a9y United States

US 20020054051A1

a2 Patent Application Publication o) Pub. No.: US 2002/0054051 Al

LADD

43) Pub. Date: May 9, 2002

(54) PARALLEL PROGRAMMING
DEVELOPMENT ENVIRONMENT

(76) Inventor: PATRICK G. LADD, SAN MARCOS,

CA (US)

Correspondence Address:

JAMES M. STOVER

NCR CORPORATION

1700 SOUTH PATTERSON BLVD, WHQ4
DAYTON, OH 45479 (US)

(*) Notice:  This is a publication of a continued pros-
ecution application (CPA) filed under 37
CFR 1.53(d).

(21) Appl. No.: 09/222,482

632 LU T © 345/700

(57) ABSTRACT

A method, apparatus, and article of manufacture for creating
a parallel programming development environment. The
environment comprises a graphical user interface, that con-
tains a system screen, an application screen, a code genera-
tor, a process distributor, and an applications monitor. The
system and application screens are displayed on the monitor
and are used to display the topology of the computer system
and for selecting portions of the system for use 1n a parallel

application. The code generator receives a user application
file from the application screen and generates programming
code based on the contents of the user application file. The

(22) Filed: Dec. 29, 1998 process distributor, distributes the executable code within
the topology of the computer system as allocated by the user
Publication Classification in the application file. The application monitor monitors the
user application file and maintains statistics on the user
(51) Int. CL7 e, GO6F 13/00 application file.
Va | [
; /
Iy
0L / [0 2_
USER GRAPHICAL /
USER INTERFACE
210
o CODE B SYSTEM L A
™MapeLicaTioN | sysTEM
SCREENS SCREENS
PROCESS B
APPLICATION | -2/
Anl —_|DISTRIBUTION | . ~h L
700 SERVER MONITOR
PROCESS :?Ol
DISTRIBUTION
CLIENT 2 OO




US 2002/0054051 Al

May 9, 2002 Sheet 1 of 4

Patent Application Publication

OLL

901 90l 90l

_h
SN
)8

8il

ON_‘/

1 0 [

Il — JOV4d4LNI

SN 1IVOIHAVYHO

141
WJLSAS

ONILVH3dO

801

WALSAS
ONILVd3dO

NHOMLIN

) H \N_\_\

WH1LSAS
ONILVHAdO

NS\

001

AV

I E




Patent Application Publication  May 9, 2002 Sheet 2 of 4 US 2002/0054051 A1

USER INTERFACE

0
/ USER GRAPHICA /i -

o
SYSTEM T 210

y CODE B

204 GENERATORI™, _Lt17] ToPoLoGY
APPLICATION | SYSTEM

SCREENS | |SCREENS

PROCESS / e.
DISTRIBUTION \ /‘ k| APPLICATION |_{-2/7-

) e e |
706 SERVER MONITOR

|

PROCESS :?Ol
DISTRIBUTION
CLIENT 200




Patent Application Publication May 9, 2002 Sheet 3 of 4 US 2002/0054051 Al

FIG. 3
400
"IDENTIFY |L— 50 L
| EVENT
IDENTIFY—] %0‘{
CURRENT |~
STATE

DETERMINE
NEW %0&
STATE

TRANSITION TO 30 {/
NEW STATE AND
PERFORM ACTIONS

SET CURRENT STATE |- % /0O
TO NEW STATE



Patent Application Publication @ May 9, 2002 Sheet 4 of 4 US 2002/0054051 A1

DISPLAY TOPOLOGY OF | . L7 00
DISTRIBUTED COMPUTER

oYSTEM ON MONITOR

PIECE TOGETHER APPLICATION Oﬂ
CONTAINING AT LEAST L}
ONE PROCESS EXECUTABLE
USING TOPOLOGY OF SYSTEM

DETERMINE WHERE PROCESS
EXECUTABLES ARE EXECUTED

DISTRIBUTE PROCESS 4710 é,
EXECUTABLES ACCORDING
TO DETERMINING STEP

4

MONITOR EXECUTION OF [7L0
APPLICATION AND

PROCESS EXECUTABLES

FIG. 4



US 2002/0054051 Al

PARALLEL PROGRAMMING DEVELOPMENT
ENVIRONMENT

BACKGROUND OF THE INVENTION
0001] 1. Field of the Invention

0002] This invention relates in general to parallel proces-
sor computer systems, and in particular, to a parallel pro-
cramming development environment used to program par-
allel processor computer systems.

