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[Some of the executives who attended yesterday's session weren't a surprise.

lenneco Inc. Chairman Michael Walsh, for instance, is a staunch Democrat

who provided an early endorsement for Mr. Glinton during the presidential

campaign. Xerox Gorp.'s Chairman Paul Allaire was one of the few top

corporate chief executive officers who contributed money to the Clinton

campaign. And other, such as Atlantic Richfield Co. Chairman Lodwrick M.

Cook and Zenith Electronics Corp. Chairman Jerry Peariman, have also

previously voiced their approval of Mr. Clinton's economic strategy.!] [But

some faces were fresh. Norman Augustine, the chairman of defense

contractor Martin Marietta Corp., is a registered Republican who has never

stood behind Mr. Clinton. It was also the first formal show of support by

Rand Araskog, the chairman of ITT Corp.2]
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The documentation is typical of Epson quality: excellent.
Documentation is excellent

All of our design goals were achieved and the delivered performance
matches the speed of the underlying device. All design goals were achieved

Reach's E-mail product, MailMan, is a message-management system
designed initially for VINES LANS that will eventually be operating system-
independent. MailMan will eventually be operating system-independent

Althaugh the modules themselves may be physically and/or electrically
Incompatible, the cable-specific jacks on them provide industry-standard
connections. Cable-specific jacks provide industry-standard connections.

Ingress/Star prices start at $2,100.
Ingress/Star prices start at $2,100.

FIG. 12
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Rule 1: IF previous operation was not "Reduce" AND
previous operation was not "Shift" AND
previous operation was not "AssignType" AND
the Input list starts with a syntactic constituent of type WHPP
THEN drop from the input list the words subsumed by WHPP

Rule 2: IF there is only one tree in the stack AND
previous operation was "Reduce" AND
the syntactic label of the tree in the stack is NP-A AND

the input list starts with a syntactic constituent of type WHNP
THEN drop from the input list the words subsumed by WHNP

Rule 3: IF previous operation was "Drop" AND
the input list starts with a syntactic constituent of type ADJP AND

the input list does not start with a syntactic constituent of type NP
THEN drop from the input list the words subsumed by ADJP

FIG. 18A
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DISCOURSE PARSING AND SUMMARIZATION

RELATED APPLICATION

[0001] This application claims the benefit of, and incor-
porates herein, U.S. Provisional Patent Application Ser. No.

60/203,643, filed May 11, 2000.

ORIGIN OF INVENTION

[0002] The research and development described in this
application were supported by the NSA under grant number
MDA904-97-0262 and by DARPA/I'TO under grant number
MDA904-99-C-2535. The US government may have certain

rights 1n the claimed i1nventions.

FIELD OF THE INVENTION

[0003] The present application relates to computational
linguistics and more particularly to techniques for parsing a
text to determine 1ts underlying rhetorical, or discourse,
structure, and to techniques for summarizing, or COmMpress-
ing, text.

BACKGROUND AND SUMMARY

[0004] Computational linguistics is the study of the appli-
cations of computers 1n processing and analyzing language,
as in automatic machine translation (“MT”) and text analy-
sis. In conjunction with MT research and related areas in
computational linguistics, researchers have developed and
frequently use various types of tree structures to graphically
represent the structure of a text segment (e.g., clause,
sentence, paragraph or entire treatise). Two basic tree types
include (1) the syntactic tree, which can be used to graphi-
cally represent the syntactic relations among components of
a text segment, and (2) the rhetorical tree (equivalently, the
rhetorical structure tree (RST) or the discourse tree), which
can be used to graph the rhetorical relationships among
components of a text segment. Rhetorical structure trees are
discussed 1n detail in William C. Mann and Sandra A.
Thompson, “Rhetorical structure theory: Toward a func-
tional theory of text organization,” Text, 8(3):243-281
(1988) (hereinafter, “Mann and Thompson (1988)”). Dis-
course tree structures find application 1n many areas 1nclud-
ing machine ftranslation, summarization, 1nformation
retrieval, automatic test scoring and the like.

[0005] The example in FIG. 1 shows the types of struc-
tures 1n a discourse tree 100 for a text fragment. The leaves
102 of the tree correspond to elementary discourse units
(“edus”) and the internal nodes correspond to contiguous
text spans. Each node in a discourse tree 1s characterized by
a “status” (i.e., either “nucleus” or “satellite”) and a “rhe-
torical relation,” which 1s a relation that holds between two
non-overlapping text spans. In FIG. 1, nucle1 104 are
represented by straight lines while satellites 106 are repre-
sented by arcs.

[0006] The distinction between nuclei and satellites comes

from empirical observations that a nucleus expresses 1nfor-
mation that 1s more essential than a satellite to the writer’s
intention, and that the nucleus of a rhetorical relation 1s
comprehensible independent of the satellite but not vice
versa. When spans are equally important, the relation 1s said
to be “multinuclear.”

Apr. 18, 2002

[0007] Rhetorical relations reflect semantic, intentional
and/or textual relations that hold between text spans.
Examples of rhetorical relations include the following types
indicated 1n capitals: one text span may ELABORATE on
another text span; the mnformation 1n two text spans may be
in CONTRAST; and the information in one text span may
provide JUSTIFICATION for the information presented in
another text span. Other types of rhetorical relations include
EVIDENCE, BACKGROUND, JOINT, and CAUSE. In
FI1G. 1, the internal nodes of discourse tree 100 are labeled
with their respective rhetorical relation names 108.

|0008] In conventional practice, discourse trees either
have been generated by hand by trained personnel or have
been pieced together 1n a semi-automated manner using
manually generated instructions for a computer program.
Development of the discourse parsing systems and tech-
niques described below was based 1n part on the recognition
that manually generating discourse trees 1n either of these
fashions 1s time-consuming, expensive and prone to 1ncon-
sistencies and error. Accordingly, a computer-implemented
discourse parsing system and automated discourse parsing
techniques were developed for automatically generating a
discourse tree for any previously unseen text scgment based
on a set of automatically learned decision rules.

[0009] Implementations of the disclosed discourse parsing
system and techniques may include various combinations of
the following features.

[0010] Inone aspect, a discourse structure for an input text
segment (e.g., a clause, a sentence, a paragraph or a treatise)
1s determined by generating a set of one or more discourse
parsing decision rules based on a training set, and determin-
ing a discourse structure for the imput text segment by
applying the generated set of discourse parsing decision
rules to the mput text scgment.

[0011] The training set may include a plurality of anno-
tated text segments (e.g., built manually by human annota-
tors) and a plurality of elementary discourse units (edus).
Each annotated text segment may be associated with a set of
cdus that collectively represent the annotated text segment.

[0012] Generating the set of discourse parsing decision
rules may include iteratively performing one or more opera-
tions (e.g., a shift operation and one or more different types
of reduce operations) on a set of edus to incrementally build
the annotated text segment associated with the set of edus.
The different types of reduce operations may include one or
more of the following six operations: reduce-ns, reduce-sn,
reduce-nn, reduce-below-ns, reduce-below-sn, reduce-be-
low-nn. The six reduce operations and the shift operation
may be sufficient to derive the discourse tree of any input
text segment.

[0013] Determining a discourse structure may include
incrementally building a discourse tree for the imput text
segment, for example, by selectively combining elementary
discourse trees (edts) into larger discourse tree units. More-
over, incrementally building a discourse tree for the input
text segment may include performing operations on a stack
and an mput list of edts, one edt for each edu 1n a set of edus
corresponding to the 1nput text segment.

[0014] Prior to determining the discourse structure for the
input text segment, the mput text segment may be segmented
into edus, which are inserted into the input list. Segmenting
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the 1nput text segment into edus may be performed by
applying a set of automatically learned discourse segment-
ing decision rules to the input text segment. Generating the
set of discourse segmenting decision rules may be accom-
plished by analyzing a training set.

[0015] Determining the discourse structure for the input
text segment may further include segmenting the mput text
segment into elementary discourse units (edus); incremen-
tally building a discourse tree for the mput text segment by
performing operations on the edus to selectively combine
the edus 1nto larger discourse tree units; and repeating the
incremental building of the discourse tree until all of the
edus have been combined.

[0016] In another aspect, text parsing may include gener-
ating a set of one or more discourse segmenting decision
rules based on a training set, and determining boundaries 1n
an 1put text segment by applying the generated set of
discourse segmenting decision rules to the mput text seg-
ment. Determining boundaries may include examining each
lexeme 1n the nput text segment 1n order, and, for example,
assigning, for each lexeme, one of the following designa-
fions: sentence-break, edu-break, start-parenthetical, end-
parenthetical, and none. More generally, determining bound-
aries 1n the input text segment may include recognizing
sentence boundaries, edu boundaries, parenthetical starts,
and parenthetical ends. Examining each lexeme 1n the input
text segment may include associating features with the
lexeme based on surrounding context.

[0017] In another aspect, generating discourse trees may
include segmenting an input text segment into edus, and
incrementally building a discourse tree for the input text
segment by performing operations on the edus to selectively
combine the edus into larger discourse tree units. The
incremental building of the discourse tree may be repeated
until all of the edus have been combined into a single
discourse tree. Moreover, the mncremental building of the
discourse tree 1s based on predetermined decision rules, such
as automatically learned decision rules generated by ana-
lyzing a training set of annotated discourse trees.

[0018] In another aspect, a discourse parsing system may
include a plurality of automatically learned decision rules;
an 1nput list comprising a plurality of edts, each edt corre-
sponding to an edu of an input text segment; a stack for
holding discourse tree segments while a discourse tree for
the mput text segment 1s being built; and a plurality of
operators for imncrementally building the discourse tree for
the 1put text segment by selectively combining the EDTs
into a discourse tree segment according to the plurality of
decision rules and moving the discourse tree segment onto
the stack. The system may further include a discourse
secgmenter for partitioning the mput text segment nto edus
and 1nserting the edus into the mput list.

[0019] One or more of the following advantages may be
provided by discourse parsing systems and techniques as
described herein. The systems and techniques described here
result 1n a discourse parsing system that uses a set of learned
decision rules to automatically determine the underlying
discourse structure of any unrestricted text. As a result, the
discourse parsing system can be used, among other ways, for
constructing discourse trees whose leaves are sentences (or
units that can be identified at high levels of performance).
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Moreover, the time, expense, and 1nconsistencies associated
with manually built discourse tree derivation rules are
reduced dramatically.

[0020] The ability to automatically derive discourse trees
is useful not only in its standalone form (e.g., as a tool for
linguistic researchers) but also as a component of a larger
system, such as a discourse-based machine translation sys-
tem. Accordingly, the systems and techniques described
herein represent an enabling technology for many different
applications i1ncluding text, paragraph or sentence summa-
rization, machine translation, informational retrieval, test
scoring and related applications.

[0021] The rhetorical parsing algorithm described herein
implements robust lexical, syntactic and semantic knowl-
edge sources. Moreover, the six reduce operations used by
the parsing algorithm, along with the shift operation, are
mathematically sufficient to derive the discourse structure of
any 1nput text.

[0022] Text summarization (also referred to as text com-
pression) is the process of a taking a longer unit of text (e.g.,
a long sentence, a paragraph, or an entire treatise) and
converting it into a shorter unit of text (e.g., a short sentence
or an abstract) referred to as a summary. Automated sum-
marization—that 1s, using a computer or other automated
process to produce a summary—has many applications, for
example, 1n information retrieval, abstracting, automatic test
scoring, headline generation, television captioning, and
audio scanning services for the blind. FIG. 10 shows a block
diagram of an automated summarization process. As shown
therein, an input text 1000 1s provided to a summarizer 1002,
which generates a summary 1004 of the mput text 1000.
Ideally, whether produced manually or automatically, a
summary will capture the most salient aspects of the longer
text and present them 1n a coherent fashion. For example,
when humans produce summaries of documents, they do not
simply extract sentences, clause or keywords, and then
concatenate them to form a summary. Rather, humans
attempt to summarize by rewriting the longer text, for
example, by constructing new sentences that are grammati-
cal, that cohere with one another, and that capture the most
salient items of information in the original document.

[10023] Conventional attempts at automated summariza-
fion, 1n confrast, typically have focused on identifying
relevant items of information 1n the text being summarized,
extracting text segments (e.g., sentences, clauses or key-
words) corresponding to those identified items, and then
concatenating together the extracted segments. Moreover,
these conventional approaches typically rely on manually
generated sets of summarization rules.

