a9 United States
12 Patent Application Publication o) Pub. No.: US 2002/0078040 Al

Hawkinson

US 20020078040A1

43) Pub. Date: Jun. 20, 2002

(54) APPARATUS AND METHOD FOR

(76)

(21)
(22)

(63)

PROVIDING A BINARY RANGE TREE

SEARCH

Inventor: Christopher D. HawKkinson, Buena

Park, CA (US)

Correspondence Address:
IRELL & MANELLA LLP
840 NEWPORT CENTER DRIVE

SUITE 400

NEWPORT BEACH, CA 92660 (US)

Appl. No.:

Filed:

09/898,299

Jul. 2, 2001

Related U.S. Application Data

Continuation of application No. 09/261,067, filed on

Mar. 2, 1999, now patented.

inkiES S s EHEET lale—

ppeiien

2M SRAM
(BATT)

—— 115

10/100
 PHY

Publication Classification

(51) INte CL7 oo GO6F 17/30
(52) US.CL ... 707/4; 707/10; 707/102; 707/201;

707/205
(57) ABSTRACT

The present invention relates to a system and method for
scarching information. The method involves defining a first
node having a first range, and a second node having a second
range that 1s either less than or greater than the first range.
Each of the first and second ranges has a plurality of range
values, and each of the range values has data associated
therewith. Information having a value 1s then received. The
method determines if the value 1s located 1n the first node,
if so, data associated with the value 1s retrieved. Otherwise,
the method determines 1if the value 1s located 1n the second
node. Data associated with the value 1s retrieved 1f the value
1s located 1n the second node.

105

140

DMA
CONTROLLERS

1604 160y

DATA
/100 ~7==1 T1/EL T1/Ef

1655 ~165y

US 2002/0078040 A1l

Xc9 4

HANVYS
13/1L

X091

na————— B e st

asvaviva
NOLLVINDLINGD

Jun. 20, 2002 Sheet 1 of 7

ccl

Patent Application Publication

Patent Application Publication

Jun. 20, 2002 Sheet 2 of 7

US 2002/0078040 A1l

FIG. 2

RECEIVE 1 CONTROL 5 TRANSMIT
| 226 i
| CONNECTION :
! MANAGEMENT ;
228 | TASK :
T1/El | NON~
MANAGEMENT ! INTERRUPT
TASK E FUNCTIONS
________________________ b o o o o e i e S A S U A Y D D e e D A R
| i INTERRUPT
| ; FUNCTIONS
: | 230
: » FORWARDING
AND Q.2931 SUPERVISION ' .'
I MESSAGE SYSTEM| \AND &.2831 232

PACEKT AND FRAME
INPUT FUNCTION

|
INSTALL,
DE-INSTALL,
MODIFY
CONNECTIONS

MAKE,

BRAKE,
MODIFY |

FLY-BY FLOW

ADMISSION
CONTROL

CONNECTION \ | ACCEPT
: REQUESTS D(ﬁéih I)JNIT
) RESOURCE] \WAL)
g MANAGER ;E' 234 ':
‘ ' BUFFER-
224~ MANAGEMENT | |
FLOW RESOURCE !l ANAGEME '
FLOW ‘ Spurue o L2
A i
CLASSIFICATION .
AND ROUTING _ | FOR ABR) ! 238 :
216 | 1: SCHEDULER | |
!
ATM_DECAPSULATION] ! L
LAYER RFC1483 || } .
| | _ 240
214 | ATM
A AN | | BTy
575 | . RESOURCE -:
e | MANAGEMENT ; Y 242
! ' |ATM ADAPTATION
FUNCTION i (FUTURE RM | TAYER
| CELLS FOR ABR) | ‘
CELLS i L
O PACKETS | i | CELL OUTPUT
AND ps | ; FUNCTION
FRAMES | L
: I
i i

Patent Application Publicati
ation Jun. 20, 2002 Sheet 3
: of 7 US 2002/0073040
Al

RA

RC

Patent Application Publication

200.1.5.285

192.1.1.255

"

CLASS 2 (SOURCE

CLASS 3 (SOURCE IP 192.1

VAW AV AV A 4 4V 4 4V 4V 4
VN AR AV AV AN AW 4 AT A 4

i
i
i
!
l
j
{

o l‘
DRo ; | DRy | DRz | DR3 DRy |
¥ { | %l '
Q N\r q,:ga % q?h
o o4 o v -4
S ® P
“ Vv o

Jun. 20, 2002 Sheet 4 of 7 US 2002/0078040 A1

IP 192.1.1.1 TO 200.1.5.255,

DEST IP 200.1.5.1 TO 200.1.5.255)

1.1 TO 192.1.1.255,

DEST IP 1902.1.1.1 TO 182.1.1.255)

RESULTING RANGES:

SRO
SR
SR 2
SR3

DR

DR
DR2
DR3
DR 4

0.0.0.0 TO 1982.1.1.0
192.1.1.1 TO 192.1.1.255
192.1.2.0 TO 200.1.5.255

192.1.6.0 TO 255.255.255.250

182.1.1.1 1.1,
192.1.2.0 TO 200.1.5.0
200.1.5.1 TO 200.1.5.250
500.1.8.0 TO 255.255.255.2560

AON NOLLVNILS3d/IDdN0S

012
G02 JJ01d 1O LNANNOISSYV qumiEo.._ zoF<o_._=mwﬁu KOYd
oL sndd S\— = M0old N— , sNdd xd

US 2002/0078040 A1l

0ct ~

ore

CYLLAN
NOILLINIJ4A
ddld

SATHVL
NOLLVOIJISSV1)

&8¢

Jun. 20, 2002 Sheet 5 of 7

aevs, \ /4 / INIWIOVNVA

NOILINIJdd 40T

AOTIOd /

PEL / 0ce

CtiAAl
NOILINIJAA
SSVID

ct't

Patent Application Publication

Patent Application Publication Jun. 20, 2002 Sheet 6 of 7 US 2002/0078040 A1

FIG. 5A /5""

READ NODE'S RANGE

508

510

SELECT A NODE YES
THAT IS LESS
THAN CURRENT NODE.

IS
'K' < NODE'S
RANGE
?

512

SELECT A NODE ~ IS 504
THAT IS GREATER X 2 NODE'S RETURN
THAN CURRENT NODE. N DEFAULT
RESULT

NO 516

RETURN RESULT
FROM NODE

US 2002/0078040 A1l

T AT AT | GGe'0'1°c61 GGe 1" 1°€91
-1°1°6G2°002 JONVH ~ 1°0°1°26T1T JFONVY - T'T°T°€97 JONVH
95$ 09S c9%

NVHL

NVHI SS¥1

ddLvddd NVHL 33LVI¥D

Jun. 20, 2002 Sheet 7 of 7

GCe'1°'1°E61 GGe'0°'1°161
- PT'T°86T JONVYH - 1T°'0°1°'161 JONVH
85S
NVH]L dd1VIdD NVHL

GGe'1'1°¢61

- 1'T'1T°¢01 dONVH

0SS \\ ¢55

Patent Application Publication

US 2002/0073040 Al

APPARATUS AND METHOD FOR PROVIDING A
BINARY RANGE TREE SEARCH

BACKGROUND OF THE INVENTION
0001] 1. Field of the Invention

0002] The present invention relates generally to commu-
nication devices, and specifically, to an apparatus and
method for classifying mformation received by communi-
cations devices.

0003] 2. Background Information

0004] Small and medium businesses typically have net-
works comprised of local area networks (“LLANs”), ranging
between 10 Mega bits per second (“Mbps™) to 100 Mbps,
that carry information between stations for a wide range of
applications. The applications can include a mixture of
voice, video, 1nteractive, web browsing, file transfers, etc.,
cach of which has different minimum requirements for
latency, jitter, and data loss to ensure quality communica-
tion. The internal office LANs can either provide sufficient
bandwidth or are economically upgradable to provide an
order of magnitude increase in bandwidth.

[0005] The connection to a wide area network (“WAN™) is
however another matter. The bandwidth 1s not easily upgrad-
able due to the cost of WAN access circuits. Various queuing
techniques have been employed 1n WAN access equipment
in attempts to provide sharing of the limited circuit band-
width among the different types of data. These queuing
techniques typically have limited applications and undesir-
able characteristics. For example, 1n one queuing technique,
queues are serviced 1n strict priority order, which tends to
starve low priority data types. Another technique, called
Weighted Fair Queuing, solves the starvation effects but 1t 1s
computational intensive and does not provide guaranteed
bandwidth, delay bound or jitter bound characteristics for
data types that need these characteristics.

