a9y United States

US 20020116419A1

a2 Patent Application Publication o) Pub. No.: US 2002/0116419 Al
Iyer et al.

43) Pub. Date: Aug. 22, 2002

(54) METHOD FOR CONVERTING

TWO-DIMENSIONAL DATA INTO A
CANONICAL REPRESENTATION

(75)

(73)

(21)
(22)

(63)

Inventors: Prakash Iyer, San Jose, CA (US);
Piyush Goel, Monte Sereno, CA (US);
Rajeev Mohindra, Castro Valley, CA
(US); Amitabh Sinha, Los Altos, CA
(US); Prasad Krothapalli, San Jose,
CA (US); Ronald Mak, San Jose, CA
(US); Shashi Vittal, Santa Clara, CA

Correspondence Address:

(US)

David A. JaKkopin

PILLSBURY WINTHROP LLP
1600 Tysons Boulevard
McLean, VA 22012 (US)

Assignee: EVERYPATH, INC.
Appl. No.:

Filed:

Related U.S. Application Data

10/055,060

Jan. 22, 2002

Contimuation of application No. 09/394,120, filed on
Sep. 10, 1999.

12

20

HOST WEB
SERVER

@

A

17

TRANSLATOR

14

Publication Classification

(51) INte CL7 oo GO6F 15/00
) LT RN 707/517
(57) ABSTRACT

A method 1s provided for converting two-dimensional data,
particularly information in HI'ML format, mnto a canonical
representation for rendering 1n aural or other visual forms
wherein each element of 1nterest 1s selected based on 1t being
part of a mathematically regular expression, namely any
expression that can be parsed i a tree. To perform the
selection, the container of the element 1s located, and then
the local route of the element within the parsed tree is
followed, such that a signature of the element built upon this
identification can be constructed and stored for later use in
retrieving and rendering the value of the element of interest.
The element of interest can thereafter be rendered through
an appropriate language translator of interest to the querier.
As a further refinement of the invention, the method
scarches for repeated elements and then stores only one of

the selected repeated elements, such as the first repeated
clement.

101
STORE ‘5

Patent Application Publication Aug. 22,2002 Sheet 1 of 4 US 2002/0116419 A1

DESIGNER DESIGN

= TOOL OBJECTS
HOST WEB T
SERVER
v/
14 ﬁ CD: GENERATOR
AML
FIG. 1
101
SToRE f
14
21
\ PHONE
SERVER
AML = E
26
24 2 _ 7
/ =

\

|
|

|

TRANSLATOR () aahirs

Patent Application Publication Aug. 22,2002 Sheet 2 of 4 US 2002/0116419 A1

CREATE AN AML COMPONENT

FOR THE SELECTED
COMPONENT IN THE HTML PAGE

0 'YES GET VALUES FOR THE B
v ATTRIBUTES OF THE AML COMPONENT
QUTPUT
AML SCRIPT

DO THE

ATTRIBUTES OF THE

COMPONENTS UNIQUELY SPECIF

THE COMPONENT IN ITS

PARENT CONTAINEFE
?

YES

NO
; D

SELECT ASEQUENCE OF LEFT SIBLING l

COMPONENTS SUCH THAT THE SEQUENCE | !

FOLLOWED BY THE COMPONENT HASA | .

UNIQUE SIGNATURE IN THE CONTEXT OF THE z

PARENT CONTAINER. INCLUDE THE SEQUENCE
IN THE COMPONENT SPECIFICATION

IS THERE
ANY OTHER COMPONENT
THAT NEEDS TO BE SPECIFIED
AT THI% LEVEL

lYES

GET THE SPECIFICATION OF THE OTHER F
COMPONENTS OF INTEREST AT THIS LEVEL

!
i

®

FiG. 3A

Patent Application Publication Aug. 22, 2002 Sheet 3 of 4 US 2002/0116419 A1l

1S THE
SPECIFICATION PART
OF A “CASE"™ SPECIFICATION
AT THIS LEVEL?

GET SPECIFICATION FOR ALL OTHER
PATTERNS AND DEFINE AN IDSWITCH
COMPONENT ENCLOSING THESE PATTERNS

IS THE
SPECIFICATION PART
OF A REPEATING
PATTERN?

YES

1S THE

SPECIFICATION UNIQUE
IN THE HTML PAGE
?

NO

ANCESTOR CONTAINERS AND DEFINE
ENCLOSING AML COMPONENTS TO REFLECT
THE CONTAINMENT PROPERTY IN THE
HTML PAGE

-
FIG. 38

GET THE TYPE INFORMATION ABOUT THE J

US 2002/0116419 Al

Yy OIA
N NOILVISNVHL OV / 25
s e NOILOVHLX3 =it N
< NOILVDIZILNAQ] O
D — 9G
— e
7 JRREI e NOLLVISNVHI
~ / NOILOVHIXT
= ._ NOILVDI4tiN3Ql
1 LS ,
0Umu \,..,.,...;.,._ mwm = .,...,., —.mw
< NOWOV/HN 09 . .-
= MOT1d <-------- | 0
-
= NOLLVISNVHL
E NOILOVH 1X3 SHAN
» NOLYII41IN3ql 9t
&~
=
=¥
<
5
=
o

US 2002/0116419 Al

METHOD FOR CONVERTING
TWO-DIMENSIONAL DATA INTO A CANONICAL
REPRESENTATION

BACKGROUND OF THE INVENTION

[0001] This invention relates to customization of data into
a representation suitable for presentation in different for-
mats, including aural and limited visual formats. This inven-
tion relates specifically to selection of data 1n a HyperText
Markup Language (HTML) so that it is suited for rendering
in another form such as an audio format or a visual format
other than the source format.

[0002] A great deal of valuable information is now avail-
able m HTML format. However, HIML 1s primarily
designed for access 1n a speciiic visual context, namely by

means of a graphical user interface of the type designed for
use with web browsers. There 1s a need to make HTML data
accessible via other interfaces and readers. The invention
herein described 1s intended to address an important aspect
of that need.

