G 10|S awl |
9e8sl | q59¢ L
| AN _ b 10|S oW |
_ ey qooc L
| eV _ € 10|S awi |
_ |
T dssel
A" | Z oIS swi]
_ |
oGaET goseL
LV _ L 10|S 8wl |

06l

US 2003/0105799 Al

G671

Jun. 5, 2003 Sheet 18 of 28

| cepl
A%

——

Levl

OEvi

00FL

Patent Application Publication

Patent Application Publication Jun. 5, 2003 Sheet 19 of 28 US 2003/0105799 A1l

F1G. 15

1505
506

{

1503
1504

o D
S

1962
1564
1566

US 2003/0105799 Al

Jun. 5, 2003 Sheet 20 of 28

Patent Application Publication

8191

Patent Application Publication

FIG. 17

ahhil w FF BRFEAE wad [I I L T

Sy i e U Bl e gy A S i v e T e iy SR ey

Jun. 5, 2003 Sheet 21 of 28

Srhl b At Wrd T B P B B R

1705

- AFFd

—

ph I pvn Sy g gupenwa Dy § el g b -l B B Wik leg ey n b g il | D Eeregi-t ey g B PR b e E b b el ARk R A b

| ‘

1715

.

| 1725

—— - B & el el A -l el F=ad F =wm -]

US 2003/0105799 Al

¥ L L e e B L T Y

1700

US 2003/0105799 Al

Jun. 5, 2003 Sheet 22 of 28

Patent Application Publication

T rEr TET Y ey 18

e wwe e M bR o albn el b vl b ey HRE il
-

FETREY R P TSP EY bk bt] | FETTRTAR # Fiad
.
H
L |

:’I-rli"'l'- Tl T "TvF tar =ik T
L}

m | e
ezl m Ml
-]

M N00 O} «+——]

]

.

*
AL WP A ERERE | vy LR Ly W

FREET TRY TN TFWT T Iu

:

|
-
bl Bl . P B ok ey PRl | § 4 A B

eGcll m
m M |
H M _
ELCL]
e
N GOZ!

Patent Application Publication Jun. 5, 2003 Sheet 23 of 28 US 2003/0105799 A1l

1870

1840
F1G. 18

1800

1805

Patent Application Publication Jun. 5, 2003 Sheet 24 of 28 US 2003/0105799 A1l

1905

O
—
O
Ll

Patent Application Publication Jun. 5, 2003 Sheet 25 of 28 US 2003/0105799 A1l

2040

O
N
O S
L

Patent Application Publication Jun. 5, 2003 Sheet 26 of 28 US 2003/0105799 A1l

2170

Patent Application Publication Jun. 5, 2003 Sheet 27 of 28 US 2003/0105799 A1l

2205
2230
2210

2220

Patent Application Publication Jun. 5, 2003 Sheet 28 of 28 US 2003/0105799 A1l

r_"‘““mlu mE ey e a FRFE PN R bad -‘-“‘Iﬂid'l-llﬁl'—-ﬁl-.iﬂm-'uhllﬂi“hiifﬂ-“tﬂiiiltbrﬁ-—-——nﬁ-ﬂ " e A+ i lbhnsas s v pgy I ahd it s = P gt i g r o me g E -k e n i 1 BB i e T e

5 -
|)
o

N

2315

: -

: - 2 TO""
: O\ (N)
:) N O\
'_ N 4+—>

F1G. 23

2340

s A A%k Lk RS EEELEE.) B AR S ARLAR L LR A AR LR s =P v bnaewr P B Bl = R Bd e w ey L AED - -y ke AR Al i-wl am-aatebdrll bk B } ewrnsa -— [% I AR wm tmid m

US 2003/0105799 Al

DISTRIBUTED PROCESSING ARCHITECTURE
WITH SCALABLE PROCESSING LAYERS

FIELD OF THE INVENTION

[0001] The present invention relates generally to a system
on chip architecture and, more specifically, to a scalable
system on chip architecture having distributed processing
units and memory banks 1n a plurality of processing layers.

BACKGROUND OF THE INVENTION

10002] Media communication devices comprise hardware
and software systems that utilize interdependent processes to
enable the processing and transmission of analog and digital
signals substantially seamlessly across and between circuit
switched and packet switched networks. As an example, a
voice over packet gateway enables the transmission of
human voice from a conventional public switched network
to a packet switched network, possibly traveling simulta-
neously over a single packet network line with both fax
information and modem data, and back again. Benefits of
unifying communication of different media across different
networks include cost savings and the delivery of new
and/or 1mproved communication services such as web-
enabled call centers for improved customer support and
more elficient personal productivity tools.

[0003] Such media over packet communication devices
(c.g., Media Gateways) require substantial, scalable process-
ing power with sophisticated software controls and applica-
fions to enable the effective transmission of data from circuit
switched to packet switched networks and back again.
Exemplary products utilize at least one communication
processor, such as Texas Instrument’s 48-channel digital
signal processor (DSP) chip, to deploy a software architec-
ture, such as the system provided by Telogy Networks,
which, in combination, offer features such as adaptive voice
activity detection, adaptive comfort noise generation, adap-
five jitter buffer, industry standard codecs, echo cancellation,
tone detection and generation, network management sup-
port, and packetization.

[0004] One form of a media communication device, a
voice over packet processing system, uses multiple DSPs to
perform the conversion between voice data signals and
packet-based digital data. Each of the general-purpose DSPs
performs tasks such as encoding, decoding, echo cancella-
tion, and so forth; however, the use of general-purpose DSPs
has several disadvantages. First, a general-purpose DSP 1is
not optimized for performing any particular function. There-
fore, a DSP typically includes a large number of functional
units. Second, because each DSP typically completes pro-
cessing of one unit of mcoming data before 1t starts pro-
cessing the next unit of mncoming data, units of Incoming
data may have to wait for a DSP to become available. For
example, assume that 1t takes one second for a DSP to
process one unit of incoming data, then the DSP can accept
new 1ncoming data approximately once per second on
average.

[0005] Exemplary processors are disclosed in U.S. Pat.
Nos. 6,226,735, 6,122,719, 6,108,760, 5,956,518, and
5,915,123. The patents are directed to a hybrid digital signal
processor (DSP)/RISC chip that has an adaptive instruction
set, making 1t possible to reconfigure the iterconnect and
the function of a series of basic building blocks, like

Jun. 5, 2003

multipliers and arithmetic logic units (ALUs), on a cycle-
by-cycle basis. This provides an mstruction set architecture
that can be dynamically customized to match the particular
requirements of the running applications and, therefore,
create a custom path for that particular instruction for that
particular cycle. According to the patents, rather than sepa-
rate the resources for instruction storage and distribution
from the resources for data storage and computation, and
dedicate silicon resources to each of these resources at
fabrication time, these resources can be unified. Once uni-
fied, traditional instruction and control resources can be
decomposed along with computing resources and can be
deployed 1n an application specific manner. Chip capacity
can be selectively deployed to dynamically support active
computation or control reuse of computational resources
depending on the needs of the application and the available
hardware resources. This, theoretically, results in improved
performance.

[0006] While existing solutions are capable of generally
enabling the processing and transmission of certain media
types across circuit and packet switched networks, they
suffer from certain disadvantages. As designed, they are not
able to support a sufficiently high density of channels per
chip while still providing the features required by carrier-
class telecommunication companies. Furthermore, expand-
ing the number of channels served and/or features provided
to meet new or different data volumes by adding new
hardware or software components i1s challenging and
requires substantial redesign. Moreover, existing architec-
tures do not enable the scalable addition of processing power
or modification of processing tasks without substantial rede-
s1gns.

[0007] Despite the aforementioned prior art, an improved
method and system for enabling the communication of
media across different networks 1s needed. More specifi-
cally, a system on chip architecture i1s needed that can be
cficiently scaled to meet new processing requirements and
1s sutficiently distributed to enable high processing through-
puts and increased production yields.

SUMMARY OF THE INVENTION

[0008] The present invention 1s directed toward a system
on chip architecture having scalable, distributed processing
and memory capabilities through a plurality of processing
layers. In a preferred embodiment, a distributed processing
layer processor (DPLP) comprises a plurality of processing
layers each 1n communication with a processing layer con-
troller and central direct memory access controller via
communication data buses and processing layer interfaces.
Within each processing layer, a plurality of pipelined pro-
cessing units (PUs) are in communication with a plurality of
program memories and data memories. Preferably, each PU
should be capable of accessing at least one program memory
and one data memory. The processing layer controller man-
ages the scheduling of tasks and distribution of processing
tasks to each processing layer. The DMA controller 1s a
multi-channel DMA unit for handling the data transfers
between the local memory buffer PUs and external memo-
ries, such as the SDRAM. Within each processing layer,
there are a plurality of pipelined PUs specially designed for
conducting a defined set of processing tasks. In that regard,
the PUs are not general-purpose processors and can not be
used to conduct any processing task. Additionally, within

US 2003/0105799 Al

cach processing layer 1s a set of distributed memory banks
that enable the local storage of instruction sets, processed
information and other data required to conduct an assigned
processing task.

[0009] One application of the present invention iS in a
media gateway that 1s designed to enable the communication
of media across circuit switched and packet switched net-
works. The hardware system architecture of the gateway 1s
comprised of a plurality of DPLPs, referred to as Media
Engines, that are interconnected with a Host Processor and
Packet Engine which, in turn, 1s 1n communication with
interfaces to networks, preferably as asynchronous transfer
mode (ATM) physical device or gigabit media independent
interface (GMII) physical device. Each of the PUs within the
processing layers of the Media Engines are specially
designed to perform a class of media processing speciiic
tasks, such as line echo cancellation, encoding or decoding
data, or tone signaling.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] These and other features and advantages of the
present invention will be appreciated as they become better
understood by reference to the following Detailed Descrip-
tion when considered 1n connection with the accompanying
drawings, wherein:

[0011] FIG. 11s a block diagram of an embodiment of the
distributed processing layer processor;

10012] FIG. 2a is a block diagram of a first embodiment

of a hardware system architecture for a media gateway;

[0013] FIG. 2b 1s a block diagram of a second embodi-
ment of a hardware system architecture for a media gateway;

10014] FIG. 3is adiagram of a packet having a header and
user data;

10015] FIG. 41s ablock diagram of a third embodiment of

a hardware system architecture for a media gateway;

[0016] FIG. 5 is a block diagram of one logical division
of the software system of the present imnvention;

[0017] FIG. 6 1s a block diagram of a first physical
implementation of the software system of FIG. §;

[0018] FIG. 7 is a block diagram of a second physical

implementation of the software system of FIG. 5;

[0019] FIG. 8 1s a block diagram of a third physical
implementation of the software system of FIG. §;

10020] FIG. 9 i1s a block diagram of a first embodiment of

the media engine component of the hardware system of the
present mvention;

10021] FIG. 10 is a block diagram of a preferred embodi-

ment of the media engine component of the hardware system
of the present invention;

10022] FIG. 10a is a block diagram representation of a
preferred architecture for the media layer component of the

media engine of FIG. 10;

10023] FIG. 11 is a block diagram representation of a first
preferred processing unit;

10024] FIG. 12 is a time-based schematic of the pipeline
processing conducted by the first preferred processing unit;

Jun. 5, 2003

[10025] FIG. 13 is a block diagram representation of a
second preferred processing unit;

10026] FIG. 13a is a time-based schematic of the pipeline
processing conducted by the second preferred processing
unit;

[10027] FIG. 14 is a block diagram representation of a

preferred embodiment of the packet processor component of
the hardware system of the present invention,;

10028] FIG. 15 is a schematic representation of one
embodiment of the plurality of network interfaces in the
packet processor component of the hardware system of the
present 1nvention;

10029] FIG. 16 is a block diagram of a plurality of PCI

interfaces used to facilitate control and signaling functions
for the packet processor component of the hardware system
of the present 1nvention;

10030] FIG. 17 is a first exemplary flow diagram of data

communicated between components of the software system
of the present invention;

[0031] FIG. 17a is a second exemplary flow diagram of
data communicated between components of the software
system of the present invention;

10032] FIG. 18 is a schematic diagram of logical division
of the software system of the present imvention;

10033] FIG. 19 is a schematic diagram of preferred com-
ponents comprising the media processing subsystem of the
software system of the present mvention;

10034] FIG. 20 is a schematic diagram of preferred com-
ponents comprising the packetization processing subsystem
of the software system of the present mnvention;

10035] FIG. 21 is a schematic diagram of preferred com-
ponents comprising the signaling subsystem of the software
system of the present invention;

[0036] FIG. 22 is a block diagram of a host application
operative on a physical DSP; and

10037] FIG. 23 is a block diagram of a host application
operative on a virtual DSP.

