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NETWORK SERVER CARD AND METHOD FOR
HANDLING REQUESTS RECEIVED VIA A
NETWORK INTERFACE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation-in-part of
Phillips et al. U.S. patent application Ser. No. 09/638,774
filed on Aug. 15, 2000, enfitled “Network Server Card and
Method for Handling Requests Via a Network Interface”
that 1s expressly incorporated herein by reference 1n its
entirety including the contents of any references contained
therein.

FIELD OF THE INVENTION

10002] The present invention generally relates to the field
of server systems for handling requests from multiple users
in a network environment. More particularly, the present
invention concerns apparatuses and methods for efficiently
providing specialized services to requesters 1 a network
environment through request distribution.

BACKGROUND OF THE INVENTION

[0003] As the Internet expands, so too are the potential
number of users that simultaneously seek access to particu-
lar Internet resources (e.g., a particular Web site/address).
Thus, operators of Internet sites are well advised to arrange
their systems 1n a manner such that the current and future
expanded versions of the system hardware relied upon to
deliver site resources to users are capable of responding to
a potentially high volume of user requests.

10004] As the population of web users grows, the number
of concurrent clients that a single web server must support
similarly grows. It 1s now routine for a “single site” to have
peak load access demands far exceeding the capacity of a
single server. Users of such a site desire the illusion of
accessing a single server that has consistent information
about each user’s past ftransactions. Furthermore, every
distinct user should access the apparent single server using
a same name. The challenge 1s to handle request processing
load such that users are unaffected by any undesirable
side-effects of handling high request volume and high data
tratfic volume associated with responding to the requests.

[0005] Web servers today are faced with increasing
demand to provide audio/video materials, such as MP3,
MPEG and Quicktime f{iles. Such files are considerably
larger than simple web pages. The combination of more
users demanding larger files presents a potentially over-
whelming demand for vastly increased data volume han-
dling capabilities in web servers. More servers are needed to
handle the increasing data retrieval and transmission work-

load.

[0006] Solutions have been implemented that share a
common goal of dividing the workload of the single virtual
server over many actual servers. It 1s desired that the
workload of responding to multiple user requests be divided
in a transparent manner so that the division 1s not visible to
the customer. However, load-balancing mechanisms have
limited or no knowledge with regard to the context or prior
history of the messages they are trying to distribute. Existing
solutions have chosen between overly restricting the
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requests that can be processed by particular servers, thereby
limiting the ability to evenly balance the traffic load. In other
instances work 1s divided between servers operating in
ignorance of each other.

[0007] There are at least four known approaches for
dealing with the aforementioned problems encountered as a
result of high user load. The oldest 1s server mirroring that
involves replicating content across multiple sites. Users are
encouraged to select a specific server that 1s closest geo-
oraphically to them. Because the load distribution i1s volun-
tary it 1s not very efficient. Synchronizing the content of all
servers across all sites 1s problematic and time consuming.
Generally this approach 1s considered suitable only for
non-commercial information distribution.

[0008] Second, a distributed naming service (DNS)
approach accepts requests from many clients and translates
a single Domain Name 1n the requests to an Internet Protocol
(IP) address. Rather than returning a same address to all
clients, multiple servers are designated, with each client
receiving an IP address of only a particular single server
from the available servers. The IP addresses supplied within
the DNS answers are balanced with the goal of evenly
dividing the client load amongst the available servers. Such
distributed processing methods are inexact due to remote
caching. Furthermore, problems arise with regard to ensur-
ing that related requests from the same client issued at
different times result 1n a connection to the same server.
Traflic to the DNS server 1s increased because DNS queries
are 1ncreased. This second approach demonstrates that
merely duplicating hardware will not meet a need {for
additional throughput in a server resource/system. Addition-
ally, because later queries from the same user could easily go
to a different server, all work must be recorded on shared
storage devices. Such additional storage devices could be
additional database or file servers, or devices on a storage
arca network.

[0009] Third, OSI layer 3 (network) and layer 4 (transport)

switching solutions distribute connections across multiple
servers having similar capabilities (though possibly differing
load handling capacity). Entire sessions are distributed to a
particular server regardless of the type of request. Because
a layer 3 or 4 switch 1s not an actual participant in any of the
protocol sessions going through 1t, and because it 1s of a
simpler and more specialized design than the actual servers,
it cannot fully understand the protocols that 1t implements.
It cannot with full certainty understand the types of requests
it sees. Though limited examination of packet contents may
occur, the majority of such switches do not examine the
content of packets that pass through them.

[0010] An FTP (File Transfer Protocol) file transfer is one
example where limited examination may occur. Some layer
3 switches are configured with enough knowledge of the
FTP protocol to recognize the description of a second
connection buried within the payload of a packet transferred
via a first connection. Others merely assume that all con-
nections between a pair of IP addresses are for the same user.
The former approach requires the switch to stay current with
all new application protocols, and cannot work with
encrypted payloads. The latter presents the problem of
requiring all users working behind a single firewall using
Port Network Address Translation (PNAT), or masquerad-
ing, to be considered as a single user. Given that the goal of
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load balancing 1s to evenly distribute the workload, unpre-
dictability in how much work 1s being commutted to a single
server with a given dispatch presents a problem. This
example 1llustrates the deficiencies 1n the prior known
systems that are limited to switching functionality rather
than delegating execution of requests for resources to spe-
clalized processors/processes.

[0011] Once a session is initiated it is assigned to a
particular server based on very little context information.
Typically the context information includes only the address-
ing information within the 1nitial packet itselt without the
benefit of knowing the substance of any queries to customer
databases or other records. In particular 1t 1s not practical for
the switch to distinguish between a single user and an entire
building of users sharing a single IP address. Thus, an 1nitial
assignment may be supplemented only by limited analysis of
later packets to identify packets belonging to the same
session. This distribution scheme 1s carried out by a switch
having very limited analytical capabilities.