SUMMARY OF THE INVENTION

[0003] According to the invention, in a computer network
system, a method 1s provided for converting two-dimen-
sional data, particularly information in HITML format, into
a canonical representation for rendering i aural or other
visual forms wherein each element of interest 1s selected
based on 1t being part of a mathematically regular expres-
sion, namely any expression that can be parsed 1n a tree. To
perform the selection, the container of the clement 1s
located, and then the local route of the element within the
parsed tree 1s followed, such that a signature of the element
built upon this identification can be constructed and stored
for later use 1n retrieving and rendering the value of the
clement of interest. As a further refinement of the 1nvention,
the method searches for repeated elements and then stores
only one of the selected repeated elements, such as the first
repeated element.

[0004] It 1s an important recognition of the present inven-
tion that HITML pages can be represented by regular expres-
sions. It 1s also an 1important recognition of the invention that
only elements need to be selected, and that the actual values
of the elements need not be selected, thus permitting the

values to be dynamically updated and rendered with the
current value.

[0005] The invention will be better understood by refer-
ence to the following detailed description in conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

10006] FIG. 1 is a block diagram of a system according to
the mvention in which a design tool 1s employed to select
and 1dentify elements HI'ML pages.

[0007] FIG. 2 is a block diagram illustrating in greater
detail the functional relationships of identification, extrac-
tion, and translation.

[0008] FIGS. 3A and 3B are a flow chart of a method
according to a specific embodiment of the mvention.

10009] FIG. 4 is a block diagram of the relationship of
HTML pages and processing triplets.

DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

[0010] Referring to FIG. 1, the invention is explained in
the context of a web page in the world web. On the web, an

Aug. 22, 2002

interactive designer tool 10 according to the invention 1is
employed to customize web pages 11 written 1n a math-
ematically regular form such as HI'ML found on a source
web site located on a host server 12 after first copying the
desired web pages to a storage means 14. The storage means
14 may be a shared persistent store such as a bank of disk
drives or other database storage means with persistent
storage. By using the designer tool 10 as hereinafter
explained, designers can select and 1dentily and customize
information from an existing web application without dis-
turbing the source web application. To customize each web
page, the designer determines what text and prompts will be
rendered to the user, typically a telephone caller if an aural
interface 1s the target, what mput data the caller needs to
provide for input components, and what order the caller waill
visit any audio-enabled pages. The designer creates design
objects 16. The output of the design process 1n a particular
embodiment 1s audio metadata. This metadata 1s represented
via a scripts specifically herein called collections of ele-
ments, which are stored 1n a database of the storage means
14. The runtime engine hereinafter described uses this script
to enable callers to interact with an audio enabled Web site.

[0011] The interactive designer tool 10 in operation acts
like a web browser to the host Web server 12 1n that 1t
queries and downloads the site’s HIML pages 11. The
designer/user of the tool 10 decides which pages to audio-
enable. For each such page, the designer selects the infor-
mation that will be rendered at runtime. The designer may
create vocal prompts that will ask the caller to provide data
for the page’s mput controls. The designer may further
decide what words and phrases will be recognized as proper
responses from the caller in response to each prompt. For
example, 1f the Web page has a drop-down selection list for
choosing a color, the prompt could be “Please choose red,
white, or blue.” The designer specifies that the caller should
respond by saying either “red,”*“white,” or “blue.”

[0012] The designer also specifies the audio control flow.
Within a single Web page, the intra-page flow determines the
order that text will be read and which prompts will be 1ssued
to the caller. Inter-page tflow determines the order that the
caller will visit the audio-enabled pages of the site. The
audio path followed through a Web site 1s typically similar
to a visual path using a visual Web browser.

[0013] The designer tool 10 is provided with components
to create a set of design objects that are kept 1n the storage
means 14. These objects encapsulate all the information
necessary to audio-enable a Web site. The designer tool can
retrieve these objects from the storage means 14, update
them, and save them back into the storage means.

[0014] Upon saving the design objects 16 to the storage
means 14, the designer tool 10 mmvokes a generator 18 to
create textual script written 1n a speciiication language
called herein AML. The AML scripts encode information
extracted from the design objects 16 that will be rendered at
the run time. Each script contains the URL of its corre-
sponding Web page. Since the URLs and AML scripts are
used at run time. AML scripts are also kept 1n the storage

means 18. The values on the web pages are expressed using
AML.

[0015] A. Component Selection, Identification and Cus-
tomization

[0016] During a design process, component selection and
customization consists of the following steps:

[0017] 1. Selection of components from an existing
HTML page;

US 2002/0116419 Al

[0018] 2. Identification of selected components from
the HITML page;

[0019] 3. Customization of selected components
from the HITML page;

10020] 4. Specification of the selected and custom-
1zed components via a language that 1s functionally
complete 1n expressing any selection and customi-
zation required.

[0021] The above technique of design is controlled and
implemented by the user interface, freeing the designer from
the details and the underlying algorithms that are required to
correctly select, 1dentify and generate ALML scripts.