DETAILED DESCRIPTION OF THE
INVENTION

|0038] The present invention is a system on chip archi-
tecture having scalable, distributed processing and memory
capabilities through a plurality of processing layers. One
embodiment of the present invention 1s a novel media
cateway, designed to enable the communication of media
across circuit switched and packet switched networks, and
encompasses novel hardware and software methods and
systems. The present invention will presently be described
with reference to the aforementioned drawings. Headers will
be used for purposes of clarity and are not meant to limit or
otherwise restrict the disclosures made herein. It will further
be appreciated, by those skilled 1n the art, that use of the term
“media” 1s meant to broadly encompass substantially all
types of data that could be sent across a packet switched or
circuit switched network, including, but not limited to,
voice, video, data, and fax traffic. Where arrows are utilized
in the drawings, 1t would be appreciated by one of ordinary

US 2003/0105799 Al

skill 1n the art that the arrows represent the interconnection
of elements and/or components via buses or any other type
of communication channel.

10039] Referring to FIG. 1, a block diagram of an exem-
plary distributed processing layer processor (DPLP) 100 is
shown. The DPLP 100 comprises a plurality of processing
layers 105 each 1n communication with a processing layer
controller 107 and central direct memory access (DMA)
controller 110 via communication data buses and processing
layer mterfaces 115. Each processing layer 105 1s 1n com-
munication with a CPU interface 106, which, in turn, i1s 1n
communication with a CPU 104. Within each processing
layer 1085, a plurality of pipelined processing units (PUs) 130
are 1n communication with a plurality of program memories
135 and data memories 140, via communication data buses.
Preferably, each program memory 135 and data memory 140
can be accessed by at least one PU 130 via data buses. Each
of the PUs 130, program memories 135, and data memories
140 1s in communication with an external memory 147 via
communication data buses.

[0040] In a preferred embodiment, the processing layer
controller 107 manages the scheduling of tasks and distri-
bution of processing tasks to each processing layer 105. The
processing layer controller 107 arbitrates data and program
code transfer requests to and from the program memories
135 and data memories 140 in a round robin fashion. On the
basis of this arbitration, the processing layer controller 107
f1lls the data pathways that define how units directly access
memory, namely the DMA channels [not shown]. The pro-
cessing layer controller 107 1s capable of performing
instruction decoding to route an instruction according to its
dataflow and keep track of the request states for all PUs 130,
such as the state of a read-in request, a write-back request
and an 1nstruction forwarding. The processing layer control-
ler 107 1s further capable of conducting interface related
functions, such as programming DMA channels, starting
signal generation, maintaining page states for PUs 130 1n
cach processing layer 105, decoding of scheduler instruc-
tfions, and managing the movement of data from and into the
task queues of each PU 130. By performing the aforemen-
tioned functions, the processing layer controller 107 sub-
stantially eliminates the need for associating complex state
machines with the PUs 130 present in each processing layer

105.

[0041] The DMA controller 110 is a multi-channel DMA

unit for handling the data transfers between the local
memory buffer PUs and external memories, such as the
SDRAM. Each processing layer 105 has independent DMA
channels allocated for transferring data to and from the PU
local memory buflers. Preferably, there 1s an arbitration
process, such as a single level of round robin arbitration,
between the channels within the DMA to access the external
memory. The DMA controller 110 provides hardware sup-
port for round robin request arbitration across the PUs 130
and processing layers 105. Each DMA channel functions
independently of each other. In an exemplary operation, it 1s
preferred to conduct transfers between local PU memories
and external memories by utilizing the address of the local
memory, address of the external memory, size of the transfer,
direction of the transfer, namely whether the DMA channel
1s transferring data to the local memory from the external
memory or vice-versa, and how many transfers are required

for each PU 130. The DMA controller 110 1s preferably

Jun. 5, 2003

further capable of arbitrating priority for program code fetch
requests, conducting link list traversal and DMA channel
information generation, and performing DMA channel
prefetch and done signal generation.

[0042] The processing layer controller 107 and DMA
controller 110 are 1n communication with a plurality of
communication interfaces 160, 190 through which control
information and data transmission occurs. Preferably the
DPLP 100 includes an external memory interface (such as a
SDRAM interface) 170 that is in communication with the
processing layer controller 107 and DMA controller 110 and
1s 1n communication with an external memory 147.

[0043] Within each processing layer 1035, there are a
plurality of pipelined PUs 130 specially designed for con-
ducting a defined set of processing tasks. In that regard, the
PUs are not general-purpose processors and can not be used
to conduct any processing task. A survey and analysis of
specific processing tasks yielded certain functional unit
commonalities that, when combined, yield a specialized PU
capable of optimally processing the universe of those spe-
clalized processing tasks. The instruction set architecture of
cach PU yields compact code. Increased code density results
in a decrease 1n required memory and, consequently, a
decrease 1n required area, power, and memory traffic.

10044 It is preferred that, within each processing layer,
the PUs 130 operate on tasks scheduled by the processing
layer controller 107 through a first-in, first-out (FIFO) task
queue [not shown]. The pipeline architecture improves per-
formance. Pipelining 1s an 1mplementation technique
whereby multiple instructions are overlapped 1n execution.
In a computer pipeline, each step 1n the pipeline completes
a part of an instruction. Like an assembly line, different steps
arec completing different parts of different instructions in
parallel. Each of these steps 1s called a pipe stage or a data
secgment. The stages are connected on to the next one to form
a pipe. Within a processor, instructions enter the pipe at one
end, progress through the stages, and exit at the other end.
The throughput of an instruction pipeline 1s determined by
how often an 1nstruction exits the pipeline.

[0045] Additionally, within each processing layer 105 is a
set of distributed memory banks 140 that enable the local
storage of 1nstruction sets, processed 1information and other
data required to conduct an assigned processing task. By
having memories 140 distributed within discrete processing
layers 105, the DPLP 100 remains flexible and, 1n produc-
tion, delivers high yields. Conventionally, certain DSP chips
are not produced with more than 9 megabytes of memory on
a single chip because as memory blocks increase, the
probability of bad wafers (due to corrupted memory blocks)
also 1ncreases. In the present invention, the DPLP 100 can
be produced with 12 megabytes or more of memory by
incorporating redundant processing layers 105. The ability
to mncorporate redundant processing layers 105 enables the
production of chips with larger amounts of memory because,
if a set of memory blocks are bad, rather than throw the
entire chip away, the discrete processing layers within which
the corrupted memory units are found can be set aside and
the other processing layers may be used instead. The scal-
able nature of the multiple processing layers allows for
redundancy and, consequently, higher production yields.

[0046] While the layered architecture of the present inven-
tion 1s not limited to a specific number of processing layers,

US 2003/0105799 Al

certain practical limitations may restrict the number of
processing layers that can be incorporated imto a single
DPLP. One of ordinary skill in the art would appreciate how
to determine the processing limitations imposed by external
conditions, such as traffic and bandwidth constraints on the
system, that restrict the feasible number of processing lay-
ersS.

0047] Exemplary Application

0048] The present invention can be used to enable the
operation of a novel media gateway. The hardware system
architecture of the gateway 1s comprised of a plurality of
DPLPs, referred to as Media Engines, that are in commu-
nication with a data bus and interconnected with a Host
Processor or a Packet Engine which, 1n turn, 1s in commu-
nication with interfaces to networks, preferably an asyn-
chronous transfer mode (ATM) physical device or gigabit
media independent interface (GMII) physical device.

10049] Referring to FIG. 24, a first embodiment of the
top-level hardware system architecture 1s shown. A data bus
205a 1s connected to interfaces 210a existent on a first novel
Media Engine Type I 2154 and on a second novel Media
Engine Type I 220a. The first novel Media Engine Type 1
2154 and second novel Media Engine Type I 220a are
connected through a second set of communication buses
225a to a novel Packet Engine 230a which, i turn, 1s
connected through interfaces 235a to outputs 240a, 245a4.
Preferably, each of the Media Engines Type I 2154, 2204 1s
in communication with a SRAM 246a and SDRAM 247a.

[0050] It is preferred that the data bus 2054 be a time-
division multiplex (TDM) bus. ATDM bus is a pathway for
the transmission of a number of separate voice, fax, modem,
video, and/or other data signals simultaneously over a single
communication medium. The separate signals are transmit-
ted by interleaving a portion of each signal with each other,
thereby enabling one communications channel to handle
multiple separate transmissions and avoiding having to
dedicate a separate communication channel to each trans-
mission. Existing networks use TDM to transmit data from
one communication device to another. It 1s further preferred
that the interfaces 210a existent on the first novel Media
Engine Type I 2154 and second novel Media Engine Type 1
220a comply with H.100, a hardware speciiication that
details the necessary mnformation to implement a CT bus
interface at the physical layer for the PCI computer chassis
card slot, independent of software specifications. The CT
bus defines a single 1sochronous communications bus across
certain PC chassis card slots and allows for the relatively
fluid inter-operation of components. It 1s appreciated that
interfaces abiding by different hardware specifications could
be used to receive signals from the data bus 2035a4.

[0051] As described below, each of the two novel Media

Engines Type I 215a, 220a can support a plurality of
channels for processing media, such as voice. The speciiic
number of channels supported 1s dependent upon the fea-
tures required, such as the extent of echo cancellation, and
type of codec supported. For codecs having relatively low
processing power requirements, such as (G.711, each Media
Engine Type I 215a, 220a can support the processing of
around 256 voice channels or more. Each Media Engine
Type 1 215a, 220a 1s in communication with the Packet
Engine 230a through a communication bus 2254, preferably
a peripheral component interconnect (PCI) communication

Jun. 5, 2003

bus. A PCI communication bus serves to deliver control
information and data transfers between the Media Engine
Type 1 chip 2154, 220a and the Packet Engine chip 230a.
Because Media Engine Type I 2154, 220a was designed to
support the processing of lower data volumes, relative to
Media Engine Type II described below, a single PCI com-
munication bus can effectively support the transter of both
control and data between the designated chips. It 1s appre-
clated, however, that where data tratfic becomes too great,
the PCI communication bus must be supplemented with a
second 1nter-chip communication bus.

[0052] The Packet Engine 230a receives processed data
from each of the two Media Engines Type I 2154, 220a via
the communication bus 225a4. While theoretically able to
connect to a plurality of Media Engines Type I, 1t 1s preferred
that, for this embodiment, the Packet Engine 230a be in
communication with up to two Media Engines Type I 2154,
220a. As will be further described below, the Packet Engine
230a provides cell and packet encapsulation for data chan-
nels, at or around 2016 channels 1 a preferred embodiment,
quality of service functions for traffic management, tagging
for differentiated services and multi-protocol label switch-
ing, and the ability to bridge cell and packet networks. While
it 1s preferred to use the Packet Engine 230a, 1t can be
replaced with a different host processor, provided that the

host processor 1s capable of performing the above-described
functions of the Packet Engine 230a.

[0053] The Packet Engine 230a 1s in communication with
an ATM physical device 240a and GMII physical device
245a. The ATM physical device 240a 1s capable of receiving
processed and packetized data, as passed from the Media
Engines Type I 2154, 220a through the Packet Engine 2304,
and transmitting 1t through a network operating on an
asynchronous transfer mode (an ATM network). As would
be appreciated by one of ordinary skill in the art, an ATM
network automatically adjusts the network capacity to meet
the system needs and can handle voice, modem, fax, video
and other data signals. Each ATM data cell, or packet,
consists of five octets of header field plus 48 octets for user
data. The header contains data that identifies the related cell,
a logical address that identifies the routing, header error
correction bits, plus bits for priority handling and network
management functions. An ATM network 1s a wideband, low
delay, connection-oriented, packet-like switching and mul-
tiplexing network that allows for relatively tlexible use of
the transmission bandwidth. The GMII physical device 2454
operates under a standard for the receipt and transmission of
a certain amount of data, wrrespective of the media types
mvolved.