0012] Other prior load distribution solutions conduct only
limited analyses to determine the type of a request received
by the server system after a session 1s mitiated and assigned
to a particular server. Furthermore, providing a set of equally
capable servers 1s a potentially expensive solution that 1s
likely considered too expensive for many potential Internet
service providers. Sharing results through direct back chan-
nel communications or sharing of database, file or storage
servers 15 still required for these solutions.

[0013] In a fourth known attempt to distribute requests for
resources over distributed network servers, server clusters
distribute work internally over an internal communications
bus that 1s typically a switched access bus. Communications
to the external network mterface are performed via a single
centralized server. Thus, while distributing the computa-
tional load, the fourth known option mtroduces a potential
data communications bottleneck at the centralized commu-
nication Server.

|0014] The first three solutions divide a single virtual
server’s workload into multiple user sessions. Such prior
known solutions attempt to ensure that all traffic for a given
user session 1s handled by a single actual server while
attempting to distribute the work load evenly over the entire
set of actual servers. These goals are incompatible 1n the
prior known systems. Mirroring, because 1t relies upon the
user 1dentifying the targeted server, 1s excellent at ensuring,
only one actual server deals with a given user, but the only
mechanism for balancing load between the servers 1s the
process of users shifting between servers out of frustration.
Layer 3 switch solutions achieve load balancing, but at the
cost of failing to i1dentily all parts of a single user’s inter-
action with the server. The fourth solution avoids these
problems by having a single server delegate work, but limits
the scope of this optimization by remaining a single com-
munications bottleneck.

[0015] Thus, while a number of solutions have been
implemented to deal with the problem of explosive growth
in the popularity and volume of use of the Internet and the
resident Web sites, none provide a solution to the increased
cost and overhead associated with distributing user work-
load addressed to a single apparent resource that 1s, in
actuality, distributed across multiple processors.

[0016] It is further noted that today many Internet servers
are deployed almost exclusively to distribute stored content.
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In other words, such servers execute one task-delivering data
stored on a memory drive to a requesting client over the
Internet. Such servers are structured on a request-load-
process-deliver model. The server application on a server
host machine accepts a request for content from a client. In
response, the server application loads the requested content
from a memory drive into process memory space reserved
for the server application on the host. After loading the
content 1nto process memory space, the server application
processes the content, and then the server delivers the
processed content to the client.

[0017] Ideally, content providers would prefer utilizing as
few server machines as possible to deliver content to Inter-
net clients. However, in the case of streaming data (e.g.,
video, audio, etc.) the process of accepting a request, loading
content and then delivering the content consumes nearly all
of the processor’s capacity serving only a single Gigabat
Ethernet port. When multiple Gigabit Ethernet ports are
provided for a single server application, the processor
becomes a system bottleneck. As a result, streaming content
servers olten require multiple replicas to provide satisfactory
bandwidth to client/users.

[0018] Many factors contribute to this bottleneck. Packets
on both the internal network (where the stored content is
accessed) and external network (where the clients are
located) arrive interleaved, fragmented and even out-of-
order. The received packets must be processed by the host
operating system. In addition to the inherent work of de-
fragmenting the incoming packets, processing the packets
by the host operating system involves switching between
user and system memory maps and quite likely copying data
between the user memory space and system memory space.
Furthermore, because of successive layering of protocols, 1t
1s common to apply a variety of checksum or CRC algo-
rithms to different portions of the payload with different
degrees of reliability. For example, when a higher layer
protocol specifies an end-to-end 32-bit checksum, 1t cannot
climinate an 1nadequate 16-bit checksum specified by a
lower level protocol. Hence both must be generated and
checked. A number of system architectures attempt to
address the processor bottleneck problem by optimizing the
path between a network interface and a processing applica-
tion. These include Virtual Interface Architecture (VIA),
Infiniband Architecture (IBA), Warp and Microsoft’s Win-

sock Direct.

[0019] The following comprises a discussion of the clas-
sical method for a server responding to client requests 1n an
IP environment. In classic server design, IP datagrams arrive
at multiple network interface cards (NICs). Each NIC deals
with only one communication protocol. A typical server
includes NICs for dealing with the external IP network
(almost always Ethernet) and separate ones for dealing with
an 1nternal storage-oriented network. The internal storage-
oriented network may be Ethernet/IP oriented, in which case
it is possible to apply a NAS (network attached storage)
strategy to access network file servers over the internal
network. Alternatively the internal network may be a spe-
cialized Storage Area Network (SAN), such as Fibre Chan-
nel. The servers on these networks typically provide block-
level services, rather than file-oriented services.

[0020] For an Ethernet/IP interface, the classic solution
exhibits the following characteristics. Buffers for incoming
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tratfic are allocated from a system memory pool on a per
device basis, without regard to the eventual destination.
After the Ethernet frame has been collected and validated, 1t
1s passed 1 FIFO order to the host operating system’s
protocol stacks. The host operating system’s protocol stacks
perform all required segmentation and re-assembly to
deliver messages to the requesting application process. This
must be based upon information within the reassembled
packet. Typlcally this 1nvolves one or more copy operations
fo create an 1m-memory 1mage of the complete bulfer.
Alternatively, more complex interfaces can be used to pass
a “scatter/gather list” to the application. This results 1n more
complex application code, or postponing coalescing the
message fragments to the application code.

0021] The work involved in transferring network payload
through a Host Operating System protocol stack can be so
fime consuming, especially with switches between system
and user memory space, that a single processor server can be
almost totally consumed merely getting network tratfic
between a Gigabit Ethernet NIC and to applications. This
leaves almost no processing resources for an application to

actually accomplish any true data processing.