10022] B. Selection and Identification of Components
from HTML Pages

10023] FIG. 2 is a conceptual depiction of a runtime
system for selecting and rendering data from an HI'ML page
into a target viewing aural rendering language. The web
pages 11 are retrieved from the host web server 12 mto a
translator 20, which 1n turn retrieves corresponding AML
documents 21 from the shared persistent store 14 to produce
WML pages 23 and runtime objects 24. After a designer 13
has selected some data, henceforth called a “component™17,
from an HITML page 11 by pointing and clicking on 1t, the
designer tools 10 (FIG. 1) automatically generate a unique
signature that 1s subsequently employed by the runtime
environment via the runtime engine 22 in order to extract
real time data from the HTML page. The runtime engine 22
interfaces with the phone server 26 and the user 28. The
signature of the component 11 may comprise one or more of
the following:

[0024] 1. The position of the component 17 on the
HTML page. Consider the following simple HTML
page (This code will produce an HTML page if
executed by a web browser operating on a client

computer):
<HIML>

<table name="“T1">

<tr>
<td width="13%">Row 1</td>
<td width=*13%"" align="center’>r1c2</td>
<td width=*66%"" align="center’>r1c3</td>
<td width="8%""><p align="center’>rlcd</td>

<\tr>

<tr>
<td>

<form method=“POST’ name=“Form1”’
action="WEBBOT-SELF’>

<input type=“checkbox” name=“C1" value=“ON">
<input type=“radio” value=*“V1” checked
name="R1"7>
<input type=“radio” name="R1” value=“V2">
<\formz>
<\td>
<\tr>
<\table>
<\HI'ML>

[0025] In the above example, if a designer 13 (FIG. 1)

selects the entire table T1 and 1f 1t 1s always the first table on
the HTML page, then table T1 can i1dentified by its position

as “1” with the signature being the symbol representing “the
first table on the HIML page.”

[0026] 2. Attributes of the component. Consider the
above example 1n which the second row of table T1

Aug. 22, 2002

contains form Form 1. If a designer 13 selects Form
1, then 1t can be uniquely identified by 1ts action
attribute. If this i1s the only form with value WEB-
BOT-SELF for this attribute then the 1dentifier of this

attribute-value pair becomes the signature of Form 1.

[0027] 3. The ancestors of the component, i.e. the
1dentification of other components on the page which
associate with the component. Unlike the foregoing
cases where the signature of a component 1s deter-

mined by its one of properties such as position or
attribute-value pair, the signature of a component
could depend on the 1dentification of other compo-
nents 1n the HITML page. Any HI'ML page can be
represented by a regular expression. For example,
consider the above HTML page. If the syntax A (B)
1s used to 1imply that component A contains B within
the scope of component A, then the above simple
HTML page can be expressed as HITML (T1 (tr tr (td
(Form 1 (C1 V1 R1))))). Furthermore, the identifi-

cation of a given component 1n a mathematically
regular expression depends on the ancestor compo-
nents that contain the given component. Conse-
quently, the 1dentification of Form 1 depends on the
identification of the enclosing components such as
HTML, Table T1, and so on. By recursively 1denti-
fying these enclosing elements, one can uniquely
identify form Form 1. For example, Form 1 can be
uniquely 1dentified by identifying container 11, sec-
ond tr in T1 and td with 1n the second tr. Thus, form
Form 1°s signature 1s: “look for highest level con-
tainer HITML, within HI'ML container look for con-
tainer table T1, with 1n container T1, look for second
row container and with 1n this container look for first
cell which contains form Form 1.

[0028] 4. The “left” siblings of the component, in
addition to the i1dentification of its ancestor compo-
nents. The 1dentification of left siblings 1s required 1n
the case when one or more left siblings of component
repeats a number of times. In this case, it 1s necessary
to 1dentily these left siblings as well. Consider the
following HTIL page:

<HI'ML>
<table name=“T1">

<tr>
<td width=*13%*“>Row1</td>
<td width=%13%" align="center’>r1c2</td>
<td width="66%"" align="center’>r1c3</td>
<td width=“8%"><p align=“center’>rlcd</td>
<\tr>
<ir>
<td> 12.5 <\td>
<td> 2.5 <\td>
<td><«form method=“POST” name=“Form1”
action="WEBBOT-SELF ">

<input type=“checkbox™ name=“C1"

t]
t]
t]
t]

value=“ON">
<input type=“radio” value=“V1” checked
name="R17>
<input type=“radio” name=“R1”
value=*V2”>

<\forms>
<\td>
<\tr=
<\table>
<\HI'ML:>

US 2002/0116419 Al

[10029] In the above example, the second row of Table T1
contains an 1nitial set of columns that contain digits in them.
If the number of these columns varies from one 1nstantiation
to the next instantiation of the HTML page, then the 1den-
fification of form Form 1 requires identification of these
repeating columns. Thus, form Form 1 can be uniquely
identified by identifying container T1 that contains second
<tr> which 1n turn contains repeating <td>’s containing
digits (12.5 & 2.5, respectively) and the final <td> contain-
ing form Form 1. In this case, the signature of component
Form 1 will be: “look for highest level container HIML,
within HI'ML container look for container table T1, within
container T1, look for second row container and within this
container look for container <td> that repeats ‘n’ times.
followed by last container <td> that contains form Form 1”.

[0030] 5. A pattern extracted from the HITML page.

Consider the previous example. If Form 1 1s always
expected to contain three inputs, then these inputs
provide the identification for the form. Thus its
signature 1s: “look for a form that contains three
inputs with pattern for the first mnput 1s:

[0031] <input
value=“"ON">,

type=“checkbox” name=“C1"

10032] the pattern for the second input is:
[0033] <input tvpe=“radio” value="V1”
checked . . . >”.

[0034] Sometimes the final signature of a component may
consist of a combination of methods described above. How-
ever, once the signature of the component 1s established, 1t
1s considered the canonical representation, that 1s, the rep-
resentation which uniquely and most compactly identifies
the component and its associated attributes.

10035] FIGS. 3A and 3B provide an overview of the
identification algorithm that i1mplements the methods
according to the invention. The mput to the identification
algorithm 1s a component selected by a designer and the
output of the algorithm 1s a script 1n a target language, a form
of markup language, herein called AML (described in the
next section) that specifies the complete signature of the
selected component.

[0036] First a component of the target language, in this
case the AML language, 1s created for the source language
component. 1n this case the HI'ML component. as selected
by the designer (Step A). Then the values for the attributes
of that AML component are obtained or retrieved (Step B).
The attributes are tested to determine 1f the attributes of the
components uniquely specily the component 1n 1ts parent
container (Step C) and continues. If not, then a sequence of
“left” sibling components 1s selected such that the sequence
followed by the component has a unique signature in the
context of the parent container. This sequence 1s then
included in the component specification (Step D) With the
uniqueness specification of components, all other compo-
nents are tested to determine 1f they need to be specified at
this level (Step E). If so, then the specification of the other
components of interest at this level 1s obtained (Step F).