[0006] In implementing such queuing techniques, incom-
ing data must first been identified and thereafter, classified
for queuing allocation. Current routers, which provide some
form of classification system, do so by combining secarch
technologies previously used for routing table lookups.
These technologies rely on algorithms such as the Patricia
tree (as described by Don Morrison in “Practical Algorithm
to Retrieve Information Coded In Alfanumeric,” Journal of
the ACM, October 1968), or the Lulea tree (as described by
Mikael Degermark of the Lulea University of Technology 1n
“Small Forwarding Tables for Fast Routing Lookups,” Com-
puter Communications Review, October 1998), search algo-
rithms to perform lookup operations of various portions of
the internet protocol (IP) header. The results from these
searches are combined in some fashion (e.g., using Cross
Product tables or arrays, as described by V. Srinivasan of
Washington University 1mn “Fast and Scalable Layer Four
Switching,” Computer Communications Review, October
1998) and used to formulate a “class” for the incoming data.

[0007] Existing routing search algorithms are used to
handling definitions of the form “Address A =route n”. To
apply an existing routing search technique for searching and
classifying data, 1in ranges “n” individual search steps have
to be used. This results 1n excess data storage space require-
ments, and additional processing requirements when han-

dling classification ranges.

Jun. 20, 2002

[0008] Since the number of possible resulting combina-
fions can be immense, the problem of translating the search
results to a “class” 1s not trivial. Traditional approaches use
cither a stmple array or something like a Cross Product table
(as described by V. Srinivasan of Washington University in
“Fast and Scalable Layer Four Switching,” Computer Com-
munications Review, October 1998.

[0009] Simple arrays, although fast, require memory to
hold every possible combination, so are impractical except
for the simplest cases. The problem associated with using
Cross Product tables to locate the final “class”™ results 1s that
the most recently accessed results must be cached in the
Cross Product table. Basically, the results from each indi-
vidual search are combined by an expression similar to
“finalResult=((((({(resultl * maxResultl)+result2) *
maxResult2)+resultd) * maxResult3)+result4) * maxRe-
sult4)+resultS”. The final “cross product” value is searched
for 1n the “key” column of the Cross Product table, using a
binary search. If the value 1s found, the correspond “result”
column entry 1s returned as the “class” value. If not found,
which 1s more likely to be the case due to the large range of
possible values, a exhaustive search of the available classes
must be done. The found “class” and the “cross product”
value are both added to the “Cross Product” table. Although
a Cross Product table does minimize the amount of memory
required, processing requirements become nondeterministic.

[0010] Accordingly, there is a need in the technology for
classifying incoming data received by a communications
device that overcomes the aforementioned problems.

[0011] To classify incoming data, searches are typically
performed to 1dentily incoming data such as network frames
or protocol data units. Traditional search methods either
required each unique value to be explicitly stored 1n a search
tree, or required an elaborate tree structure such as the use
of a “grid of tries” to provide an efficient search. Since the
search has to operate very quickly (typically less than one
microsecond on the average), it 1s imperative to utilize the
full capabilities of the processor in the communications
device. For such traditional search techniques to operate
ciiiciently, all data that has to be searched 1s typically stored
in the processor’s memory space. However, since the pro-
cessor has only limited amounts of internal memory, the
implementation of such traditional search techniques are not
practicable.

[0012] Moreover, such in using such traditional search
techniques, the average and worst case execution times do
not remain deterministic beyond a small number of search
values. These values are those that are located in the
Processor’s memory space.

[0013] Accordingly, there is a need in the technology for
an apparatus and method for identifying incoming data
received by a communications device that overcomes the
aforementioned problems.

SUMMARY OF THE INVENTION

|0014] The present invention relates to a system and
method for searching information. The method involves
defining a first node having a first range, and a second node
having a second range that 1s either less than or greater than
the first range. Each of the first and second ranges has a
plurality of range values, and each of the range values has

US 2002/0073040 Al

data associated therewith. Information having a value 1s then
received. The method determines if the value 1s located 1n
the first node, 1if so, data associated with the wvalue 1s
retrieved. Otherwise, the method determines if the value 1s
located 1n the second node. Data associated with the value
1s retrieved if the value 1s located 1n the second node.

BRIEF DESCRIPTION OF THE DRAWINGS

10015] FIG. 1 illustrates an embodiment of a communi-
cation device suitable for use with embodiments of the
present mvention.

10016] FIG. 2 illustrates functional blocks within a queu-
ing module 200 according to one embodiment of the present
invention.

10017] FIG. 3A illustrates one embodiment of the classi-

fication technique provided in accordance with the prin-
ciples of the nvention.

[0018] FIG. 3B illustrates one example of Axis Prepro-

cessing technique provided in accordance with the principles
of the 1nvention.

10019] FIG. 4 illustrates details of functional blocks

within the flow classification and routing block 218 accord-
ing to one embodiment of the invention.

10020] FIG. 5A illustrates one embodiment of a search

process flow provided in accordance with the principles of
the present invention.

10021] FIG. 5B is a diagram that illustrates one example
of the search process of FIG. 5A.

DETAILED DESCRIPTION

10022] The present invention thus provides a classification
system and method by implementing an Axis Preprocessing
classification technique 1in combination with a Binary Range
Tree searching technique. The Binary Range Tree searching
technique allows large ranges of contiguous values to be
scarch using a minimal number of tree “nodes”, while the
Axis Preprocessing technique assures that the maximum
number of contiguous ranges 1s generated 1n the final “class”
scarch step.

10023] FIG. 1 illustrates an embodiment of a communi-
cation device 100 suitable for use with embodiments of the
present invention. In one embodiment, the communication
device 100 1s a quality of service access communications
device. Referring to FIG. 1, the communication device 100
includes a central processing unit (“CPU””) 105 such as a
microprocessor, microcontroller, or digital signal processor
having on chip mstruction and data memory 108 and 110
(c.g., static random access memory “SRAM”), which are
cache-like devices. The CPU 1035 1s coupled to a plurality of
devices by way of a system bus 115. In particular, the CPU
105 is coupled to an external memory 120 (e.g., Synchro-
nous Burst SRAM, Synchronous Dynamic RAM, etc., or a
combination of such devices), a FLASH memory device 125
(e.g., 8 Mbytes) for downloading program information, and

a battery backup SRAM 130 (e.g., 2 Mbytes).

[0024] In addition, a number of input/output (“I/O07)

devices are coupled to the bus 115, including an Ethernet
media access control (“MAC”) port 145 for receiving/
transmitting data packets from/to a physical mterface 150

Jun. 20, 2002

and a plurality of T1/E1 framers 160,-160 (where “X” is a
positive whole number) for receiving/transmitting asynchro-
nous transfer mode (“ATM”) cells and frames from/to
respective 1/O ports 165,-1635,,. A field programmable gate
array (“FPGA”) 170 is coupled to the bus 115. The FPGA
170 1s also coupled to the T1/E1 framers 160,-160. and the
CPU 105 by way of a serial bus 175. The control path of the
T1/E1 framers 160,-160. and the FPGA 170 1s through the
bus for Conﬁgurmg and reading status information from the
devices. The data path (e.g., ATM cells, frames, etc.) to/from
the ports 1s provided though the serial bus 175. That 1s, data

received from a port 1s transmitted to the CPU 105 through
the FPGA 170 by way of the serial bus 175, and data 1is

transmitted to a port from the CPU 1035, though the FPGA
170 by way of the serial bus 1735.

[0025] Also coupled to the bus 115 are general purpose
timers 135, which are used for generating periodic inter-
rupts, and direct memory access (“DMA”) controllers 140
for transferring data from memory to memory, from the
Ethernet MAC port buffer to memory, etc.

[0026] When the communication device 100 is powered
up, an operating system 122 i1s loaded into memory 120
and/or the 1nstruction cache 108 from a non-volatile storage
device (e.g., FLASH 125) or a mass storage device such as
a hard disk drive (not shown). Also loaded into memory 120
and/or the data cache 110 i1s a configuration database 124
having configuration information on virtual path connec-
tions (“VPCs”) and virtual circuit connections (“VCCs”)
established for each user network interface (“UNI"). Thus,
a user or organization wanting to communicate over a wide
area network (“WAN”) will lease VPC and/or VCC services
from a communication carrier. The communication carrier
then establishes the VPC and/or VCC services for each UNI

into the communication device 100.

[0027] A UNI is hereinafter used interchangeably with a
port, with each port having one or more physical links. As
discussed herein, a “data unit” refers to a packet, frame, or
cell. A “flow” 1s defined as a uniquely 1dentified stream of
data units. Through inspection of data unit headers, the data
units are categorized and classified to constitute a uniquely
identified flow. In one embodiment, a flow 1s either a level-1
flow or a level-2 flow. Moreover, flows may be aggregated
such that they are processed and managed as one aggregate
flow. Thus, any reference to a flow refers to a tlow or a tlow
aggregate. Processing and management of a flow includes
allocating resources for the flow. Examples of resource
allocation 1nclude link bandwidth allocation and node buifer
allocation for a flow. An example of processing includes
encapsulation of Internet Protocol (“IP”) datagrams with
ATM request for comment (“RFC”) 1483 encapsulation,
entitled “Multiprotocol Encapsulation over AITM Adaptation
Layer 57, published 1 July 1993. A protocol or protocol
layer 1s hereinafter defined as a protocol that can be mapped
into the Open System Interconnection (“OSI”) layer model.