[0022] A virtual interface (VI) allows a NIC to directly
post results to user memory. This allows a complete message
to be assembled directly 1n the application’s bufifers without
kernel/user mode switching or intermediate copying. VI
interfaces support two delivery modes: send and remote
direct memory access (RDMA). Send delivery mode 1is
based upon a connection. The incoming data 1s paired with
application read requests and transferred directly to the
application memory. Successive reads consume requests,
and reads are pre-1ssued. During RDMA delivery the request
supplies a memory key validating its access to the target
application memory space and an explicit offset within that
tarcet memory space. An RDMA interface allows a file
server to utilize an out-of-order delivery strategy. Frag-
mented files are read from disk drives in the most convenient
order. Being restricted to reading them in the “correct” order
would require server-side buil

ering and/or more passes of
the drive heads. Out-of-order delivery also enhances/sup-
ports striping of material across multiple drives. Without the
need to synchronize multiple sources it 1s easier to get the
multiple sources to deliver requested data 1n parallel.

[0023] VI and similar interfaces (such as InfiniBand)
provide 1improvements over the classic via-kernel methods.
However, they still exhibit significant drawbacks. First, VI
and InfiniBand (IB) require buffers to be pre-allocated for
cach pending read. When applied only over the internal
storage network this creates only relatively minor problems.
However, when dealing with remote clients over the public
external network long delays can be expected. Furthermore,
pre-allocating distinct buffers for 10,000 active clients 1s
wasteful when, for example, it can be predicted with near
statistical certainty that no more than 500 of them will
respond 1n the immediate future. The time between each
client action and the time required to process each client
request allows a single buifer to be re-used potentially many
times. However, under VI and other similar RDMA proto-
cols a buffer 1s locked down for a single client from before
the time the request 1s 1ssued until the request i1s fully
satisfied. Second, under VI and IB the NIC obtains from a
kernel agent the mapping data required to translate virtual
memory addresses to physical memory for each client.
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Obtaining this information, and ensuring that it 1s “locked
down” so that it cannot be moved or swapped out of
memory, 1nvolves a time-consuming negotiation with the
kernel agent. One VI-derived solution, the Infiniband Archi-
tecture, has added “Memory Windows” to provide logical
slices of memory that are only kernel registered once but
have finer-grained rights access administration on the NIC
itself. Third, the requirements of VI cause significant por-
tions of “application memory” to be pinned down and
cfiectively function as system memory. Pinning down appli-
cation memory forces other buflers to be swapped more
often and makes 1t harder for the kernel to optimize appli-
cation performance. This 1s especially true if the kernel has
not been specifically re-engineered for VI. Fourth, while VI
enables bypassing the host processor’s operating system, the
host processor 1s not bypassed. Therefore, all data traffic
flows 1nto the host processor’s memory, 1s examined by an
application, and then typically flows back out to another NIC
connected to a network.

10024] The two above-described prior data transmission
approaches adopted by servers (i.e., classic and VI) are now
described with reference to how an incoming Ethernet frame
of data from, for example, an 1nternal data storage network
1s handled by the server. In the classic server approach the
Ethernet frame 1s DMA transferred to a system builer. Buifer
selection 1s steered by the device type upon which the data
1s to be transmitted—not by the ultimate target. Intermediate
software, typically the host operating system’s protocol
stacks, assembles messages and then copies them to user
memory. This process 1s reversed to send the loaded payload
as part of an HTTP response via an external network.

[10025] In the VI approach, when the Ethernet Frame
arrives from a data storage network 1t 1s paired either with
an application read request (in the case of a “send” opera-
tion) or an application memory space (in the case of an
“RDMA” operation). Because the memory (and/or request)
was pre-registered with the NIC and kernel, the NIC deter-
mines the destination address(es) in physical memory and
deposits the payload there. This process 1s reversed to send
the loaded payload as part of an HT'TP response via the
external network.

[10026] It 1s also interesting to note the number of memory
transfer operations associated with processing an incoming
Ethernet frame. In the classic server approach, the frame
passes 1nto the NIC, into the host processor system buffer,
into the host processor user buifer, back to the host processor
system buifer, back to a different NIC, and then out to a
destination. In a VI type system, the frame passes 1nto the
NIC, mto a host processor user bufler, back to a different
NIC, and out to a destination. In both cases, buifering
consumes considerable system resources.

SUMMARY OF THE INVENTION

[0027] While the above-described server architectures will
improve carrying out requests under the request-load-pro-
cess-deliver model, such architectures seek to optimize
oetting stored content to a server application process and
then transferring the data from the server application to the
client via network communication interface processes. In
accordance with an aspect of the present invention, a server
architecture facilitates optimizing transfer of requested con-
tent from data storage drives to requesting clients.
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[0028] In accordance with the present invention, a data
asset server handles content delivery tratic where there 1s no
need to process the stored content, but rather merely a need
to package the data and control its delivery to a designated
location. Thus, the server carries out a “request-select-
deliver” model wherein a request 1s received by the server
from a client. Next, content to be delivered to the client 1n
response to the request 1s selected. In an embodiment of the
mvention, notification, but not the selected data itself, 1s
delivered to an application running on the server system that
received the request. The content 1s delivered via an external
network interface engine (with necessary protocol wrappers
but no transformation of the actual content) to the requesting
client.

[10029] In a particular embodiment of the invention, to
which the invention 1s not limited, a content transfer engine
receives an Ethernet Frame and a destination message buifer
1s determined either by a pre-existing read or based on the
state of the connection. The destination 1s content transfer
engine controlled memory. Notification, but not the data
itself, 1s delivered to a content transfer daemon 1n the content
transfer engine. The content transfer daemon controls trans-
fer of content for a single end-user session. The content
transfer daemon executes within the context of the content
transfer engine itself. The content transter daemon option-
ally extends its processing scope in conjunction with an
extended content transfer daecmon that runs on a conven-
tional processor. Buller capture events are typically sent to
the content transtfer daemon using event queues, but may be
sent over the internal network directly to an extended
content transfer daemon. Because dispatching notices
should be prompt and highly reliable 1t would be highly
unusual for an external network interface engine to be used.
The content transfer daemon then, by way of example,
composes an HTTP response referencing payload already in
the content transfer engine’s memory. The HTTP response,
including the payload 1n the content transfer engine’s
memory 1s sent as the HTTP response via the external
network.