[0037] The following steps focus on uniqueness in the

specifications. Having thus gotten the specification of sepa-
rately specified components, the specifications are each
tested to determine 1f the subject specification 1s part of a

Aug. 22, 2002

case-type specification at the current level (Step G). If it 1s,
then the specification for all other patterns are retrieved or
obtained and an identification switch component (IdSwitch)
1s defined which 1s used to enclose the patterns so obtained
(Step H). Each specification is thereafter tested to determine
if it 1s part of a repeating pattern (Step I). If so, then an
identification loop (IdLoop) is defined which encloses the
current specification (Step J). The specification is then tested
agaimnst other specifications on the same HTML page to
determine if the specification thus defined is unique (Step L).
If not, then the type information about the ancestor contain-
ers 1s retrieved and enclosing AML components are defined
to reflect the containment property in the HTML page (Step
M). The process cycle is repeated for all AML components
selected by the designer until done (Step M)* finally out-
putting an AML script (Step O).

[0038] A computer language according to the invention
must meet certain requirements in order to specily the
identification and customization steps of the selected com-
ponents. The language used according to the invention,
herein called AML complies with these requirements. Addi-
tionally, this language 1s also XML compliant.

[0039] In order to correctly express any combination of
methods employed for identification (as per the algorithm
detailed in connection with FIGS. 3A and 3B), the target

markup language must be able to specily the following;:

[0040] It should be able to specify HTML elements
along with all their relevant attributes.

[0041] It should be able to describe any regular
e XPression.
[0042] It should have advanced constructs such as

switch, case, loop, etc that are useful in describing
alternate and repeating components, respectively.

[0043] It should be able describe concatenation of
HTML elements.
0044 It should be able to describe string pattern.

[0045] The AML language according to the invention
meets the above requirements. It views an HITML
page 1n terms of 1ts components as herein defined.
forms, tables, and lists. A description of a component
1s split 1nto three parts:

[0046] Identification: The identification is used to
1dentity, various components on the HI'ML page.

[0047] Extraction: The extraction is used to
specily how data 1s extracted from the components
selected.

|0048] Translation: The translation specifies how
the components are rendered over the phone.

10049] All the identifications, extractions and trans-
lations for the components on a given HTML page
are collectively placed 1n a dialogue.

[0050] FIG. 4 is a diagram chart illustrating the associa-
tion of 1dentification/extraction/translation triplets with each
HTML page and the association of flow elements with each
url/action transition between HITML pages. An HMTL page
36 has associated HI'ML pages 38 and 40 to which 1t 1s
nominally a parent. Each HIML page 1s connected by a
url/action transition 50, 51, 52. Moreover, each 1dentifica-

US 2002/0116419 Al

fion/exraction/translation triplet 30, 32, 34 1s associated with
a corresponding HTML page 36, 38, 40 by a url/action
transition 54, 55, 56. However, there 1s also the flow of
information among the triplets along information paths S8,
59, 60. The following sections describe 1n greater detail the
components, identification methods, extraction methods and
the underlying grammer that are embodied 1n a speciiic
example of AML according to the mvention.

0051] C. Identification & Extraction

0052] A component is identified using the element “com-
ponent”, where the value for all attribute value pairs inside
any element 1s herein rendered 1n quotations to set 1t off as
a value. Thus a row can be 1denfified as component A as
follows:

[0053] <component name="“A”type="“tr’></compo-
nent>

0054| The type of a component corresponds to an HTML
fag.

0055] Components may recursively contain components
using a nested component notation. Thus, the following

notation expresses that component A 1s contained within
component B:

<component name=“B” type="table”>
<component name="A"" type="tr’"></component>
</component:

0056] Further components may be repeated multiple
fimes usin the “idloop” element. Thus, the following nota-
fion means that the component named A can appear multiple
fimes:

<1dloop name="aloop™>
<component name="A" type="tr >
</component>

</1dloop>

[0057] A component can be composed of two alternate
components. The following notation expresses that compo-
nent A 1s made up of either component X or component Y:

<component name=“A"" type=“form™>
<idswitch name=“switch1”>
<idcase defline="pattern]” >
<component name=“X" type=“1nput”>
<fcomponent>
</idcase>
<idcase defline="“pattern2”>
<component name=“Y"~ type=“select”>
<fcomponent>
</1dcase>
</idswitch>
</component>

[0058] This illustrates provision of the ability to express
regular expressions:

[0059] Parent-child relationship is expressed by nest-
ing; in shorthand notation A(B) specifies that A is
parent of B.

Aug. 22, 2002

[0060] Repitition is expressed by idloop: in short-
hand notation A* specifies that A 1s repeated

[0061] OR is expressed by switch: in shorthand nota-
tion A|B specifies that either A or B exists

[0062] AND is expressed by concatenation: in short-
hand notation B specifies that A 1s followed by B.

[0063] For example, the regular expression A(B|C)¥*D—

where A 1s the parent of a 1dloop or—expression of com-
ponents B and C, followed by a component D—-can be
written as:

<component name="X" type="typel”’>
<component name="A" type="typel”>
<idloop name="loop1”>
<idswitch name="switch1”>
<idcase define="patternl”>
<component name="B"
type="type3”></component>
</1dcase>
<idcase define=*pattern2”>
<component name="C"
type=“typed”"></component>
</1dcase>
</idswitch>
</1dloop>
</component>
<component name=“D"" type=“type5”></component>
</fcomponent>

[0064] The name of a component, or an idswitch or an
1dloop, could be used as a variable. A variable defined 1nside
an 1dloop has several 1nstances. An 1nstance 1s specified by
qualifying the variable name with a subscripted idloop
name. For example, “loop 1[0].C” represents the instance of
“C” 1dentified during the first iteration of the i1dloop “loop
1”. In general, an instance of a variable 1s specified by
qualifying the name of the variable with subscripted names
of the enclosing idloops.