[0054] The embodiment shown in FIG. 2a can deliver
voice processing up to Optical Carrier Level 1 (OC-1). OC-1
1s designated at 51.840 million bits per second and provides
for the direct electrical-to-optical mapping of the synchro-
nous transport signal (STS-1) with frame synchronous
scrambling. Higher optical carrier levels are direct multiples
of OC-1, namely OC-3 1s three times the rate of OC-1. As
shown below, other configurations of the present invention
could be used to support voice processing at OC-12.

[0055] Referring now to FIG. 2b, an embodiment sup-
porting data rates up to OC-3 1s shown, referred to herein as
an OC-3 Tile 20056. A data bus 205b 1s connected to
interfaces 210b existent on a first novel Media Engine Type

I 215b and on a second novel Media Engine Type 11 2205.

US 2003/0105799 Al

The first novel Media Engine Type II 215b and second novel
Media Engine Type II 2205 are connected through a second
set of communication buses 225b, 2275 to a novel Packet
Engine 2305 which, 1n turn, 1s connected through interfaces

26056, 265b to outputs 240b, 245b and through interface
250b to a Host Processor 255b.

0056] As previously discussed, it is preferred that the data
bus 205b be a time-division multiplex (TDM) bus and that
the 1nterfaces 2105 existent on the first novel Media Engine
Type II 21556 and second novel Media Engine Type 11 2205
comply with the H.100 a hardware specification. It 1s again
appreciated that interfaces abiding by different hardware

specifications could be used to receive signals from the data
bus 205b.

[0057] Each of the two novel Media Engines Type 11 2155,

2206 can support a plurality of channels for processing,
media, such as voice. The specilic number of channels
supported 1s dependent upon the features required, such as
the extent of echo cancellation, and type of codec imple-
mented. For codecs having relatively low processing power
requirements, such as G.711, and where the extent of echo
cancellation required 1s 128 milliseconds, each Media
Engine Type II can support the processing of approximately
2016 channels of voice. With two Media Engines Type 11
providing the processing power, this configuration 1s capable
of supporting data rates of OC-3. Where the Media Engines
Type II 215b, 220b are implementing a codec requiring
higher processing power, such as G.729A, the number of
supported channels decreases. As an example, the number of
supported channels decreases from 2016 per Media Engine
Type II when supporting G.711 to approximately 672 to
1024 channels when supporting GG.729A. To match OC-3, an
additional Media Engine Type II can be connected to the
Packet Engine 2305 via the common communication buses

225b, 227b.

[0058] Each Media Engine Type II 215b, 2206 is in
communication with the Packet Engine 2305 through com-
munication buses 225b, 227b, preferably a peripheral com-
ponent interconnect (PCI) communication bus 225b and a
UTOPIA II/POS 1II communication bus 227b. As previously
mentioned, where data tratfic volumes exceed a certain
threshold, the PCI communication bus 2255 must be supple-
mented with a second communication bus 227b. Preferably,
the second communication bus 2275 1s a UTOPIA II/POS-II
bus and serves as the data path between Media Engines Type
1 2155, 220b and the Packet Engine 230b. A POS (Packet
over SONET) bus represents a high-speed means for trans-
mitting data through a direct connection, allowing the pass-
ing of data 1n its native format without the addition of any
significant level of overhead 1n the form of signaling and
control information. UTOPIA (Universal Test and Opera-
tions Interface for ATM) refers to an electrical interface
between the transmission convergence and physical medium
dependent sublayers of the physical layer and acts as the
interface for devices connecting to an ATM network.

[0059] The physical interface is configured to operate in
POS-II mode, which allows for variable size data frame

transfers. Each packet 1s transferred using POS-II control

signals to explicitly define the start and end of a packet. As
shown 1n FIG. 3, each packet 300 contains a header 305
with a plurality of information fields and user data 310.

Jun. 5, 2003

Preferably, each header 305 contains information fields
including packet type 315 (e.g., RTP, raw encoded voice,
AAL2), packet length 320 (total length of the packet includ-
ing information fields), and channel identification 325 (iden-
tifies the physical channel, namely the TDM slot for which
the packet is intended or from which the packet came).
When dealing with encoded data transfers between a Media
Engine Type II 2155, 22006 and Packet Engine 230b, 1t 1s
further preferred to 1nclude coder/decoder type 330,
sequence number 335, and voice activity detection decision

340 in the header 305.

[0060] The Packet Engine 2305 is in communication with
the Host Processor 255b through a PCI target interface 2505.
The Packet Engine 23056 preferably includes a PCI to PCI
bridge [not shown] between the PCI interface 2265 to the
PCI communication bus 225b and the PCI target interface
250b6. The PCI to PCI bridge serves as a link for commu-
nicating messages between the Host Processor 2555 and two

Media Engines Type II 2155, 220b.

[0061] The novel Packet Engine 230b receives processed
data from each of the two Media Engines Type 11 2155, 2205
via the communication buses 2255, 227b. While theoreti-
cally able to connect to a plurality of Media Engines Type
II, 1t 1s preferred that the Packet Engine 2305 be i com-
munication with no more than three Media Engines Type 11
215b, 2206 [only two are shown in FIG. 2b]. As with the
previously described embodiment, Packet Engine 2305 pro-
vides cell and packet encapsulation for data channels, up to
2048 channels when implementing a G.711 codec, quality of
service functions for traffic management, tagging for ditfer-
entiated services and multi-protocol label switching, and the
ability to bridge cell and packet networks. The Packet
Engine 2300 1s 1n communication with an ATM physical
device 240b and GMII physical device 245b through a
UTOPIA II/POS Il compatible interface 260b and GMII
compatible interface respectively 265b. In addition to the
GMII interface 26550 1n the physical layer, referred to herein
as the PHY GMII interface, the Packet Engine 2305 also
preferably has another GMII interface [not shown] in the
MAUC layer of the network, referred to herein as the MAC
GMII interface. MAC 1s a media speciiic access control
protocol defining the lower half of the data link layer that
defines topology dependent access control protocols for
industry standard local area network specifications.

[0062] As will be further discussed, the Packet Engine
23056 1s designed to enable AITM-IP internetworking. Tele-
communication service providers have built independent
networks operating on an AITM or IP protocol basis.
Enabling ATM-IP internetworking permits service providers
to support the delivery of substantially all digital services
across a single networking infrastructure, thereby reducing
the complexities introduced by having multiple technolo-
gles/protocols operative throughout a service provider’s
entire network. The Packet Engine 23056 1s therefore
designed to enable a common network infrastructure by
providing for the internetworking between ATM modes and
IP modes.

[0063] More specifically, the novel Packet Engine 2305
supports the internetworking of ATM AALSs (ATM Adapta-
tion Layers) to specific IP protocols. Divided into a conver-
gence sublayer and segmentation/reassembly sublayer, AAL
accomplishes conversion from the higher layer, native data

US 2003/0105799 Al

format and service specifications into the ATM layer. From
the data originating source, the process includes segmenta-
tion of the original and larger set of data into the size and
format of an ATM cell, which comprises 48 octets of data
payload and 5 octets of overhead. On the receiving side, the
AAL accomplishes reassembly of the data. AAL-1 functions
in support of Class A traffic that is connection-oriented
Constant Bit Rate (CBR), time-dependent traffic, such as
uncompressed, digitized voice and video, and which 1s
stream-oriented and relatively imtolerant of delay. AAL-2
functions 1n support of Class B traffic that 1s connection-
oriented Variable Bit Rate (VBR) isochronous traffic requir-
ing relatively precise timing between source and sink, such
as compressed voice and video. AAL-5 functions 1n support
of Class C traffic which 1s Variable Bit Rate (VBR) delay-
tolerant connection-oriented data tratfic requiring relatively
minimal sequencing or error detection support, such as
signaling and control data.

[0064] These ATM AALs are internetworked with proto-
cols operative 1n an IP network, such as RTP, UDP, TCP and
[P. Internet Protocol (IP) describes software that tracks the
Internet’s addresses for different nodes, routes outgoing
messages, and recognizes incoming messages while allow-
ing a data packet to traverse multiple networks from source
to destination. Realtime Transport Protocol (RTP) is a stan-
dard for streaming realtime multimedia over IP 1n packets
and supports transport of real-time data, such as interactive
video and video over packet switched networks. Transmis-
sion Control Protocol (TCP) is a transport layer, connection
oriented, end-to-end protocol that provides relatively reli-
able, sequenced, and unduplicated delivery of bytes to a
remote or a local user. User Datagram Protocol (UDP)
provides for the exchange of datagrams without acknowl-
edgements or guaranteed delivery and is a transport layer,

connectionless mode protocol In the preferred embodiment
roprosentod in FI1G. 2b 1t 1s preferred that ATM AAL-1 be

internetworked with RTP, UDP, and IP protocols, AAL-2 be
internetworked with UDP and IP protocols, and AAL-5 be
internetworked with UDP and IP protocols or TCP and IP
protocols.

[0065] Multiple OC-3 tiles, as presented in FIG. 2b, can
be interconnected to form a tile supporting higher data rates.
As shown 1n FIG. 4, four OC-3 tiles 405 can be 1ntercon-
nected, or “daisy chained”, together to form an OC-12 tile
400. Daisy chaining 1s a method of connecting devices 1n a
serics such that signals are passed through the chain from
one device to the next. By enabling daisy chaining, the
present invention provides for currently unavailable levels
of scalability 1in data volume support and hardware imple-
mentation. A Host Processor 455 1s connected via commu-
nication buses 425, preferably PCI communication buses, to
the PCI interface 435 on each of the OC-3 tiles 405. Each
OC-3 tile 405 has a TDM interface 460 that operates via a
TDM communication bus 4635 to receive TDM signals via a
TDM interface [not shown]. Each OC-3 tile 405 1s further in
communication with an ATM physical device 490 through a
communication bus 495 connected to the OC-3 tile 405
through a UTOPIA II/POS II interface 470. Data received by
an OC-3 tile 405 and not processed, because, for example,
the data packet 1s directed toward a specific packet engine
address that was not found 1n that specific OC-3 tile 4035, 1s
sent to the next OC-3 tile 405 1n the series via the PHY GMII
interface 410 and received by the next OC-3 tile via the
MAC GMII mterface 413. Enabling daisy chaining elimi-

Jun. 5, 2003

nates the need for an external ageregator to interface the
GMII mterfaces on each of the OC-3 tiles 1n order to enable
integration. The final OC-3 tile 405 1s 1n communication
with a GMII physical device 417 via the PHY GMII
interface 410.

[0066] Operating on the above-described hardware archi-
tecture embodiments 1s a plurality of novel, integrated
software systems designed to enable media processing,
signaling, and packet processing. Referring now to FIG. §,
a logical division of the software system 500 1s shown. The
software system 500 1s divided into three subsystems, a
Media Processing Subsystem 3505, a Packetization Sub-
system 540, and a Signaling/Management Subsystem 570.
Each subsystem 505, 540, 570 further comprises a series of
modules 520 designed to perform different tasks in order to
ciiectuate the processing and transmission of media. It 1s
preferred that the modules 520 be designed in order to
encompass a single core task that 1s substantially non-
divisible. For example, exemplary modules include echo
cancellation, codec implementation, scheduling, IP-based
packetization, and ATM-based packetization, among others.
The nature and functionality of the modules 520 deployed in
the present invention will be further described below.

[0067] The logical system of FIG. 5 can be physically

deployed 1n a number of ways, depending on processing
needs, due, 1n part, to the novel software architecture, to be
described below. As shown 1n F1G. 6, one physical embodi-
ment of the software system described 1n FIG. 5 1s to be on
a single chip 600, where the media processing block 610,
packetization block 620, and management block 630 are all
operative on the same chip. If processing needs increase,
thereby requiring more chip power be dedicated to media

processing, the software system can be physically imple-
mented such that the media processing block 710 and
packetization block 720 operate on a DSP 715 that 1s 1n
communication via a data bus 770 with the management
block 730 that operates on a separate host processor 735, as
depicted 1n FIG. 7. Similarly, if processing needs further
increase, the media processing block 810 and packetization
block 820 can be implemented on separate DSPs 860, 865
and communicate via data buses 870 with each other and
with the management block 830 that operates on a separate
host processor 835, as depicted in FIG. 8. Within each
block, the modules can be physically separated onto differ-
ent processors to enable for a high degree of system scal-
ability.