[0030] With regard to memory operations, the received
Ethernet frame 1s stored 1n the data buifer physically located
on an access node. The Ethernet frame data 1s not moved
into system buffer space managed by a conventional pro-
cessor, nor 1s the frame processed by the conventional
processor. Instead, the stored data 1s output to a connected
network interface engine associated with an identified target
destination without ever entering the conventional proces-
sor’s data space.

0031] In an embodiment of the present invention, mul-
tiple event engines execute 1n parallel or as co-routines upon
the content transfer engine to serve client requests. Division
of responsibilities between a CTE, resident CTDs, and
conventional processor resident XCTDs 1s an application
and implementation specific tradeoil. A conventional pro-
cessor favored strategy would use the Content Transfer
Engine to capture and transmit buifers, while making most
protocol decisions on the conventional processor. A CTE
favored strategy would handle virtually all normal cases
itself, and only forward exceptional cases for conventional
processor handling. The placement of wrapping protocol
headers and trailers around the stored content 1s performed
in any of a variety of possible locations, including both on
and off the CTE. Finally, it will be understood by those
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skilled 1n the art that the present invention 1s applicable to a
variety of external network communications protocols.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] The appended claims set forth the features of the
present invention with particularity. The mnvention, together
with 1ts objects and advantages, may be best understood
from the following detailed description taken in conjunction
with the accompanying drawings ol which:

10033] FIG. 1 1s a diagram depicting an exemplary net-
work environment into which the invention 1s advanta-

ogeously mncorporated;

10034] FIG. 2 is a block diagram identifying primary
logical components within a set of network nodes arranged
in an exemplary physical arrangement 1n accordance with an
information asset server system embodying the present
mvention;

10035] FIG. 3 depicts a set of functional/logical compo-

nents of a content transfer engine within a server system
depicted 1n FIG. 2;

10036] FIG. 4 depicts a set of data structures for external
buffer conftrol and facilitating execution of operations in
accordance with an exemplary embodiment of the present
mvention;

[0037] FIG. 5 depicts a memory control block for a table

data structure facilitating carrying out an exemplary embodi-
ment of the present mnvention;

[0038] FIG. 6 depicts an exemplary code routine memory
control block facilitating carrying out the present invention;

[0039] FIG. 7 depicts an exemplary memory control block
for an allocated buffer;

10040] FIG. 8 depicts an exemplary memory control block
for a free buffer;

[0041] FIG. 9 depicts a set of exemplary event queue
target descriptors 1n accordance with an exemplary embodi-
ment of the present mnvention;

10042] FIG. 10 depicts an exemplary event queue entry
format for queue entries placed within the event queues of
a content transfer engine embodying the present 1nvention;

10043] FIG. 11 is a sequence of buffer representations
depicting the state of a capture bufler as data arrives 1in an out
of order fashion using RDMA mode capture;

10044] FIG. 12 is a state diagram specifying how cells
arriving on a node channel are collected 1nto a packet;

[10045] FIG. 13 is a state diagram specifying how Ethernet
frames are collected 1nto a packet;

10046] FIG. 14 is a state diagram specifying the life cycle
of an event engine;

10047] FIG. 15 is a state diagram that expands the “Dis-
patching Event” state of FI1G. 14;

10048] FIG. 16 is a state diagram that expands the “Com-
pleting Successtully” state from FIG. 14;

10049] FIG. 17 is a state diagram that expands the “Com-
pleting With Exception” state from FIG. 14;
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10050] FIG. 18 is a state diagram specifying the life cycle
of a Capture Buifer; and

10051] FIG. 19 is a flow diagram depicting the general
operation of the disclosed data server.

DETAILED DESCRIPTION OF AN
ILLUSTRATTVE EMBODIMENT

0052] A new network server architecture is described
below 1n the form of a preferred embodiment and variations
thereof. At the heart of this new network server architecture
1s a hybrid multiprocessor server. The hybrid multiprocessor
server 1ncludes a data transmission engine comprising a sct
of micro-engines. The micro-engines are processors with
limited capabilities for executing a particular set of tasks
relating to, for example, data communication. The network
server also includes at least one supplemental processor, a
general purpose processor operating a standard operating
system. The network 1s, by way of example, the Internet.
Thus, communication between the server and an external

network 1s preferably conducted in accordance with the
Internet Protocol (IP).

[0053] When a user requests to initiate a session with the
network server, a session request 1s recerved by a network
interface engine. The network interface engine passes the
request to either a micro-engine or the supplemental pro-
cessor. After establishing a session/connection with a client,
fulfillment of the client’s data requests are carried out
primarily by one or more of the micro-engines. The supple-
mental processor, mm an embodiment of the invention,
receives notification of a data transfer. However, data 1s
transmitted between data storage drives (e.g., disk drives)
managed by the network server and the requesting clients
without transferring the transmitted data into the supple-
mental (host) processor’s memory space.

[0054] As mentioned above, the network server of the
present mvention includes a set of one or more specialized
micro-engine processors, including for example a set of
micro-engines referred to herein as event engines that are
configured to accept and execute content transfer requests.
Each connection i1s tracked as a separate context. Each
connection belongs to a specified class. The class speciiies,
for example, a state transition model to which all instances
of that class will conform. The state model specifies the
default buffer allocation behavior, and how event capture 1s
to be processed (to what event queue and to what target
routine) for each state. Instances deal with specific user
sessions. An example of a specific class 1s one specifically
configured to control delivery of an html file according to the
HTTP delivery protocol using TCP/IP. Each instance
actively transfers a specific html file to an end user/client via
a specific TCP/IP connection.