0003] 2. Description of Related Art

0004]| Parallel processor computer systems are frequently
comprised of an operating system and arrays of individual
computers (i.€., processor nodes), each with their own
central processing unit (CPU), memory, and data storage
unit. Tasks are executed 1n parallel by utilizing each pro-
cessor node.

[0005] During the execution of a task, a body of work is
divided into multiple threads. A thread 1s a stream of
instructions executed by the computer on behalf of a task. As
an analogy, a task such as an orchestra performing a sym-
phony can be decomposed into many threads which would
be the individual musicians, each playing their part.

[0006] Typically, in a parallel processor computer system,
cach thread 1s allocated to a different processor node. Each
of these threads 1s then executed in parallel at their respec-
five separate nodes. For instance, three threads can occupy
and execute simultancously on three different nodes at the
same fime.

[0007] Although parallel processing has merits, there are
shortcomings. Conventional processing techniques may
result 1n an inefficient use of the available hardware. Indus-
try standard libraries, such as the Message Passing Interface
(MPI) have made parallel programming even more difficult
because the MPI standard 1s programming language depen-
dent. This dependency creates problems for computer sys-
tems that perform some of their programming tasks in one
language and other tasks i1n another language, because
present day parallel programming efforts will then be unable
to mteract with programming that 1s written in two different
programming languages. This makes parallel programming,
efforts more costly and more time consuming.

|0008] It can be seen, then, that there is a need in the art
for a method to develop parallel programming that can be
used with multiple computer programming languages. Fur-
ther, there 1s a need for a parallel programming development
environment that will be lest costly. There 1s also a need for
a parallel programming development environment that is
less time consuming. There 1s also a need in the art for
modifications to conventional techniques that exploit the
hardware available 1n parallel processor computer systems.

SUMMARY OF THE INVENTION

[0009] To overcome the limitations in the prior art
described above, and to overcome other limitations that will
become apparent upon reading and understanding the
present specification, the present invention discloses a
method, apparatus, and article of manufacture for creating a
parallel programming development environment. The envi-
ronment comprises a graphical user interface, that contains
a system screen, an application screen, a code generator, a

May 9, 2002

process distributor, and an applications monitor. The system
and application screens are displayed on the monitor and are
used to display the topology of the computer system and for
selecting portions of the system for use 1n a parallel appli-
cation. The code generator receives a user application file
from the application screen and generates programming
code based on the contents of the user application file. The
process distributor, distributes the executable code within
the topology of the computer system as allocated by the user
in the application file. The application monitor monitors the
user application file and maintains statistics on the user
application file.

[0010] An object of the present invention is to provide
more eificient usage of parallel processor computer systems.
Another benefit 1s higher system availability without undue
programing overhead 1n the application. Still another benefit
of the present invention 1s its ability to provide faster and
more cost effective parallel programming development.

[0011] These and various other advantages and features of
novelty which characterize the invention are pointed out
with particularity 1n the claims annexed hereto and form a
part hereof. However, for a better understanding of the
invention, its advantages, and the objects obtained by its use,
reference should be made to the drawings which form a
further part hereof, and to the accompanying detailed
description, 1 which there 1s illustrated and described
specific examples of a method, apparatus, and article of
manufacture 1n accordance with the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Referring now to the drawings in which like ref-
erence numbers represent corresponding parts throughout:

[0013] FIG. 1i1s a block diagram that illustrates an exem-
plary hardware environment that could be used with the
present 1nvention;

10014] FIG. 2 illustrates the components and interrela-
tionship between the components of the development envi-
ronment of the present invention;

[0015] FIG. 3 1s a flowchart that illustrates the general
logic of a message or event-driven node performing the
steps of the present mnvention;

[0016] FIG. 4 is a flowchart that illustrates exemplary
logic performed by the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0017] In the following description of the preferred
embodiment, reference 1s made to the accompanying draw-
ings which form a part hereotf, and 1n which 1s shown by way
of 1llustration a specific embodiment 1n which the imnvention
may be practiced. It 1s to be understood that other embodi-
ments may be utilized and structural changes may be made
without departing from the scope of the present mnvention.

[0018] Overview

[0019] The present invention discloses a method, appara-
tus, and article of manufacture for creating a parallel pro-
craming development environment. The environment com-
prises a graphical user interface, that contains a system
screen, an application screen, a code generator, a process



US 2002/0054051 Al

distributor, and an applications monitor. The system and
application screens are displayed on the monitor and are
used to display the topology of the computer system and for
selecting portions of the system for use 1n a parallel appli-
cation. The code generator receives a user application file
from the application screen and generates programming
code based on the contents of the user application file. The
process distributor distributes the executable code within the
topology of the computer system as allocated by the user 1n
the application file. The application monitor monitors the
user application file and maintains statistics on the user
application file.