[0068] In a preferred embodiment, four OC-3 tiles are
combined onto a single integrated circuit (IC) card wherein
cach OC-3 tile 1s configured to perform media processing
and packetization tasks. The IC card has four OC-3 tiles 1n
communication via data buses. As previously described, the
OC-3 tiles each have three Media Engine II processors in
communication via interchip communication buses with a
Packet Engine processor. The Packet Engine processor has
a MAC and PHY interface by which communications exter-
nal to the OC-3 tiles are performed. The PHY interface of the
first OC-3 tile 1s iIn communication with the MAC interface
of the second OC-3 tile. Stmilarly, the PHY interface of the
seccond OC-3 file 1s 1n communication with the MAC
interface of the third OC-3 tile and the PHY interface of the
third OC-3 tile 1s 1n communication with the MAC 1nterface
of the fourth OC-3 tile. The MAC interface of the first OC-3

tile 1s 1n communication with the PHY interface of a host

US 2003/0105799 Al

processor. Operationally, each Media Engine II processor
implements the Media Processing Subsystem of the present
invention, shown 1 FIG. § as 505. Each Packet Engine
processor 1implements the Packetization Subsystem of the
present 1nvention, shown 1 FIG. 5 as 540. The host
processor implements the Management Subsystem, shown

in FIG. 5 as 570.

[0069] The primary components of the top-level hardware
system architecture will now be described 1n further detail,
including Media Engine Type I, Media Engine Type 11, and
Packet Engine. Additionally, the software architecture, along
with specific features, will be further described 1n detail.

0070] Media Engines

0071] Both Media Engine I and Media Engine II are types

of DPLPs and therefore comprise a layered architecture
wherein each layer encodes and decodes up to N channels of
voice, fax, modem, or other data depending on the layer
configuration. Each layer implements a set of pipelined
processing units specially designed through substantially
optimal hardware and software partitioning to perform spe-
cilic media processing functions. The processing units are
special-purpose digital signal processors that are each opti-
mized to perform a particular signal processing function or
a class of functions. By creating processing units that are
capable of performing a well-defined class of functions, such
as echo cancellation or codec 1implementation, and placing
them 1n a pipeline structure, the present invention provides
a media processing system and method with substantially
oreater performance than conventional approaches.

[0072] Referring to FIG. 9, a diagram of Media Engine I

900 1s shown. Media Engine I 900 comprises a plurality of
Media Layers 905 each in communication with a central
direct memory access (DMA) controller 910 via communi-
cation data buses 920. Using a DMA approach enables the
bypassing of a system processing unit to handle the transfer
of data between itself and system memory directly. Each
Media Layer 905 further comprises an interface to the DMA
925 interconnected with the communication data buses 920.
In turn, the DMA 1nterface 925 1s 1n communication with
each of a plurality of pipelined processing units (PUs) 930
via communication data buses 920 and a plurality of pro-
oram and data memories 940, via communication data buses
920, that are situated between the DMA interface 925 and
cach of the PUs 930. The program and data memories 940
are also 1n communication with each of the PUs 930 via data
buses 920. Preferably, each PU 930 can access at least one
program memory and at least one data memory unit 940.
Further, 1t 1s also preferred to have at least one {first-in,
first-out (FIFO) task queue [not shown | to receive scheduled
tasks and queue them for operation by the PUs 930.

[0073] While the layered architecture of the present inven-
fion 1s not limited to a specific number of Media Layers,
certain practical limitations may restrict the number of
Media Layers that can be stacked into a single Media Engine
I. As the number of Media Layers increase, the memory and
device iput/output bandwidth may increase to such an
extent that the memory requirements, pin count, density, and
power consumption are adversely affected and become
incompatible with application or economic requirements.
Those practical limitations, however, do not represent
restrictions on the scope and substance of the present
invention.

Jun. 5, 2003

[0074] Media Layers 905 are in communication with an
interface to the central processing unit 950 (CPU IF) through
communication buses 920. The CPU IF 950 transmits and
receives control signals and data from an external scheduler
955, the DMA controller 910, a PCI interface (PCI IF) 960,
a SRAM interface (SRAM IF) 975, and an interface to an
external memory, such as an SDRAM interface (SDRAM
[F) 970 through communication buses 920. The PCI IF 960
1s preferably used for control signals. The SDRAM IF 970
connects to a synchronized dynamic random access memory
module whereby the memory access cycles are synchronized
with the CPU clock 1n order to eliminate wait time associ-
ated with memory fetching between random access memory

(RAM) and the CPU. In a preferred embodiment, the
SDRAM IF 970 that connects the processor with the
SDRAM supports 133 MHz synchronous DRAM and asyn-
chronous memory. It supports one bank of SDRAM (64
Mbit/256 Mbit to 256 MB maximum) and 4 asynchronous
devices (8/16/32 bit) with a data path of 32 bits and fixed
length as well as undefined length block transfers and
accommodates back-to-back transfers. Eight transactions
may be queued for operation. The SDRAM [not shown]
contains the states of the PUs 930. One of ordinary skill in
the art would appreciate that, although not preferred, other
external memory configurations and types could be selected
in place of the SDRAM and, therefore, that another type of

memory 1nterface could be used 1n place of the SDRAM IF
970.

[0075] The SDRAM IF 970 is further in communication
with the PCI IF 960, DMA controller 910, the CPU IF 950,
and, preferably, the SRAM interface (SRAM IF) 975
through communication buses 920. The SRAM [not shown |
1s a static random access memory that 1s a form of random
access memory that retains data without constant refreshing,

offering relatively fast memory access. The SRAM IF 9735 1s
also in communication with a TDM interface (TDM IF) 980,

the CPU IF 950, the DMA controller 910, and the PCI IF 960
via data buses 920.

[0076] Ina preferred embodiment, the TDM IF 980 for the
trunk side 1s preferably H.100/H.110 compatible and the
TDM bus 981 operates at 8.192 MHz. Enabling the Media
Engine I 900 to provide 8 data signals, therefore delivering
a capacity up to 512 full duplex channels, the TDM IF 980
has the following preferred features: a H.100/H.110 com-
patible slave, frame size can be set to 16 or 20 samples and
the scheduler can program the TDM IF 980 to store a
specific buller or frame size, programmable staggering
points for the maximum number of channels. Preferably, the
TDM IF interrupts the scheduler after every N samples of
8,000 Hz clock with the number N being programmable with
possible values of 2, 4, 6, and 8. In a voice application, the
TDM IF 980 preferably does not transfer the pulse code
modulation (PCM) data to memory on a sample-by-sample
basis, but rather buffers 16 or 20 samples, depending on the
frame size that the encoders and decoders are using, of a
channel and then transfers the voice data for that channel to
memory.

[0077] The PCI IF 960 is also in communication with the
DMA controller 910 via communication buses 920. External

connections comprise connections between the TDM IF 980
and a TDM bus 981, between the SRAM IF 975 and a
SRAM bus 976, between the SDRAM IF 970 and a SDRAM
bus 971, preferably operating at 32 bit (@ 133 MHz, and

US 2003/0105799 Al

between the PCI IF 960 and a PCI 2.1 Bus 961 also
preferably operating at 32 bit (@ 133 MHz.

[0078] External to Media Engine I, the scheduler 955
maps the channels to the Media Layers 905 for processing.
When the scheduler 955 1s processing a new channel, it
assigns the channel to one of the layers, depending upon
processing resources available per layer 905. Each layer 905
handles the processing of a plurality of channels such that
the processing 1s performed 1n parallel and 1s divided into
fixed frames, or portions of data. The scheduler 955 com-
municates with each Media Layer 905 through the trans-
mission of data, in the form of tasks, to the FIFO task queues
wherein each task 1s a request to the Media Layer 905 to
process a plurality of data portions for a particular channel.
It 1s therefore preferred for the scheduler 955 to 1nitiate the
processing of data from a channel by putting a task 1n a task
queue, rather than programming each PU 930 individually.
More specifically, 1t 1s preferred to have the scheduler 955
initiate the processing of data from a channel by putting a
task 1n the task queue of a particular PU 930 and having the
Media Layer’s 905 pipeline architecture manage the data
flow to subsequent PUs 930.

[0079] The scheduler 955 should manage the rate by
which each of the channels 1s processed. In an embodiment
where the Media Layer 905 1s required to accept the pro-
cessing of data from M channels and each of the channels
uses a frame size of T msec, then 1t 1s preferred that the
scheduler 955 processes one frame of each of the M chan-
nels within each T msec interval. Further, 1n a preferred
embodiment, the scheduling 1s based upon periodic inter-
rupts, 1n the form of units of samples, from the TDM IF 980.
As an example, if the mterrupt period 1s two samples then 1t
1s preferred that the TDM IF 980 interrupts the scheduler
every time 1t gathers two new samples of all channels. The
scheduler preferably maintains a “tick-count”, which 1is
incremented on every interrupt and reset to zero when time
equal to a frame size has passed. The mapping of channels
to time slots 1s preferably not fixed. For example, 1n voice
applications, whenever a call starts on a channel, the sched-
uler dynamically assigns a layer to a provisioned time slot
channel. It 1s further preferred that the data transfer from a
TDM butfer to the memory 1s aligned with the time slot 1n
which this data 1s processed, thereby staggering the data
transfer for different channels from TDM to memory, and
vice-versa, 1n a manner that 1s equivalent to the staggering
of the processing of different channels. Consequently, 1t 1s
further preferred that the TDM IF 980 maintains a tick count
variable wherein there 1s some synchronization between the
tick counts of TDM and scheduler 955. In the exemplary
embodiment described above, the tick count variable 1s set
to zero on every 2 ms or 2.5 ms depending on the buffer size.

[0080] Referring to FIG. 10, a block diagram of Media

Engine II 1000 1s shown. Media Engine II 1000 comprises
a plurality of Media Layers 1005 each in communication
with processing layer controller 1007, referred to herein as
a Media Layer Controller 1007, and central direct memory
access (DMA) controller 1010 via communication data
buses and an interface 1015. Each Media Layer 1005 1s in
communication with a CPU interface 1006 that, 1n turn, 1s 1n
communication with a CPU 1004. Within each Media Layer
1005, a plurality of pipelined processing units (PUs) 1030
are 1n communication with a plurality of program memories
1035 and data memories 1040, via communication data

Jun. 5, 2003

buses. Preferably, each PU 1030 can access at least one
program memory 1035 and one data memory 1040. Each of
the PUs 1030, program memories 1035, and data memories
1040 1s in communication with an external memory 1047 via
the Media Layer Controller 1007 and DMA 1010. In a
preferred embodiment, each Media Layer 1005 comprises
four PUs 1030, ecach of which 1s in communication with a
single program memory 1035 and data memory 1040,
wherein the each of the PUs 1031, 1032, 1033, 1034 1s 1n
communication with each of the other PUs 1031, 1032,
1033, 1034 in the Media Layer 1005.

[0081] Shown in FIG. 10a, a preferred embodiment of the
architecture of the Media Layer Controller, or MLC, 1s
provided. A program memory 10054, preferably 512x64,
operates 1n conjunction with a controller 1010z and data
memory 10154 to deliver data and instructions to a data
register file 10174, preferably 16x32, and address register
file 1020a, preferably 4x12. The data register file 10174 and
address register file 10204 are 1n communication with func-
tional units such as an adder/MAC 10254, logical unit
1027a, and barrel shifter 10304 and with units such as a

request arbitration logic unit 10334 and DMA channel bank
1035a.

[0082] Referring back to FIG. 10, the MLC 1007 arbi-
tfrates data and program code transfer requests to and from
the program memories 1035 and data memories 1040 1n a
round robin fashion. On the basis of this arbitration the MLC
1007 fills the data pathways that define how units directly
access memory, namely the DMA channels [not shown]. The
MLC 1007 1s capable of performing instruction decoding to
route an instruction according to 1ts datatlow and keep track
of the request states for all PUs 1030, such as the state of a
read-in request, a write-back request and an instruction
forwarding. The MLC 1007 1s further capable of conducting
interface related functions, such as programming DMA
channels, starting signal generation, maintaining page states
for PUs 1030 in each Media Layer 1005, decoding of
scheduler instructions, and managing the movement of data
from and into the task queues of each PU 1030. By per-
forming the aforementioned functions, the Media Layer
Controller 1007 substantially eliminates the need for asso-
clating complex state machines with the PUs 1030 present in

cach Media Layer 10035.