[0055] An interface to an internal network provides com-
munication paths between one or more storage servers
(comprising multiple storage media devices such as hard
drives) and the data transmission engine. In an exemplary
implementation the internal network 1s an internal network
of the type generally disclosed 1n U.S. application Ser. No.
09/579,574, filed on May 26, 2000, and entitled: “Informa-
tion Distribution System and Method” which 1s explicitly
incorporated herein in 1ts entirety by reference. However the
invention disclosed here 1s intended to be applied to other
storage area networks, mcluding Fibre Channel and Infini-

band.
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[0056] The architecture of a network server system includ-
ing the above-described hybrid-multiprocessor data trans-
mission 1nterface 1s extensible, and thus multiple hybrid-
multiprocessor network servers having the above general
arrangement are 1ntegrated to provide access to a shared data
resource connected via a switching fabric. Each of the
network servers includes 1ts own network interface engines.
In the case of an Internet connection, each network server 1s
assigned at least one unique Internet address. The invention
1s not limited to an Internet environment and may be
incorporated into virtually any type of server environment
including intranet, local area network, and hybrid combina-
tions of various network interface engines to the network
servers. Thus, while generally referred to herein as a net-

work server, the architecture 1s applicable to network con-
figurations that include both WAN and LAN interfaces.

[0057] The present invention 1s not intended to be limited
to a particular arrangement of distributed handler processors
on a Network server. The “server” may take any of many
different forms. While preferably the default and specialized
handler processors are arranged upon a single, multi-layer
printed circuit board, the server 1s implemented 1n various
embodiments as a set of cards connected via a high speed
data/control bus.

[0058] In accordance with and exemplary embodiment of
the present invention, an Internet Protocol (IP) access node,
comprising a network server and associated stored content
requested by clients on an IP network, includes a data access
interface and a host. The host provides a conventional
application program execution environment including off-
the-shelf operating system software such as NetBSD,
FreeBSD, Linux or Windows 2000. The data access inter-
face comprises a combination of limited/speciiic purpose
micro-engines that perform a limited set of operations
assoclated with retrieving requested data from a set of data
storage drives and delivering the requested data to clients.
When a request for data 1s received by the IP access node,
subsequently delivered data bypasses the host (e.g., supple-
mental) processor thereby avoiding a potential bottleneck to
data delivery. While the invention 1s not limited to any
particular protocol, 1n an exemplary embodiment of the
invention, the data access interface i1s specifically pro-
crammed to handle high volume Worldwide Web and

streaming media protocols such as the well known HTTP,
FTP, RTSP and RTP data transfer protocols.

[0059] With regard to data transmission buffering in con-
trast to above-described known systems, the disclosed con-
tent transfer engines have the ability to defer the actual
allocation of a capture buffer until the first packet arrives.
The context has a current state. In that state, there are defined
memory pools for the internal and external networks. When
a packet actually arrives, the first free buffer 1in that memory
pool 1s allocated. The system only needs to dedicate as many
buffers to that pool as are statistically required to meet a
desired safety margin to ensure that buffer overflow does not
occur. Furthermore, because the pools are state sensitive,
allocation rules are incorporated to ensure they cannot be
exhausted by denial-of-service (DOS) attacks. A pool is
coniigured to only provide on-demand buifers to established
sessions. The pool speciiied for each state varies based on
the peak demand for connections in that state, and the
required data collection size. For example, during the life
span of an inbound FTP session, there are times when a




US 2002/0026502 A1l

simple command is expected (requiring a relatively small
buffer), and there are times when a large file transfer is
expected (requiring large allocated buffer capacity).

[0060] Turning now to FIG. 1, in accordance with an
exemplary embodiment of the present invention, a content
transfer engine 1s deployed 1n a server system environment
including a set of content transfer access nodes 10 and 12.
In the exemplary embodiment of the present invention, the
content transfer access nodes 10 and 12 access storage
devices 14. The access storage devices are represented 1n
FIG. 1 as a set of storage nodes accessed by the content
transfer access nodes 10 and 12 over an internal network 16
that preferably exhibits at least RDMA capabilities. The
internal network 16 1s preferably fully non-blocking switch
fabric operating under an ATM protocol or a variation
thereof, and data 1s packaged within cells transmitted over
the internal network. However, such an internal network 1s
not required to realize the advantages of the present inven-
tion.

[0061] In addition, the server system provides Internet
content distribution services, €.g., HI'TP, to an extensible set
of clients 18 over an external network 20 such as the
Internet. The interfaces between the content transfer access
nodes 10 and 12 and the external network 20 are, by way of
example, Gigabit or 100 Mbit Ethernet ports. A particular
embodiment of the mnvention includes dual Gigabit Ethernet
ports. The exemplary server system includes one or more
supplemental processor (SP) nodes 22, that reside on the
host portion of the server system containing the content
transfer access nodes 10 and 12. The supplemental processor
nodes 22 handle portions of protocols and requests that
cannot be handled by the limited state models supported by
the content transfer engines within the content transfer
access nodes 10 and 12. The SP nodes 22 are accessed
directly, or alternatively (as shown in FIG. 1) via the internal
network 16. The non-blocking paths of the internal network
16 are governed by a server controller 24. A number of
internal networks are contemplated in accordance with vari-
ous embodiments of the present invention. Examples of such
internal networks include a “DirectPath” architecture of
Ikadega, Inc., of Northbrook, Ill., disclosed in U.S. appli-
cation Ser. No. 09/579,574, filed on May 26, 2000, and
enfitled: “Information Daistribution System and Method”;
and Phillips et al. U.S. patent application Ser. No. 09/638,
774 filed on Aug. 15, 2000, entitled “Network Server Card
and Method for Handling Requests Via a Network Interface™
the contents of which are explicitly incorporated herein by
reference. Content transfer engines executed within the
content transfer access nodes 10 and 12 perform/execute the
role of an access node fabric interface in the server system.

[0062] Other suitable internal network types include
Infiniband Architecture (IBA) wherein the content transfer
access nodes 10 and 12 serve the roles of a hardware channel
adapter (HCA); and Fibre Channel wherein the content
transfer access nodes 10 and 12 are host adapters.