[0065] A variable could also be explicitly declared/defined
using the <amlvar> element.

0066] C.1. Variable Definition

0067] Variable are created using the amlvar element. The
scope of a variable 1s global to an audio page. Its lifetime 1s
until the audio page i1s being referenced 1n a user session.
The name of the variable must be unique for an audio page.
A variable has the following attributes which help define the
name, type, etc. of the variable.

name # name of the variable
format = mmddy4/y4/etc. # how is this variable in HI'ML page
render = mmddy4/y4/etc. # how do you want to audio-render it?
type = date/time/int/char/money # type of variable
visible # visible part of text, 1.e., what you see on
the screen, see Section 5.5. essentially
stripping out the HITML tags from the
string
[0068] string

[0069] The following notation describes a variable x
which encodes a field of type “date™:

US 2002/0116419 Al

[0070] <amlvar name=x type=‘date’ format=

‘mmddy4” render="y4’> </amlvar>

0071] C.2. Variable Usage

0072] All variables are objects containing the following
clements:

vector = yes/no //yes =>vector, no =>scalar
length =1 //length of vector

rowspan /it tr variable, length of row

colspan /it td variable, length of column

action /{ action method of form, see Section 5.4,

define /fused to define value of case, see
Section 5.7

anchor /fassociated anchor element, see

Section 6.2.1

0073] Thus, a loop, named varl, could be accessed using,
the variable $amlvar(varl). The following would be true of
the varl object:

[0074] varl {vector=yes; length=# elements in loop}

[0075] Similarly a variable celll, which represents a cell
clement 1n the table, could be accessed using the notation
Samlvar(celll), and its fields could be accessed as
$amlvar(celll.vector), $amlvar(celll).colspan. etc. If celll
was 1n the fifth iteration of the loop varl, then the anchor

element associated with celll could be accessed as $Samlva-
r(varl [4].celll.anchor).

0076] C.2.1. Global System Variables

0077] Variables can be marked as “global”. Their defin-

fions are available across all pages that are traversed sub-
sequently. The order of accessing of variables 1s: local
variables (loop indexes), page variables (variables extracted
from the page), followed by global variables.

[0078]

amlerror

[0079] The amlerror variable is a system variable which

exposes errors to the user. The variable 1s an object and has
the following fields:

amlerror = {

Aug. 22, 2002

-continued

CALLER_TIMEOUT,
OTHER__ERROR,
WRONG_NUMBER__DIGITS

)

|0081] The following table describes default action taken
on error for the following error conditions.

[0082] Error Type Input
[0083] RECOGNITION FAILURE

[0084] 1) Retry specified # times; unless session max.
exceeded, then never try

[0085] 2) Try shadow prompt

[0086] 3) Present navigation menu to caller

[0087] WRONG NUMBER DIGITS

[0088] CALLER TIMEOUT

[0089] 1) Repeat previous prompt and input # times
[0090] 2) Present navigation menu

[0091] C.3. Identification of Components

[10092] Components can be combined into regular expres-
sions. Components can be 1dentified, including such com-
ponents as forms, tables, and lists on an HTML page. A
component can be identified using one of two broad tech-
niques:

[0093] Identify type (e.g. form, table, tr, td, etc.) and
one or more of name/position/URL/dimension.

10094 Identify “structure” of the component. This all-
encompassing method can be the only method chosen.
However, it needs much more user interaction than type
identification. In many cases it would be easier for the user
to use one of the other mechanisms. Therefore the designer
should be allowed to move forward from easier to more
difficult methods of i1dentification.

ERROR type; // type of current error

int number__errors__step; // number of errors of this
type in the current step

int number__errors__page; // number of errors of this
type in the current page

int number_errors_ session; // number of errors of this
type 1n the phone session

;

[0080] The user can refer to the type of the error as
$amlvar(amlerror.type). The errors can be one of the fol-
lowing types:

ERROR = {
RECOGNITION_ FAILURE,

[0095] Keeping in mind the preference for workflow to the
designer, the following methods of identification are pro-

vided:

[0096] 1) Type: What is the type of the object, e.g.,
form, table, row, cell, cell, input, etc. E.g., <compo-
nent name=“keywordsearch” type=“form”>// com-
ponent 1s a form

US 2002/0116419 Al

[0097] 2) ID: Some components may be uniquely
1dentifiable because they are given a unique <ID> on
the HTML page.

[0098] <component name=“tablel” class=classl

id=table 1>
[0099] 3) HIMLname: name attribute on the HTML
page

[0100] 4) Position: Specifies the ordinal number of

that type of component 1n the subtree of the HITML
parse tree rooted at the HI'ML node corresponding to
the parent aml component. The second row of the
first table in the document could be specified as

<component name=“tabl” type=“table” position="1"">
<component name="“interesting row’” type=“tr”
position="2"">
</component>
</component>

[0101] Note that the position is the rank among the sub-
containers of the same type within the patent container.