10024] Development of the summarizing systems and
techniques described below was based in part on the recog-
nition (1) that identification, extraction and concatenation of
relevant text segments typically will not generate a coherent
and/or grammatical summary and/or (2) that manually gen-
erated summarization rules are prone to error and 1nconsis-
tencies, are time-consuming and expensive to generate, and
ogenerally result 1n non-ideal summaries. Accordingly, as
described 1n detail below, automated summarization systems
and techniques were developed that can generate a coherent
summary of an input text by generating new, grammatical
sentences that capture the salient aspects of the mput text.
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[10025] Implementations of the disclosed summarization
systems and techniques may include various combinations
of the following features.

[0026] In one aspect, a tree structure (e.g., a discourse tree
or a syntactic tree) is summarized by generating a set of one
or more summarization decision rules (e.g., automatically
learned decision rules) based on a training set, and com-
pressing the tree structure by applying the generated set of
summarization decision rules to the tree structure. The tree
structure to be compressed may be generated by parsing an
input text segment such as a clause, a sentence, a paragraph,
or a treatise. The compressed tree structure may be con-
verted 1into a summarized text segment that 1s grammatical
and coherent. Moreover, the summarized text segment may
include sentences not present 1n a text segment from which
the pre-compressed tree structure was generated.

10027] Applying the generated set of summarization deci-
sion rules comprises performing a sequence of modification
operations on the tree structure, for example, one or more of
a shift operation, a reduce operation, and a drop operation.
The reduce operation may combine a plurality of trees into
a larger tree, and the drop operation may delete constituents
from the tree structure.

[0028] The training set used to generate the decision rules
may include pre-generated long/short tree pairs. Generating
the set of summarization decision rules comprises iteratively
performing one or more tree modification operations on a
long tree until the paired short tree 1s realized. A plurality of
long/short tree pairs may be processed to generate a plurality
of learning cases. In that case, generating the set of decision
rules may include applying a learning algorithm to the
plurality of learning cases. Moreover, one or more features
may be associated with each of the learning cases to reflect
context.

10029] In another aspect, a computer-implemented sum-
marization method may include generating a parse tree (e.g.,
a discourse tree or a syntactic tree) for an input text segment,
and 1teratively reducing the generated parse tree by selec-
fively eliminating portions of the parse tree. Iterative reduc-
tion of the parse tree may be performed based on a plurality
of learned decision rules, and may include performing tree
modification operations on the parse tree. The tree modifi-
cation operations may include one or more of the following:
a shift operation, a reduce operation (which, for example,
combines a plurality of trees into a larger tree), and a drop
operation (which, for example, deletes constituents from the
tree structure).

[0030] In another aspect, summarization 1s accomplished
by parsing an 1nput text segment to generate a parse tree
(e.g., a discourse tree or a syntactic tree) for the input
segment, generating a plurality of potential solutions, apply-
ing a statistical model to determine a probability of correct-
ness for each of potential solution, and extracting one or
more high-probability solutions based on the solutions’
respective determined probability of correctness. Applying a
statistical model may include using a stochastic channel
model algorithm that, for example, performs minimal opera-
fions on a small tree to create a larger tree. Moreover, using
a stochastic channel model algorithm may include probabi-
listically choosing an expansion template. Generating a
plurality of potential solutions may include identifying a
forest of potential compressions for the parse tree.
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[0031] The generated parse tree may have one or more
nodes, each node having N children (wherein N is an
integer). In that case, identifying a forest of potential com-
pressions may include generating 2™—1 new nodes, one
node for each non-empty subset of the children, and packing
the newly generated nodes into a whole. Alternatively, or 1n
addition, identifying a forest of potential compressions may
include assigning an expansion-template probability to each
node 1n the forest.

[0032] Extracting one or more high-probability solutions
may 1nclude selecting one or more trees based on a combi-
nation of each tree’s word-bigram and expansion-template
score. For example, a list of trees may be selected, one for
cach possible compression length. The potentials solutions

[

may be normalized for compression length. For example, for

[

cach potential solution, a log-probability of correctness for

[

the solution may be divided by a length of compression for
the solution.

[0033] One or more of the following advantages may be
provided by summarization systems and techniques as
described herein.

[0034] The systems and techniques described here result
In a summarization system that can take virtually any longer
text segment (sentence, phrase, paragraph or treatise) and
compress 1t 1nto a shorter version that 1s both grammatical
and coherent. In contrast to the conventional “extract and
concatenate” summarization techniques, the disclosed sum-
marizer generates new grammatical sentences that more
closely resemble summarizations prepared by trained human
editors.

[0035] Moreover, the disclosed summarizer generates
summaries automatically, e.g., in a computer-implemented
manner. Accordingly, the inconsistencies, errors, time and/or
expense typically incurred with conventional approaches
that require manual intervention are reduced dramatically.

[0036] The two different embodiments of the summarizer
(channel-based and decision-based) both generate coherent,
crammatical results but also potentially provide different
advantages. On the one hand, the channel-based summarizer
provides multiple different solutions at varying levels of
compression. These multiple solutions may be desirable 1if,
for example, the output of the summarizer was being pro-
vided to a user (e.g., human or computer process) that could
make use of multiple outputs. On the other hand, the
decision-based summarizer 1s deterministic and thus pro-
vides a single solution and does so very quickly. Accord-
ingly, depending on the objectives of the user, the decision-
based summarizer may be advantageous both for 1ts speed
and for 1ts deterministic approach.

[0037] Moreover, the channel-based summarizer may be
advantageous depending on a user’s objectives because its
performance can be adjusted, or fine-tuned, to a particular
application by replacing or adjusting its statistical model.
Similarly, performance of the decision-based summarizer
can be fine-tuned to a particular application by varying the
training corpus used to learn decision rules. For example, a
decision-based summarizer could be tailored to summarize
text or trees 1n a specific discipline by selecting a training
corpus speciiic to that discipline.

|0038] The details of one or more embodiments are set
forth 1n the accompanying drawings and the description
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below. Other features, objects, and advantages will be appar-
ent from the description and drawings, and from the claims.

DRAWING DESCRIPTIONS

[0039] The above and other aspects will now be described
in detail with reference to the accompanying drawings,
wherein:

10040]

0041] FIG. 2 is a flowchart of generating a discourse tree
for an 1nput text.

10042] FIG. 3 is a block diagram of a discourse tree
generating system.

FIG. 1 shows and example of a discourse tree.

10043] FIG. 4 shows an example of shift-reduce opera-
tions performed 1n discourse parsing a text.

10044] FIG. 5 shows the operational semantics of six
reduce operations.

10045] FIG. 6 is a flowchart of generating decision rules
for a discourse segmenter.

10046] FIG. 6A shows examples of automatically derived
segmenting rules.

10047] FIG.71sagraph of a learning curve for a discourse
segmenter.

10048] FIG. 8 is a flowchart of generating decision rules
for a discourse segmenter.

10049] FIG. 8A shows examples of automatically derived
shift-reduce rules.

[0050] FIG. 8B shows a result of applying Rule 1 in FIG.
8A on the edts that correspond to the units 1n text example

(5.1).
[0051] FIG. 8C shows a result of applying Rule 2 in FIG.

SA on the edts that correspond to the units in text example

(5.2).

10052] FIG. 8D shows an example of a CONTRAST
relation that holds between two paragraphs.

10053] FIG. 8E shows a result of applying Rule 4 in FIG.
8A on the on the trees that subsume the two paragraphs 1n

FI1G. 8D.

10054] FIG. 9 is a graph of a learning curve for a shift-
reduce action identifier.

[0055] FIG. 10 is a block diagram of an automated
summarization system.

[0056]

trees.

FIG. 11 shows examples of parse (or syntactic)

10057] FIG. 12 shows examples of text from a training
COrpus.

[0058] FIG. 13 is a graph of adjusted log-probabilities for
fop scoring compressions at various compression lengths.

10059] FIG. 14 shows an example of incremental tree
compression.

[0060]

[0061] FIG. 16 shows examples of summarizations of
varying compression lengths.

FIG. 15 shows examples of text compression.
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[10062] FIG. 17 is a flowchart of a channel-based summa-

rization process.

[10063] FIG. 18 is a flowchart of a process for training a
channel-based summarizer.

[0064] FIG. 18A shows examples of rules that were

learned automatically by the C4.5 program FIG. 19 1s a
flowchart of a decision-based summarization process.

[10065] FIG. 20 is a flowchart of a process for training a
decision-based summarizer.

DETAILED DESCRIPTION
0066] Discourse Parsing

0067] As described herein, a decision-based rhetorical
parsing system (equivalently, a discourse parsing system)
automatically derives the discourse structure of unrestricted
texts and 1ncrementally builds corresponding discourse trees
based on a set of learned decision rules. The discourse
parsing system uses a shift-reduce rhetorical parsing algo-
rithm that learns to construct rhetorical structures of texts
from a corpus of discourse-parse action sequences. The
rhetorical parsing algorithm implements robust lexical, syn-
tactic and semantic knowledge sources.

[0068] In one embodiment, the resulting output of the
discourse parsing system 1s a rhetorical tree. This function-
ality is useful both in its standalone form (e.g., as a tool for
linguistic researchers) and as a component of a larger
system, such as 1n a discourse-based machine translation
system, as described in Daniel Marcu et al., “The Automatic
Translation of Discourse Structures,” Proceedings of the
First Annual Meeting of the North American Chapter of the
Association for Computational Linguistics, pp. 9-17,
Seattle, Washington, (April 29 -May 3, 2000), and Daniel
Marcu, “The Theory and Practice of Discourse Parsing and

Summarization,” The MIT Press (2000), both of which are
incorporated herein.

[10069] FIG. 2 shows a flowchart of a discourse parsing
process 200 that generates a discourse tree from an input
text. Upon recerving the input text in step 202, the process
200 breaks the text into elementary discourse units, or
“edus.” Edus are defined functionally as clauses or clause-
like units that are unequivocally the nucleus or satellite of a
rhetorical relation that holds between two adjacent spans of
text. Further details of edus are discussed below.

[0070] Next, in step 206, the edus are put into an input list.
In step 208, the process 200 uses the mput list, a stack, and
a set of learned decision rules to perform the shift-reduce
rhetorical parsing algorithm, which eventually yields the
discourse structure of the text given as input. In step 210,
performing the algorithm results 1in the generation of a
discourse tree that corresponds to the input text.

[0071] FIG. 3 shows a block diagram of a discourse tree
oenerating system 300 that takes in input text 301 and
produces discourse tree 305. The system 300 as shown
includes two sub-systems: (1) a discourse segmenter 302
that 1dentifies the edus in a text, and (2) a discourse parser
304 (equivalently, a shift-reduce action identifier), which
determines how the edus should be assembled 1nto rhetorical
structure trees.

[0072] The discourse segmenter 302, which serves as a
front-end to the discourse parser 304, partitions the input
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text into edus. The discourse segmenter processes an 1nput
text one lexeme (word or punctuation mark) at a time and
recognizes sentence and edu boundaries and beginnings and
ends of parenthetical units.

[0073] The discourse parser 304 takes in the edus from the
secomenter 302 and applies the shift-reduce algorithm to
incrementally build the discourse tree 3035. As indicated in
FIG. 3, 1 this embodiment, each of the discourse segmenter
302 and the discourse parser 304 performs its operations
based on a set of decision rules that were learned from
analyzing a training set, as discussed in detail below. An
alternative embodiment 1s possible, however, in which sub-
stantially the same results could be achieved using proba-
bilistic rules.

0074] Further details of the discourse parser and the
parsing process that it performs are provided with reference
to FIGS. 4 and 5. Details on generating discourse segmenter

decision rules and discourse parser decision rules appear
below with reference to FIGS. 6-9. What follows 1s a

description of the training corpus that was used 1n generating

decision rules for the discourse segmenter and for the
discourse parser.

0075] The Training Corpus

0076] The training corpus (equivalently, the training set)
used was a body of manually built (i.e., by humans) rhe-
torical structure trees. This corpus, which included 90 texts
that were manually annotated with discourse trees, was used
to generate learning cases of how texts should be partitioned
into edus and how discourse units and segments should be
assembled 1nto discourse trees.