[0063] Having generally described an exemplary network
environment, an embodiment of the invention and exem-
plary alternatives, attention 1s now directed to FI1G. 2 that
contains a schematic block diagram depicting components
of a server system 1ncluding the content transfer access node
10 1n a network server system embodying the present
invention as well as logical connections between the 1den-
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tified components. The architecture of the content transfer
access node 10 1s particularly well-suited for providing
Internet oriented services, especially those mvolving stream-
ing video or other real-time extended data delivery systems.
The content transfer access node 10 features multiple execu-
tion units (engines/micro-engines). There is an execution
unit associated with each network interface (interface
engines) and multiple execution units to process protocol
events (event engines). Each execution unit is fed by a
corresponding dedicated queue. Such queues are described
herein below. Execution units handle requests from their
corresponding queue on a FIFO basis. Because of the limited
processing capabilities of the set of micro-engines, the
content transfer access node 10 1s preferably utilized to
control high-speed data transfers rather than to process (e.g.,
performing calculations upon) the transferred data itself. In
an exemplary embodiment of the invention, the event
engines only examine very small portions of the transferred
data—typically only protocol headers.

[0064] The architecture of the content transfer access node
10 facilitates dividing tasks associated with processing client
requests between the content transfer access nodes 10 and 12
and the SP nodes 22. The content transfer access node 10 1s

implemented, by way of example, as a combination of field
programmable gate arrays (FPGAs), programmable logic
devices (PLDs), and/or application specific integrated cir-
cuits (ASICs) that perform a limited set of task types at a
relatively high speed and with minimal overhead. The SP
nodes 22, on the other hand, comprise conventional proces-
sors executing application programs on an oif-the-shelf

operating system. The SP nodes 22 execute tasks that are
outside the limited scope of tasks executable by a content

transter engine 50. The SP nodes 22 execute the tasks

delegated by, for example, the content transfer access nodes
10 and 12 with the full overhead associated with processing,

requests 1n an off-the-shelf operating system environment.

[0065] The exemplary content transfer access node 10
includes the content transfer engine (CTE) 50 for commu-
nicating data between the external network 20 and the
internal network 16. The CTE 350 includes an external
network interface engine 54. The external network interface
engine 54 passes request notifications to one of a set of event
engines 38 via an event queue 60. The event engines 58
execute content transfer daemons 59 (CTDs) that execute,
by way of example, a single instance of a specific protocol.
Each instance maintains data to facilitate tracking the state
of the protocol interchange and generating responses after
being mvoked with new packets received for the particular
protocol interchange. Each content transfer daemon belongs
to a class that specifies the behavior/code common to all
instances executing the same protocol. An external interface
event queue 56 temporarily stores request nofifications for
transmitting content over the external network 20 received
from one of the set of event engines 358. The request
notifications 1n the external interface event queue 56 concern
transmissions from the server system to the external network
20. Similarly, the event engines 38 communicate to the
internal network 16 via notifications placed within an inter-
nal network interface engine queue 62. Request notifications
are passed from the event engines 38 to the internal network
interface engine queue 62. Thereafter, the requests are
propagated via an internal network interface engine 64 to the



US 2002/0026502 A1l

internal network 16. The operation of the iternal network
interface engine 64 1s described herein below with reference

to FIG. 3.

[0066] In an exemplary embodiment of the invention, an
external RAM 70, 1s physically located upon the content
transfer access node 10 (located, for example on a network
interface card). The external RAM 70 operates as a buffer
between external nodes and nodes connected to the internal
network 16. During data transfers from a node on the
internal network 16 to one of the external clients 18, data 1s
placed within an external buffer within the external RAM 70
rather than an application buifer space located 1n one of the
supplemental processor nodes 22. Thus, 1n accordance with
an embodiment of the invention, transferred data bypasses
application space during the data transfers. Access to the
external RAM 70 1s controlled by a bufler control 72 and
memory controller 74 that maintain a context for data
transfer operations executed by the CTE 50. An exemplary
context arrangement 1s depicted, by way of example, in FIG.

4.

[0067] The CTE 50 includes multiple event engines that
process notifications of buffer captures within the CTE 50
itself. There are many possible implementations for the
event engines 38. The capabilities of the event engines 58
include: having access to their own high-speed memory
(referred to herein as “Internal Memory™), accepting work
via the event queue 60 on the CTE 350, allocating and
de-allocating buifers using a buftfer control 72 of the CTE 50,
performing DMA ftransters to/from those buflfers, posting
events to interface engines (e.g., interface engines 54 and
64), and posting events to other event engines. Multiple
event engines 38 are implemented as co-routines on shared
hardware and/or through true parallel processing. If imple-
mented as co-routines, event engines which are not engaging
in DMA ftransfers to/from external memory may not be
blocked because another engine 1s performing a DMA
transfer. The life cycle of one of the event engines 58 is
summarized herein below with reference to FI1G. 14.

0068] Buffer Control 72

0069] The assigned usage of internal (on-chip) and exter-
nal memory within the CTE 50 differs from the usage in a
conventional processor. The conventional solution 1s for
on-chip resources to be utilized for dynamic caching of
content from the external memory. Generally the conven-
fional processor 1s unaware of the operation of the cache,
and operates as though 1t were truly working from the
external ram. The CTE 50, by contrast, considers its internal
memory to be 1ts primary random access memory resource.
The external memory 1s viewed as a random access device.
Asynchronous memory transfers are executed to load the
internal memory from the external memory, or to store back
to the external memory. Additionally, DMA 1nput and output
1s executed to/from external memory.

[0070] The CTE 50 also manages buffer allocation, event
queuing and context switching.

[0071] The buffer control 72 manages allocation and de-
allocation of memory within the external RAM 70 corre-
sponding to event bullers. The buifer control 72 allocates a
capture buifer for capturing input for a specified context.
Each context represents a distinct content transfer and an
assoclated content transter daemon 1nstance. On the mternal
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network 16 contexts are explicitly identified i1n the first
portion of a packet. In an embodiment of the invention the
context 1s speciiied within the header of the first cell.