10102] Similarly the second table on the second frame can
be speciiied using the following nested specification:

<component name="“keywordsearchirame” type=“frame”
osition="“2">
P
<component name="“keywordsearchform” type=“form”
osition="“2">
P
</component>
</component>

[0103] Similarly, if Table A has nested within it Table B,
and Table B has Table C nested within it, then Table C could
be specified with nested component specification as:

<component name=“A"" type=“table” position="1">
<component name=“B” type=“table” position="1"">
<component name=*C" type="table” position="1">
</component:
</component>
</component:>

[0104] 5) URL: A fixed form can be specified using
the action URL. E.g.,

[0105] <component name=“keywordsearch” type=
“form” url="“www.amazon.com/keyword-
search>"

[0106] 6) Dimension: Fixed forms, tables, rows and
lists can be specified using their dimensions. The
sizes of tables and forms can be specified as follows:

<component name=“keywordsearch” type=“form”™ dimension="“3">
form with 3 visible controls
<component name="“stockquotes” type=“table” dimension="*3">

Aug. 22, 2002

-continued

table with 3 rows
<component name="rowl1” type="tr”

dimension=“2""> /f 2 cells 1n the row

[0107] 7) Structure: This is the choice of last resort,
or 1f sub-component level information about the
component 1s desired. The text in the component can
be speciiied 1n terms of two types of objects:

[0108] (a) quoted text which is matched exactly,
and

[0109] (b) any text specified by the tag amlvar
[0110] A form could be specified as:

[0111] structure="<form><amlvar
body’></form>"

name="‘form-

[0112] where “<form>" and </form> are matched exactly,
and the entire body of the form 1s matched by the variable-
text element <amlvar>and 1s assigned to the variable form-
body.

[0113] If multiple conditions are used to specify the page
then they all must be true. For example, in the following
identification the component being identified 1s of type form
and has an action method which 1s the value “www.ama-
zon.com/keyword-search, has 3 imnputs, and 1s the first form
on the page™:

<component
name="keywordsearch”
url=“www.amazon.com/keyword-search”
type=“form”
position=“1"
dimension="“3">

[0114] In some cases, a component cannot be identified
unambiguously by itself. In such cases, 1t must reference its
parent subtree until 1t reaches an ancestor which can be
unambiguously 1dentified. Consider a parse tree, where it 1s
necessary to 1dentify the second cell in the second row of
table level2 and consider where the number of cells in any
of the rows 1n table levell are not pre-determined. All that
1s known 1s that the last cell in the last row 1n levell has the
table level2 embedded within it. The lowest cell might be
identified as:

<component name="“levell” type=“table” position="1">
<component name="“levell_row” type=“tr”" position="“2">
//lcomment: It may not be necessary to specify the row in the above line]
<component name=“cell2” type=“td” position="2">
<component name="“level2”
type=“table” position="1">
// position 1s relative to parent
<idloop 1gnore=“All._ BUT__LAST”>
<component name=“first__rows” type=“tr’">
</component>
</1dloop>
//|comment: The above is the first set of rows]

<component name="last__row” type="tr">
<idloop 1gnore=“All._ BUT__LAST”>

US 2002/0116419 Al

-continued

//|comment: The above is the first set of cells]
<component name="“first_cells” type=“td”></component>
</1dloop>
<component name="“last cell” type=“td”>
</component:
</component>
</component>
</component>
</component>
</fcomponent>

[0115] Once a component is identified, the data within the
component can be extracted.

[0116] C.4 Extraction: Forms

[0117] Consider an example form such as a broker’s
sign-on page. This form has two 1nputs specified by the user:
name and password. The remaining inputs are hidden ele-
ments as far as the user 1s concerned. There 1s also an option
list to specily where the user wants to start the session.

[0118] The HTML code for such a form is shown below:

<FORM NAME=“SignonForm”
ACTION="https://trading2.schwab.com/trading/signon/.” METHOD=
“POST” TARGET=_ “self”>
<table>
<tr><td> Account Number </td><td><INPUT TYPE="text”
NAME=“SignonAccountNumber” SIZE=11 MAXTLENGTH=
Os</td></tr>
<tr><td> Password </td><td><INPUT TYPE="“password”
NAME=“SignonPassword” SIZE=11 MAXLENGTH=8></td></tr>
<tr><td> Select </td><td>
<SELECT NAME=5StartAnchor>
<option Value=CCbodyi>Account Overview
<option Value=TradingEQ>Stock Trading
<option Value=TradingOpt>Options Trading
<option Value=TradeMF>Mutual Fund Trading
<option Value=TradeCorpBonds>Corporate Bond Trading
<option Value=Quotes>Real-Time Quotes
<option Value=Balance>Account Balances
<option Value=Position>Positions
</select>
<INPUT TYPE=HIDDEN NAME=PARMS VALUE="">

<INPUT TYPE=HIDDEN NAME=ShowUN VALUE=“YES">

Aug. 22, 2002

-continued

<INPUT TYPE=HIDDEN NAME=SANC VALUE="">
<INPUT TYPE=HIDDEN NAME=NewsURL>

<INPUT TYPE=HIDDEN NAME=“QCdata’>

<INPUT TYPE=HIDDEN NAME="page”>

<INPUT TYPE=HIDDEN NNME="story”>

<INPUT TYPE=HIDDEN NAME=“symbols™>

<INPUT TYPE=HIDDEN NAME=“watch_ list”>

<INPUT NAME="“SignonSubmit” TYPE=“Submit” VALUE=
“Submit”>

</td></tr></table></form>

[0119] The component specifies that there 1s one form of
interest on this page, and 1t 1s placed as the first form on the

page, namely:

[0120] <component Name=“Logon” TYPE=
“FORM?” position="1"></component>

[0121] The action method of the form can be extracted
using the following structure specification (where the tag
amlvar describes any free-matched text):

[0122] structure=“<form><amlvar>action=<amlvar
name="url’>METHOD <amlvar>">

[0123] 'This is interpreted as follows:

[0124] Start off by matching <form, then there is text
until you match action=", then the next part 1s a
variable from the HIML page, which ends when you
reach METHOD. Name the component Logon.
Refer to the variable “url” as $amlvar(LLogon.url).