[0020] The present invention provides a Graphical User
Interface (GUI) that is used to display and create a graphical
representation of the desired parallel programming applica-
fion. The present invention also displays a diagram of the
nodes of the system and how they are interconnected, so that
programmers can take advantage of the architecture of the
system that 1s being programmed. The present imvention
allows users to route processes and/or threads to specific
nodes, determine the use of shared memory devices, and
customize an application prior to generation of computer
programming code.

[0021] The present invention provides a graphical inter-
face to users and offers objects such as Groups, Links, and
Processes, €.g., root and children, that can be drageged and
dropped, connected, and customized in order to form a
ographical representation of the desired parallel application.
Additionally, on a system screen, the present invention can
show a diagram of the nodes 1n the system and how they are
interconnected e.g., distributed memory, networked, etc.
Users can describe how the application should behave 1n the
system 1n order to take advantage of the architecture shown
on the system screen. This activity can entail the determi-
nation of process distribution to specific nodes, or how
shared memory 1s to be used. The present invention saves
this information and uses the information for code genera-
tion and for process distribution when the application is
started.

10022] When the overall application is described, indi-
vidual processes are designed using object-oriented software
design techniques with the addition of paradigm specific,
¢.g., MPI objects. A tool incorporating a modeling language
can be used, but 1n order to maintain ease of parallel
application programmability a library of paradigm specific
objects must be made available.

10023] With the application completely described, the user
can generate language specific codes for a specific standard-
1zed parallel programming paradigm, such as MPI. The
present invention can be used to start the application by
distributing the processes and signal the start of their execu-
tion. Finally, the present invention can be used to monitor an
application 1n order to gather statistics, displayed graphi-
cally i real-time, for correct operation and performance
evaluation.

[0024] Hardware Environment

10025] FIG. 1 illustrates an exemplary computer hardware
environment that could be used with the present invention.
In the exemplary computer hardware environment, a com-
puter system 100 1s comprised of one or more processors or
nodes 102 mterconnected by a network 104. Each of the

May 9, 2002

nodes 102 1s typically a symmetric multi-processor (SMP)
architecture and 1s comprised of a plurality of microproces-
sors, random access memory (RAM), read-only memory
(ROM), and other components. It is envisioned that attached
to the nodes 102 may be one or more fixed and/or removable
data storage units (DSUs) 106 and data communications

units (DCUs).

[0026] Each of the nodes 102 operates under the control of
an operating system 110, such as the UNIX™ operating,
system. Further, each of the nodes 102 executes one or more
computer programs 112 under the control of the operating
system 110. Generally, the operating system 110 and the
computer programs 112 are tangibly embodied in and/or
retrieved from RAM, ROM, and/or one or more other DSUs
106 or DCUs. Further, both the operating system 110 and the
computer programs 112 are loaded into RAM for execution
by the node 102. In any embodiment, both the operating
system 110 and the computer programs 112 comprise
instructions which, when read and executed by the node 102,
causes the node 102 to perform the steps necessary to
execute the steps or elements of the present imvention.

[10027] In the exemplary environment of FIG. 1, a client-
server architecture 1s disclosed. At least one of the nodes 102
provide the connection to client systems operating on work-
stations 108. Operators of the system 100 use a workstation
108 or terminal to transmit electrical signals to and from
server systems operating on the node 102 1n the system 100,
wherein the electrical signals represent commands for per-
forming various functions in the system 100, such as search
and retrieval functions against the databases. The present
invention has application to any function or software that
can be performed by a system 100.

[0028] The workstation 108 usually operates under the
control of an operating system 114. The present invention 1s
usually implemented in one or more Graphical User Inter-
faces (GUIs) 116 that operate under the control of and in
conjunction with the operating system 114.

[10029] For human interface with the workstation 108,
attached to the workstation 108 1s a keyboard 118, a mouse
or other pointing device 120, and a monitor 122. The GUIs
116 are displayed on monitor 122 and the user can interact
with the GUIs 116 by using the keyboard 118 and/or the
pointing device 120 to command the workstation 108 to
perform certain tasks.

[0030] The present invention uses the GUI 116 to help
resolve the problem associated with tasks that do not easily
lend themselves to being divided into parallel processing
sub-tasks. Methods which require knowledge of the physical
configuration of the system 100 typically present undesir-
able levels of software complexity and platform dependen-
cies. The present invention minimizes the levels of software
complexity by presenting the user with a graphical repre-
sentation of the system 100 and allowing the user to program
the system 100 1n a graphical manner. Supporting this global
knowledge requires heavy use of the network 104 between

the nodes 102 of the system 100.