[10028] FIG. 2 illustrates functional blocks within a queu-

ing module 200 implemented on the communication device
100 according to one embodiment of the present invention.
Referring to FIG. 2, the functional blocks are broken up into
three vertical segments, namely, receive, control, and trans-
mit, and two horizontal segments, namely non-interrupt and
interrupt functions. In one embodiment, the queuing module
200 1s implemented 1n software, in which case, the queuing

US 2002/0073040 Al

module 200 or portions thereof 1s contained 1n the memory
120 and/or internal memory 108 of the CPU 105, and 1s

executed by the CPU 105 (FIG. 1). For discussion purposes,
the queuing module 200 1s described as comprising a receive
module, and a queue and transmit (QCT) module 205.

RECEIVE SEGMENT

[10029] In the receive segment, packets and frames such as,
for example, IP packets, Ethernet frames, and frame relay
frames are received by a packet/frame input function 210.
The mput function 210 performs preliminary filtering and
cyclic redundancy checking (“CRC”) on the packets and
frames. The packets and frames are then forwarded to a flow
classification and routing block 218.

[0030] ATM cells are received by a cell input function
212. The cell input function 212 determines whether there 1s
an existing connection for the cell stream. The cells are then
passed to an adaptation layer processing block 214 where
the cells are converted to contiguous protocol data units
(“PDUs™) using, for example, ATM adaptation layer 5
(“AALS”). The adaptation layer processing block 214 also
detects Integrated Local Management Interface (“ILMI”),
Operations, Administration, and Maintenance (“OAM”),
and signaling cells, and passes them directly to a supervision
message system block 220 for setting up/tearing down
connections, etc. In addition, the adaptation layer processing
block 214 detects resource management cells relating to
flow control (e.g., ATM available bit rate “ABR” RM cells,
etc.), and passes these cells to a resource manager block 222
which then slows down or speeds up an existing flow 1n
response to the management cells. After each PDU 1s
reconstructed, it 1s passed to an ATM decapsulation layer
block 216 where PDUs are decapsulated into data units
using RFC 1483. The ATM decapsulation layer block 216
then forwards the data units to the flow classification and

routing block 218.

[0031] The flow classification and routing block 218 deter-

mines whether a flow has been set up for an incoming data
unit, and determines the class of trathic that the flow 1is
assigned. If a flow has been set up for the packet, the packet
and an associated Flow ID are transmitted to a forwarding
block 230 1n the transmit segment. The Flow ID includes
several components including a destination link, the shap-
ing/scheduling parameters of the flow, the quality of service
(“QoS”) parameters assigned to the flow, etc. Assignment of
the Flow ID i1s dependent on the classification of the flow.
The class assigned to the flow determines the QoS to be
provided for that flow. In one embodiment, the Flow ID 1s
an address pointing to a memory location where the afore-
mentioned parameters are located. If a flow has not been
assigned to the packet, the packet 1s sent to the forwarding
block 230 with a request that a flow be created for the packet
at a desired QoS. Details of the flow classification and
routing block 218 will be described 1n detail in the following
sections.

10032] In the case of VPC service, the VPCs are ordered

and leased from a service provider. The VPC configuration
assoclated with the VPC service ordered 1s then placed 1n the
configuration database 124 of the communication device
100 (FIG. 1). The VPC may be manually configured or
automatically configured using protocols such as ILMI. In
response to the VPCs ordered, the queuing module 200 sets

Jun. 20, 2002

up level-1 flows for the VPCs. Flow classification and policy
definitions determine how to identify one protocol stream
from another, 1n addition to the QoS parameters required to
support each stream. As data units are received on an
interface for a class where a flow has not been established,
a level-2 flow 1s requested from a fly-by flow admission
control block 232 via a forwarding application program
interface (“API”) block 230 based upon the flow classifica-
tion and policy definition. When a level-2 flow 1s requested,
it 1s requested with a corresponding level-1 Flow ID that was
created by the user configuration. The flow classification and
routing block 218 use the configuration to determine routes
and the set of level-1 flows available to make level-2 flows.
Each level-2 flow created 1s assigned a level-2 Flow ID and
a VCC. The VCC assignment allows flows to be multiplexed
at the cell level (e.g., one cell from one flow followed by one
cell from another flow).

[0033] In the case of VCC service, the VCCs are also
ordered and leased from the service provider. The VCC
conilguration associated with the VCC service ordered 1s
then placed in the configuration database 124 of the com-
munication device 100 (FIG. 1). This can be manually, or
automatically configured using protocols such as ILMI. In
response to the VCCs ordered, the queuing module 200 sets
up level-1 flows for the VCCs. Flow classification and
policy definitions determine how to identily one protocol
strcam from another and determine the QoS parameters
required to support each stream. As data units are received
on an interface for a class where a flow has not been
established, a level-2 flow 1s requested from the fly-by tlow
admission control block 232 via the forwarding API block
230 based upon the flow classification and policy definition.
When a level-2 flow 1s requested, it 1s requested with a
corresponding level-1 Flow ID that was created by the user
coniliguration. The flow classification and routing block 218
uses the configuration to determine routes and the set of
level-1 flows available to make level-2 flows. Each level-2
flow created 1s assigned a Flow ID. VCC service does not
assign VCCs to flows as 1n the VPC service. However, data
structures for flow state machines are created and initialized
as 1In VPC service. With VCC service, flows are multiplexed
at the packet level (e.g., when a flow 1s chosen for output
service, all segments of the packet are transmitted 1n con-
secutive succession before another flow is serviced).

CONTROL SEGMENT

[0034] In the control segment, a connection management
task 226 (e.g., an ATM management task) and a physical
interface management task 228 are provided and run with/on
the operating system 122 (FIG. 1). These tasks operate in
the non-interrupt code space and communicate with the
resource manager 222 by way of an API using the supervi-
sion message system 220. The API 1s used to pass messages
(e.g., LMI, OAM, and signaling information) between the
tasks and the WAN i1nterface. The resource manager 222
sends requests for establishing, terminating, and modifying
connections to the connection management task 226. The
connection management task 226 responds to such requests
directing the resource manager 222 to install, de-install, or
modify the connections. The physical layer management
task 228 communicates with the resource manager 222,
notifying the latter of the (up/down) status of physical ports.
The LMI, OAM, and signaling messages passed back to the
supervision message system 220 from the connection man-

US 2002/0073040 Al

agement task 226 are sent directly to a buffer management
block 234 for queuing 1n queues 236, and subsequent output.

[0035] The resource manager 222 handles the installation,
de-installation, and modification of flows. This includes
handling and generating resource management data to con-
trol the data rate for low controlled connections such as, for
example, ATM ABR. The resource manager 222 1s also
responsible for mapping class and policy definitions for the
flows. Such class and policy definitions include resource
requirements (e.g., bandwidth, peak rate limits, buffer delay,
and jitter). Moreover, the resource manager 222 assigns
pre-established VCCs and flow state machine data structures
for VPC service due to the activation/deactivation of the
flows (e.g., layer-3 to layer-7 protocol flows such as IP).
Activation of tlows occurs upon data unit arrivals, or sig-
naling protocols (e.g., ATM SVC Signaling or Resource
RerserVation Protocol “RSVP”) that require a flow be
established. Deactivation of flows occurs upon timeouts for
flows (e.g., data unit arrivals not received for a predeter-
mined amount of time), or by signaling protocols such as
ATM SVC signaling and RSVP. The resource manager 222
1s coupled to a flow database 224 which contains the current
resource state (e.g., available bandwidth for allocation,
available buffers for allocation, etc.).

[0036] In addition, the flow database 224 includes other
parameters and state variables including, but not limited or
restricted to, Flow ID used to map, for example, a layer-3
protocol (e.g., IP) classified flow into a level-2 VCC, con-
nection shaping parameters and state (e.g., QoS parameters
such as peak and sustained bandwidth, maximum queuing
delay, maximum burst size, etc.), and connection scheduling
parameters and state (e.g., sustained rate). The resource
manager 222 allocates resources for flows and keeps track of
remaining resources using the flow database 224. It deter-
mines whether resources can be allocated to flows and
reclaims resources for flows no longer active.