Consider the following text in a page:

11/11/98 16:47 (UPDATE) VocalTec, Cisco To Develop Products
For Voice Calls Over Internet |[Dow Jones Online News|

12/12/98 17:58 (UPDATE) WebByPhone introduces intelligent
voice browsing |[Dow Jones Online News]

12/12/98 17:58 (UPDATE) WebByPhone Corporation is formed
| Dow Jones Online News |

[0125] The source HTML language for the above table is
as follows:

<TTABLE BORDER=0 WIDTH=430 CELLPADDING=0 CELLSPACING=2>
<I'R ALIGN=LEFTI>
<I'D VALIGN=TOP><FONT COLOR="#000000"
FACE="ARIAL.HELVETICA”CLASS="NORM"” SIZE=2>11 "11 '98<TD>

<D WIDTH="“5"><IMG

SRC="http://gst.quote.com/fast/graphics/trading3/blank.git” WIDTH=*1" HEIGHT="1"
BORDER=0></TD>

<I'D VALIGN=TOP><FONT COLOR="#000000"

FACE="ARIAL.HELVETICA” CLASS="NORM” SIZE=2>16:47<TD>

<D WIDTH="5"><IMG

SRC=*http://gst.quote.com/fast/graphics/trading3/blank.git” WIDTH=*1" HEIGHT="1"
BORDER=0></TD>

<TD VALIGN=TOP><FONT FACE=“ARIAL HELVETICA”
CLASS=“NORM” SIZE=2><U><A HREF=“/{g/trading3/news?
story=8176218&symbols=csco”>(UPDATE) VocalTec. Cisco To Develop

Products For Voice Calls Over Internet</U> <FONT
COLOR=“#000000" FACE=“ARIAL.HELVETICA” CLASS=“SMALL”
SIZE=1>| Dow Jones Online News |</F
ONT></1D>

US 2002/0116419 Al

-continued

</ TR>
<!-- The rest of the rows are cut. -->

<!-- They all have the same syntax. -->
<[TABLE>

[0126] The table above has a variable number of rows,
cach of which has 5 cells. Of this table, only cells 1, 3, and

5 are intended for use. The structure of the table can be
described as follows:

<component name="“headline” type=“table” position=*1"">
<1dloop name="“headlines™>
<component name=*‘news__item’ type="{r’>
<component name="“cell1”’type=“td” position=“1"
structure=“<amlvar> SIZE=2><amlvar name="date’
type=‘date’></TD>">
</component>
<component name="“cell3”type=“td” position="3"
structure=“<amlvar> SIZFE=2><amlvar name="‘time’
type=‘time’></TD>">
</component>
<component name="“cell5”type=“td” position="5"
structure=“<amlvar> SIZE=2><amlvar name="headline’
type="text’></U><amlvar>">
</component>
</component>
</1dloop>

</component>

[0127] The specification of each cell using the structure
mechanism seems convoluted because of the HITML con-
structs appearing in the speciiication. One simplification 1is
to have the structure refer to the “visible” part of the
cell—this 1s what the user sees on a regular web browser.

<component name="“headline” type=“table” position="1">
<idloop name=*headlines™>
<component name=*‘news__item’ type="{r’>
<component name="“date” type=“td” position="1"
visible="true”></component>
<component name=“time” type=“td” position="3"
visible="true”></component>
<component name="“cell5”’type=“td” position=*5"
structure=“<amlvar>
HREF=<amlvar name="url’>><amlvar name="news’
visible=*true’></A<amlvar>">
</component>
</component>
</1dloop>

</component>

[0128] The variables can be referred to as $amlvar(head-
lines|[index].date). $amlvar(headlines[index].time), and
$amlvar(headlines| index |.news). Further, the anchor ele-
ment of the 5th column could be referred to as $amlvar-

(headlines[index].url)

[0129] C.6 Extraction: Looping Variable Component (e.g.
List)

[0130] A variable component is one whose structure may
change from one version of the HI'ML page to another. For
example, when searching for a book on amazon.com, the

Aug. 22, 2002

results constitute a variable component, because the com-
ponents cannot be 1dentified as rows/cells of a table . It 1s
possible though to have a generic specification of how the
sub-components of a component are defined. In the source

HTML, each component 1s started with a <dt> tag, and
ended with the <p>tag.

[0131] <dI>

[0132] <dt><a href="/exec/obidos/ASIN/
0471880736/q1d=909790477/sr=1-1/002-5206325-
4441208” >Design and Inference in Finite Population Sam-

pling (Wiley Series in Probability and Mathematical
Statistics)~<NOBR>Ships

in 2-3 days</NOBR><dd>A. S. Hedayat(Contribu-
tor). B. K. Sinha/Paperback/Published 1991

[0133]
Our Price: $101.00
<a href=“/exec/obi-
dos/ASIN/0471880736/q1d=90979047"/ /sr=1-1/002-
5206325-4441208”><1>Read more about this title . . . </1></

El><p>
[0134] <dt> . . .

[0135] The above i1s an example of a component from a
site labeled amazon.com. The result component could be
speciflied as follows:

<component name="“resultssection” type=“body”’>
<component name="“list” type“dl”>
<1dloop name=“resultsection2”>
<component name=“item” type=“dt”></component>
</1dloop>
</component>
</component>

[0136] In the above specification, there is a fixed header
component “<dl>" followed by a looping component. In
cach iteration of the looping component we need to 1dentily
the following sections:

[0137] Title=Design and Inference in Finite Popula-
tion Sampling (Wiley Series in Probability and
Mathematical Statistics)

Shipping = Ships in 2-3 days
Author = A. S. Hedayat{Contributor), B. K. Sinha
Type = Paperback
Date = 1991
Price = $101.00
[0138] To extract the above sections, the result component

could be described as follows:

US 2002/0116419 Al

<component name=resultssection>
<component name=“list” type=“dl”>
<1dloop name="“loop1”>
<component name=“1tem” type="dt”
structure="<dt><amlvar name="title’ visible=‘true’>
<nobr><amlvar name="*shipping’ visible=*true’></nobr>
<amlvar><dd>
<amlvar name="author’ visible=‘true’>/<amlvar
name="‘type’ visible=‘true’>/ Published <amlvar
name="date’ visible=‘true’>
<amlvar>Price: <amlvar
name="price’ visible=*‘true’>
<amlvar name="‘detail’
visible=‘true’><p>"
</fcomponent>
</1dloop>
</component
</component:

0139] The title text can be referred to as $amlvar(loop 1
'index|.title); information about the title can be accessed as
$amlvar(loop 1 [index].detail).