[0083] The DMA controller 1010 1s a multi-channel DMA
unit for handling the data transfers between the local
memory buffer PUs and external memories, such as the
SDRAM. Preferably, DMA channels are programmed
dynamically. More specifically, PUs 1030 generate indepen-
dent requests, each having an associated priority level, and
send them to the MLC 1007 for reading or writing. Based
upon the priority request delivered by a particular PU 1030,
the MLC 1007 programs the DMA channel accordingly.
Preferably, there 1s also an arbitration process, such as a
single level of round robin arbitration, between the channels
within the DMA to access the external memory. The DMA
Controller 1010 provides hardware support for round robin

request arbitration across the PUs 1030 and Media Layers
1005.

|0084] In an exemplary operation, it is preferred to con-
duct transfers between local PU memories and external
memories by utilizing the address of the local memory,
address of the external memory, size of the transfer, direc-

US 2003/0105799 Al

tion of the transfer, namely whether the DMA channel 1s
transferring data to the local memory from the external
memory or vice-versa, and how many transfers are required
for each PU. In this preferred embodiment, a DMA channel
1s generated and receives this information from two 32-bit
registers residing in the DMA. A third register exchanges
control information between the DMA and each PU that
contains the current status of the DMA transfer. In a pre-
ferred embodiment, arbitration 1s performed among the
following requests: 1 structure read, 4 data read and 4 data
write requests from each Media Layer, approximately 90
data requests 1n total, and 4 program code fetch requests
from each Media Layer, approximately 40 program code
fetch requests 1n total. The DMA Controller 1010 1s prefer-
ably further capable of arbitrating priority for program code
fetch requests, conducting link list traversal and DMA
channel information generation, and performing DMA chan-
nel prefetch and done signal generation.

[0085] The MLC 1007 and DMA Controller 1010 are in
communication with a CPU IF 1006 through communica-
fion buses. The PCI IF 1060 is in communication with an
external memory interface (such as a SDRAM IF) 1070 and
with the CPU IF 1006 via communication buses. The
external memory mterface 1070 1s further 1n communication
with the MLC 1007 and DMA Controller 1010 and a TDM
IF 1080 through communication buses. The SDRAM IF
1070 1s 1n communication with a packet processor interface,
such as a UTOPIA II/POS compatible interface (U2/POS
[F), 1090 via communication data buses. The U2/POS IF
1090 1s also preterably 1n communication with the CPU IF
1006. Although the preferred embodiments of the PCI IF and
SDRAM IF are similar to Media Engine I, 1t 1s preferred that
the TDM IF 1080 have all 32 serial data signals imple-
mented, thereby supporting at least 2048 full duplex chan-
nels. External connections comprise connections between
the TDM IF 1080 and a TDM bus 1081, between the
external memory 1070 and a memory bus 1071, preferably
operating at 64 bit at 133 MHz, between the PCI IF 1060 and
a PCI 2.1 Bus 1061 also preferably operating at 32 bit at 133
MHz, and between the U2/POS IF 1090 and a UTOPIA
II/POS connection 1091 preferably operative at 622 mega-

bits per second. In a preferred embodiment, the TDM IF
1080 for the trunk side 1s preferably H.100/H.110 compat-
ible and the TDM bus 1081 operates at 8.192 MHz, as

previously discussed 1in relation to the Media Engine 1.

[0086] For both Media Engine I and Media Engine II,
within each media layer, the present invention utilizes a
plurality of pipelined PUs specially designed for conducting,
a defined set of processing tasks. In that regard, the PUs are
not general-purpose processors and cannot be used to con-
duct any processing task. A survey and analysis of speciiic
processing tasks yielded certain functional unit commonali-
fies that, when combined, yield a specialized PU capable of
optimally processing the universe of those specialized pro-
cessing tasks. The instruction set architecture of each PU
yields compact code. Increased code density results 1n a
decrease 1n required memory and, consequently, a decrease
in required area, power, and memory traflic.

|0087] The pipeline architecture also improves perfor-
mance. Pipelining 1s an implementation technique whereby
multiple instructions are overlapped 1n execution. In a
computer pipeline, each step in the pipeline completes a part
of an instruction. Like an assembly line, different steps are

Jun. 5, 2003

completing different parts of different instructions in paral-
lel. Each of these steps 1s called a pipe stage or a data
secgment. The stages are connected on to the next to form a
pipe. Within a processor, 1nstructions enter the pipe at one
end, progress through the stages, and exit at the other end.
The throughput of an instruction pipeline 1s determined by
how often an 1nstruction exits the pipeline.

[0088] More specifically, one type of PU (referred to
herein as EC PU) has been specially designed to perform, in
a pipeline architecture, a plurality of media processing
functions, such as echo cancellation (EC), voice activity
detection (VAD), and tone signaling (TS) functions. Echo
cancellation removes from a signal echoes that may arise as
a result of the reflection and/or retransmission of modified
input signals back to the originator of the input signals.
Commonly, echoes occur when signals that were emitted
from a loudspeaker are then received and retransmitted
through a microphone (acoustic echo) or when reflections of
a far end signal are generated in the course of transmission
along hybrids wires (line echo). Although undesirable, echo
1s tolerable in a telephone system, provided that the time
delay 1n the echo path 1s relatively short; however, longer
echo delays can be distracting or confusing to a far end
speaker. Voice activity detection determines whether a
meaningiul signal or noise 1s present at the input. Tone
signaling comprises the processing of supervisory, address,
and alerting signals over a circuit or network by means of
tones. Supervising signals monitor the status of a line or
circuit to determine if 1t 1s busy, 1dle, or requesting service.
Alerting signals indicate the arrival of an incoming call.
Addressing signals comprise routing and destination infor-
mation.

[0089] The LEC, VAD, and TS functions can be efficiently
executed using a PU having several single-cycle multiply
and accumulate (MAC) units operating with an Address
Generation Unit and an Instruction Decoder. Each MAC unit
includes a compressor, sum and carry registers, an adder,
and a saturation and rounding logic unit. In a preferred
embodiment, shown 1 FIG. 11, this PU 1100 comprises a
load store architecture with a single Address Generation
Unit (AGU) 1108, supporting zero over-head looping and
branching with delay slots, and an Instruction Decoder 1106.
The plurality of MAC units 1110 operate 1n parallel on two
16-bit operands and perform the following function:

Acc+=a*b

[0090] Guard bits are appended with sum and carry reg-
isters to facilitate repeated MAC operations. A scale unit
prevents accumulator overtlow. Each MAC unit 1110 may
be programmed to perform round operations automatically.
Additionally, it 1s preferred to have an addition/subtraction
unit [not shown| as a conditional sum adder with both the
input operands being 20 bit values and the output operand
being a 16-bit value.

[0091] Operationally, the EC PU performs tasks in a
pipeline fashion. A first pipeline stage comprises an instruc-
tion fetch wherein instructions are fetched into an instruction
register from program memory. A second pipeline stage
comprises an instruction decode and operand fetch wherein
an 1nstruction 1s decoded and stored 1n a decode register. The
hardware loop machine 1s initialized 1n this cycle. Operands
from the data register files are stored 1n operand registers.

US 2003/0105799 Al

The AGU operates during this cycle. The address 1s placed
on data memory address bus. In the case of a store operation,
data 1s also placed on the data memory data bus. For post
immcrement or decrement instructions, the address 1s incre-
mented or decremented after being placed on the address
bus. The result 1s written back to address register file. The
third pipeline stage, the Execute stage, comprises the opera-
tion on the fetched operands by the Addition/Subtraction
Unit and MAC units. The status register 1s updated and the
computed result or data loaded from memory 1s stored 1n the
data/address register files. The states and history information
required for the EC PU operations are fetched through a
multi-channel DMA 1nterface, as previously shown in each
Media Layer. The EC PU configures the DMA controller
registers directly. The EC PU loads the DMA chain pointer
with the memory location of the head of the chain link.

0092] By enabling different data streams to move through
the pipelined stages concurrently, the EC PU reduces wait
time for processing incoming media, such as voice. Refer-
ring to FI1G. 12, 1n time slot 11205, an instruction fetch task
(IF) is performed for processing data from channel 11250. In
time slot 21206, the IF task 1s performed for processing data
from channel 21255 while, concurrently, an instruction
decode and operand fetch (IDOF) is performed for process-
ing data from channel 11250. In time slot 31207, an IF task
1s performed for processing data from channel 31260 while,
concurrently, an instruction decode and operand fetch
(IDOF) 1s performed for processing data from channel
21255 and an Execute (EX) task is performed for processing
data from channel 11250. One of ordinary skill in the art
would appreciate that, because channels are dynamically
generated, the channel numbering may not reflect the actual
location and assignment of a task. Channel numbering here
1s used to simply indicate the concept of pipelining across
multiple channels and not to represent actual task locations.

[0093] A second type of PU (referred to herein as CODEC
PU) has been specially designed to perform, in a pipeline
architecture, a plurality of media processing functions, such
as encoding and decoding signals 1in accordance with certain
standards and protocols, including standards promoted by

the International Telecommunication Union (ITU) such as
voice standards, including G.711, G.723.1, G.726, G.728,

G.729A/B/E, and data modem standards, including V.17,
V.34, and V.90, among others (referred to herein as Codecs),
and performing comfort noise generation (CNG) and dis-
continuous transmission (DTX) functions. The various
Codecs are used to encode and decode voice signals with
differing degrees of complexity and resulting quality. CNG
1s the generation of background noise that gives users a
sense that the connection 1s live and not broken. A DTX
function 1s implemented when the frame being received
comprises silence, rather than a voice transmission.

10094] The Codecs, CNG, and DTX functions can be
eficiently executed using a PU having an Arithmetic and
Logic Unit (ALU), MAC unit, Barrel Shifter, and Normal-
1zation Unit. In a preferred embodiment, shown 1 FIG. 13,
the CODEC PU 1300 comprises a load store architecture
with a single Address Generation Unit (AGU) 1305, sup-
porting zero over-head looping and zero overhead branching
with delay slots, and an Instruction Decoder 1306.

[0095] Inanexemplary embodiment, each MAC unit 1310
includes a compressor, sum and carry registers, an adder,

Jun. 5, 2003

and a saturation and rounding logic unit. The MAC unit
1310 1s implemented as a compressor with feedback into the
compression tree for accumulation. One preferred embodi-
ment of a MAC 1310 has a latency of approximately 2
cycles with a throughput of 1 cycle. The MAC 1310 operates
on two 17-bit operands, signed or unsigned. The interme-
diate results are kept 1n sum and carry registers. Guard bits
are appended to the sum and carry registers for repeated
MAUC operations. The saturation logic converts the Sum and
Carry results to 32 bit values. The rounding logic rounds a
32 bit to a 16-bit number. Division logic 1s also implemented

in the MAC unit 1310.

[0096] In an exemplary embodiment, the ALU 1320
includes a 32 bit adder and a 32 bit logic circuit capable of
performing a plurality of operations, including add, add with
carry, subtract, subtract with borrow, negate, AND, OR,
XOR, and NOT. One of the inputs to the ALU 1320 has an
XOR array, which operates on 32-bit operands. Comprising
an absolute unit, a logic unit, and an addition/subtraction
unit, the ALU’s 1320 absolute unit drives this array. Depend-
ing on the output of the absolute unit, the 1nput operand 1is
cither XORed with one or zero to perform negation on the
input operands.

[0097] In an exemplary embodiment, the Barrel Shifter
1330 1s placed in series with the ALU 1320 and acts as a
pre-shifter to operands requiring a shift operation followed
by any ALU operations. One type of preferred Barrel Shifter
can perform a maximum of 9-bit left or 26-bit right arith-
metic shifts on 16-bit or 32-bit operands. The output of the

Barrel Shifter 1s a 32-bit value, which 1s accessible to both
the 1nputs of the ALU 1320.