[0037] In the case of ATM, an example of a resource
request to the resource manager 222 may include the fol-
lowing;:

[0038] (1) ATM connection index;

[0039] (2) ATM connection type (VPC or VCO);
[0040] (3) Virtual path identifier (“VPI”);

[0041] (4) Virtual connection identifier (“VCI”);
[0042] (5) Traffic contract (e.g., ABR, UBR, VBR,

CBR, GFR);

[0043] (6) Peak cell rate (“PCR”);

[0044] (7) Sustained cell rate (“SCR”);

[0045] (8) Minimum cell rate (“MCR”);

[0046] (9) Maximum cell burst size (“MBS”);

[0047] (10) Associated routing virtual interface number;
[0048] (11) Associated UNI number;

[0049] (12) Buffer allocation (e.g., number of buffers);
[0050] (13) ATM VCC endpoint function assignment

(c.g., AALS, AAL2, ILMI);
[0051] (14) Encapsulation Type (e.g., 1483, null, etc.);

Jun. 20, 2002

[0052] (15) Hierarchy Level-1 assignment (VPC,
VCO);

[0053] (16) Hierarchy Level-2 assignment (VCC,
AAL2VCC, AALS packet mode VCC); and

[0054] (17) Range of VClIs available within VPC (for
VPC service).

[0055] The connection management task 226, upon ini-
tialization, interfaces with the operating system 122 running
on the communication device 100 and reads the configura-
tion information 1n the connection database 124 to install the
user configurations (FIG. 1). If there is a VPC service to be
coniigured, the connection management task 226 issues a
request to the resource manager block 222 to install a level-1
flow (and requests a QoS) for the VPC. The resource
manager block 222 then establishes a level-1 flow and
assigns resources to the flow. The resource manager block
222 then sends a deny or confirmation message and a Flow
ID back to the connection management task block 226. A
deny message indicates that there are 1nsufficient resources
available if the request indicated to deny i the case of
insufficient resources. A confirmation message indicates that
there were either suflicient resources and a flow assigned, or
insufficient resources (e.g., less than requested resources)
and a flow assigned. A similar protocol 1s performed for
VCC service. The connection management task block 226
then noftifies the flow classification and routing block 218 of
the set of VPCs and VCCs (level-1 flows) that are set up to

be used by sending the Flow IDs of the VPCs and VCCs to
the same.

TRANSMIT SEGMENT

[0056] In the transmit segment, the forwarding API block
230 passes data units, Flow IDs, and/or requests for assign-
ment of Flow IDs and QoS from the flow classification and
routing block 218 to a fly-by flow admaission control block
232. The fly-by flow admission control block 232 performs
admission control for data unit arrivals for which there 1s no
assigned flow. This 1s required due to the connectionless
nature of many protocol layers (e.g., IP). For support of
packet classifications, the fly-by flow admission control
block 230 interacts with the flow classification and routing
block 218 to map protocol layer flows to level-1 or level-2
flows.

[0057] At initialization, the connection management task
226 creates pre-coniigured level-2 flows between the source
and destination node on which 1t can map a layer protocol
flow to the level-2 flow (e.g., mapping a new layer-3
protocol such as IP, or a layer-2 protocol such as frame relay
or PPP to a level-2 flow). Each pre-configured level-2 flow
1s 1mitially setup without any QoS parameters assigned to it.

[0058] The flow classification and routing block 218
passes data units and their corresponding Flow IDs to the
fly-by flow admission control block 232 for existing flows.
The fly-by flow admission control block 232 then forwards
the data units to the buffer management block 234 for
queuing.

[0059] To establish a new flow, the flow classification and
routing block 218 passes a resource request to the fly-by
flow admission block 232 for the QoS parameters for a new
flow. QoS parameters include, but are not limited or
restricted to, peak rate, sustained rate, delay, jitter, and

US 2002/0073040 Al

maximum burst size. In response to the resource request, the
fly-by flow block 232 attempts to acquire resources for the
flow by sending a request to the resource manager 222. The
resource manager 222 determines whether there are sufli-
cient resources such as bandwidth, buffers, connection iden-
tifiers, delay bounded routes, etc. to meet the desired QoS
associated with the flow, as indicated by the policy associ-
ated with the class. If suflicient resources exist, the fly-by
flow admission block 232 1s notified to acquire a level-2 tlow
out of a pool of available level-2 flows that have not been
assigned to protocol layers (e.g., layer-2 or layer-3 classified
flows). The fly-by flow admission block 232 then assigns to
the level-2 flow, the QoS parameters requested by the flow
classification and routing block 218 1n the QoS request. The
data unit 1s then forwarded to the bufler management block
234 for queuing. Consequently, the level-2 flow 1s active and
able to accept and queue data units. If there are msuflicient
resources, the flow may be denied or accepted on an
“all-others” flow (e.g., lower priority flow) as pre-deter-
mined by user configuration control.

[0060] When flow classification and routing block 218

wishes to terminate the protocol layer flow, 1t requests the
resource manager 222 to deactivate the level-2 flow. All
resources that were used by the level-2 flow are returned to
the resource pool and the flow 1s deactivated. When deac-
tivated, the level-2 flow 1s no longer available to be used
until 1t 1s reassigned to a new layer-3 or layer-2 flow.

[0061] The fly-by flow admission control block 232 has

the advantage over explicit out-of-band flow establishment
procedures such as ATM signaling or RSVP 1n that the data
unit 1s not delayed by the out-of-band flow establishment
process that requires communication between networking,
devices. Thus, with the fly-by flow admission block 232, the
first data unit to establish a flow 1s not delayed and can be
immediately forwarded to the network port. This makes
applications such as Voice over IP a reality in the WAN.

[0062] Resources assigned to level-1 flows can be parti-
tioned for purposes of limiting access. The sum of the
resource partitions 1s equal to the resource assignment to the
level-1 flow. For example, a level-1 flow may have two
resource parfitions, one for agency A and one for agency B
(c.g., for separate LAN networks). Through flow classifica-
fion, data units can be 1dentified as being members of agency
A or B. Thus, when a new data unit stream 1s 1dentified, the
new flow 1s created from the resource partition assigned to
that classification type. In this way, agency A can be limited
in the amount of resources that are drawn from the level-1
flow so as not to block resources from being allocated to
flows belonging to agency B. Likewise, agency B has its

own resource partition to draw from as not to block agency
A.

[0063] Once a flow has been established, the buffer-
management block 234 determines whether the queue has
sufficient space for the data unit. If not, the data unit is
discarded. If so, the data unit 1s queued in the data unit
queues 236 associated with the flow. A queue 1s assigned to
cach tlow. The queue operates as a FIFO and can accept
packet, frames, and cells.

[0064] Queues/buffers are allocated for each VPC, VCC,
or UNI. This 1s used to prevent connections from depleting
the bufler pool thus blocking other connections from being
able to queue data for transmission. It can also be used to

Jun. 20, 2002

bound the queuing delay for a flow. A flow only uses the
buffers allocated to the associated VPC, VCC, or UNI. If a

flow depletes 1ts bufler allocation, even though there are
available buflfers in the system, the data unit 1s discarded. For
cases where there are a relatively large number of connec-
tions and/or interfaces, buifer allocation can be configured
so that the buffers are over-allocated. This results 1n more
buffers being available on a statistical basis with a chance

that a flow might not at times be able to use 1ts allocation.
For example, 10,000 buffers are allocated to a UNI. As long

as a majority of the connections are i1dle or have not used
their entire buffer allocation, active connections can queue

more packets and cells than if their buffer allocation were
limited to 100 buffers.

[0065] The queues 236 are coupled to a two-tiered hier-
archical shaper/scheduler block 238, having a hierarchy
level-1 shaper/scheduler and a hierarchy level-2 shaper/
scheduler, that selects a tlow for service. If the packet arrives
into a non-empty queue, the flow has already been scheduled
and no further action 1s required. That 1s, once a packet 1s
queued, the flow associated with the packet 1s sent to the
shaper/scheduler block 238 for shaping and scheduling. The
shaper/scheduler block 238 1s mnvoked periodically to ser-
vice the queues 236. When a flow 1s selected for output, the
assoclated output adaptation processing assigned to the flow
1s performed and the data 1s delivered to an output port. For
example, for ATM, the output function 1s the ATM encap-

sulation layer block 240 which applies the RFC 1483 header
to the packet. The packet 1s then passed to the ATM
adaptation layer block 242 which segments packets into
cells and outputs the cells.