[0077] A corpus of 90 rhetorical structure trees were used,
which were built manually using rhetorical relations that
were defined informally in the style of Mann et al., “Rhe-
torical structure theory: Toward a functional theory of text
organization, Text, 8(3):243-281 (1988): 30 trees were built
for short personal news stories from the MUC/ co-reference
corpus (Hirschman et al., MUC-7 Coreference Task Defini-
tion, 1997); 30 trees for scientific texts from the Brown
corpus; and 30 trees for editorials from the Wall Street
Journal (WSJ). The average number of words for each text
was 405 1n the MUC corpus, 2029 1n the Brown corpus and
8’78 1n the WSJ corpus. Each MUC text was tagged by three
annotators; each Brown and WSIJ text was tagged by two
annotators.

|0078] The rhetorical structure assigned to each text is a
(possibly non-binary) tree whose leaves correspond to
elementary discourse units (edu)s, and whose internal nodes
correspond to contiguous text spans. Each internal node 1s
characterized by a rhetorical relation, such as ELABORA-
TION and CONTRAST. Each relation holds between two
non-overlapping text spans called NUCLEUS and SATEL-
LITE. (There are a few exceptions to this rule: some
relations, such as SEQUENCE and CONTRAST, are multi-
nuclear.) As noted above, the distinction between nuclei and
satellites comes from the empirical observation that the
nucleus expresses what 1s more essential to the writer’s
purpose than the satellite. Each node in the tree 1s also
characterized by a promotion set that denotes the units that
are 1mportant 1n the corresponding subtree. The promotion
sets of leaf nodes are the leaves themselves. The promotion
sets of 1nternal nodes are given by the union of the promo-
tion sets of the immediate nucle1 nodes.
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[0079] As noted above, edus are defined functionally as
clauses or clause-like units that are unequivocally the
NUCLEUS or SATELLITE of a rhetorical relation that
holds between two adjacent spans of text. For example,
“because of the low atmospheric pressure” in the text (1),
below, 1s not a fully fleshed clause. However, since 1t 1s the
SATELLITE of an EXPLANATION relation, it 1s treated as

clementary.

[0080] (1) [Only the midday sun at tropical latitudes 1s
warm enough || to thaw ice on occasion, |[but any liquid
water formed 1n this way would evaporate almost
instantly || because of the low atmospheric pressure. ]

[0081] Some edus may contain parenthetical units, i.e.,
embedded units whose deletion does not affect the under-
standing of the edu to which they belong. For example, the
unit shown in italics in text (2), below, is parenthetic.

[0082] (2) This book, which I have received from John,
1s the best book that I have read 1n a while.

[0083] The annotation process involved assigning edu and
parenthetical unit boundaries, assembling edus and spans
into discourse trees, and labeling the relations between edus
and spans with rhetorical relation names from a taxonomy of
71 relations. No explicit distinction was made between
intentional, informational, and textual relations. In addition,
two constituency relations were marked that were ubiquitous
in the corpus and that often subsumed complex rhetorical
constituents. These relations were AT TRIBUTION, which
was used to label the relation between a reporting and a
reported clause, and APPOSITION. The rhetorical tagging
tool used—mnamely, the RST Annotation Tool downloadable
from, and described at:

[0084] http://www.isi.edu/~marcu/software.html

[0085] maintains logs of all tree-construction operations.
As a result, 1n addition to the rhetorical structure of 90 texts,
a corpus of logs was created that reflects the way that human
judges determine edu and parenthetical unit boundaries. The
following two publications—Daniel Marcu, Estibaliz Amor-
rortu, and Magdalena Romera, “Experiments 1n Construct-
ing a Corpus of Discourse Trees,” The ACL’99 Workshop on
Standards and Tools for Discourse Tagging, Maryland, June
1999; and Daniel Marcu, Magdalena Romera, and Estibaliz
Amorrortu, “Experiments in Constructing a Corpus of Dis-
course Trees: Problems, Annotation Choices, Issues,” The
Workshop on Levels of Representation in Discourse, pages
71-78, Edinburgh, Scotland, July 1999—both of which are
incorporated by reference, discuss in detail the annotation
tool and protocol and assess the inter-judge agreement and
the reliability of the annotation.

0086] The Discourse Parsing Model

0087] The discourse parsing process is modeled as a
sequence of shift-reduce operations. The mput to the parser
1s an empty stack and an 1nput list that contains a sequence
of elementary discourse trees (“edts™), one edt for each edu
produced by the discourse segmenter. The status and rhe-
torical relation associated with each edt 1s “UNDEFINED”,
and the promotion set 1s given by the corresponding edu. At
cach step, the parser applies a “Shift” or a “Reduce”
operation. Shift operations transfer the first edt of the mnput
list to the top of the stack. Reduce operations pop the two
discourse trees located on the top of the stack; combine them
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into a new ftree updating the statuses, rhetorical relation
names, and promotion sets associated with the ftrees

involved 1n the operation; and push the new tree on the top
of the stack.

[0088] Assume, for example, that the discourse segmenter
partitions a text given as input as shown in text (3) below
(only the edus numbered from 12 to 19 are shown):

[0089] (3) ... [Close parallels between tests and prac-
tice tests are common,"“][some educators and research-
ers say.”][Test preparation booklets, software and
worksheets are a booming publishing subindustry.™]
| But some practice products are so similar to the tests
themselves that critics say they represent a form of
school-sponsored cheating.!”]

[0090] [“If they took these preparation booklets into
my classroom, ||[I’d have a hard time justifying to my
students and parents that it wasn’t cheating,”" "] says
John Kaminsky,'*][a Traverse City, Mich., teacher
who has studied test coaching.’”.]

10091] FIG. 4 shows the actions taken by a shift-reduce

discourse parser starting with step 1. At step 1, the stack
contains 4 partial discourse trees, which span units [1,11],
[12,15],116,17], and [ 18], and the input list contains the edts
that correspond to units whose numbers are higher than or
equal to 19. At step 1 the parser decides, based on its
predetermined decision rules, to perform a Shift operation.
As a result, the edt corresponding to unit 19 becomes the top
of the stack. At step 1+1, the parser performs a “Reduce-
Apposition-NS” operation, that combines edts 18 and 19
into a discourse tree whose nucleus 1s unit 18 and whose
satellite 1s unit 19. The rhetorical relation that holds between
units 18 and 19 1s APPOSITION. At step 1+2, the trees that
span over units [16,17] and [18,19] are combined into a
larger tree, using a “Reduce-Afttribution-NS” operation. As
a result, the status of the tree [16,17] becomes “nucleus” and
the status of the tree [18,19] becomes “satellite.” The
rhetorical relation between the two trees 1s SMALL ATTRI-
BUTION. At step 1+3, the trees at the top of the stack are
combined using a “Reduce-Elaboration-NS” operation. The
ciiect of the operation 1s shown at the bottom of FI1G. 4.

[0092] In order to enable a shift-reduce discourse parser to
be able to derive any discourse tree, it 1s suflicient to
implement one Shift operation and six types of Reduce
operations, whose operational semantics are shown 1n FIG.
5. In other words, the shift operation and the six reduce
operations shown 1n FI1G. 5 are mathematically sufficient to
derive the discourse tree of any unrestricted mput text.

[0093] For each possible pair of nuclearity assignments
“nucleus-satellite” (ns), “satellite-nucleus” (sn), and
“nucleus-nucleus” (nn) there are two possible ways to attach
the tree located at position top in the stack to the tree located
at position top-1. To create a binary tree whose 1mmediate
children are the trees at top and top-1, an operation of type

“reduce-ns”, “reduce-sn”, or “reduce-nn” 1s used. To attach
the tree at position top as an extra-child of the tree at top-1,
thus creating or modilying a non-binary tree, an operation of
type reduce below-ns”, “reduce-below-sn”, or “reduce-be-
low-nn” 1s used. FIG. § illustrates how the statuses and
promotion sets associated with the trees mvolved in the
reduce operations are affected 1n each case.

10094] Because the labeled data in the training corpus used
was relatively sparse, the relations that shared some rhetori-
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cal meaning were grouped 1nto clusters of rhetorical simi-
larity. For example, the cluster named “contrast” contained
the contrast-like rhetorical relations of ANTITHESIS, CON-
TRAST, and CONCESSION. The cluster named “evalua-
tion-interpretation” contained the rhetorical relations
EVALUATION and INTERPRETATION. And the cluster
named “other” contained rhetorical relations such as ques-
tion-answer, proportion, restatement, and comparison,
which were used very seldom 1n the corpus. The grouping
process yielded 17 clusters, each characterized by a gener-
alized rhetorical relation name. These names are as follows:
APPOSITION-PARENTHETICAL, ATTRIBUTION,
CONTRAST, BACKGROUND-CIRCUMSTANCE,
CAUSE-REASON-EXPLANATION, CONDITION,
ELABORATION, EVALUATION-INTERPRETATION,
EVIDENCE, EXAMPLE, MANNER-MEANS, ALTER-
NATIVE, PURPOSE, TEMPORAL, LIST, TEXTUAL, and
OTHER.

[0095] If a sufficiently large number of texts were labeled
manually, however, the clustering described above would be
unnecessary.

[0096] In developing the discourse parser, one design
parameter was to automatically derive rhetorical structures
trees that were labeled with relation names that corre-
sponded to the 17 clusters of rhetorical similarity. Since
there are 6 types of reduce operations and since each
discourse tree uses relation names that correspond to the 17
clusters of rhetorical similarity, 1t follows that the discourse
parser needs to learn what operation to choose from a set of
6x17+1=103 operations (the 1 corresponds to the SHIFT
operation).

0097] The Discourse Segmenter

0098] FIG. 6 1s a flowchart of a generalized process 600
for generating decision rules for the discourse segmenter.
The first step 1n the process was to build, or otherwise
obtain, the training corpus. As discussed above, this corpus
was built manually using an annotation tool. In general,
human annotators looked at text segments and for each
lexeme (word or punctuation mark) determined whether an
edu boundary existed at the lexeme under consideration and
either marked it with a segment break or not, depending on
whether an edu boundary existed.

[0099] Next, in step 604, for each lexeme, a set of one or
more features was associated to each of the edu boundary
decisions, based on the context in which these decisions
were made. The result of such association 1s a set of learning
cases—essentially, discrete instances that capture the edu-
boundary decision-making process for a particular lexeme in
a particular context. More specifically, the leaves of the
discourse trees that were built manually were used 1n order
to derive the learning cases. To each lexeme 1n a text, one
learning case was associated using the features described
below. The classes to be learned, which are associated with
cach lexeme, are “sentence-break”, “edu-break™, “start-
paren”, and “end-paren”, and “none”. Further details of the
features used in step 604 for learning follow.

[0100] To partition a text into edus and to detect paren-
thetical unit boundaries, features were relied on that model
both the local and global contexts. The local context consists
of a window of size 5 (1+2+2) that enumerates the Part-Of-
Speech (POS) tags of the lexeme under scrutiny and the two
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lexemes found immediately before (2) and after it (2). The
POS tags are determined automatically, using the “Brill
Tagger,” as described 1 Eric Brill, “Transformation-based
error-driven learning and natural language processing: A
case study 1n part-of-speech tageging,” Computational Lin-
guistics, 21(4):543-565, which is incorporated by reference.
Because discourse markers, such as “because” and “and”,
typically play a major role in rhetorical parsing, also con-
sidered was a list of features that specily whether a lexeme
found within the local contextual window 1s a potential
discourse marker; hence, for each lexeme under scrutiny, it
1s specified whether 1t 1s a special orthographical marker,
such as comma, dash, and parenthesis, or whether 1t 1s a
potential discourse marker, such as “accordingly,”*after-
wards,” and “and.” The local context also contains features
that estimate whether the lexemes within the window are
potential abbreviations. In this regard, a hard-coded list of
250 potential abbreviations can be used.

[0101] The global context reflects features that pertain to
the boundary identification process. These features specily
whether there are any commas, closed parentheses, and
dashes before the estimated end of the sentence, whether
there are any verbs in the unit under consideration, and
whether any discourse marker that introduces expectations
was used 1n the sentence under consideration. These markers
include phrases such as Although and With.

10102] The decision-based segmenter uses a total of
twenty-five features, some of which can take as many as 400
values. When we represent these features 1n a binary format,
we obtain learning examples with 2417 binary features/
example.

10103] In step 606, a Iearning algorithm such as the C4.5
algorithm as described 1n J. Ross Quinlan, “C4.5: Programs
for Machine Learning,” Morgan Kauimann Publishers
(1993), to learn a set of decision rules from the learning
cases. The result 1s set of discourse segmenter decision rules
608 that collectively define whether a previously unseen
lexeme, given its particular context, represents an edu
boundary within its particular context in the text segment
under consideration.

10104] FIG. 6A shows some of the rules that were learned
by the C4.5 program using a binary representation of the

features and learning cases extracted from the MUC corpus.
Rule 1 specifies that if the POS tag of the lexeme that
immediately precedes the lexeme under scrutiny 1s a closed
parenthesis and the previous marker recognized during the
processing or the current sentence was an open parenthesis,
then the action to be taken is to msert an end of parenthetic
unit. Rule 1 can correctly 1dentify the end of the parenthetic

unit at the location marked with the symbol T 1n sentence
(4.1) below.