[0098] In an exemplary embodiment, the Normalization
unit 1340 counts the redundant sign bits in the number. It
operates on 2’s complement 16-bit numbers. Negative num-
bers are mverted to compute the redundant sign bits. The
number to be normalized 1s fed into the XOR array. The
other mnput comes from the sign bit of the number. Where the
media being processed 1s voice, 1t 1s preferred to have an
interface to the EC PU. The EC PU uses VAD to determine
whether a frame being received comprises silence or speech.
The VAD decision 1s preferably communicated to the

CODEC PU so that 1t may determine whether to implement
a Codec or DTX function.

[0099] Operationally, the CODEC PU performs tasks in a
pipeline fashion. A first pipeline stage comprises an instruc-
tion fetch wherein instructions are fetched 1nto an instruction
register from program memory. At the same time, the next
program counter value 1s computed and stored in the pro-
oram counter. In addition, loop and branch decisions are
taken 1n the same cycle. A second pipeline stage comprises
an 1nstruction decode and operand fetch wherein an 1nstruc-
tion 1s decoded and stored 1n a decode register. The instruc-
tion decode, register read and branch decisions happen in the
instruction decode stage. In the third pipeline stage, the
Execute 1 stage, the Barrel Shifter and the MAC compressor
tree complete their computation. Addresses to data memory
are also applied in this stage. In the fourth pipeline stage, the
Execute 2 stage, the ALU, normalization unit, and the MAC
adder complete their computation. Register write-back and
address registers are updated at the end of the Execute-2
stage. The states and history information required for the
CODEC PU operations are fetched through a multi-channel
DMA 1nterface, as previously shown 1n each Media Layer.

US 2003/0105799 Al

[0100] By enabling different data streams to move through
the pipelined stages concurrently, the CODEC PU reduces
wait time for processing incoming media, such as voice.
Referring to FI1G. 134, in time slot 113054, an instruction
fetch task (IF) is performed for processing data from channel
11350a. In time slot 213064, the IF task 1s performed for
processing data from channel 213554 while, concurrently,
an 1instruction decode and operand fetch (IDOF) is per-
formed for processing data from channel 113504. In time
slot 313074, an IF task 1s performed for processing data
from channel 31360a while, concurrently, an instruction
decode and operand fetch (IDOF) is performed for process-
ing data from channel 213554 and an Execute 1 (EX1) task
1s performed for processing data from channel 113504. In
time slot 413084, an IF task 1s performed for processing data
from channel 41370a while, concurrently, an instruction
decode and operand fetch (IDOF) is performed for process-
ing data from channel 313604, an Execute 1 (EX1) task is
performed for processing data from channel 213554, and an
Execute 2 (EX2) task is performed for processing data from
channel 11350a. One of ordinary skill in the art would
appreciate that, because channels are dynamically gener-
ated, the channel numbering may not reflect the actual
location and assignment of a task. Channel numbering here
1s used to simply indicate the concept of pipelining across
multiple channels and not to represent actual task locations.

[0101] The pipeline architecture of the present invention is
not limited to instruction processing within PUs, but also
exists on a PU-to-PU architecture level. As shown 1n FIG.
135, multiple PUs may operate on a data set N 1n a pipeline
fashion to complete the processing of a plurality of tasks
where each task comprises a plurality of steps. A first PU
1305 may be capable of performing echo cancellation
functions, labeled task A. A second PU 13100 may be
capable of performing tone signaling functions, labeled task
B. A third PU 13155 may be capable of performing a first set
of encoding functions, labeled task C. A fourth PU 13205
may be capable of performing a second set of encoding
functions, labeled task D. In time slot 113505, the first PU
1305b performs task A11380b on data set N. In time slot
21355b, the first PU 13055 performs task A213815b on data
set N and the second PU 13105 performs task B113875 on
data set N. In time slot 31360b, the first PU 13055 performs
task A31382b on data set N, the second PU 13105 performs
task B21388b on data set N, and the third PU 131556
performs task C11394b on data set N. In time slot 413655,
the first PU 1305b performs task A41383b on data set N, the
second PU 13105 performs task B31389b on data set N, the
third PU 1315b performs task C21395b on data set N, and
the fourth PU 13205 performs task D11330 on data set N. In
time slot 513705, the first PU 13055 performs task A51384b
on data set N, the second PU 131056 performs task B41390b
on data set N, the third PU 13155 performs task C313965b on
data set N, and the fourth PU 13205 performs task D21331
on data set N. In time slot 61375b, the first PU 13055
performs task A51385b on data set N, the second PU 13105
performs task B41391b on data set N, the third PU 131556
performs task C31397b on data set N, and the fourth PU
13205 performs task D21332 on data set N. One of ordinary
skill 1in the art would appreciate how the pipeline processing
would further progress.

10102] In this exemplary embodiment, the combination of
specialized PUs with a pipeline architecture enables the
processing of greater channels on a single media layer.

Jun. 5, 2003

Where each channel implements a G.711 codec and 128 ms
of echo tail cancellation with DTMF detection/generation,
voice activity detection (VAD), comfort noise generation
(CNG), and call discrimination, the media engine layer
operates at 1.95 MHz per channel. The resulting channel
power consumption 1s at or about 6 mW per channel using
0.13u standard cell technology.

0103] Packet Engine

0104] The Packet Engine of the present invention is a
communications processor that, in a preferred embodiment,
supports the plurality of interfaces and protocols used 1n
media gateway processing systems between circuit-switched
networks, packet-based IP networks, and cell-based ATM
networks. The Packet Engine comprises a unique architec-
ture capable of providing a plurality of functions {for
enabling media processing, including, but not limited to, cell
and packet encapsulation, quality of service functions for
traffic management and tagging for the delivery of other
services and multi-protocol label switching, and the ability
to bridge cell and packet networks.

[0105] Referring now to FIG. 14, an exemplary architec-
ture of the Packet Engine 1400 1s provided. In the embodi-
ment depicted, the Packet Engine 1400 1s configured to
handle data rate up to and around OC-12. It 1s appreciated
by one of ordinary skill in the art that certain modifications
can be made to the fundamental architecture to increase the
data handling rates beyond OC-12. The Packet Engine 1400
comprises a plurality of processors 14035, a host processor
1430, an ATM engine 1440, in-bound DMA channel 1450,
out-bound DMA channel 1455, a plurality of network inter-
faces 1460, a plurality of registers 1470, memory 1480, an
interface to external memory 1490, and a means to receive
control and signaling information 1495.

[0106] The processors 1405 comprise an internal cache
14077, central processing unit interface 1409, and data
memory 1411. In a preferred embodiment, the processors
1405 comprise 32-bit reduced instruction set computing
(RISC) processors with a 16 Kb instruction cache and a 12
Kb local memory. The central processing unit interface 1409
permits the processor 1405 to communicate with other
memories internal to, and external to, the Packet Engine
1400. The processors 1405 are preferably capable of han-
dling both in-bound and out-bound communication tratfic.
In a preferred implementation, generally half of the proces-
sors handle i1n-bound traffic while the other half handle
out-bound traffic. The memory 1411 1n the processor 14035 1s
preferably divided into a plurality of banks such that distinct
clements of the Packet Engine 1400 can access the memory
1411 independently and without contention, thereby increas-
ing overall throughput. In a preferred embodiment, the
memory 1s divided into three banks, such that the 1n-bound
DMA channel can write to memory bank one, while the
processor 1s processing data from memory bank two, while
the out-bound DMA channel 1s transferring processed pack-
cts from memory bank three.

[0107] The ATM engine 1440 comprises two primary

subcomponents, referred to herein as the ATMRx Engine
and the ATMTx Engine. The ATMRx Engine processes an

incoming AIM cell header and transfers the cell for corre-
sponding AAL protocol, namely AAL1, AAL2, AALS, pro-
cessing 1n the iternal memory or to another cell manager,
if external to the system. The ATMTx Engine processes

US 2003/0105799 Al

outgoing ATM cells and requests the outbound DMA chan-
nel to transfer data to a particular interface, such as the
UTOPIAII/POSII 1nterface. Preferably, 1t has separate
blocks of local memory for data exchange. The ATM engine
1440 operates 1n combination with data memory 1483 to
map an AAL channel, namely AAL2, to a corresponding
channel on the TDM bus (where the Packet Engine 1400 is
connected to a Media Engine) or to a corresponding IP
channel i1dentifier where internetworking between IP and
ATM systems 1s required. The internal memory 1480 utilizes
an mdependent block to maintain a plurality of tables for

comparing and/or relating channel identifiers with virtual
path identifiers (VPI), virtual channel identifiers (VCI), and

compatibility identifiers (CID). A VPI is an eight-bit field in
the ATM cell header that indicates the virtual path over
which the cell should be routed. A VCI 1s the address or label
of a virtual channel comprised of a unique numerical tag,
defined by a 16-bit field in the ATM cell header, which
identifies a virtual channel over which a stream of cells 1s to
travel during the course of a session between devices. The
plurality of tables are preferably updated by the host pro-
cessor 1430 and are shared by the ATMRx and ATMTx
engines.

[0108] The host processor 1430 is preferably a RISC
processor with an instruction cache 1431. The host processor
1430 communicates with other hardware blocks through a
CPU interface 1432 that 1s capable of managing communi-
cations with Media Engines over a bus, such as a PCI bus,
and with a host, such as a signaling host through a PCI-PCI
bridge. The host processor 1430 1s capable of being inter-
rupted by other processors 14035 through their transmission
of mnterrupts which are handled by an mterrupt handler 1433
in the CPU interface. It 1s further preferred that the host
processor 1430 be capable of performing the following
functions: 1) boot-up processing, including loading code
from a flash memory to an external memory and starting
execution, 1nitializing interfaces and internal registers, act-
ing as a PCI host, and appropriately configuring them, and
setting up inter-processor communications between a sig-
naling host, the packet engine itself, and media engines, 2)
DMA configuration, 3) certain network management func-
tions, 4) handling exceptions, such as the resolution of
unknown addresses, fragmented packets, or packets with
invalid headers, 4) providing intermediate storage of tables
during system shutdown, 5) IP stack implementation, and 6)
providing a message-based interface for users external to the
packet engine and for communicating with the packet engine
through the control and signaling means, among others.

10109] In a preferred embodiment, two DMA channels are
provided for data exchange between different memory
blocks via data buses. Referring to F1G. 14, the in-bound
DMA channel 1450 1s utilized to handle incoming traffic to
the Packet Engine 1400 data processing elements and the
out-bound DMA channel 1455 1s utilized to handle outgoing
traffic to the plurality of network interfaces 1460. The
in-bound DMA channel 1450 handles all of the data coming
into the Packet Engine 1400.

[0110] To receive and transmit data to ATM and IP net-
works, the Packet Engine 1400 has a plurality of network
interfaces 1460 that permit the Packet Engine to compatibly
communicate over networks. Referring to FIG. 15, 1 a
preferred embodiment, the network interfaces comprise a

GMII PHY interface 1562, a GMII MAC interface 1564, and

Jun. 5, 2003

two UTOPIAII/POSII interfaces 1566 1n communication
with 622 Mbps ATM/SONET connections 1568 to receive
and transmit data. For IP-based traffic, the Packet Engine
| not shown | supports MAC and emulates PHY layers of the
Ethernet interface as specified in IEEE 802.3. The gigabat
Ethernet MAC 1570 comprises FIFOs 1503 and a control
state machine 1525. The transmit and receive FIFOs 1503
are provided for data exchange between the gigabit Ethernet
MAC 1570 and bus channel interface 1505. The bus channel
interface 1503 1s 1n communication with the outbound DMA
channel 1515 and in-bound DMA channel 1520 through bus
channel. When IP data 1s being received from the GMII
MAUC 1nterface 1564, the MAC 1570 preferably sends a
request to the DMA 1520 for data movement. Upon receiv-
ing the request, the DMA 1520 preferably checks the task
queue [not shown] in the MAC interface 1564 and transfers
the queued packets. In a preferred embodiment, the task
queue 1 the MAC terface 1s a set of 64 bit registers
containing a data structure comprising: length of data,
source address, and destination address. Where the DMA
1520 1s maintaining the write pointers for the plurality of
destinations [not shown], the destination address will not be
used. The DMA 1520 will move the data over the bus
channel to memories located within the processors and will
write the number of tasks at a predefined memory location.
After completing writing of all tasks, the DMA 1520 will
write the total number of tasks transferred to the memory
page. The processor will process the recerved data and will
write a task queue for an outbound channel of the DMA. The
outbound DMA channel 1515 will check the number of
frames present in the memory locations and, after reading
the task queue, will move the data either to a POSII interface
of the Media Engine Type I or II or to an external memory
location where IP to ATM bridging 1s being performed.