[10066] FIG. 3A illustrates one embodiment of the classi-
fication technique provided in accordance with the prin-
ciples of the invention, while FIG. 3B illustrates one
example of Axis Preprocessing technique provided 1n accor-
dance with the principles of the invention. FIG. 4 illustrates
details of functional blocks within the flow classification and
routing block 218 according to one embodiment of the
mvention. With reference to FIG. 4, the flow classification
and routing block 218 comprises a flow classification block
300, an IP forwarding block 310 and a flow assignment
block 320 and a flow management block 340. In one
embodiment, the data (e.g., the tables) used for classification
and searching may be stored 1n internal memory, €.g., 1n data
RAM 110. In alternate embodiments, the data may be stored
in external memory 120. The flow classification block 300
uses a series of searches to assign each incoming PDU to a
“class.” The class assignment determines the quality of
service (QoS) for a particular flow. One embodiment of the
process and system for processing the flow based upon class
assignments 1s described 1n co-pending application Ser.
No. , entitled “Admission Control, Queue Manage-
ment and Shaping/Scheduling for Flows,” filed concurrently
herewith, and assigned to the assignee of the present inven-
tion, the contents of which are incorporated herein by
reference. In one embodiment, the first search locates class
information for both source and destination IP addresses.
This search also locates next hop routing information for the
destination address, which 1s passed to the IP forwarding
block 310. Other searches are used to locate classing infor-
mation for UDP/TCP ports, protocol bye and DS/protocol
byte values. The classing information from each search 1s
added together to form a “sum of products” value which
represents the PDU’s class. This final value 1s found 1n a
binary range tree,

US 2002/0073040 Al

which returns the class descriptor. Details of the binary
range tree search are described mm FIGS. 5A, 5B and the
accompanying text.

[0067] The classification technique of the present inven-
fion first defines the class available for classifying each
PDU. The classes may be defined 1n terms of: Source IP
Address Ranges, Destination IP Address Ranges, DS/TOS
byte ranges (Differentiated Services/Type of Service), Well
known applications (destination port number for registered
applications), Protocol (UDP, TCP, etc.), Destination Port
Number ranges or Source Port Number Ranges. It 1s under-
stood that the classes may be defined by other parameters, or
by a greater or lesser number of parameters. For present
discussion purposes, and as shown 1 FIG. 3A, two classes
are defined based on three parameters, RA, RB and RC. For
example, parameters RA may be divided into three ranges,
RA0, RA1l and RA2; parameters RB may be divided ito
three ranges, RB0, RB1, RB2; and parameters RC may be
divided into three ranges RC0, RC1 and RC2. It 1s under-
stood that each range may include a greater or fewer number
of ranges. Each range has a plurality of values, each of

which 1s associated with particular information or data
related to the flow.

[0068] Preprocessing begins by “projecting” each upper
and lower limit value of the ranges from each class, onto an
“ax1s. In the example shown 1n FIG. 3A, the upper and
lower limit value of range RA0 are Al and A0 respectively;
and the upper and lower limit value of range RA1 are A2 and
Al respectively. Various points may be similarly located on
cach axis representing the ranges, as shown in FIG. 3A.

[0069] Since there are three ranges, RA, RB and RC, each
set of three points, one on each axis 1s used to create ranges,
and then each range 1s numbered from 0 to NA (for range
RA), from 0 to NB (for range RB) and from 0 to NC (for
range RC), where NA, NB and NC are positive integers. The
axis with the largest number of ranges becomes the least
significant axis (LSA). In the present example, RC is the
least significant axis, since it has 3 ranges, while RA has one
range and RB has 2 ranges.

[0070] The range number on each axis becomes the “tag”
value for the axis® search process. Before saving the “tag”
value 1nto the search tree, 1t 1s first preshifted so when
logically OR’ed with the “tag” values from the other
scarches, a unique result 1s formulated. The amount of the
preshift depends on whether the axis i1s the LSA or not. If the
axis 1s the LSA, 1t 1s not preshifted, so it’s “tag” value gets
placed not the least significant bits of the result, thus creating
the maximum number of ranges (since the LSA is the axis
with the maximum number of ranges in it). If the axis is not
the LSA, it is shifted by an amount so that «“2°Meovnt=

maximum number of ranges 1n the LSA.”

[0071] In the example shown in FIG. 3A, the range values
for Class 1 and 2 are as follows:

Range Value on Axis Class 1 Class 2
RA RAQO RA1
RB RBO RB1
RC RCO RC2

Jun. 20, 2002

[0072] Each axis’ tag values are numbered in sequential
order starting at 0, so the tag values associated with each
range value would be:

Axis Class 1 Class 2

RA 0 1 or binary 01
RB 0 1 or binary 01
RC 0 2 or binary 10

[0073] Since axis RC has the most number of ranges, it
becomes the LSA, and its values thus are not preshifted. The
axis’ are sorted by their range count values, so the order of

these three axis, from least to most significant, becomes:

RC Least significant axis (LLSA)
RA 2°
RB Most significant 2>

[0074] Since axis RC has 3 range/tag values, axis RA
values must be preshifted by an amount equal to or greater
than 3. Since this 1s a binary shift, the possible shift values
are 1, 2, 4, 8, etc. which correspond to 2" values where ‘n’

1s the shift amount. So, axis RA’s tag values would be
preshifted by 2 bits (27=4).

[0075] Axis RB’s tag values must be preshifted by an
amount equal to or greater than the shift amount of axis RC,

plus the total number of ranges on RA, which is 2°+2=6. So,
axis RB’s tag values would be shifted by 3 bits (2°=8).

[0076] So, the resulting preshifted values would be:

AXIS Class 1 Class 2

RA 0 4 or binary 100
RB 0 8 or binary 1000
RC 0 2 or binary 10

[0077] Now, suppose a PDU 1is received which has values
which fall into the following ranges:

0078
10079
[0080] wvalue 3 from PDU is within range RC2.

value 1 from PDU is within range RAOQ.

value 2 from PDU is within range RBI1.

|0081] The preshifted tag values for each of these are then
ORed together:

[0082] 0 OR 8 OR 2=10

|0083] The value 10 is then found in the Final Classifica-
tion Binary Range Tree which yields the “class” designation
for the PDU, which 1n the case of FIG. 3A, would be class
2.

|0084] The preshifted values are stored in the correspond-
ing nodes of a Binary Range Tree (see FIGS. 5A, 5B and
accompanying text), so when a value i1s found within the
range, the range’s preshifted “tag” value 1s located. Since the
values are preshifted, the only additional processing

US 2002/0073040 Al

required 1s to OR them together to form a final “tag” value.
This final “tag” value 1s finally found 1n a Binary Range Tree
which results 1n the actual “class” for the PDU.

10085] FIG. 3B illustrates a simple example of the clas-
sification system provided 1n accordance with the principles
of the invention. In this example, the classification system 1s
based only on source and destination IP addresses. As shown
in FIG. 3B, three classes are defined as follows:

[0086] Class 1=Any PDU from IP addresses 192.1.1.1 to
2.1.5.255, and destined for any IP address in the range
192.1.1.1 to 255.255.255.255.

[0087] Class=Any PDU from IP addresses 192.1.1.1 to
200.1.5.255, and destined for any IP address in the range
200.1.5.1 to 200.1.5.255.

[0088] Class 3=Any PDU from IP addresses 192.1.1.1 to
192.1.1.255, and destined for any IP address in the range
192.1.1.1 to 192.1.1.255.

[0089] Preprocessing begins by “projecting” each upper
and lower limit value, from each class, onto an 1maginary
“axis,” as 1llustrated at the top of F1G. 3B. For the 3 class

definitions, this results 1n the following “points” on each
“axis.”

[0090] On the “Source IP Axis:”

[0091] Point 1=0.0.0.0 (this is always assumed to be
there)

[0092] Point 2=192.1.1.1 (lower value from all 3
classes)

[0093] Point 3=192.1.1.255 (upper value from class
3)

[0094] Point 4=200.1.5.255 (upper value from all
three classes)

[0095] Point 5=255.255.255.255 (this 1s always
assumed to be there)

[0096] On the “Destination IP Axis:”
[0097] Point 1=0.0.0.0 (this is always assumed to be

there)

[0098] Point 2=192.1.1.1 (lower value from classes 1
& 3)

[0099] Point 3=192.1.1.255 (upper value from class
3)

[0100] Point 4=200.1.5.1 (lower value from class 2)

[0101] Point 4=200.1.5.255 (upper value from class
2)

[0102] Point 5=255.255.255.255 (upper value from
class 1)

10103] Each set of two points on each axis is used to create
ranges, and then each range 1s numbered form 0 to n. The
following ranges are produced from the above example:

[0104] On the “Source IP Axis:”
[0105] Range 0=0.0.0.0 to 192.1.1.0
[0106] Range 1=192.1.11 to 192.1.1.255
[0107] Range 2=192.1.2.0 to 200.1.5.255

Jun. 20, 2002

[0108] Range 3=200.1.6.0 to 255.255.255.255
[0109] On the “Destination IP Axis:”

[0110] Range 0=0.0.0.0 to 192.1.1.0

[0111] Range 1=192.1.1.1 to 192.1.1.255
[0112] Range 2=192.1.2.0. to 200.1.5.0
[0113] Range 3=200.1.5.1. to 200.1.5.255
|0114] Range 4=200.1.6.0 to 255.255.255.255

|0115] The axis with the largest number of ranges
becomes the least significant axis (LSA). In this example,
the LSA would be the “Destination IP Axis” since it has 5

ranges compared to only 4 on the “Source IP Axis.”