[0105] (4.1) Surface temperatures typically average
about —60 degrees Celsius (=76 degrees Fahrenheit)
at the equator.

[0106] Rule 2 can correctly identify the beginning of the
parenthetic unit 44 years old 1n sentence 4.2 because the unit

is preceded by a comma and starts with a numeral (CD)
followed by a plural noun (NNS).

[0107] (4.2) Ms. Washington, 44 years old, would be the
first woman and the first black to head the five-member
commission that oversees the securities markets.
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[0108] Rule 3 identifies the end of a sentence after the
occurrence of a DOT (period, questions mark, or exclama-
tion mark) that is not preceded or followed by another DOT
and that 1s not followed by a DOUBLEQUOTE. This rule
will correctly 1dentify the sentence end after the period in
example 4.3, but will not insert a sentence end after the
period 1n example 4.4. However, another rule that 1s dertved
automatically will insert a sentence break after the double
quote that follows the T mark 1n example 4.4.

[0109] (4.3) The meeting went far beyond Mr. Clinton’s
normal weekly gathering of business leaders. | Eco-
nomic advisor Gene Sperling described i1t as “a true
full-court press” to pass the deficit-reduction bill, the

final version of which 1s now being hammered out by
House and Senate Negotiators.

[0110] (4.4) The executives “are here, just as I am, not
because anyone agrees with every last line and jot and
title of this economic program,” Mr. Clinton acknowl-
edged, but “because 1t does far more good than harm.”
Despite resistance from some lawmakers I his own

party, the president predicted the bill would pass.

[0111] Rule 4 identifies an edu boundary before the occur-
rence of an “and” followed by a verb in the past tense (VPT).
This rule will correctly 1dentify the marked edu boundary in
sentence 4.5.

[0112] (4.5) Ashley Boone ran marketing and distribu-
tion | and left the company late last year.

[0113] Rule 5 inserts edu boundaries before the occurrence
of the word “until”, provided that “unftil” 1s followed not
necessarily by a verb. This rule will correctly msert an edu
boundary in example 4.6.

[0114] (4.6) Several appointees of President Bush are
likely to stay 1n office at least temporarily, until
permanent successors can be names.

[0115] Rule 6 is an automatically derived rule that mirrors
the manually derived rule specific to COMMA-like actions
in the surface-based umit identification algorithm. Rule 6
will correctly insert an edu boundary after the comma
marked 1n example 4.7, because the marker “While” was
used at the beginning of the sentence.

[0116] (4.7) While the company hasn’t commented on
the probe, | persons close to the board said that Messrs.
Lavin and Young, along with some other top Wool-
worth executives were under investigation by the spe-
clal committee for their possible mmvolvement in the
alleged 1rregularities.

[0117] Rule 7 specifies that no elementary or parenthetical
unit boundary should be mserted immediately before a DOT.

[0118] As one can notice, the rules in FIG. 6a are more
complex than typical manually derived rules. The automati-
cally derived rules make use not only of orthographic and
cue-phrase-specific information, but also of syntactic infor-
mation, which 1s encoded as part of speech tags.

[0119] In step 606, the C4.5 program was used in order to
learn decision trees and rules that classily lexemes as
boundaries of sentences, edus, or parenthetical units, or as
non-boundaries. Learning was accomplished both from
binary representations (when possible) and non-binary rep-
resentations of the cases. (Learning from binary represen-
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tations of features in the Brown corpus was too computa-
fionally expensive to terminate—the Brown data file had
about 0.5 Giga-bytes.) In general the binary representations
yielded slightly better results than the non-binary represen-
tations and the tree classifiers were slightly better than the
rule-based ones.

[0120] Table 1 shows accuracy results of non-binary,
decision-tree classifiers. The accuracy figures were com-
puted using a ten-fold cross-validation procedure. In Table 1,
B1 corresponds to a majority-based baseline classifier that
assigns the class “none” to all lexemes, and B2 to a baseline
classifier that assigns a sentence boundary to every “DOT”
(that is, a period (.), question mark (?), and/or exclamation
point (1)) lexeme and a non-boundary to all other lexemes.

TABLE 1

Performance of a discourse segmenter that uses
a_decision-tree, non-binary classifier.

Corpus # cases B1 (%) B2 (%) Acc (%)

MUC 14362 91.28 93.1 96.24 = 0.06
WSJ 31309 92.39 94.6 97.14 £ 0.10
Brown 72092 93.84 69.8 97.87 = 0.04
0121] FIG. 7 shows the learning curve that corresponds

to the MUC corpus. It suggests that more data can increase
the accuracy of the classifier.

[0122] The confusion matrix shown in Table 2 corre-
sponds to a non-binary-based tree classifier that was trained
on cases derived from 27 Brown texts and that was tested on
cases derived from 3 different Brown texts, which were
selected randomly. The matrix shows that the segmenter
encountered some difficulty with identifying the beginning
of parenthetical units and the intra-sentential edu bound-
aries; for example, 1t correctly idenfifies 133 of the 220 edu
boundaries. The performance 1s high with respect to recog-
nizing sentence boundaries and ends of parenthetical units.
The performance with respect to identifying sentence
boundaries appears to be close to that of systems aimed at
identitying “only” sentence boundaries, such as described in
David D. Palmer and Marti A. Hearst, “Adaptive multilin-
oual sentence boundary disambiguation,” Computational
Linguistics, 23(2):241-269 (1997) (hereinafter, “Hearst

(1997)”), whose accuracy is in the range of 99%.

TABLE 2

Confusion matrix for the decision-tree,
non-binary classifier (the Brown corpus).

Action (a) (b) (c) (d) (e)

sentence-break (a) 272 4
edu-break (b) 133 3 84
start-paren (c) 4 26
end-paren (d) 20 6
none (e) 2 38 1 4 7555

10123] Training the Discourse Parser

10124] FIG. 8 shows a generalized flowchart for a process
800 for generating decision rules for the discourse parser.
Put another way, the process 800 can be used to train the
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discourse parser about when and under what circumstances,
and 1n what sequence, 1t should perform the various shift-
reduce operations.

[0125] In step 802, the process receives as input the
training corpus of discourse trees and, for each discourse
tree, a set of edus from the discourse segmenter. Next, 1n step
804, for each discourse tree/edu set, the process 800 deter-
mines a sequence of shift-reduce operations that reconstructs
the discourse tree from the edus 1n that tree’s corresponding
set. Next, 1n step 806, the process 800 associates features
with each entry in each sequence. Finally, in step 808, the
process 800 applies a learning algorithm (e.g., C4.5) to
ogenerate decision rules 810 for the discourse parser. As
noted above, the discourse parser will then be able to use
these decision rules 810 to determine the rhetorical structure
for any 1nput text and, from 1t, generate a discourse tree as
output.

[0126] Additional details of training the discourse parser
follow.

[0127] Shift-Reduce Action Identifier: Generation of
Learning Examples

|0128] The learning cases were generated automatically,
in the style of Magerman, “Statistical decision-tree models
for parsing,”Proceedings of ACL 95, pages 276-283 (1995),
by traversing in-order the final rhetorical structures built by
annotators and by generating a sequence of discourse parse
actions that used only SHIFT and REDUCE operations of
the kinds discussed above. When a derived sequence is
applied as described above with respect to the parsing
model, 1t produces a rhetorical tree that 1s a one-to-one copy
of the original tree that was used to generate the sequence.
For example, the tree at the bottom of FIG. 4—the tree
found at the top of the stack at step 1+4—can be built if the
following sequence of operations is performed: {SHIFT 12;
SHIFT 13; REDUCE-ATTRIBUTION-NS; SHIFT 14;
REDUCE-JOINT-NN; SHIFT 15; REDUCE-CONTRAST-
SN; SHIFT 16; SHIFT 17, REDUCE-CONTRAST-SN;
SHIFT 18; SHIFT 19; REDUCE-APPOSITION-NS;
REDUCE ATTRIBUTION-NS; REDUCE-ELABORA-
TION-NS.}

[0129] The Shift-Reduce Action Identifier: Features used
for Learning

[0130] To make decisions with respect to parsing actions,
the shift-reduce action identifier focuses on the three top-
most trees 1n the stack and the first edt 1n the 1input list. These
trees are referred to as the trees “in focus.” The identifier
relies on the following classes of features: structural fea-
tures, lexical (cue-phase-like) features, operational features,
and semantic-similarity-based features. Each 1s described 1n
turn.

0131] Structural Features.

0132] Structural features include the following:

0133] (1) Features that reflect the number of trees in the
stack and the number of edts 1n the mnput list.

[0134] (2) Features that describe the structure of the trees
in focus 1n terms of the type of textual umits that they
subsume (sentences, paragraphs, titles). These may include
the number of immediate children of the root nodes, the
rhetorical relations that link the immediate children of the
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root nodes, and the like. The i1dentifier assumes that each
sentence break that ends 1n a period and 1s followed by two
“\n” characters, for example, 1s a paragraph break; and that
a sentence break that does not end 1n a punctuation mark and
1s followed by two “\n’ characters 1s a title.

0135] Lexical (Cue-Phrase-Like) and Syntactic Features.

0136] Lexical features include the following:

0137] (1) Features that denote the actual words and POS

tags of the first and last two lexemes of the text spans
subsumed by the trees 1n focus.

[0138] (2) Features that denote whether the first and last
units of the trees 1 focus contain potential discourse mark-
ers and the position of these markers 1n the corresponding
textual units (beginning, middle, or end).

0139] Operational Features.

0140] Operational features includes features that specify
what the last five parsing operations performed by the parser
were. These features could be generated because, for learn-
ing, sequences of shift-reduce operations were used and not
discourse trees.

[0141] Semantic-Similarity-Based Features.

[0142] Semantic-similarity-based features include the fol-
lowing;:

[0143] (1) Features that denote the semantic similarity
between the textual segments subsumed by the trees in
focus. This similarity 1s computed by applying in the
style of Hearst (1997) a cosine-based metric on the
morphed segments. If two segments S, and S, are
represented as sequences of (i, t)) pairs, where t 1s a
token and w(t) is its weight, the similarity between the
segments can be computed using the formula shown
below, where w(t)s, and w(t)s, represent the weights of
token t 1n segments S, and S, respectively.

D wng W,

IESlUSZ
sim(S1, 52) = —
E W} ) wnl,
‘\ €S =5

|0144] The weights of tokens are given by their frequen-
cies 1n the segments.

[0145] (2) Features that denote Wordnet-based mea-
sures of similarity between the bags of words in the
promotion sets of the trees 1n focus. Fourteen Wordnet-
based measures of similarity were used, one for each
Wordnet relation (Fellbaum, Wordnet: An Electronic
Lexical Database, The MIT Press, 1998). Each of these
similarities 1s computed using a metric similar to the
cosine-based metric. Wordnet-based similarities reflect
the degree of synonymy, antonymy, meronymy,
hyponymy, and the like between the textual segments
subsumed by the trees 1n focus. The Wordnet-based
similarities are computed over the tokens that are found
in the promotion units associated with each segment. If
the words 1n the promotion units of two segments S,
and S, are represented as two sequences W, and W,
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the Wordnet-based similarities between the two seg-
ments can be computed using the formula shown 1n
below, where the function ;. oy returns 1 1t there

exists a Wordnet relation of type R between the words
w, and w,, and O otherwise.

Z T svordnet Relation(w) w2 )
wi e Wi un Wy

|W, | x| W]

S fmwardnfr Relation ( Wl . WZ) —

[0146] The Wordnet-based similarity function takes values
in the interval [0,1]: the larger the value, the more similar
with respect to a given Wordnet relation the two segments
are.

[0147] In addition to these features that modeled the
Wordnet-based similarities of the trees 1n focus, 14x13/2=91
relative Wordnet-based measures of similarity were used,
one of each possible pair of Wordnet-based relations. For
cach pair of Wordnet-based measures of similarity w_, and
W_,, each relative measure (feature) takes the value <, =, or
>, depending on whether the Wordnet-based similarity w_,
between the bags of words 1n the promotion sets of the trees
in focus 1s lower, equal, or higher than the Wordnet-based
similarity W_, between the same bags of words. For
example, 1f both the synonymy- and meronymy-based mea-
sures of similarity are 0, the relative similarity between the
synonymy and meronymy of the trees 1 focus will have the
value=.

|0148] A binary representation of these features yields
learning examples with 2789 features/example.