[0031] Generally, the GUI 116 comprises instructions and/
or data that are embodied 1n or retrievable from a computer-
readable device, medium, or carrier, €.g., the data storage
device 106, a remote device coupled to the workstation 108
via the node 102, etc. Moreover, these istructions and/or




US 2002/0054051 Al

data, when read, executed, and/or interpreted by the work-
station 108 cause the workstation 108 to perform the steps
necessary to implement and/or use the present invention.

[0032] Thus, the present invention may be implemented as
a method, apparatus, or article of manufacture using stan-
dard programming and/or engineering techniques to produce
software, firmware, hardware, or any combination thereof.
The term “article of manufacture” (or alternatively, “com-
puter program product”) as used herein is intended to
encompass a computer program accessible from any com-
puter-readable device, carrier, or media. Many modifications
may be made to this configuration without departing from
the scope of the present invention.

[0033] Any combination of the above components, or any
number of different components, including computer pro-
orams, peripherals, and other devices, may be used to
implement the present invention, so long as similar func-
tions are performed thereby.

0034] Relationships and Operation

[0035] FIG. 2 illustrates the components and interrela-
tionship between the components of the development envi-
ronment of the present invention.

[0036] The present invention comprises a user GUI 116,
which 1ncludes application screens 200 and system screens
202. The user GUI 116 provides an interface for the user to
create parallel applications 112, generate code for the par-
allel applications 112, distribute the parallel applications
112, run the parallel applications 112, and monitor the
progress of the parallel applications 112.

10037] To perform all of the monitoring, running, distri-
bution, creation, and generation tasks, the User GUI 116 1s
divided mto at least two parts. The first part 1s the application
screens 200. The application screens 200 provide an envi-
ronment for users to piece together a parallel application
using objects that correspond to pieces of the application.
Once a user has pieced together the objects using the
application screens 200, the application screens 200, through
the user GUI 116, pass the user applications 112 to the code
generator 204 and process distribution server 206.

[0038] The system screens 202 comprise another part of
the user GUI 116, and display current system 100 topology
in terms of nodes 102, network 104 connections (e.g.,
clustered, MPP, SMP, etc.) and shared memory architec-
tures. The system screens 202, through the user GUI 116,
pass the system 100 topology information to the applications
screens 200 for use 1n parallel application 112 creation.

[0039] The code generator 204 accepts application 112
information files for application 112 behavior from the
application screens 200 and generates language specific
code for a particular parallel programming paradigm, such
as MPI. Many different computer languages, e.g., C, C++,
Fortran, Cobol, etc., along with many different parallel

programming paradigms, are supportable by the code gen-
erator 204.

[0040] The process distribution server 206 distributes pro-
cess executables to nodes 102 as defined by the system 100
architecture described by the user. The process distribution
server 206 also sends processes and applications 112 to
process distribution clients 208 on nodes 112 identified in
application 112 groups. The process distribution server 206

May 9, 2002

also signals the process distribution client 208 to execute
appropriate processes and/or applications 112.

[0041] The system topology 210 updates the graphical
representation of the system 100 interconnections and dis-
tributed memory layout upon user request. The system 100
information 1s used to determine the architecture model of
the application 112 and allows for determination of the

number of parallel processes to use and where to execute
them (e.g., which node 102 or workstation 108).

[0042] The application monitor 212 monitors the start,
progress, and completion of a parallel application 112,
maintains statistics during the execution of the parallel
application 112, and calculates system 100 performance
during and after the execution of application 112. The
application monitor 212 also has a screen within system
screens 202 that shows real time activity and statistical
updates of an application 112 during execution.

[0043] Logic of the Management Interface

10044] FIG. 3 is a flowchart that illustrates the general
logic of a message or event-driven node 102 performing the
steps of the present invention. In such a computer 102,
operations are performed when transitions are made, based
upon the receipt of messages or events, from present or
current states to new states.

10045] Generally, the flowchart begins by waiting at block
300 for an event (e.g., a mouse button click). It should be
appreciated that during this time, other operating system
tasks, e.g., file, memory, and video tasks, etc., may also be
carried out. When an event occurs, control passes to block
302 to 1dentify the event. Based upon the event, as well as
the current state of the system determined in block 304, a
new state 1s determined 1n block 306. In block 308, the logic
fransitions to the new state and performs any actions
required for the transition. In block 310, the current state 1s
set to the previously determined new state, and control
returns to block 300 to wait for more mput events.