[0116] The range number on each axis become the “tag”
value for the axis” search algorithm. Before saving the “tag”
value 1nto the search tree, 1t 1s first preshifted so when
logically ORed with the “tag” wvalues from the other
searches, a unique result 1s formulated. The amount of the
preshift depends on whether the axis 1s the LSA or not. If the
axis 1s the LSA, 1t 1s not preshifted, so it’s “tag” value gets
placed not the least significant bits of the result, thus creating
the maximum number of ranges (since the LSA 1is the axis
with the maximum number of ranges 1n it). If the axis is not
the LSA, it is shifted by an amount so that “2°"teornt=
maximum number of ranges 1n the LSA.” Since the LSA in
this example has 5 m ranges, the other axis” “tag” values are

shift by 3 bits (2°=8 which is greater than 5 ranges in the
LSA).

[0117] In particular, each axis’ tag values (except for the
[LSA) are shifted by an amount equal to the maximum
number of bits required to represent the maximum tag value
for each axis which has lower significance than the axis in
question. In the above example, the LSA (the Destination IP
Address Axis) has a maximum tag value of 4 (where 0, 1, 2,
3, 4 are the values of each tag). A “4” requires 3 bits to
encode (binary 100=decimal 4). As a result, each tag value
for the non-LSA (the Source IP Address Axis) is shifted left

by 3 bits. This 1s the same as multiplying each tag value by
2°=8.

[0118] The preshifted values are stored in the correspond-
ing nodes of the Binary Range Tree, so when a value is
found within the range, the range’s preshifted “tag” value 1s
located. Since the values are preshifted, the only additional
processing required 1s to OR them together to form a final
“tag” value. This final “tag” value 1s finally found in a
Binary Range Tree which results 1n the actual “class” for the
PDU. Thus, in the present example, Source IP tag values 0,
1, 2 and 3 become 0, 8,16 and 24 respectively, which are
then stored 1n the classification tables.

[0119] If a PDU is classified so that its Source IP address

matches Class 3, the value read from the Source IP table
would be 8 (tag value of 1 shifted by 3 bits). If the same
PDU’s Destination IP address matches class 2, the value

read from the Destination IP table would be 3 (tag value is
3, which 1s not shifted because the destination axis 1s the

[L.SA). These two values are combined to form 8+3=11. The
value 11 1s then found 1n the final classification binary range
tree.

[0120] With reference to FIG. 4, the IP forwarding block
310 uses the next hop information resulting from the PDU’s

US 2002/0073040 Al

classification to rout the PDU. The routed PDU, along with
the class definition, LIP list and network address informa-
fion, 1s passed to the flow assignment block 320.

[0121] The flow assignment block 320 utilizes the class
descriptor found by the flow classification block 300 to
locate the outbound flow ID for a PDU. The PDU 1s
provided to the forwarding API block 230 in the Queuec
Control/Transmit (QCT) module 205, along with its flow 1D,
LIF list and class definition information. If the flow ID 1s
valid the QCT module 205 queues the PDU and returns a
“successtul” indication. If the flow ID was either invalid
(dropped by the QCT module 205) or nonexistent (1.e., it 1S
a new flow), the QCT module 205 will attempt to assign a
flow ID. If successful, the new flow ID 1s returned 1s
returned to the flow assignment block, which then saves the
information 1n the original class descriptor. If a flow ID
could not be assigned, the QCT module 205 retries trans-
mission using the “all others™ class.

10122] The flow management block 330 generates and
updates a set of tables (indexed by protocol, DS byte and
port values) to be used by the flow classification block 300.
In one embodiment, the set of tables imnclude a class defini-
tion table 332, a policy definition table, and a pipe definition
table 336. The tables 332,334 and 336 facilitate efficient
assignment of an incoming PDU to a “class”. The tables 332,
334 and 336 also assign a class descriptor value to each
PDU, which 1s passed in the buffer descriptor. The flow
management block 340 also creates class descriptors 340 to
be used by the flow assignment block 320. The class
descriptors 340 are referenced by the classification tables
304. The flow assignment block 330 uses the class descrip-
tors 340 to locate an outbound flow ID for a PDU.

10123] The QCT module 205 sends “events” such as
bandwidth changes, to the flow management block 330.
These events may cause the class descriptors 340 to be
rebuilt due to changes 1n policies, as described 1n detail in
the followmg sections. The flow management block 330 also
handles tratfic management requests.

[0124] More particularly, the flow classification block 300
processes up to a predetermined number of PDUs 1n parallel,
assigning cach to a class. For discussion purposes, the
predetermined number of PDUs 1s 4, although 1t 1s under-
stood that a greater or lesser number of PDUs may be
processed 1n parallel in accordance with the principles of the
present invention. The flow classification block also obtains
the destination routing information, which 1s saved 1n a
buffer descriptor (where?) for later use by the IP forwarding
block 310. If the flow classification block 300 determines
that a PDU must be discarded, 1t 1s marked in the buffer
descriptor. The flow assignment block 320 will subsequently
discard the PDU. The resulting class information 1s stored in
the buifer descriptor, which the flow assignment block uses
to assign the PDU to a speciiic flow.

[0125] Each type of traffic to be identified by the flow
classification block 300 must be defined by a class defini-
fion. A class definition will allow a system administrator to
specily the IP address range, protocol values, DS byte values
and UDP/TCP port values to be i1dentified in forwarded IP
PDUs, which then becomes part of the class. -In one
embodiment, there are 1024 different classes. One or more
of the following criteria can be combined to form a template
for the PDUs associated with a class:

Jun. 20, 2002

[0126] Source IP Address Ranges
[0127] Destination IP Address Range
[0128] DS/TOS byte range (Differentiated Services/

Type of Service

[0129] Well known application (destination port
number for registered applications)

[0130] Protocol (UDP, TCP, etc.)
[0131] Source Port Number Range
[0132] Destination Port Number Range

[0133] By default, an “all others” class is defined which

will match any incoming PDU and use a “best etfort” policy
for delivery. User defined classes will essentially be included
in the “all others™ class.

[0134] The class definition table 332 allows a class of IP
PDUs to be defined. Table 1 (See Appendix) illustrates one

example of the table objects and their usage. In one embodi-
ment, the table 1s instanced by the ClassDefinitionIndex.

[0135] The policy definition table 334 associates a class
definition with a pipe definition. In one embodiment, there
are 2048 ditferent policies. One or more of the following
criterita can be combined to form a policy which will
assoclate a pipe definition with a class definition:

(0136

Outgoing priority value for queuing,

[0137] Outgoing DS byte value
[0138] Bandwidth allowed for each flow within the
class

[0139] Discard priority
[0140] Table

[0141] 2 (See Appendix) illustrates an example of the
Policy Definition Table, which 1s instanced by Poli-
cyDefinitionlndex.

[0142] The pipe definition table 336 creates a slice of the
available circuit’s bandwidth (e.g., in the case of ATM, the
VCC), which can be mapped to classes of incoming data. A
single pipe definition causes a single flow aggregate to be
created within QCT module’s 205°s level 2 scheduler. In one
embodiment, there are 1024 different pipe definitions. The
following criteria 1s defined for each pipe:

[0143] Logical interface

[0144] WAN circuit identifier (or O for a LAN inter-
face)

[0145] Percentage of bandwidth to assign to the pipe

[0146] Maximum queuing delay allowed on pipe.

[0147] Table 3 (See Appendix) illustrates one embodiment
of the pipe definition table 336. The table 1s instanced by
PipeDefinitionIndex.

[0148] To classify PDUs, several searches are performed.
The first search uftilities a Routing Table 302 to locate
classing i1nformation based on source and destination IP
addresses. In one embodiment, the search engine for this
scarch 1s based on the Binary Range Tree search process of
the present invention, as discussed 1n detail in the following
sections. In one embodiment, the routing table 302 stores

US 2002/0073040 Al

routing information. In an alternate embodiment, the routing
table 302 stores both routing and classing mmformation. In

one embodiment, the routing table 302 1s shared between the
flow classification and IP forwarding blocks 300 and 320.

[0149] The other searches locate classing information
based on UDP/TCP ports, DS and protocol bytes. In one
embodiment, these engines utilize an “array look-up” search
technique, as known by one of skill in the art, to conduct the
other searches. The flow classification tables 304 are used by
the “array look-up” search techmique to locate classing
information based on UDP/TCP ports and DS/protocol
bytes.

[0150] The PDUs classified by the flow classification
block 300 are forwarded, along with their associated routing,
information, to the IP forwarding block 310. The IP for-
warding block 310 identifies an outbound LIF for each
received PDU and then passes this information to the flow
assignment block 320. The PDUs are then forwarded to the
QCT module 205. As described earlier, if the flow assign-
ment block 320 determines that a PDU must be discarded,

it 1s marked 1n the buffer descriptor. The flow assignment
block 320 will subsequently discard the PDU thus marked.