0149] Examples of Rule Specific to the Action Identifier

0150] FIG. 8A shows some of the rules that were learned
by the C4.5 program using a binary representation of the
features and learning cases extracted from the MUC corpus.
Rule 1, which 1s similar to a typical rule derived manually,
specifles that if the last lexeme 1n the tree at position top-1
in the stack 1s a comma and there 1s a marker “if” that occurs
at the beginning of the text that corresponds to the same tree,
then the trees at position top-1 and top should be reduced
using a REDUCE-CONDITION-SN operation. This opera-
tion will make the tree at position top-1 the satellite of the
tree at position top. If the edt at position top-1 1n the stack
subsumes unit 1 in example 5.1 and the edt at position top
subsumes unit 2, this reduce action will correctly replace the
two edts with a new rhetorical tree, that shown m FIG. 8B.

[0151] (5.1) [If you refer to someone as a butt-head,]
|ordinarily speaking, no one is going to take that as any
specific charge of any improper conduct or insinuation
of any character trait.”]

[0152] Rule 2 makes the tree at the top of the stack the
BACKGROUND-CIRCUMSTANCE satellite of the tree at
position top-1 when the first word 1n the text subsumed by
the top tree is “when”, which is a while-adverb (WRB),
when the second word 1n the same text 1s not a gerund or past
participle verb (VBGQG), and when the cosine-based similarity
between the text subsumed by the top node 1n the stack and
the first unit 1n the list of elementary discourse units that
have not been shifted to the stack 1s greater than 0.0793052.
If the edt as position top-1 1n the stack subsumes unit 1 1n
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example 5.2 and the edt at position top subsumes unit 2, rule
2 will correctly replace the two edts with the rhetorical tree

shown 1n FIG. 8C.

[0153] (5.2) [Mrs. Graham, 76 years old, has not been
involved 1n day-to-day operations at the company since
May 1991.'when Mr. Graham assumed the chief

executive officer’s title.” ]

[0154] In case the last word in the text subsumed by the
tree at position top-1 in the stack is a plural noun (NNS), the
first word 1n the text subsumed by the tree at the top of the
stack is a preposition or subordinating conjunction (IN), and
the hyponymy-based similarity between the two trees at the
top of the stack 1s equal with their synonymy-based simi-
larity, then the action to be applied 1s REDUCE-BACK-
GROUND-CIRCUMSTANCE-NS. When this rule 1s
applied 1n conjunction with the edts that correspond to the
units marked 1n 5.3, the resulting tree has the same shape as

the tree shown 1in FIG. 8C.

[0155] (5.3) [In an April 7 Wall Street Journal article,

several experts suggested that IBM’s accounting grew
much more liberal since the mid-1980s' ][ as its business

turned sour.”]

[0156] When the tree at the top of the stack subsumes a
paragraph and starts with the marker “but”, the action to be
applied 1s REDUCE-CONTRAST-NN. For example, if the
trees at the top of the stack subsume the paragraphs shown
in F1G. 8D and are characterized by promotion sets P1 and
P2, as a result of applying rule 4 in FIG. 8A, one would
obtain a new tree, whose shape 1s shown 1n FIG. 8E; the
promotion units of the root node of this tree are given by the
union of the promotion units of the child nodes.

0157] The last rule in FIG. 8A reflects the fact that each

text in the MUC corpus 1s characterized by a title. When
there are no units left in the input list (noUnitsInList=0) and
a tree that subsumes the whole text has been built (no'Treesl-
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nStack<=2), the two trees that are left in the tree—the one
that corresponds to the title and the one that corresponds to

the text—are reduced using a REDUCE-TEXTUAL-NN
operation.

0158]

0159] Table 3 below displays the accuracy of the shift-
reduce action identifiers, determined for each of the three
corpora (MUC, Brown, WSIJ) by means of a ten-fold cross-
validation procedure. In table 3, the B3 column gives the
accuracy ol a majority-based classifier, which chooses
action SHIFT 1n all cases. Since choosing only the action
SHIFT never produces a discourse tree, column B4 presents
the accuracy of a baseline classifier that chooses shift-reduce
operations randomly, with probabilities that reflect the prob-
ability distribution of the operations 1n each corpus.

Evaluation of Shift-Reduce-Action Identifier

TABLE 3

Performance of the tree-based, shift-reduce action classifiers.

Corpus # cases B3 (%) B4 (%) Acc (%)

MUC 1996 50.75 26.9 61.12 + 1.61

WSIJ 4360 50.34 27.3 61.65 = 0.41

Brown 8242 50.18 28.1 61.81 = 0.48
[0160] FIG. 9 shows the learning curve that corresponds

to the MUC corpus. As 1n the case of the discourse seg-
menter, this learning curve also suggests that more data can
increase the accuracy of the shift-reduce action identifier.
Evaluation of the rhetorical parser By applying the two
classifiers sequentially, one can derive the rhetorical struc-
ture of any text. The performance results presented above
suggest how well the discourse segmenter and the shift-
reduce action identifier perform with respect to individual
cases, but provide no mformation about the performance of
a rhetorical parser that relies on these classifiers.

TABLE 4

Performance of the rhetorical parser:

labeled (R)ecall and (P)recision. The segmenter
is either Decision-Tree-Based (DT) or Manual (M).

Elementarz units Hierarchical spans SEan nuclearitz

Rhetorical relations

Seg- Training Judges Parser Judges Parser Judges Parser Judges Parser
Corpus menter corpus R P R P R P R P R P R P R P R P
MUC DT MUC 88.0 88.0 100.0 844 844 382 610 791 835 255 515 786 786 149 287
DT All 37.1 70.9 728 58.3 689 384 453
M MUC 96.9 87.5 82.3 68.8 /8.2 72.4  62.8
M All 75 4 100.0 84.8 735 71.0 693 66.5 53.9
100.0 100.0
100 0
WSJ DT WSJ 851 86.8 799 801 340 658 o676 771 21.6 540 731 733 13.0 343
DT All 18 1  95.8 40.1  66.3 303 58.5 17.3  36.0
M WSJ 83.4 84.2 637 799 56.3 579
M All 251  79.6 83.0 85.0 69.0 824 59.8 63.2
100.0 100 O
100 0 100 0O
Brown DT Brown 89.5 885 806 795 573 633 o676 758 446 573 697 683 207 353
DT All 605 794 447  59.1 332 518 1577 257
M Brown 881 73.4 60.1 670 505 455
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TABLE 4-continued

Performance of the rhetorical parser:
labeled (R)ecall and (P)recision. The segmenter
is either Decision-Tree-Based (DT) or Manual (M).

Elementary units

Hierarchical spans

Span nuclearity Rhetorical relations

Seg- Training Judges Parser Judges Parser Judges Parser Judges Parser
Corpus menter corpus R P R P R P R P R P R P R P R P
M All 44 2 80.3 808 775 60.0 720 518 447
100.0 100 0O
100 0 100 O
[0161] Inorder to evaluate the rhetorical parser as a whole, performance that are not far from those of humans. How-

cach corpus was partitioned randomly into two sets of texts:
2’7 texts were used for training and the last 3 texts were used
for testing. The evaluation employs “labeled recall” and
“labeled precision” measures, which are extensively used to
study the performance of syntactic parsers. “Labeled recall”
reflects the number of correctly labeled constituents identi-
fied by the rhetorical parser with respect to the number of
labeled constituents 1n the corresponding manually built
tree. “Labeled precision” reflects the number of correctly
labeled constituents 1dentified by the rhetorical parser with
respect to the total number of labeled constituents identified
by the parser.

[0162] Labeled recall and precision figures were com-
puted with respect to the ability of the discourse parser to
identify elementary units, hierarchical text spans, text span
nucle1r and satellites, and rhetorical relations. Table 4 dis-
plays results obtained using segmenters and shift-reduce
action 1dentifiers that were trained either on 27 texts from
cach corpus and tested on 3 unseen texts from the same
corpus; or that were trained on 27x3 texts from all corpora
and tested on 3 unseen texts from each corpus. The training
and test texts were chosen randomly. Table 4 also displays
results obtained using a manual discourse segmenter, which
identified correctly all edus. Since all texts 1n the corpora
were manually annotated by multiple judges, an upper-
bound of the performance of the rhetorical parser was
computed by calculating, for each text in the test corpus and
cach judge, the average labeled recall and precision figures
with respect to the discourse trees built by the other judges.
Table 4 displays these upper-bound figures as well.

[0163] 'The results in table 4 primarily show that errors in
the discourse segmentation stage affect significantly the
quality of the trees the parser builds. When a segmenter 1s
trained only on

[0164] 27 texts (especially for the MUC and WSJ corpora,

which have shorter texts that the Brown corpus), it has very
low performance. Many of the intra-sentential edu bound-
aries are not identified, and as a consequence, the overall
performance of the parser 1s low. When the segmenter 1s
trained on 27x3 texts, its performance increases significantly
with respect to the MUC and WSJ corpora, but decreases
with respect to the Brown COrpus. This can be explained by
the significant differences in style and discourse marker
usage between the three corpora. When a perfect segmenter
1s used, the rhetorical parser determines hierarchical con-
stituents and assigns them a nuclearity status at levels of

ever, the rhetorical labeling of discourse spans even 1n this
case 1s about 15-20% below human performance. These
results suggest that the features used are suil

icient for
determining the hierarchical structure of texts and the nucle-
arity statuses of discourse segments.

[0165] Alternative embodiments of the discourse parser
and 1its parsing procedure are possible. For example, prob-
abilities could be incorporated into the process that builds
the discourse trees. Alternatively, or 1n addition, multiple
trees could be derived 1n parallel and the best one selected
in the end. In the current embodiment, the final discourse
tree 1s generated 1n a sequence of deterministic steps with no
recursion or branching. Alternatively, it 1s possible to asso-
clate a probability with each individual step and build the
discourse tree of a text by exploring multiple alternatives at
the same time. The probability of a discourse tree 1s given by
the product of the probabilities of all steps that led to the
derivation of that tree. In such a case, the discourse tree of
a text will be taken to be the resulting tree of maximum
probability. An advantage of such an approach 1s that it
enables the creation of multiple trees, each one having
assoclated a probability.

[0166] Summarization

[0167] Various summarizing systems and techniques are
described 1n detail below. In general, two different embodi-
ments of a summarizer are described. First, a “channel-
based” summarizer that uses a probabilistic approach for
summarization (equivalently, compression) is described, and
second, a “decision-based” summarizer that uses learned
decision rules for summarization 1s described.

0168]

Channel-Based Summarizer

0169] This section describes a probabilistic approach to
the compression problem. In particular, a “noisy channel”
framework 1s used. In this framework, a long text string 1s
regarded as (1) originally being a short string, that (2)
someone added some additional, optional text to i1it. Com-
pression 1s a matter of 1dentifying the original short string.
It 1s not critical whether or not the “original” string 1s real or
hypothetical. For example, in statistical machine translation,
a French string could be regarded as originally being in
English, but having noise added to it. The French may or
may not have been translated from English originally, but by
removing the noise, one can hypothesize an English
sourcc—and thereby translate the string. In the case of
compression, the noise consists of optional text material that
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pads out the core signal. For the larger case of text summa-
rization, 1t may be useful to 1imagine a scenario in which a
news editor composes a short document, hands 1t to a
reporter, and tells the reporter to “flesh 1t out” . . . which
results in the final article published in the newspaper. In
summarizing the final article, the summarizer typically will
not have access to the editor’s original version (which may
or may not exist), but the summarizer can guess at it—which
1s where probabilities come 1n.

[0170] Inanoisy channel application, three problems must
be solved:

[0171] Source model. To every string s a probability
s) must be assigned. s) represents the chance that s is
generated as an “original short string” in the above
hypothetical process. For example, 1t may be desir-
able to have s) to be very low if s 1s ungrammatical.

[0172] Channel model. To every pair of strings (s,t) a
probability t | s) is assigned. t || s) represents the
chance that when the short string s 1s expanded, the
result 1s the long string t. For example, 1f t 1s the same
as s except for the extra word “not,” then it may be
desirable to have a very low t | s) because the word
“not” 1s not optional, additional material.

[0173] Decoder. Given a long string t, a short string
s is searched for that maximizes P(s | t). This is
equivalent to searching for the s that maximizes P(s)

-t | s).