[0072] Furthermore, for data transmitted over the external
network 20, application of a hash algorithm to the header
fields of a packet 1s performed to i1dentify a context. For a

TCP/IP connection the context 1s i1dentified by the combi-
nation of a VLAN (Virtual LAN) field with the source and
destination IP address and source and destination TCP Port.

[0073] The allocation of a capture buffer within the CTE
50 follows any of a variety of scenarios including, by way
of example, the following: a buffer may have been pre-
loaded for the context by a content transifer daemon or
extended content transfer daemon, the current state of the
context specifies that a bufler should be allocated from a
specified memory pool (described herein below), or the
buffer may already be allocated as a result of collecting
packets for the same connection that are part of a larger
message. This set of options 1s 1 distinct contrast to prior
solutions, which would only have pre-loaded read descrip-
tors or the option of allocating buffer space from a common
context-insensitive butfer pool.

[0074] One way to control allocation of buffer space is to
pre-allocate memory pools that are used for particular
request types or requesting entities. Allocation of a buifer
from a specified memory pool 1s accomplished by simply
removing a builer control block from the head of a list of
free bufler control blocks. Each memory pool has 1ts own
distinct free list. Allocating like-sized buffers from a linked
list 1s a well-known practice in embedded software, although
more typically employed within the context of a conven-
tional processor.

[0075] Upon allocating a buffer control block, its associ-
ated use count 1s incremented. As will be described later
herein, there are other actions that can “attach” or make
claims on this buffer control block. The number of claims
eventually reaches zero. When the number of claims reaches
zero the buffer control block 1s returned to the buffer control
72’s free pool. For a default memory pool, returning the
allocated bufifer to the free pool 1s accomplished by placing,
the buffer control block at the end of the free pool linked list
of free memory blocks.

[0076] The buffer control 72, by way of example, is
invoked during routine execution to allocate a new derived
or “smart” output buffer. Smart buffers do not contain the
actual output, but rather describe the output desired by
reference to other buffers. Each of the buffer references is
onec “attachment” to the referenced smart buffer. For each
segment of a “smart” output buifer, the sender may request
that the payload for that section be applied to the calculation
of a specific CRC or checksum. Other segments may request
that the accumulated CRC or checksum be placed as output
and then the current value reset. In this manner CRCs
dependent on the payload content can be calculated without
requiring either one of the event engines 38 or supplemental
processor nodes 22 to examine the payload. However, the
event engines 38 and/or supplemental processor nodes 22
retain full control over what payload contributes to the
calculation of a particular CRC. Without this feature the
network interface engines 54 and 64 would have to under-
stand the CRC algorithms for every protocol the CTE 350
supports. This would be particularly difficult because 1t 1s
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common for the same payload to contribute to multiple
CRCs at different OSI layers.

[0077] The buffer control 72 is also responsible for allo-
cating and releasing any general free-standing data buifers.
Free-standing buffers are used by content transtfer daemons
59 to pre-stock boilerplate portions of responses. These may
be mncluded by reference 1n later responses. In this fashion
common message elements, such as server identification
strings and error codes do not have to be generated for each
message that require them.

0078] Supplemental Processor Node 22a

0079] A supplemental processor (SP) node 224, also
referred to as a “host,” 1s capable of performing a wide
variety of tasks delegated to it by the content transfer access
node 10. SP node 22a comprises, by way of example, its
own dedicated external RAM 78. The exemplary SP node
22a also mncludes a conventional processor 80 executing an
off-the-shelf operating system 82 (e.g., WINDOWS, UNIX,
LINUX, etc.). The supplemental processor 80 also executes
one or more application programs 84 within the operating
environment of the off-the-shelf OS 82. The SP node 22a
also 1ncludes the following program components: extended
content transfer daecmons (XCTDs) 86, a content transfer
engine extension (CTEX) 88, and an internal network (fab-
ric) interface 90. Other included components of the SP node
22a include a FLASH memory device enabling bootstrap-
ping the conventional processor 80. The SP node 224 may
additionally have 1ts own external interfaces for administra-
five purposes. Such external interfaces include, by way of
example, Ethernet and serial interfaces.

[0080] With regard to the programs executed upon the SP
node 22a, the operating system 82 includes a kernel and
drivers. A set of socket dacmons execute the operating
system 82 and act as Internet daemons by accepting con-
nections through a BSD (Berkeley Software Distribution)
socket application program interface. The BSD sockets API
1s the predominant interface used for applications running on
Unix or Unix-derived operating systems that wish to interact
via the Internet Protocols. The socket daemons are launched
at system start-up or on-demand via a gate-keeping dacmon
such as INETD (under most Unix systems) which manages
the process of launching daemons 1n response to external
connection requests An example of a socket daemon 1s an
APACHE web server. The SP node 22a executes the CTEX
88 as a background process/task. The only special kernel
support required 1s permission to interface directly to the
internal network interface. The SP node 22a’s internal
network 1nterface engine 90 performs the same function as
the CTE’s internal network interface engine 64, but it may
have differing performance requirements/capabilities for
dealing with concurrent packet reception. The CTEX 88

bridges events/packets between the content transfer access
node 10 and the XCTDs 86.

[0081] Socket daemons are a specific form of applications
84 (as shown in FIG. 2). The methods and conventions
related to writing this sort of application are well known to
those skilled 1n the art. Indeed, a major goal of the invention
1s to preserve the ability to execute the vast repository of
existing applications code under this paradigm while
enabling the actual data transfers to proceed 1n a more
cificient manner.

[0082] In an embodiment of the invention the CTEX 88
operates closely with the SP node 22a’s internal network
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interface engine 90 and access 1s not filtered on a per-
message basis by the SP node 224 operating system 82. Such
access 1s provided, for example, by memory mapped loca-
tions and FIFO structures maintained directly by the CTEX
88 with the permission of the operating system 82. The
socket daemon applications of the applications 84 may
communicate with the CTEX 88 either via the host operating
system 82 kernel or via a kernel bypass interface (repre-
sented by line 91) that avoids calls to the operating system.
Examples of such bypass interfaces would include the

DAFS (Direct Access File System) API and VIPL (Virtual
Interface Programming Library).