[0151] FIG. 5A illustrates one embodiment of a search
process flow provided in accordance with the principles of
the present invention. The search process flow 500 facilitates
searching of data corresponding to various parameter ranges
of incoming PDUs. An example of the ranges to be searched
includes the IP Address of the incoming PDUs. The data
associated with the IP address ranges are stored within the
CPU’s 105’s internal memory, such as in cache memory.
Data outside of the IP address ranges may be stored in

SRAM 120 or other 1n other memory locations external to
the CPU 105.

[0152] The search process involves determining if the
value k associated with the incoming PDU 1s located 1n any
one of the stored ranges located 1n the CPU’s 105°s mternal
memory. If so, data associated with the stored ranges may be
ciiciently retrieved. Each set of stored ranges 1s located 1n
a node of a tree, with the search progressing from a root or
upper level node to a secondary or lower level nodes. The
search process tlow 500 operates as follows. Beginning from
a start state, the process 500 proceeds to decision block 502,
where it determines if the node is null (i.e., contains no data).
If so, the process 500 proceeds to process block 504, where
it returns a default result. In one embodiment, the default
result 1s to assign the PDU having the value k to an “all
others class”. In this case, best efforts will be used to
transport the corresponding PDU. If the node 1s not null, the
process 500 proceeds to read the node’s range, as shown 1n
process block 506. The process 500 then advances to process
block 508, where 1t queries 1f k 1s less than the node’s range.
If so, the process 500 proceeds to process block 510, where
it Selects to proceed to a node having a range that 1s less than
the current node. The process 500 then returns to decision
block 504. Otherwise, the process 500 proceeds to decision
block 512, where 1t determines if k 1s greater than the node’s
range. If so, the process 500 proceeds to process block 514,
where 1t selects to proceed to a node having a range that 1s
oreater than the current node. The process 500 then proceeds
to decision block 504. Otherwise, the process 500 proceeds
to process block 516, where 1t returns the result from the
node 1n which k 1s found. For example, data associated with
k, as found within the node, 1s returned. The process 500 1s
then terminated.

Jun. 20, 2002

[0153] FIG. 5B is a diagram that illustrates one example
of the search process of FIG. 5A. In this example, the value

k (such as the IP address ranges) and the corresponding data
are stored 1n 1internal memory of CPU 105. These IP address
ranges include range 192.1.1.1-192.1.1.255, 193.1.1.1-

193.1.1.255, 200.255.1.1-200.255.255.255, 191.1.0.1-
191.1.0.255, 192.1.0.1-192.1.0.255 and 163.1.1.1-
163.1.1.255. The process 3550 begms the search by

determmmg if the IP address of the incoming PDU 1s located
in range 192.1.1.1-192.1.1.255 (block 552). If so, the data
corresponding to the IP address located in range 192.1.1.1-
192.1.1.255 1s retrieved. Otherwise, the process 5350 pro-

ceeds to search 1n ranges that are both greater than and less
than range 192.1.1.1-192.1.1.255.

[0154] For example, the process 350 may proceed to
search in the range 193.1.1.1-193.1.1.255 (block 554). If the
IP address 1s found to be in that range, the corresponding

data 1s retrieved. Otherwise, the process 550 proceeds to
scarch 1n the range 200.255.255.255. If the IP address is

found 1n the range 200.255.255.255, the corresponding data
1s retrieved. Otherwise, a default search result 1s returned.

[0155] The process 350 may also proceed to search in the
range 191.1.0.1-191.1.0.255 (block 558). If the IP address is
found to be 1n that range, the corresponding data is retrieved.
Otherwise, the process 550 proceeds to search in ranges that
are both greater than or less than that of range 191.1.0.1-
191.1.0.255. For 1instance, the process 550 may search 1n the
range 192.1.0.1-192.1.0.255. If the IP address 1s found to be
in that range, the corresponding data 1s retrieved. Otherwise,
the process 550 returns a default search result. The process
550 may also search in the range 163.1.1.1-163.1.1.255.
Similarly, if the IP address i1s found to be 1n that range, the
corresponding data 1s retrieved. Otherwise, the process 550
returns a default search result.

[0156] In the example of FIG. 5B, a binary range search
tree that 1s 3 levels deep 1s discussed. It 1s understood that
any number of levels that are greater or less than that may
be implemented for searching purposes. It has been deter-
mined that binary range searches of up to 6 levels may be
implemented and stored in the internal memory of a pro-
cessor such as cache memory, while providing efficient
scarching. This aspect of the invention thus facilitates effi-
cient secarching and identification of incoming data while
maintaining the worst case and average case search times
deterministic and within the bounds required by the appli-
cation.

[0157] The present invention thus provides a classification
system and method by implementing Axis Preprocessing in
combination with a Binary Range Tree searching technique.
The Binary Range Tree searching technique allows large
ranges of contiguous values to be search using a minimal
number of tree “nodes”, while the Axis Preprocessing tech-
nique assures that the maximum number of contiguous
ranges 1s generated 1n the final “class” search step.

[0158] While certain exemplary embodiments have been
described and shown 1n the accompanying drawings, it 1s to
be understood that such embodiments are merely 1llustrative
of and not restrictive on the broad invention, and that this
invention not be limited to the speciiic constructions and
arrangements shown and described, since various other
modifications may occur to those ordinarily skilled in the art.

US 2002/0073040 Al Jun. 20, 2002
10

TABLE 1A
Object Type Permissions Description
ClassDefinitionIndex Unsigned Read Only The index value for this Class Definition (1-
Long 1024)
ClassDefinitionAlias Octet Read/Write An alias to assign to this class
String
ClassDefinitionParentClassID Unsigned Read/Write Parent class definition if using a hierarchy of
Long classes.
ClassDefinitionFlowType Enum Read/Write The type of flow . . . NORMAIL, CHANNELED,
DIFFSERVINGRESS, DIFFSERVNODE,
DIFFSERVEGRESS, or DELETE. Set to
DELETE to remove this Class Definition from
the table.
ClassDefinitionSourceIPMask [P address Read/Write The value to mask each source IP address with
before checking its range. (not valid for
DIFFSERVNODE or DIFFSERVEGRESS
types)
ClassDefinitionDestIPMask [P address Read/Write The value to mask each destination IP address
with before checking its range . . . (not valid for
DIFFSERVNODE or DIFFSERVEGRESS
types)
ClassDefinitionSourcelPLower [P address Read/Write The first source [P which is within the range . . .
Bound (not valid for DIFFSERVNODE or
DIFFSERVEGRESS types)
ClassDefinitionSource[PUpper [P address Read/Write The last source IP which 1s within the range . . .
Bound (not valid for DIFFSERVNODE or
DIFFSERVEGRESS types)
ClassDefinitionDestIPLower [P address Read/Write The first destination IP which 1s within the
Bound range . . . (not valid for DIFFSERVNODE or
DIFFSERVEGRESS types)
ClassDefinitionDestIPUpper [P address Read/Write The last destination IP which i1s within the range . . .
Bound (not valid for DIFFSERVNODE or

DIFFSERVEGRESS types)
ClassDefinitionDSLowerBound Unsigned Read/Write The first DS/TOS byte value which 1s within

Byte range.
ClassDefinitionDSUpperBound Unsigned Read/Write The last DS/TOS byte value which 1s within
Byte range. (not valid for DIFFSERVNODE or
DIFFSERVEGRESS types)
ClassDefinitionWellKnownAppli- Enum Read./Write The “well known application” value (see 4.1.1),
cation or Oxff if not used . . . (not valid for
DIFFSERVNODE or DIFFSERVEGRESS
types)
ClassDefinitionProtocol Enum Read/Write (Valid if ClassDefinitionWellKnownApplication

is not used) . . . TCP, UDP, TCPUDP, rfc1700
defined protocols, or ANY . . . (not valid for

[0159]
TABLE 1B

DIFFSERVNODE or DIFFSERVEGRESS
types)

ClassDefinitionSourcePortLower Unsigned Read/Write (Valid if ClassDefinitionWellKnownApplication

Bound Short is not used) . . . The first source port value which
is within range . . . (not valid for
DIFFSERVNODE or DIFFSERVEGRESS
types)

ClassDefinitionSourcePortUpper Unsigned Read/Write (Valid if ClassDefinitionWellKnownApplication

Bound Short is not used) . .. The last source port value which
is within range . . . (not valid for
DIFFSERVNODE or DIFFSERVEGRESS
types)

ClassDefinitionDestPortLower Unsigned Read/Write (Valid if ClassDefinitionWellKnownApplication

Bound Short is not used) . .. The first destination port value
which is within range . . . (not valid for
DIFFSERVNODE or DIFFSERVEGRESS
types)