[0174] It 1s advantageous to break down the noisy channel
problem this way, as 1t decouples the somewhat independent
goals of creating a short text that (1) i1s grammatical and
coherent, and (2) preserves important information. It is
casier to build a channel model that focuses exclusively on
the latter, without having to worry about the former. That is,
one can specily that a certain substring may represent
unimportant information without worrying that deleting the
substring will result 1n an ungrammatical structure. That
concern 1S left to the source model, which worries exclu-
sively about well-formedness. In that regard, well-known
prior work 1n source language modeling for speech recog-
nition, machine translation, and natural language generation
can be used. The same goes for actual compression (“decod-
ing” in noisy-channel jargon)—one can re-use generic soft-
ware packages to solve problems 1n all these application
domains.

0175] Statistical Models

0176] In the experiments discussed here, relatively
simple source and channel models were built and used. In a
departure from the above discussion and from previous work
on statistical channel models, probabilities P,,..(s) and P__-
pand .. __(t | ) were assigned to trees rather than strings. In
decoding a new string, first it is parsed into a large syntactic
tree t (for example, using the parser described in M. Collins,
“Three generative, lexicalized models for statistical pars-
ing,” Proceedings of the ,.th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL-97), 16-23
(1997)) and then various small syntactic trees are hypoth-
esized and ranked.

[0177] Good source strings are ones that have both (1) a
normal-looking parse tree, and (2) normal-looking word
pairs. P,._.(s) is a combination of a standard probabilistic
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context-free grammar (PCFG) score, which is computed
over the grammar rules that yielded the tree s, and a standard
word-bigram score, which 1s computed over the leaves of the
tree. For example, the tree s=(S (NP John) (VP (VB saw)

(NP Mary))) is assigned a score based on these factors:

[0178] P,_(s)=TOP — S | TOP) -

[0179] S — NP VP |S) - NP — John | NP) -
[0180] VP — VP NP | VP) - VP — saw | VB) -
[0181] NP — Mary | NP) -

[0182] John | EOS) - saw | John) -

[0183] Mary | saw) - EOS | Mary)

|0184] The stochastic channel model performs minimal
operations on a small tree s to create a larger tree t. For each
internal node 1n s, an expansion template 1s chosen proba-
bilistically based on the labels of the node and 1ts children.
For example, when processing the S node 1n the tree above,
one may wish to add a prepositional phrase as a third child.
This is done with probability S — NP VP PP | S NP VP). Or
onc may choose to leave 1t alone, with probability S — NP
VP | S — NP VP). After an expansion template is chosen,
then for each new child node introduced (if any), a new
subtree 1s grown rooted at that node—for example, (PP (P in)
(NP Pittsburgh)). Any particular subtree is grown with
probability given by its PCFG factorization, as above (no
bigrams).

[0185] Example of Using Statistical Models for Compres-
s101

[0186] This example demonstrates how to tell whether one
potential compression 1s more likely than another, according,
to the statistical models described above. FIG. 11 shows
examples of parse trees. As shown, the tree t in FIG. 11
spans the string abcde. Consider the parse tree for compres-
sion s1, which 1s also shown 1n FIG. 11.

[0187] The factors P, (s1) and P__..4 weo(t | s1) are
computed. Breaking this down further, the source PCFG and
word-bigram factors, which describe P,,.. (s1), are as fol-

tree

lows:
P (TOP — G | TOP) PMH —a|H)
P(G—-HA|G P(C—=b|C)
P(A—CD]|A) P(D — e |D)
P (a | EOS) Pe|b)
P(b|a) P (EOS | )

|0188] The channel expansion-template factors and the

channel PCFG (new tree growth) factors, which describe
P (t | s1) are:

expand__tree

P(G—HA|G— HA)
P(A—-CBD|A— CD)
P(B—QR|B)
PQ—=2]|Q

P(Z—c|Z)
PR —d|R)

|0189] A different compression will be scored with a
different set of factors. For example, consider a compression
of t that leaves t completely untouched. In that case, the
source costs P, .(t) are:

tree
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P (TOP — G | TOP) P(H —a|H) P (a | EOS)
P(G—HA|G) P(C—b|C) P(b|a)
P(A—CD|A) P(Z—c|Z) P(c|b)
P(B— QR|B) P (R — d [R) P(d|c)
P(Q—7|Q) P(D—¢|D) P(e|d
P (EOS | ¢)
[0190] The channel costs P, .4 wec(t | ) are:

P(G—HA
P(A— CBD
P(B— QR

P(Q—2Z

G — H A)
A — CBD)
B — QR)
Q — 2)

[0191] Now, the following values are compared—P,_, .4

tree(81 ‘ t)=Ptree(Sl) ' Pexpand_tree(t ‘ 81))/Ptree(t) VCISUS Pex'

pand_tree(t ‘ t)=Ptree(t) ' Pexpand_tree(t ‘ t) / Ptree(t) —and the
more likely one is selected. Note that P, __(t) and all the

PCFG factors can be canceled out, as they appear 1n any
potential compression. Therefore, one need only compare
compressions of the basis of the expansion-template prob-
abilities and the word-bigram probabilities. The quantities
that differ between the two proposed compressions are
boxed above. Therefore, s1 will be preferred over t if and
only 1if:

[0192] E|[b)-A—=CBD|A—=>CD)>
[0193] bla)-c|b)-d]c)-
[0194] A= CBD|A— CBD)-

[0195] B—=QR|B—-=QR)Q—=Z|Q — Z)
0196] Training Corpus

0197] In order to train the channel-based summarizing
system, the Ziff-Davis corpus—a collection of newspaper
articles announcing computer products—was used. Many of
the articles in the corpus are paired with human written
abstracts. A set of 1067 sentence pairs were automatically
extracted from the corpus. Each pair consisted of a sentence
t=t,, t,, . . ., t, that occurred in the article and a possible
compressed version of 1t s=s1, s, . . . s_, which occurred 1n
the human written abstract. FIG. 12 shows a few examples
of sentence pairs extracted from the corpus.

[0198] This corpus was chosen because it is consistent
with two desiderata specific to summarization work: (1) the
human-written Abstract sentences are grammatical; (11) the
Abstract sentences represent i a compressed form the
salient points of the original newspaper Sentences. The
uncompressed sentences were Kept 1n the corpus as well,
since an objective was to learn not only how to compress a
sentence, but also when to do 1it.

10199] Learning Model Parameters For Channel-Based
Summarizer

10200] Expansion-template probabilities were collected
from parallel corpus. First, both sides of the parallel corpus
were parsed, and then corresponding syntactic nodes were
identified. For example, the parse tree for one sentence may
begin
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[0201] (S (NP . ..)
[0202] (VP...)

[0203] (PP...))

10204] while the parse tree for its compressed version may
begin

[0205] (S (NP . ..)
[0206] (VP ...)).

[10207] If these two S nodes are deemed to correspond,
then a joint event (S — NP VP, S — NP VP PP) is recorded.
Afterwards the events are normalized so that the probabili-
ties add up to one. Not all nodes have corresponding
partners; some non-correspondences are due to incorrect
parses, while others are due to legitimate reformulations that
are beyond the scope of the simple channel model. Standard
methods based on counting and parameters were used to
estimate word-bigram probabilities.

0208]

0209] A vast number of potential compressions of a large
tree t exist, but all of them can be packed efficiently 1nto a
shared-forest structure. For each node of t that has n chil-

dren, the following operations are performed:

Decoding

[0210] generate 2. —1 new nodes, one for each non-
empty subset of the children, and

[0211] Pack those nodes so that they are referred to as
a whole.

[0212] For example, consider the large tree t above. All
compressions can be represented with the following forest:

G—HA B —=R A—=BC H—a
G—H Q—= 7 A—C C—=b
G—A A—=CBD A—=DB /. —=c
B— QR A—=CB A—=D R—=d
B—Q A—=CD D —e

[0213] An expansion-template probability can be assigned
to each node 1n the forest. For example, to the B — Q node,
one can assign B — Q R | B — Q). If the observed
probability from the parallel corpus 1s zero, then a small
floor value of 107° is assigned. In reality, forests are pro-
duced that are much slimmer, as only methods of compress-
ing a node that are locally grammatical according to the
Penn Treebank are considered. (Penn Treebank is a collec-
tion of manually built syntactic parse trees available from
the Linguistic Data Consortium at the University of Penn-
sylvania.) If a rule of the type A — C B has never been
observed, then 1t will not appear 1 the forest.

[0214] Next, a set of high-scoring trees is extracted from
the forest, taking into account both expansion-template
probabilities and word-bigram probabilities. A generic
extractor such as described by 1. Langkilde, “Forest-based
statistical sentence generation,”Proceedings of the 1%
Annual Meeting of the North American Chapter of the
Association for Computational Linguistics (2000) can be
used for this purpose.

[0215] The extractor selects the trees with the best com-
bination of word-bigram and expansion template scores. It
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returns a list of such trees, one for each possible compres-
sion length. For example, as shown in FIG. 16, for the
sentence Beyond that basic level, the operations of the three
products vary, the {following “best” compressions are
obtained, with negative log-probabilities shown 1n paren-
theses (smaller=more likely):

0216] Length Selection

0217] It is useful to have multiple answers to choose
from, as one user may seek 20% compression, while another
seeks 60% compression. However, for purposes of evalua-
fion, the summarizing system was designed to be able to
select a single compression. If log-probabilities as shown 1n
FIG. 16 are relied upon, then typically the shortest com-
pression will be chosen. (Note above, however, how the
three-word compression scores better than the two-word
compression, as the models are not entirely happy removing
the article “the”). To create a more reasonable competition,
the log-probability 1s divided by the length of the compres-
sion, rewarding longer strings. This technique often 1is
applied speech recognition.

[0218] If this normalized score is plotted against compres-
sion length, typically a (bumpy) U-shaped curve results, as
illustrated 1n FIG. 13. In a typical more ditficult case, a
25-word sentence may be optimally compressed by a
17-word version. Of course, 1f a user requires a shorter
compression than that, another region of the curve may be
selected and inspected for a local minimum.

10219] FIGS. 17 and 18 are respectively generalized

flowcharts of the channel-based summarization and training
processes described above.

10220] As shown in FIG. 17, the first step 1702 in the

channel-based summarization process 1700 1s to receive the
input text. Although the embodiment described above uses
sentences as the mput text, any other text segment could be
used 1nstead, for example, clauses, paragraphs, or entire
freatises.

[0221] Next, in step 1704, the input text is parsed to
produce a syntactic tree in the style of FIG. 11, which 1s used
in step 1706 as the basis of generating multiple possible
solutions (e.g., the shared-forest structure described above).
If a whole text 1s given as input, the text can be parsed to
produce a discourse tree, and the algorithm described here
will operate on the discourse tree.

10222] Next, the multiple possible solutions generated in
step 1706 are ranked using pre-generated ranking statistics
from a statistical model. For example, step 1706 may
involve assigning an expansion-template probability to each
node 1n the forest, as described above.

[0223] Finally, the best scoring candidate (or candidates)
is (are) chosen as the final compression solutios) in step
1710. As described above, the best scoring candidate may be
the one having the smallest log-probability/length of com-
pression ratio.

10224] FIG. 18 shows a generalized process for training a
channel-based summarizer. As shown therein, the process
1800 starts in step 1802 with an input training set (or
corpus). As discussed above, this input training set com-
prises pairs of long-short text fragments, for example, long/
short sentence pairs or treatise/abstract pairs. Typically,
because a main purpose of the training set i1s to teach the
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summarizer how to properly compress text, the training set
used will have been generated manually by experienced
editors who know how to create relevant, coherent and
crammatical summaries of longer text segments.

[0225] Next, in step 1804, the long-short text pairs are
parsed to generate syntactic parse trees such as shown in
FIG. 11, thereby resulting in corresponding long-short syn-
tactic tree pairs. Each item of text in each pair 1s parsed
individually in this manner. Also, the entire text i1s parsed
using the discourse parser.

[0226] Next, in step 1806, the resulting parse tree pairs are
compared—that 1s, the discourse or syntactic parse tree for
a long segment 1s compared against the discourse or syn-
tactic parse tree for its paired short segment—to 1dentily
similarities and differences between nodes of the tree pairs.
A difference might occur, for example, 1f, 1n generating the
short segment, an editor deleted a prepositional phrase from
the long segment. In any event, the results of this compari-
son are “events” that are collected for each of the long/short
pairs and stored 1n a database. In general, two different types
of events are detected: “joint events” which represent a
detected correspondence between a long and short segment
pair and Context-Free Grammar (CFG) events, which relate
only to characteristics of the short segment 1n each pair.

[0227] Next, in step 1808, the collected events are nor-
malized to generate probabilities. These normalized events
collectively represent the statistical learning model 1810
used by the channel-based summarizer.