[0111] For ATM only or ATM and IP traffic in combina-
tion, the Packet Engine supports two configurable UTOPI-
AII/POSII 1interfaces 1566 which provides an interface
between the PHY and upper layer for IP/ATM tratfic. The
UTOPIAII/POSII 1580 comprises FIFOs 1504 and a control
state machine 1526. The transmit and receive FIFOs 1504
arc provided for data exchange between the UTOPIAII/
POSII 1580 and bus channel interface 1506. The bus chan-
nel mterface 1506 1s in communication with the outbound
DMA channel 1515 and im-bound DMA channel 1520
through bus channel. The UTOPIAII/POS Il interfaces 1566
may be configured 1n either UTOPIA level II or POS level
II modes. When data 1s received on the UTOPIAII/POSII
interface 1566, data will push existing tasks in the task
queue forward and request the DMA 1520 to move the data.
The DMA 1520 will read the task queue from the UTOPI-
AII/POSII interface 1566 which contains a data structure
comprising: length of data, source address, and type of
interface. Depending upon the type of interface, e.g. either
POS or UTOPIA, the in-bound DMA channel 1520 will send
the data either to the plurality of processors [not shown] or
to the ATMRX engine [not shown |. After data is written into
the ATMRX memory, 1t 1s processed by the ATM engine and
passed to the corresponding AAL layer. On the transmit side,
data 1s moved to the internal memory of the ATMTx engine
Inot shown] by the respective AAL layer. The ATMTx
engine inserts the desired ATM header at the beginning of
the cell and will request the outbound DMA channel 1515 to

US 2003/0105799 Al

move the data to the UTOPIAII/POSII interface 1566 hav-
ing a task queue with the following data structure: length of
data and source address.

[0112] Referring to FIG. 16, to facilitate control and

signaling functions, the Packet Engine 1600 has a plurality
of PCI interfaces 1605, 1606, referred to in FI1G. 14 as 1495.

In a preferred embodiment, a signaling host 1610, through
an 1nitiator 1612, sends messages to be received by the
Packet Engine 1600 to a PCI target 1605 via a communi-
cation bus 1617. The PCI target further communicates these
messages through a PCI to PCI bridge 1620 to a PCI 1nitiator
1606. The PCI initiator 1606 sends messages through a
communication bus 1618 to a plurality of Media Engines
1650, each having a memory 1660 with a memory queue

1665.
0113] Software Architecture

0114] As previously discussed, operating on the above-
described hardware architecture embodiments 1s a plurality
of novel, integrated software systems designed to enable
media processing, signaling, and packet processing. The
novel software architecture enables the logical system, pre-
sented 1n FIG. §, to be physically deployed 1in a number of
ways, depending on processing needs.

[0115] Communication between any two modules, or
components, 1in the software system 1s facilitated by appli-
cation program interfaces (APIs) that remain substantially
constant and consistent irrespective of whether the software
components reside on a hardware element or across multiple
hardware elements. This permits the mapping of compo-
nents onto different processing elements, thereby modifying
physical interfaces, without the concurrent modification of
the 1ndividual components.

[0116] In an exemplary embodiment, shown in FIG. 17, a
first component 1705 operates 1n conjunction with a second
component 1710 and a third component 1715 through a first
interface 1720 and second interface 1725, respectively.
Because all three components 1705, 1710, 1715 are execut-
ing on the same physical processor 1700, the first interface
1720 and second interface 1725 perform interfacing tasks

through function mapping conducted via the APIs of each of
the three components 1705, 1710, 1715. Referring to FIG.

17a, where the first 17054, second 17104, and third 1715a
components reside on separate hardware elements 17004,
1701a, 17024, respectively, e.g., separate processors or
processing elements, the first interface 17204 and second
interface 17254 implement interfacing tasks through queues
1721a, 1726a 1 shared memory. While the interfaces
1720a, 17254 are no longer limited to function mapping and
messaging, the components 17054, 1710a, 17154 continue
to use the same APIs to conduct mnter-component commu-
nication. The consistent use of a standard API enables the
porting of various components to different hardware archi-
tectures 1n a distributed processing environment by relying
on modified interfaces or drivers where necessary and
without modifications 1in the components themselves.

[0117] Referring now to FIG. 18, a logical division of the
software system 1800 1s shown. The software system 1800
1s divided into three subsystems, a Media Processing Sub-
system 18035, a Packetization Subsystem 1840, and a Sig-
naling/Management Subsystem (hereinafter referred to as
the Signaling Subsystem) 1870. The Media Processing Sub-

Jun. 5, 2003

system 1803 sends encoded data to the Packetization Sub-
system 1840 for encapsulation and transmission over the
network and receives network data from the Packetization
Subsystem 1840 to be decoded and played out. The Signal-
ing Subsystem 1870 communicates with the Packetization
Subsystem 1840 to get status information such as the
number of packets transferred, to monitor the quality of
service, control the mode of particular channels, among
other functions. The Signaling Subsystem 1870 also com-
municates with the Packetization Subsystem 1840 to control
establishment and destruction of packetization sessions for
the origination and termination of calls. Each subsystem
1805, 1840, and 1870 further comprises a series of compo-
nents 1820 designed to perform different tasks in order to
cifectuate the processing and transmission of media. Each of
the components 1820 conducts communications with any
other module, subsystem, or system through APIs that
remain substantially constant and consistent irrespective of
whether the components reside on a hardware element or
across multiple hardware elements, as previously discussed.

[0118] In an exemplary embodiment, shown in FIG. 19,
the Media Processing Subsystem 1905 comprises a system
API component 1907, media API component 1909, real-time
media kernel 1910, and voice processing components,
including line echo cancellation component 1911, compo-
nents dedicated to performing voice activity detection 1913,
comiort noise generation 1915, and discontinuous transmis-
sion management 1917, a component 1919 dedicated to
handling tone signaling functions, such as dual tone (DTMEF/
MF), call progress, call waiting, and caller identification,
and components for media encoding and decoding functions

for voice 1927, fax 1929, and other data 1931.

[0119] The system API component 1907 should be
capable of providing a system wide management and
enabling the cohesive interaction of individual components,
including establishing communications between external
applications and individual components, managing run-time
component addition and removal, downloading code from
central servers, and accessing the MIBs of components upon
request from other components. The media API component
1909 interacts with the real time media kernel 1910 and
individual voice processing components. The real time
media kernel 1910 allocates media processing resources,
monitors resource utilization on each media-processing ele-
ment, and performs load balancing to substantially maxi-
mize density and efficiency.

[0120] The voice processing components can be distrib-
uted across multiple processing elements. The line echo
cancellation component 1911 deploys adaptive filter algo-
rithms to remove from a signal echoes that may arise as a
result of the reflection and/or retransmission of modified
input signals back to the originator of the input signals. In
one preferred embodiment, the line echo cancellation com-
ponent 1911 has been programmed to implement the fol-
lowing f{iltration approach: An adaptive finite impulse
response (FIR) filter of length N is converged using a
convergence process, such as a least means square approach.
The adaptive filter generates a filtered output by obtaining
individual samples of the far-end signal on a receive path,
convolving the samples with the calculated filter coefl-
cients, and then subtracting, at the appropriate time, the
resulting echo estimate from the received signal on the
transmit channel. With convergence complete, the filter is

US 2003/0105799 Al

then converted to an infinite impulse response (IIR) filter
using a generalization of the ARMA-Levinson approach. In
the course of operation, data is received from an input source
and used to adapt the zeroes of the IIR filter using the LMS
approach, keeping the poles fixed. The adaptation process
ogenerates a set of converged filter coefficients that are then
continually applied to the mput signal to create a modified
signal used to filter the data. The error between the modified
signal and actual signal received 1s monitored and used to
further adapt the zeroes of the IIR filter. If the measured error
1s greater than a pre-determined threshold, convergence is
re-1nitiated by reverting back to the FIR convergence step.

[0121] The wvoice activity detection component 1913
receives Incoming data and determines whether voice or
another type of signal, 1.e., noise, 1s present 1n the received
data, based upon an analysis of certain data parameters. The
comfort noise generation component 19135 operates to send
a Silence Insertion Descriptor (SID) containing information
that enables a decoder to generate noise corresponding to the
background noise received from the transmission. An over-
lay of audible but non-obtrusive noise has been found to be
valuable 1n helping users discern whether a connection 1s
live or dead. The SID frame 1s typically small, 1.¢. approxi-
mately 15 bits under the G.729 B codec speciiication.
Preferably, updated SID frames are sent to the decoder
whenever there has been sufficient change 1n the background
Noise.

[0122] The tone signaling component 1919, including
recognition of DTMEFE/ME, call progress, call waiting, and
caller i1dentification, operates to intercept tones meant to
signal a particular activity or event, such as the conducting
of two-stage dialing (in the case of DTMF tones), the
retrieval of voice-mail, and the reception of an incoming call
(in the case of call waiting), and communicate the nature of
that activity or event 1n an intelligent manner to a receiving
device, thereby avoiding the encoding of that tone signal as
another element 1n a voice stream. In one embodiment, the
tone-signaling component 1919 1s capable of recognizing a
plurality of tones and, therefore, when one tone 1s received,
send a plurality of RTP packets that identify the tone,
together with other indicators, such as length of the tone. By
carrying the occurrence of an 1dentified tone, the RTP
packets convey the event associated with the tone to a
receiving unit. In a second embodiment, the tone-signaling
component 1919 1s capable of generating a dynamic RTP
proiile wherein the RTP profiile carries information detailing,
the nature of the tone, such as the frequency, volume, and
duration. By carrying the nature of the tone, the RTP packets
convey the tone to the receiving unit and permit the receiv-
ing unit to interpret the tone and, consequently, the event or
activity associated with 1it.

10123] Components for the media encoding and decoding
functions for voice 1927, fax 1929, and other data 1931,
referred to as codecs, are devised 1n accordance with Inter-
national Telecommunications Union (ITU) standard speci-
fications, such as (G.711 for the encoding and decoding of
voice, fax, and other data. An exemplary codec for voice,
data, and fax communications 1s ITU standard G.711, often
referred to as pulse code modulation. G.711 1s a waveform
codec with a sampling rate of 8,000 Hz. Under uniform
quantization, signal levels would typically require at least 12
bits per sample, resulting 1in a bit rate of 96 kbps. Under
non-uniform quantization, as 1s commonly used, signal

Jun. 5, 2003

levels require approximately 8 bits per sample, leading to a
64 kbps rate. Other voice codecs include ITU standards
G.723.1, G.726, and G.729 A/B/E, all of which would be
known and appreciated by one of ordinary skill in the art.
Other ITU standards supported by the fax media processing,
component 1929 preferably include T.38 and standards
falling within V.xx, such as V.17, V.90, and V.34. Exemplary
codecs for fax include ITU standard T.4 and T.30. T4
addresses the formatting of fax 1images and their transmis-
sion from sender to receiver by specifying how the fax
machine scans documents, the coding of scanned lines, the

modulation scheme used, and the transmission scheme used.
Other codecs 1include I'TU standards T.38.

[0124] Referring to FIG. 20, in an exemplary embodi-
ment, the Packetization Subsystem 2040 comprises a system
API component 2043, packetization API component 2045,
POSIX API 2047, real-time operating system (RTOS) 2049,
components dedicated to performing such quality of service
functions as buifering and traffic management 2050, a com-
ponent for enabling IP communications 2051, a component
for enabling ATM communications 2053, a component for

resource-reservation protocol (RSVP) 2055, and a compo-
nent for multi-protocol label switching (MPLS) 2057. The

Packetization Subsystem 2040 facilitates the encapsulation
of encoded voice/data mto packets for transmission over
ATM and IP networks, manages certain quality of service
clements, including packet delay, packet loss, and jitter
management, and implements traific shaping to control
network ftraffic. The packetization API component 2045
provides external applications facilitated access to the Pack-
etization Subsystem 2040 by communicating with the Media
Processing Subsystem [not shown] and Signaling Sub-
system [not shown].