ClassDefinitionDestPortUpper Unsigned Read/Write (Valid if ClassDefinitionWellKnownApplication

Bound Short is not used) . .. The last destination port value
which is within range . . . (not valid for

DIFFSERVNODE or DIFFSERVEGRESS
types)

US 2002/0073040 Al

ClassDefinitionSLAMonitorRate

ClassDefinitionSLLAAlarmRate
ClassDefinitionSLAAlarmThreshold

ClassDefinitionLIFAgingTime

[0160]

Object

PolicyDefinitionIndex
PolicyDefinitionAlias

PolicyDefinitionType

PolicyDefinition LIF
PolicyDefinitionStartTime
PolicyDefinitionEndTime
PolicyDefinitionDayofWeek

PolicyDefinitionPipelD

PolicyDefinitionClassID

PolicyDefinitionChannel Bandwidth

PolicyDefinitionChannelized

PolicyDefinitionOutboundDSValue

PolicyDefinitionPriority

PolicyDefinitionEvent

11

TABLE 1B-continued

Unsigned

Short

Unsigned

Long

Unsigned

Long

Unsigned

Long

Type

Unsigned
Long
Octet
String
Enum

Unsigned
Long
Time of
Day
Time of
Day
Unsigned
Byte
Unsigned
Long
Unsigned
Byte
Unsigned
Long

Boolean

Unsigned
byte

Unsigned
byte

Enum

Read/Write The interval (in seconds) between SLA
monitoring. A value of 0 disables SLA
monitoring for this class.

Read/Write The minimum interval (in seconds) between
SLA alarms.

Read/Write The number of alarm conditions which must
occur before an actual alarm 1s generated.

Read/Write The number of milliseconds to use as an aging
time for Flow ID information saved for a LIF.
This aging time 1s also used for classification
information which is automatically created for a
channelized flow.

TABLE 2

Permissions Description

Read Only The index value for this Policy Definition (1—
1024).

Read/Write An alias to assign to this policy

Read/Write ~ NORMAL, DIFFSERVINGRESS,
DIFFSERVNODE, DIFFSERVEGRESS,
DISCARD, or DELETE. Set to DELETE to
remove this Policy Definition.

Read Only The logical interface this relates to.

Read/Write The time this policy comes into effect.

Read/Write The time this policy goes out of effect.

Read/Write Bit flags corresponding to each day of the
week . . . (Bits 0—6 = Monday—Sunday).

Read/Write The Pipe to associate with this Policy.

Read/Write The Class to associate with this Policy.

Read/Write The bandwidth allowed for each flow over this
Class/Policy. Only valid 1s
PolicyDefinitionChannelized 1s set TRUE.

Read/Write Set TRUE 1f this Policy defines channelized
flows over the specified Pipe. This causes each
new flow to be given a unique “slice” of the
available bandwidth, as defined by
PolicyDefinitionChannelBandwidth. If FALSE,
then all flows use the Pipe’s bandwidth on a
first-come-first-served basis.

Read/Write The DS byte value to set 1n outbound PDUS, or
NA if no replacement is to be performed. (valid
only is set to DIFFSERV).

Read/Write The relative priornity of PDUSs using this Policy
with respect to other Policies.

Read/Write STATIC - the Policy 1s always 1n effect unless

superceded by another. The Policy becomes the
default. TIME - the Policy goes into effect and
goes out of effect based on the Time and Day
values specified. REDUCEDBW - the Policy
goes 1nto effect if the Pipe’s bandwidth 1s
reduced by the physical interface.
INCREASEDBW - the Policy goes into effect if
the Pipe’s bandwidth 1s increased by the

physical interface.

Jun. 20, 2002

US 2002/0073040 Al

Jun. 20, 2002

[0161]
TABLE 3

Object Type Permissions Description

PipeDefinitionIndex Unsigned Read Only The index value for this Pipe Definition (1—
Long 1024).

PipeDefinitionType Enum Read/Write ~ VALID - the Pipe 1s valid. DELETE - to

remove the Pipe Definition.

PipeDefinitionAlias Octet Read/Write An alias to assign to this Pipe.
String

PipeDefinition LIF Unsigned Read/Write The logical interface this Pipe is using.
Long

PipeDefinitionCircuttID Unsigned Read/Write The ID of the circuit this Pipe 1s using.
Long

PipeDefinitionBandwidth Unsigned Read/Write

The amount of the circuit’s bandwidth to assign

Long to this Pipe. If the value 1s <= 100, 1t 1s
considered to be a “percentage” value. If the
value 1s > 100, 1t 1s considered to be a “bits per

sec” value.

PipeDefinitionDelay Unsigned Read/Write

Long Pipe.

What 1s claimed 1s:
1. A method for searching information, comprising:

defining a first node having a first range, a second node
having a second range that 1s either less than or greater
than said first range, each of said first and second
ranges having a plurality of range values, each of said
range values having data associated therewith;

rece1ving mnformation having a value;

determining 1f said value 1s located 1n said first node, 1f so,
retrieving data associlated with said value, otherwise
determining 1f said value 1s located 1n said second node;

retrieving data associlated with said value if said value 1s
located 1n said second node.

2. The method of claim 1, wherein 1n the act of retrieving
data, providing a default result if said value 1s not located 1n
said second node.

3. The method of claim 1, wherein 1n the act of retrieving
data, said default result 1s a predetermined value.

4. The method of claim 2, further comprising defining a
third node having a having third and fourth ranges, said third
range being less than said second range, said fourth range
being greater than said second range, each of said third and
fourth ranges having a plurality of range values, each of said
range values having data associated therewaith;

determining if said value 1s located 1n said third node, if
s0, retrieving data associated with said value, otherwise
determining 1if said value 1s located 1n said fourth node;

retrieving data associated with said value 1f said value 1s
located m said fourth node, otherwise providing a
default result.

5. The method of claim 4, wherein 1n the act of retrieving,
the default result 1s a predetermined value.

6. A computer program product comprising:

a computer usable medium having computer program
code embodied therein for searching for information 1n
a processing unit, the computer program product hav-
Ing:

The maximum allowable queuing delay for this

(a) computer readable program code for defining a first
node having a first range, a second node having a
second range that is either less than or greater than said
first range, each of said first and second ranges having
a plurality of range values, each of said range values
having data associated therewith;

(b) computer readable program code for receiving infor-
mation having a value;

(¢) computer readable program code for determining if
said value 1s located 1n said first node, if so, retrieving
data associated with said value, otherwise determining
if said value 1s located 1n said second node; and

(d) computer readable program code for retrieving data
assoclated with said value if said value 1s located 1n said
second node.

7. The computer program product of claim 6, wherein 1n
(d), said computer readable program code, provides a default
result 1f said value 1s not located 1n said second node.

8. The computer program product of claim 8, wherein
in(d), said default result is a predetermined value.

9. The computer program product of claim 7, wherein said
computer program code further defines a third node having
a having third and fourth ranges, said third range being less
than said second range, said fourth range being greater than
said second range, each of said third and fourth ranges
having a plurality of range values, each of said range values
having data associated therewith;

determines if said value 1s located 1n said third node, if so,

retrieving data associlated with said value, otherwise
determining 1if said value 1s located 1n said fourth node;

retrieves data associated with said value if said value 1s

located 1n said fourth node, otherwise providing a
default result.
10. The computer program product of claim 9, the default
result 1s a predetermined value.
11. A system comprising;

a processor having a processing unit;

a memory module coupled to said processor, said memory
module having instruction sequences to cause said
processor to:

US 2002/0073040 Al

define a first node having a first range, a second node
having a second range that 1s either less than or
oreater than said first range, each of said first and
second ranges having a plurality of range values,

cach of said range values having data associated
therewith;

receive information having a value;

determine 1f said value 1s located 1n said first node, 1if
50, refrieving data associated with said value, other-
wise determining if said value 1s located 1n said
second node;

retrieve data associated with said value if said value 1s
located 1n said second node.

12. The system of claim 11, wheremn in the act of
retrieving data, providing a default result if said value 1s not
located 1n said second node.

13. The system of claim 11, wherein 1n the act of
retrieving data, said default result 1s a predetermined value.

Jun. 20, 2002

14. The system of claim 12, further comprising defining
a third node having a having third and fourth ranges, said
third range being less than said second range, said fourth
range being greater than said second range, each of said third
and fourth ranges having a plurality of range values, each of
sald range values having data associated therewith;

determining 1f said value 1s located 1n said third node, 1f
s0, retrieving data associated with said value, otherwise
determining if said value 1s located 1n said fourth node;

retrieving data associated with said value if said value 1s
located 1 said fourth node, otherwise providing a
default result.

15. The system of claim 14, wherein m the act of
retrieving, the default result 1s a predetermined value.

	Front Page
	Drawings
	Specification
	Claims