0228]

0229] A description of a decision-based, history model of
sentence compression follows. As in the noisy-channel
approach, 1t 1s assumed that a parse tree t 1s given as mput.
The goal 1s to “rewrite” t mto a smaller tree s, which
corresponds to a compressed version of the original sentence
subsumed by t. Assume the trees t and s2 i FIG. 11 are in
the corpus. In the decision-based summarizer model, the
question presented 1s how may tree t be rewritten 1nto s2.
One possible solution 1s to decompose the rewriting opera-
fion 1mto a sequence of shift- reduce-drop actions that are
specific to an extended shift-reduce parsing paradigm.

[10230] In the decision-based model, the rewriting process
starts with an empty Stack and an Input List that contains the
sequence of words subsumed by the large tree t. Each word
in the input list 1s labeled with the name of all syntactic
constituents in t that start with that word (see FIG. 14). At
cach step, the rewriting module applies an operation that 1s
aimed at reconstructing the smaller tree s2. In the context of
the sentence-compression module, four types of operations
are used:

[0231] SHIFT operations transfer the first word from
the 1nput list into the stack;

10232] REDUCE operations pop the k syntactic trees
located at the top of the stack; combine them into a
new tree; and push the new tree on the top of the
stack. Reduce operations are used to derive the
structure of the syntactic tree of the short sentence.

[0233] DROP operations are used to delete from the
input list subsequences of words that correspond to
syntactic constituents. A DROP X operations deletes
from the input list all words that are spanned by
constituent X 1n t.

Decision-based Summarizer
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[0234] ASSIGNTYPE operations are used to change
the label of trees at the top of the stack. These actions
assign POS tags to the words in the compressed
sentence, which may be different from the POS tags
in the original sentence.

[0235] The decision-based model is more flexible than the
channel model because 1t enables the derivation of a tree
whose skeleton can differ quite drastically from that of the
free given as mput. For example, the channel-based model
was unable to obtain tree s2 from t. However, using the four
operations listed above (SHIFT, REDUCE, DROP,
ASSIGNTYPE), the decision-based model was able to
rewrite a tree t into any tree s, as long as an in-order traversal
of the leaves of s produces a sequence of words that occur
in the same order as the words 1n the tree t. For example, the
free s2 can be obtained from the tree t by following this
sequence of actions, whose effects are shown 1 FIG. 14:
SHIFT, ASSIGNTYPE H; SHIFT;, ASSIGNTYPE K;
REDUCE 2 F; DROP B; SHIFT;, ASSIGNTYPE D;
REDUCE 2 G.

10236] To save space, the SHIFT and ASSIGNTYPE
operations are shown 1n FIG. 14 on the same line. However,
it should be understood that the SHIFT and ASSIGNTYPE

operations correspond to two distinct actions. The ASSIGN-
TYPE K operation rewrites the POS tag of the word b; the
REDUCE operations modify the skeleton of the tree given
as mput. To increase readability, the mput list 1s shown 1n
FIG. 14 1 a format that resembles the graphical represen-
tation of the trees in FIG. 11.

0237] Learning the Parameters of (Training) the Deci-
sion-Based Model

[0238] To train the decision-based model, each configu-
ration of our shift-reduce-drop rewriting model 1s associated
with a learning case. The learning cases are generated
automatically by a program that derives sequences of actions
that map each of the large trees 1n our corpus i1nto smaller
trees. The rewriting procedure simulates a bottom-up recon-
struction of the smaller trees.

10239] Overall, the 1067 pairs of long and short sentences
yielded 46383 learning cases. Each case was labeled with
one action name from a set of 210 possible actions: There are
3’7 ditferent ASSIGNTYPE actions, one for each POS tag.
There are 63 distinct DROP actions, one for each type of
syntactic constituent that can be deleted during compression.
There are 109 distinct REDUCE actions, one for each type
of reduce operation that 1s applied during the reconstruction
of the compressed sentence. And there 1s one SHIFT opera-
tion. Given a tree t and an arbitrary configuration of the stack
and 1nput list, the purpose of the decision-based classifier 1s
to learn what action to choose from the set of 210 possible
actions.

10240] 'To each learning example, a set of 99 features was
assoclated from the following two classes: operation fea-
tures and original-tree-specific features.

0241] Operational features reflect the number of trees in
the stack, the mnput list, and the types of the last five
operations performed. Operational features also encode
information that denotes the syntactic category of the root
nodes of the partial trees built up to a certain time. Examples
of operational features include the following: numberTreesl-
nStack, wasPreviousOperationShift, syntacticLabelOf Tree-

AtTheTopO1Stack.
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[10242] Original-tree-specific features denote the syntactic
constituents that start with the first unit in the input list.

Examples of such features include inputListStartsWith-
A CC and inputListStartsWithA PP.

[10243] The decision-based compression module uses the
(C4.5 program as described in J. Quinlan, “C4.5: Programs
for Machine Learning,” Morgan Kaufmann Publishers
(1993), in order to learn decision trees that specify how large
syntactic trees can be compressed into shorter trees. A
ten-fold cross-validation evaluation of the classifier yielded
an accuracy of 98.16% (x0.14). A majority baseline classi-

fier that chooses the action SHIFT has an accuracy of
28.72%.

10244] FIG. 18A shows examples of rules that were

learned automatically by the C4.5 program. As seen therein,
Rule 1 enables the deletion of WH prepositional phrases in
the context in which they follow other constituents that the
program decided to delete. Rule 2 enables the deletion of
WHNP constituents. Since this deletion 1s carried out only
when the stack contains only one NP constituent, it follows
that this rule 1s applied only 1n conjunction with complex
nounphrases that occur at the beginning of sentences. Rule
3 enables the deletion of adjectival phrases.

0245] Employing the Decision-Based Model

0246] To compress sentences, the shift-reduce-drop
model 1s applied 1n a deterministic fashion. The sentence to
be compressed 1s parsed and the input list 1s 1nitialized with
the words 1n the sentence and the syntactic constituents that
“begin” at each word, as shown m FIG. 14. Afterwards, the
learned classifier 1s asked 1n a stepwise manner what action
to propose. Each action 1s then simulated, thus incrementally
building a parse tree. The procedure ends when the mput list
1s empty and when the stack contains only one tree. An
in-order traversal of the leaves of this tree produces the
compressed version of the sentence given as mnput.

10247] Because the decision-based model is deterministic,
it produces only one output. An advantage of this result is
that compression using the decision-based model 1s very
fast: 1t takes only a few milliseconds per sentence. One
potential disadvantage, depending on one’s objectives, 1s
that the decision-based model does not produce a range of
compressions, from which another system may subsequently
choose. It would be relatively straightforward to extend the
model within a probabilistic framework by applying, for
example, techniques described 1n D. Magerman, “Statistical
decision-tree models for parsing,” Proceedings of the 33rd

Annual Meeting of the Association for Computational Lin-
guistics, 276-283 (1995).

10248] FIGS. 19 and 20 are respectively generalized

flowcharts of the decision-based summarization and training
processes described above.

[0249] As shown in FIG. 19, the first step 1902 in the
decision-based summarization process 1900 1s to receive the
mput text. Although the embodiment described above uses
sentences as the mput text, any other text segment could be
used 1nstead, for example, clauses, paragraphs, or entire
treatises.

[0250] Next, in step 1904, the input text is parsed to
produce a syntactic tree 1n the style of FI1G. 11. If a full text
1s used, one can use a discourse parse to build the discourse
tree of the text.
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[0251] In step 1906, the shift-reduce-drop algorithm 1is
applied to the syntactic/discourse tree generated in step 1904
As discussed above, the shift-reduce-algorithm applies a
sequence of predetermined decision rules (learned during
training of the decision-based model, and 1dentifying under
what circumstances, and in what order, to perform the
various shift-reduce-drop operations) to produce a com-
pressed syntactic/discourse tree 1908. The resulting syntac-
tic/discourse tree can be used for various purposes, for
example, 1t can be rendered 1nto a compressed text segment
and output to a user (e.g., either a human end-user or a
computer process). Alternatively, the resulting syntactic/
discourse tree can be supplied to a process that further
manipulates the tree for other purposes. For example, the
resulting compressed syntactic/discourse tree could be sup-
plied to a tree rewriter to convert 1t into another form, e.g.,
to translate it into a target language. An example of such a
tree rewriter 1S described i Daniel Marcu et al., “The
Automatic Translation of Discourse Structures,” Proceed-
ings of the First Annual Meeting of the North American
Chapter of the Association for Computational Linguistics,

pp. 9-17, Seattle, Wash., (Apr. 29 -May 3, 2000).

10252] FIG. 20 shows a generalized process for training a
decision-based summarizer. As shown therein, the training
process 2000 starts 1n step 2002 with an mput training set as
discussed above with reference to FI1G. 17.

[0253] Next, in step 2004, the long-short text pairs are
parsed to generate syntactic parse trees such as shown in
FIG. 11, thereby resulting 1n corresponding long-short syn-
tactic tree pairs.

[0254] Next, in step 2006, for each long-short tree pair, the
training process 2000 determines a sequence of shift-reduce-
drop operations that will convert the long tree into the short
tfree. As discussed above, this step 1s performed based on the
following four basic operations, referred to collectively as
the “shift-reduce-drop” operations—shitt, reduce, drop, and
assignlype. These four operations are sufficient to rewrite
any given long tree into its paired short tree, provided that
the order of the leaves does not change.

[0255] 'The output of step 2006 1s a set of learning cases—
one learning case for each long-short tree pair 1n the training
set. In essence, each learning case 1s an ordered set of
shift-reduce-drop operations that when applied to a long tree
will generate the paired short tree.

[0256] Next, in step 2008, the training process 2000
associates features (e.g., operational and original-tree-spe-
cific features) with the learning cases to reflect the context
in which the operations are to be performed.

[0257] Next, in step 2010, the training process 2000
applies a learning algorithm, for example, the C4.5 algo-
rithm as described in J. Ross Quinlan, “C4.5: Programs for
Machine Learning,” Morgan Kaufmann Publishers (1993),
to learn a set of decision rules 2012 from the learning cases.
This set of decision rules 2012 then can be used by the
decision-based summarizer to summarize any previously
unseen text or syntactic tree mnto a compressed version that
1s both coherent and grammatical. Evaluation of the Sum-
marizer Models To evaluate the compression algorithms, 32
sentence pairs were randomly selected from the parallel
corpus. This random subset 1s referred to as the Test Corpus.
The other 1035 sentence pairs were used for training as

Apr. 18, 2002

described above. FIG. 15 shows three sentences from the
Test Corpus, together with the compressions produced by
humans, the two compression algorithms described here
(channel-based and decision-based), and a baseline algo-
rithm that produces compressions with highest word-bigram
scores. The examples were chosen so as to reflect good,
average, and bad performance cases. The first sentence 1n
FIG. 15 (“Beyond the basic level, the operations of the three
products vary widely.”) was compressed in the same manner
by humans and by both of the channel-based and decision-
based algorithms (the baseline algorithm chooses though not
to compress this sentence).

[0258] For the second example in FIG. 15, the output of
the Decision-based algorithm 1s grammatical, but the seman-
tics are negatively affected. The noisy-channel algorithm
deletes only the word “break”, which affects the correctness
of the output less. In the last example 1n FIG. 15, the
noisy-channel model 1s again more conservative and decides
not to drop any constituents. In contrast, the decision-based
algorithm compresses the mput substantially, but 1t fails to
produce a grammatical output.

[0259] Each original sentence in the Test Corpus was
presented to four judges, together with four compressions of
it: the human generated compression, the outputs of the
noisy-channel and decision-based algorithms, and the output
of the baseline algorithm. The judges were told that all
outputs were generated automatically. The order of the
outputs was scrambled randomly across test cases.

[0260] To avoid confounding, the judges participated in
two experiments. In the first experiment, they were asked to
determine on a scale from 1 to 5 how well the systems did
with respect to selecting the most important words 1n the
original sentence. In the second experiment, they were asked
to determine on a scale from 1 to 5 how grammatical the
outputs were.

[0261] It was also investigated how sensitive the channel-
based and decision-based algorithms are with respect to the
training data by carrying out the same experiments on
sentences of a different genre, the scientific one. To this end,
the first sentence of the first 26 articles made available 1n
1999 on the cmplg archive was used. A second parallel
corpus, referred to as the Cmplg Corpus, was created by
generating compressed grammatical versions of these sen-
tences. Because some of the sentences 1n this corpus were
extremely long, the baseline algorithm could not produce
compressed versions 1n reasonable time.