10125] The POSIX API 2047 layer isolated the operating
system (OS) from the components and provides the com-
ponents with a consistent OS API, thereby insuring that
components above this layer do not have to be modified it
the software 1s ported to another OS platform. The RTOS
2049 acts as the OS facilitating the implementation of
software code 1nto hardware instructions.

[0126] The IP communications component 2051 supports
packetization for TCP/IP, UDP/IP, and RTP/RTCP protocols.
The ATM communications component 2053 supports pack-
ctization for AAL1l, AAL2, and AALS5 protocols. It 1is
preferred that the RTP/UDP/IP stack be implemented on the
RISC processors of the Packet Engine. A portion of the ATM
stack 1s also preferably implemented on the RISC processors
with more computationally imtensive parts of the ATM stack
implemented on the ATM engine.

[0127] The component for RSVP 20535 specifies resource-
reservation techniques for IP networks. The RSVP protocol
enables resources to be reserved for a certain session (or a
plurality of sessions) prior to any attempt to exchange media
between the participants. Two levels of service are generally
enabled, including a guaranteed level that emulates the
quality achieved in conventional circuit switched networks,
and controlled load that 1s substantially equal to the level of
service achieved 1n a network under best-effort and no-load
conditions. In operation, a sending unit 1ssues a PATH
message to a receiving unit via a plurality of routers. The
PATH message contains a traffic specification (Tspec) that
provides details about the data that the sender expects to

US 2003/0105799 Al

send, including bandwidth requirement and packet size.
Each RSVP-enabled router along the transmission path
establishes a path state that includes the previous source
address of the PATH message (the prior router). The receiv-
ing unit responds with a reservation request (RESV) that
includes a flow speciiication having the Tspec and 1nforma-
tion regarding the type of reservation service requested, such
as controlled-load or guaranteed service. The RESV mes-
sage travels back, 1n reverse fashion, to the sending unit
along the same router pathway. At each router, the requested
resources are allocated, provided such resources are avail-
able and the receiver has authority to make the request. The
RESYV eventually reaches the sending unit with a confirma-
fion that the requisite resources have been reserved.

0128] The component for MPLS 2057 operates to mark
tratffic at the entrance to a network for the purpose of
determining the next router 1n the path from source to
destination. More specifically, the MPLS 2057 component
attaches a label containing all of the information a router
needs to forward a packet to the packet i front of the IP
header. The value of the label 1s used to look up the next hop
in the path and the basis for the forwarding of the packet to
the next router. Conventional IP routing operates similarly,
except the MPLS process searches for an exact match, not
the longest match as 1n conventional IP routing.

10129] Referring to FIG. 21, in an exemplary embodi-
ment, the Signaling Subsystem 2170 comprises a user appli-
cation API component 2173, system API component 2175;
POSIX API 2177, real-time operating system (RTOS) 2179,
a signaling API 2181, components dedicated to performing
such signaling functions as signaling stacks for ATM net-
works 2183 and signaling stacks for IP networks 2185, and
a network management component 2187. The signaling API
2181 provides facilitated access to the signaling stacks for
ATM networks 2183 and signaling stacks for IP networks
2185. The signaling API 2181 comprises a master gateway
and sub-gateways of N number. A single master gateway can
have N sub-gateways associated with 1t. The master gateway
performs the demultiplexing of incoming calls arriving from
an ATM or IP network and routes the calls to the sub-
cgateway that has resources available. The sub-gateways
maintain the state machines for all active terminations. The
sub-gateways can be replicated to handle many termina-
fions. Using this design, the master gateway and sub-
gateways can reside on a single processor or across multiple
processors, thereby enabling the simultaneous processing of
signaling for a large number of terminations and the provi-
sion of substantial scalability.

[0130] 'The user application API component 2173 provides
a way for external applications to interface with the entire
software system, comprising each of the Media Processing
Subsystem, Packetization Subsystem, and Signaling Sub-
system. The network management component 2187 supports
local and remote configuration and network management
through the support of simple network management protocol
(SNMP). The configuration portion of the network manage-
ment component 2187 1s capable of communicating with
any of the other components to conduct configuration and
network management tasks and can route remote requests
for tasks, such as the addition or removal of specific com-
ponents.

[0131] The signaling stacks for ATM networks 2183
include support for User Network Interface (UNI) for the

Jun. 5, 2003

communication of data using AAL1l, AAL2, and AALS
protocols. User Network Interface comprises specifications
for the procedures and protocols between the gateway
system, comprising the software system and hardware sys-
tem, and an ATM network. The signaling stacks for IP
networks 2185 include support for a plurality of accepted
standards, 1ncluding media gateway control protocol
(MGCP), H.323, session initiation protocol (SIP), H.248,
and network-based call signaling (NCS). MGCP specifies a
protocol converter, the components of which may be dis-
tributed across multiple distinct devices. MGCP enables
external control and management of data communications
equipment, such as media gateways, operating at the edge of
multi-service packet networks. H.323 standards define a set
of call control, channel set up, and codec specifications for
transmitting real time voice and video over networks that do
not necessarily provide a guaranteed level of service, such as
packet networks. SIP 1s an application layer protocol for the
establishment, modification, and termination of conferenc-
ing and telephony sessions over an IP-based network and
has the capability of negotiating features and capabilities of
the session at the time the session 1s established. H.248
provides recommendations underlying the implementation

of MGCP.

10132] To further enable ease of scalability and implemen-
tation, the present software method and system does not
require speciiic knowledge of the processing hardware being
utilized. Referring to FI1G. 22, 1n a typical embodiment, a
host application 2205 interacts with a DSP 2210 via an
interrupt capability 2220 and shared memory 2230. As
shown 1n F1G. 23, the same functionality can be achieved by
a simulation execution through the operation of a virtual
DSP program 2310 as a separate independent thread on the
same processor 2315 as the application code 2320. This
simulation run 1s enabled by a task queue mutex 2330 and
a condition variable 2340. The task queue mutex 2330
protects the data shared between the virtual DSP program
2310 and a resource manager [not shown]. The condition
variable 2340 allows the application to synchronize with the

virtual DSP 2310 in a manner similar to the function of the
interrupt 2220 in FIG. 22.

[0133] The present methods and systems provide for a
system on chip architecture having scalable, distributed
processing and memory capabilities through a plurality of
processing layers and the application of that chip architec-
ture 1n a media gateway that 1s designed to enable the
communication of media across circuit switched and packet
switched networks. While various embodiments of the
present mvention have been shown and described, 1t would
be apparent to those skilled in the art that many modifica-
tions are possible without departing from the inventive
concept disclosed herein. For example, 1t would be apparent
that the system chip architecture can be used to process other
forms of data and for purposes other than telecommunica-
tions. It would further be apparent that, depending on the
functionality desired, the PUs could be designed to perform
application specific tasks other than line echo cancellation or
encoding or decoding.

What 1s claimed 1is:
1. A media processor for the processing of media based
upon 1nstructions, comprising:

a plurality of processing layers wherein each processing
layer has at least one processing unit, at least one

US 2003/0105799 Al

program memory, and at least one data memory, each
of said processing unit, program memory, and data
memory being in communication with one another;

at least one processing unit 1n at least one of said
processing layers performing line echo cancellation
functions on received data;

at least one processing unit 1 at least one of said
processing layers performing encoding or decoding
functions on received data; and

a task scheduler adapted to receive a plurality of tasks
from a source and distributing said tasks to said pro-
cessing layers.

2. The media processor of claim 1, further comprising a
direct memory access controller for handling data transfers,
cach of said transfers having a size and a direction, from at
least one data memory having an address and a plurality of
external memory units, each having an address.

3. The media processor of claim 2, wherein said transters
between at least one data memory and at least one external
memory occur by utilizing the address of the data memory,
the address of the external memory, the size of the transfer,
and the direction of the transfer.

4. The media processor of claim 1, wherein the task
scheduler 1s 1n communication with an external memory.

5. The media processor of claim 1, further comprising an
interface for the receipt and transmission of data and control
signals.

6. The media processor of claim 5, wherein the interface
comprises a UTOPIA-compatible interface.

7. The media processor of claim 5, wherein the interface
comprises a time division multiplex-compatible interface.

8. The media processor of claim 1, wherein at least one
processing layer mncludes a processing unit performing line
echo cancellation functions on received data and a process-
ing unit performing encoding or decoding functions on
recerved data and wherein said line echo cancellation and
encoding or decoding functions are performed 1n a pipelined
manner.

9. The media processor of claim 1, wherein the processing
unit designed to perform encoding or decoding functions
comprises an arithmetic and logic unit, multiply and accu-
mulate unit, barrel shifter, and normalization unait.

10. The media processor of claim 1, wherein the process-
ing unit additionally performs voice activity detection and
fone signaling functions.

11. The media processor of claim 10, wherein the pro-
cessing unit comprises a plurality of single-cycle multiply
and accumulate units operating with an address generation
unit and an 1instruction decoder.

12. A media gateway for the processing of data and
communication of data across a plurality of networks, com-
Prising;

a plurality of media processors, each of said media
processors having a plurality of processing layers
whereln each processing layer has at least one process-
ing unit, at least one program memory, and at least one
data memory, each of said processing unit, program
memory, and data memory being in communication
with one another, wherein at least one processing unit
in at least one of said processing layers performs echo

16

Jun. 5, 2003

cancellation functions on received data, wherein at
least one processing unit 1n at least one of said pro-
cessing layers performs encoding or decoding func-
tions on received data, and wherein a task scheduler 1s
adapted to receive a plurality of tasks from a source and
distribute said tasks to the processing layers;

a plurality of packet processors in communication with at
least one of said media processors wherein the packet
processor 1s adapted to packetize processed data; and

a host processor in communication with at least one said
packet or media processors.

13. A method for processing media based upon instruc-
tions, comprising the steps of:

receiving sald media through a data interface;

scheduling the processing of said media through a task
scheduler adapted to recerve a plurality of tasks from a
source and distributing said tasks to a plurality of
processing layers; and

processing said media 1n the plurality of processing layers
whereln each processing layer has at least one process-
ing unit, at least one program memory, and at least one
data memory, each of said processing unit, program
memory, and data memory being in communication
with one another.

14. The method of claim 13, wherein said processing step
further comprises performing echo cancellation functions on
received data.

15. The method of claim 13, wherein said processing step
further comprises performing encoding or decoding func-
fions on received data.

16. The method of claim 13, wherein the processing step
occurs 1n parallel across multiple processing layers, each of
sald processing layers having similar processing units.

17. The method of claim 13, wherein at least one pro-
cessing layer includes a processing unit performing echo
cancellation functions on received data and a processing unit
performing encoding or decoding functions on received data
and wherein said echo cancellation and encoding or decod-
ing functions are performed in a pipelined manner.

18. A distributed processing system 1mplemented on a
single chip having a total memory capacity comprising at
least two processing layers wherein each processing layer
has at least one processing unit and a plurality of memories,
cach of said processing units and memories being 1n com-
munication with one another and wherein the total memory
capacity of the chip 1s divided substantially equally between
cach of said processing layers.

19. A processor for the processing of data based upon
Instructions, comprising;:

a plurality of processing layers wherein each processing
layer has at least one processing unit, at least one
program memory, and at least one data memory, each
of said processing unit, program memory, and data
memory being in communication with one another; and

a task scheduler adapted to receive a plurality of tasks
from a source and distributing said tasks to the pro-
cessing layers.

20. The processor of claim 19, wherein at least one of said
plurality of processing layers comprises a processing unit
performing echo cancellation functions on received data.

US 2003/0105799 Al Jun. 5, 2003
17

21. The processor of claim 19, wherein at least one of said 22. The processor of claim 19, wherein the plurality of

plurality of processing layers comprises a processing unit processing layers communicate with the task scheduler

performing encoding or decoding functions on received through a controller interface.

data. % % % % %

	Front Page
	Drawings
	Specification
	Claims