0140] C.7 Extraction: Alternate Structures

0141] Inthe best case, a component of interest to the user
may be 1dentified using exactly one method. However, there
may be cases 1n which the same form may appear as the
1st/3rd form on a page, or a table may appear with 3 or 4
cells. Extending the identification of components using
unique structures to 1dentification of components with alter-
nate structures yields the following examples:

EXAMPLE 1

[0142] Consider the following table (transaction history
table from a stock quote site) where the rows are of three

different types.

Stock Price Quantity Operation Date
IFMX 10.50 100 BUY 5/25/98
ORCL 51.5 200 SELL 5/26/98
IBM 171.5 DIVIDEND 5/277/98
IBM 51.5 INTEREST 5/28/98
[0143] In this case, since the rows do not represent the

same “types” of transactions they may need to be read out
in different formats. Also, their input 1s organized differently.
The rules for this table can be as follows:

[0144] it is a transaction of type interest.
[0145] it is a transaction of type dividend.
|0146] it 1s a buy/sell transaction.

10147] To specify the above table:

<component name="“transaction” type=“table” position=*1">
<1dloop name="transactionlist” loopindex=
“index”><1dswitch name="switch1”>
<idcase define=“"INTEREST" ">
<component name="“intrst” type="“tr”’
structure=“<amlvar>interest<amlvar>"">
<component name=icoll type=“td” position=1></component>
<component name=icol2 type=“td” position=2></component>

Aug. 22, 2002

-continued

<component name=1col3 type=“td” position=3></component:
<component name=icol4 type=“td” position=4></component>
<component name=1col5 type=“td” position=5></component:
</fcomponent>
</idcase>
<idcase deline=“DIVIDEND">
<component name=“dvdnc” type=“tr”
structure=“<amlvar>dividend<amlvar>">
<component name=dcoll type="td
<component name=dcol2 type=“td” position=2></component>
<component name=dcol3 type=“td” position=3></component>
<component name=dcol4 type=“td” position=4></component>
<component name=dcol5 type=“td” position=5></component>
</component:>
</idcase>
<idcase define=“default”>
<component name=“intrst” type=“tr’>
<component name=coll type=*td” position=1></component>
<component name=col2 type=“td” position=2></component>
<component name=col3 type=*“td” position=3></component>
<component name=col4 type=“td” position=4></component>
<component name=col5 type=*td” position=5></component>
</fcomponent>
</idcase>
</1dloop>

</component>

el

position=1></component>

na

el

m

e

m

e

[0148] The invention has been described with reference to
specific embodiments. Other embodiments will be evident to
those of ordinary skill in the relevant art. It 1s therefore not
intended that the invention be limited, except as indicated by
the appended claims.

What 1s claimed 1s:

1. In a computer network system having storage means for
source data and means for 1dentification of said source data,

a method for converting said source data of an element of
interest conventionally presented 1n a first visual format and
which 1s part of a mathematically regular expression into a
canonical representation for rendering said source data in
alternative formats, including aural formats and a second
visual format, said converting method comprising:

retrieving from a source said source data as two-dimen-
sional data of mathematically regular expression form
into said storage means;

locating, a unique container of the element of interest
within a parsed tree of the mathematically regular
expression; thereafter

following a unique local route of the element of interest
within the parsed tree to obtain a signature of the
clement interest, said signature being said canonical
representation, said signature comprising said unique
container and said unique local route; and

storing said signature 1n said storage means for later use
in retrieving and rendering a value of the element of
interest.

2. The method according, to claim 2 further including;:

scarching for repeated representations of said element;
and

identifying all said repeated representations in reference
to said signature.

US 2002/0116419 Al
10

3. The method according to claim 1 further including:

scarching for repeated instantiations of the selected ele-
ment; and

storing only one representation of the instantiation.

4. The method according to claim 3, wherein said one
instantiation is the first repeated element.

5. The method according to claim 1 further including:

identifying each said selected element.
6. The method according to claim 1 further including:

customizing the stored representation of said selected
clement for rendering said selected element for an
intended context.

7. In a computer network system having storage means for
source data and means for 1dentification of said source data,
a method for converting said source data of an element of
interest conventionally presented in a first visual format and
which 1s part of a mathematically regular expression into a
canonical representation for rendering said source data in
alternative formats, including aural formats and a second
visual format, said converting method comprising:

creating a target language component for a source lan-
cuage component as selected by a designer;

obtaining values for attributes of said target language
component;

testing said target language attributes to determine if
target language attributes uniquely specily said target
component 1n 1ts parent container;

if not, selecting a sequence of “left” sibling components
such that said sequence followed by said target lan-
guage component has a unique signature 1n the context
of said parent container;

including said sequence 1n a specification of said target
language component

Aug. 22, 2002

testing other target language components at the current
level to determine 1f said other components need to be
specified at the current level: if so,

obtaining specifications of said other components of mter-
est at the current level;

testing for uniqueness of specification at the current level;
and

upon establishing uniqueness of specification, outputting
a script of said target language.
8. The method according to claim 7 wherein said testing,
for umqueness of specification includes:

determining 1if the subject specification 1s part of a case-
type specification at the current level; and 1if so

obtaining specification for all other patterns at the current
level: and

defining an 1denfification switch component to enclose all
the patterns so obtained.
9. The method according to claim 8 wherein said testing
for umiqueness of specification further includes:

determining if said specification i1s part of a repeating
pattern; and 1if so

defining an an 1denfification loop which encloses the
current specification.
10. The method according to claim 9 wherein said testing
for uniqueness of specification further includes:

testing the currently-defined specification against other
specifications on the same HITML page to determine 1f
the current specification i1s unique; and if not, then
obtaining type information about ancestor containers;
and

defining enclosing AML components to reflect contain-
ment properties in saixd HIML page.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