[0046] The specific operations that are performed by block
308 when transitioning between states will vary depending
upon the current state and the event. The various operations
required to implement and maintain the workstation 108 and
GUI 116 of the present invention represent particular events
handled by the logic. However, it should be appreciated that
these operations represent merely a subset of all of the

events handled by the node 102.

10047] FIG. 4 is a flowchart that illustrates exemplary
logic performed by the present invention.

10048] Block 400 represents the workstation 108 display-
ing a topology of the distributed computer system 100 on a
monitor 122.

10049] Block 402 represents piecing together an applica-
tion 112 containing at least one process executable using the
topology of the distributed computer system 100.

[0050] Block 404 represents determining where, within
the topology of the distributed computer system 100, the
process executables are executed.

[0051] Block 406 represents the node 102 distributing the
process executables according to the determining step.



US 2002/0054051 Al

[0052] Block 408 represents the node 102 monitoring
execution of the pieced together application 112 and the
process executables.

0053] Conclusion

0054] This concludes the description of the preferred
embodiment of the invention. The following describes some
alternative embodiments for accomplishing the present
invention. For example, any type of computer, such as a
mainirame, minicomputer, or personal computer, could be
used with the present invention. In addition, any software
program utilizing (either partially or entirely) object-ori-
ented programming or a parallel processing schema could
benelit from the present 1nvention.

[0055] In summary, the present invention discloses a
method, apparatus, and article of manufacture for creating a
parallel programming development environment. The envi-
ronment comprises a graphical user interface that contains a
system screen, an application screen, a code generator, a
process distributor, and an applications monitor. The system
and application screens are displayed on the monitor and are
used to display the topology of the computer system and for
selecting portions of the system for use 1n a parallel appli-
cation. The code generator receives a user application file
from the application screen and generates programming
code based on the contents of the user application file. The
process distributor, distributes the executable code within
the topology of the computer system as allocated by the user
in the application file. The application monitor monitors the
user application file and maintains statistics on the user
application file.

[0056] The foregoing description of the preferred embodi-
ment of the 1nvention has been presented for the purposes of
illustration and description. It 1s not intended to be exhaus-
five or to limit the invention to the precise form disclosed.
Many modifications and variations are possible in light of
the above teaching. It i1s intended that the scope of the
invention be limited not by this detailed description, but
rather by the claims appended hereto.

What 1s claimed 1s:

1. A graphical user intertface for a parallel programming
development environment on a computer system, compris-
Ing:

a system screen, displayed on a monitor attached to the
computer system, for displaying a topology of the
computer system,

an application screen, displayed on the monitor attached
to the computer system, for receiving the topology of
the computer system and for piecing together a parallel
application, the parallel application including at least
one process executable;

a code generator, for recerving the pieced together parallel
application from the application screen and for gener-
ating programming code;

May 9, 2002

a process distributor, for distributing at least one process
executable within the topology of the computer system;
and

an application monitor, for monitoring the pieced together

application.

2. The graphical user interface of claim 1, wherein the
application monitor maintains statistics on an execution of
the pieced together application.

3. The graphical user interface of claim 1, wherein the
application monitor calculates performance statistics on an
execution of the user application file.

4. The method of claim 1, wherein the application screen
pieces together the parallel application using at least one
object, wherein each object corresponds to a piece of the
application.

5. The method of claim 1, wherein the code generator
ogenerates code for a particular parallel programming para-
digm, such as MPI.

6. The method of claim 1, wherein the code generator
generates language specific code.

7. The method of claim 1, wherein the process distributor
distributes the process executable to a node of the computer
system.

8. A method for developing parallel programming on a
distributed computer system, comprising the steps of:

displaying a topology of the distributed computer system
on a monitor;

piecing together an application containing at least one
process executable using the topology of the distributed
computer system;

determining where, within the topology of the distributed
computer system, the process executables are executed,;

distributing the process executables according to the
determining step; and

monitoring execution of the pieced together application

and the process executables.

9. A program storage device, readable by a computer,
tangibly embodying one or more programs of instructions
executable by the computer to perform method steps of
developing parallel programming on a distributed computer
system, comprising the steps of:

displaying a topology of the distributed computer system
on a monitor;

piecing together an application containing at least one
process executable using the topology of the distributed
computer system;

determining where, within the topology of the distributed
computer system, the process executables are executed,;

distributing the process executables according to the
determining step; and

monitoring execution of the pieced together application
and the process executables.

% o *H % x



	Front Page
	Drawings
	Specification
	Claims