[0262] The results of Table 5 show compression rate, and
mean and standard deviation results across all judges, for
cach algorithm and corpus. The results show that the deci-
sion-based algorithm 1s the most aggressive: on average, 1t
compresses sentences to about half of their original size. The
compressed sentences produced by both the channel-based
algorithm and by the decision-based algorithm are more
“orammatical” and contain more important words than the
sentences produced by the baseline. T-test experiments
showed these differences to be statistically significant at
p<0.01 both for individual judges and for average scores
across all judges. T-tests showed no significant statistical
differences between the two algorithms. As Table 1 shows,
the performance of the each of the compression algorithms
1s much closer to human performance than baseline perfor-
mance; yet, humans perform statistically better than our
algorithms at p<0.01.
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TABLE 5

Experimental results

17

Corpus Avg. orig. sent. Length Baseline Noisy-channel Decision-based ~ Humans

Test 21 words Compression 63.70% 70.37% 57.19% 53.33%
Grammaticality 1.78 = 1.19 4.34 = 1.02 4.30 = 1.33 4.92 = 0.18
[Importance 217 £0.89 338 £0.67 3.54 £ 1.00 424 £0.52

Cmplg 26 words Compression — 65.68% 54.25% 65.68%
Grammaticality — 4.22 = 0.99 3.72 £1.53 497 = 0.08
[mportance — 3.42 = 0.97 3.24 + 0.68 4.32 + 0.54
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10263] When applied to sentences of a different genre, the
performance of the noisy-channel compression algorithm
degrades smoothly, while the performance of the decision-
based algorithm drops sharply. This 1s due to a few sentences
in the Cmplg Corpus that the decision-based algorithm
over-compressed to only two or three words. This charac-
teristic of the decision-based summarizer can be adjusted it
the decision-based compression module 1s extended as
described 1n D. Magerman, “Statistical decision-tree models
for parsing,”Proceedings of the 33" Annual Meeting of the
Association for Computational Linguistics, 276-283 (1995),
by computing probabilities across the sequences of decisions
that correspond to a compressed sentence.

[0264] Similarly, noisy-channel modeling could be
enhanced by taking into account subcategory and head-
modifier statistics (in addition to simple word-bigrams). For
example, the subject of a sentence may be separated from
the verb by intervening prepositional phrases. In this case,
statistics should be collected over subject/verb pairs, which
can be extracted from parsed text.

10265] Although only a few embodiments have been
described 1n detail above, those having ordinary skill in the
art will certainly understand that many modifications are
possible 1 the preferred embodiment without departing
from the teachings thereof. All such modifications are
encompassed within the following claims.

What 1s claimed 1s:
1. A computer-implemented method of determining dis-
course structures, the method comprising:

generating a set of one or more discourse parsing decision
rules based on a training set; and

determining a discourse structure for an input text seg-
ment by applying the generated set of discourse parsing
decision rules to the mput text segment.

2. The method of claim 1 wherein the training set com-
prises a plurality of annotated text segments and a plurality
of elementary discourse units (EDUs), each annotated text
secgment being associated with a set of EDUs that collec-
fively represent the annotated text segment.

3. The method of claim 2 wherein the annotated text
segments are built manually by human annotators.

4. The method of claim 2 wherein generating the set of
discourse parsing decision rules comprises iteratively per-
forming one or more operations on a set of EDUs to
incrementally build the annotated text segment associated
with the set of EDUs.

5. The method of claim 4 wherein the one or more
operations iteratively perform comprise a shift operation
and/or one or more reduce operations.

6. The method of claim 5 wherein the reduce operations
comprise one or more of the following six operations:
reduce-ns, reduce-sn, reduce-nn, reduce-below-ns, reduce-
below-sn, reduce- below-nn.

7. The method of claim 5 wherein the six reduce opera-
tions and the shift operation are sufficient to derive the
discourse tree of any 1nput text segment.

8. The method of claim 1 wherein determining a discourse
structure comprises incrementally building a discourse tree
for the input text segment.

9. The method of claim 8 wherein incrementally building
a discourse tree for the mput text segment comprises selec-
tively combining elementary discourse trees (EDTs) into
larger discourse tree units.

10. The method of claim 8 wherein incrementally building
a discourse tree for the input text segment comprises per-
forming operations on a stack and an input list of elementary
discourse trees (EDTs), one EDT for each elementary dis-
course unit (EDU) in a set of EDUs corresponding to the
input text segment.

11. The method of claim 10 further comprising, prior to
determining the discourse structure for the input text seg-
ment, segmenting the mput text segment mto EDUs and
inserting the EDUs 1nto the input list.

12. The method of claim 1 wherein determining the
discourse structure for the mput text segment further com-
PIrises:

scementing the mput text segment nto elementary dis-
course units (EDUs);

incrementally building a discourse tree for the input text
secgment by performing operations on the EDUs to
selectively combine the EDUs 1nto larger discourse tree
units; and

repeating the imcremental building of the discourse tree
until all of the EDUs have been combined.

13. The method of claim 12 wherein segmenting the input
text segment mto EDUs 1s performed by applying a set of
automatically learned discourse segmenting decision rules
to the 1put text segment.

14. The method of claim 13 further comprising generating
the set of discourse segmenting decision rules by analyzing
a training set.

15. The method of claim 1 wherein the mput text segment
comprises a clause, a sentence, a paragraph or a treatise.

16. A computer-implemented text parsing method com-
Prising;:

generating a set of one or more discourse segmenting,
decision rules based on a training set; and
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determining boundaries 1n an input text segment by
applying the generated set of discourse segmenting
decision rules to the mput text segment.

17. The method of claim 16 wherein determining bound-
aries comprises examining cach lexeme in the input text
segment 1n order.

18. The method of claim 17 further comprising assigning,
for each lexeme, one of the following designations: sen-
tence- break, EDU-break, start-parenthetical, end-paren-
thetical, and none.

19. The method of claim 17 wherein examining each
lexeme 1n the input text segment comprises associating
features with the lexeme based on surrounding context.

20. The method of claim 16 wherein determining bound-
aries 1n the mmput text segment comprises recognizing Sen-
tence boundaries, elementary discourse unit (EDU) bound-
aries, parenthetical starts, and parenthetical ends.

21. A computer-implemented method of generating dis-
course trees, the method comprising:

segmenting an input text segment 1nto elementary dis-
course units (EDUs); and

incrementally building a discourse tree for the mnput text
secgment by performing operations on the EDUs to
selectively combine the EDUs 1nto larger discourse tree
units.

22. The method of claim 21 further comprising repeating
the 1ncremental building of the discourse tree until all of the
EDUs have been combined 1nto a single discourse tree.

23. The method of claim 21 wherein the incremental

building of the discourse tree 1s based on predetermined
decision rules.

24. The method of claim 23 wherein the predetermined
decision rules comprise automatically learned decision
rules.

25. The method of claim 23 further comprising generating

the predetermined decisions rules by analyzing a training set
of annotated discourse trees.

26. The method of claim 21 whereimn the operations
performed on the EDUs comprise one or more of the
following: shift, reduce-ns, reduce-sn, reduce-nn, reduce-
below-ns, reduce-below-sn, reduce-below-nn.

27. A discourse parsing system comprising:
a plurality of automatically learned decision rules;

an 1nput list comprising a plurality of elementary dis-
course trees (EDTs), each EDT corresponding to an
clementary discourse unit (EDU) of an input text
segment;

a stack for holding discourse tree segments while a
discourse tree for the input text segment 1s being built;
and

a plurality of operators for incrementally building the
discourse tree for the input text segment by selectively
combining the EDTs imto a discourse tree segment
according to the plurality of decision rules and moving
the discourse tree segment onto the stack.

28. The system of claim 277 further comprising a discourse
secgmenter for partitioning the 1input text segment into EDUs
and 1nserting the EDUs 1nto the input list.

29. A computer-implemented method comprising deter-
mining a discourse structure for an input text segment by
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applying a set of automatically learned discourse parsing
decision rules to an input text segment.

30. A computer-implemented summarization method
comprising:

generating a set of one or more summarization decision
rules based on a training set; and

compressing a tree structure by applying the generated set

of summarization decision rules to the tree structure.

31. The method of claim 30 wherein the tree structure
comprises a discourse tree.

32. The method of claim 30 wherein the tree structure
comprises a syntactic tree.

33. The method of claim 30 further comprising generating
the tree structure to be compressed by parsing an 1nput text
segment.

34. The method of claim 33 wherein the iput text
segment comprises a clause, a sentence, a paragraph, or a
freatise.

35. The method of claim 30 further comprising converting
the compressed tree structure mnto a summarized text seg-
ment.

36. The method of claim 35 wherein the summarized text
segment 1s grammatical and coherent.

37. The method of claim 35 wherein the summarized text
secgment includes sentences not present 1n a text segment
from which the pre-compressed tree structure was gener-
ated.

38. The method of claim 30 wherein applying the gener-
ated set of summarization decision rules comprises perform-
ing a sequence of modification operations on the tree struc-
ture.

39. The method of claim 38 wherein the sequence of
modification operations comprises one or more of the fol-
lowing: a shift operation, a reduce operation, and a drop
operation.

40. The method of claim 39 wherein the reduce operation
combines a plurality of trees mnto a larger tree.

41. The method of claim 39 wherein the drop operation
deletes constituents from the tree structure.

42. The method of claim 30 wherein the training set
comprises pre-generated long/short tree pairs.

43. The method of claim 42 wherein generating the set of
summarization decision rules comprises iteratively perform-
ing one or more tree modification operations on a long tree
until the paired short tree 1s realized.

44. The method of claam 43 wheremn a plurality of
long/short tree pairs are processed to generate a plurality of
learning cases.

45. The method of claim 44 wherein generating the set of
decision rules comprises applying a learning algorithm to
the plurality of learning cases.

46. The method of claim 44 further comprising associat-
ing one or more features with each of the learning cases to
reflect context.

47. A computer-implemented summarization method
comprising:

generating a parse tree for an nput text segment; and

iteratively reducing the generated parse tree by selectively
climinating portions of the parse tree.

48. The method of claim 47 wherein the generated parse
tree comprises a discourse tree.



US 2002/0046018 Al

49. The method of claim 47 wherein the generated parse
free comprises a syntactic tree.

50. The method of claim 47 wherein the iterative reduc-
tion of the parse tree 1s performed based on a plurality of
learned decision rules.

51. The method of claim 47 wherein 1teratively reducing,
the parse tree comprises performing tree modification opera-
tions on the parse tree.

52. The method of claim 51 wherein the tree modification
operations comprise one or more of the following: a shift
operation, a reduce operation, and a drop operation.

53. The method of claim 52 wherein the reduce operation
combines a plurality of trees mnto a larger tree.

54. The method of claim 52 wherein the drop operation
deletes constituents from the tree structure.

55. A computer-implemented summarization method
comprising:

parsing an 1nput text scgment to generate a parse tree for
the 1nput segment;

generating a plurality of potential solutions;

applying a statistical model to determine a probability of
correctness for each of potential solution;

extracting one or more high-probability solutions based
on the solutions’ respective determined probabilities of
correctness.

56. The method of claim 55 wherein the generated parse

free comprises a discourse tree.
57. The method of claim 55 wherein the generated parse

free comprises a syntactic tree.

58. The method of claim 55 wherein applying a statistical
model comprises using a stochastic channel model algo-
rithm.
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59. The method of claim 58 wherein using a stochastic
channel model algorithm comprises performing minimal
operations on a small tree to create a larger tree.

60. The method of claim 58 wherein using a stochastic
channel model algorithm comprises probabilistically choos-
Ing an expansion template.

61. The method of claim 55 wherein generating a plurality
of potential solutions comprises identifying a forest of
potential compressions for the parse tree.

62. The method of claim 61 wherein the generated parse
free has one or more nodes, each node having N children
(wherein N is an integer), and wherein identifying a forest
of potential compressions comprises:

generating 2™—1 new nodes, one node for each non-
empty subset of the children; and

packing the newly generated nodes mto a whole.

63. The method of claim 61 wherein the generated parse
tree has one or more nodes, and wherein 1dentifying a forest
of potential compressions comprises assigning an expan-
sion-template probability to each node 1n the forest.

64. The method of claim 55 wherein extracting one or
more high-probability solutions comprises selecting one or
more trees based on a combination of each tree’s word-
bigram and expansion-template score.

65. The method of claim 64 wherein selecting one or more
trees comprises selecting a list of trees, one for each possible
compression length.

66. The method of claim 55 further comprising normal-
1zing each potential solution based on compression length.

67. The method of claim 55 further comprising, for each
potential solution, dividing a log-probability of correctness
for the solution by a length of compression for the solution.
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