[0083] The XCTDs 86 comprise object oriented Internet
daemons operating within the context of the CTEX 88 using
an event dispatch-process model. The CTEX 88 mvokes
XCTDs 86 with an event, and accepts results to be effected
upon successtul completion. The results include messages to
be sent, updates to shared data regions and creation/deletion
of contexts. Thus, the relationship between XCTDs 86 and
the CTEX 88 i1s similar to the relationship that exists
between the CTE 50°s event engines 38 and their content
transfer daemons (CTDs) 59. However, the XCTDs 86 have
access to the SP node 22a°s memory and are capable of more
complex computations. The XCTDs 86 are capable of
handling protocols without assistance, or alternatively act as
pre- and post-filters to conventional socket-oriented appli-
cation daecmons.

[0084] In summary with regard to the role of the SP node
224 1n the proposed streaming data server application envi-
ronment, the content transfer access node 10 relieves the SP
node 22a of the task of executing the actual transfer of
requested content. The shift from “processing” the stored
content to “selecting” and “wrapping” the content, changes
the role of the SP node 22a. The SP node 22a 1s not even
required for handling simple requests for data. Within the
context of a server system including the content transfer
access node 10, a “host processor” node containing a con-
ventional processor 1s more correctly referred-to as a
“supplemental processor” due to 1its supporting role 1n
content transfer operations. The SP node 22a 1s still able to
control all protocol handling and participate 1n handling
portions of protocols that are not handled by the content
transfer access node 10. To accomplish these objectives, the
SP node 22a receives notifications that input has arrived.
Under the content transfer approach, the SP node 22a 1is
notified that the content 1s loaded within the content transfer
access node 10°s memory. The SP node 22a does not directly
examine or process the transferred content. The SP node 224
1s capable of reading the content transfer access node 10°s
memory when 1t actually must see the content. Finally, the
SP node 22a 1s capable of creating buifers in the content
transfer access node 10’s memory.

|0085] A data storage node 14a is communicatively
coupled to the internal network 16 via an internal network
interface 92. In an exemplary embodiment of the invention,
the data storage node 14a comprises a set of ATA Drives 94a
and 94b coupled to the internal network interface 92 via
storage adaptors 96a and 96b. An example of the structure
and operation of the storage adaptors 96a and 96b 1s
provided in Phillips et al. U.S. patent application Ser. No.
09/638,774 filed on Aug. 15, 2000, entitled “Network Server
Card and Method for Handling Requests Via a Network
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Interface” incorporated herein by reference in 1its entirety
including all references incorporated therein.

[0086] As mentioned previously herein above, the internal
network 16 1s preferably a non-blocking switch fabric. The
data paths of the switch fabric are controlled by the server
controller 24. The server controller 24 includes an internal
network interface 98. The internal network interface 98 1s,
by way of example, a switch fabric interface for communi-
cating with the other server components via the internal
network 16. The server controller 24 includes, 1n a particular
embodiment, an event engine 100 driven by nofifications
presented upon an event queue (not shown). The server
controller 24, includes 1ts own allocated external RAM 102.
The server controller 24 maintains a list of files and volumes
in file system 104 and volume system 106 to facilitate access
to requested content on the data storage node 14a. The
server controller 24 also 1includes a storage array control 108
responsible for 1ssuing instructions to the data storage nodes
so as to fulfill the requests of other nodes and higher level
components. The server controller 24 also includes a traffic
shaping algorithm and controller 110 that establishes and
maintains control over distribution of tasks to multiple
available processing engines within the server system
depicted in FIGS. 1 and 2. In the exemplary embodiment
the storage array control and traffic shaping responsibilities
are 1mplemented by an algorithm that schedules their work
jointly in a single software subsystem.

[0087] One of the primary tasks of a data server system
embodying the present invention, and one for which it 1s
especially well-suited, 1s delivery of content in the form of
streaming data. In the exemplary embodiment of the present
invention depicted in FIG. 1, the internal network 16
interfaces content transier access nodes 10 and 12 directly to
a set of data storage nodes 14 (¢.g., a set of hard disk drives
supplying streaming media content to a set of requesting
clients). The content transfer access nodes 10 and 12 include
interfaces to the external network 20. The intention of this
architecture, and alternative network data access architec-
tures embodying the present invention, 1s to provide a data
path between a data storage device and an external network
interface for transmitting data retrieved from the data stor-
age device to requesting clients, and that bypasses a general
processor (€.g., the supplemental processor nodes 22). In
accordance with embodiments of the present invention, once
a data stream commences 1n response to a networked client’s
request, the stream of requested data bypasses conventional
processors and operating systems (in the supplemental pro-
cessor nodes 22) that add delay-inducing, resource-consum-
ing overhead to such transmissions.

[0088] In accordance with an exemplary embodiment of
the present i1nvention incorporating the general logical
arrangement of components of FIGS. 1 and/or 2, the content
transfer access nodes 10 and 12 receive requests for content
stored upon the set of data storage nodes 14. In response to
the requests, possibly after initial setup procedures imple-
mented by the supplemental processor nodes 22, retrieved
content/data passes through the internal network 16 to the
content transfer access nodes 10 and/or 12 that operate
without the overhead of conventional processors running,
conventional, off-the-shelf operating systems. The retrieved
content/data 1s handled by one or more of the micro-engines
operating within the content transfer access nodes 10 and 12.
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[0089] Handling i1s distinguished from “processing” the
retrieved data. Handling, 1n an illustrative embodiment,
includes basic packaging (or wrapping) of the retrieved data
with, for example, a header, and transmitting the data
according to rules specified by communications protocols.
In other instances, the data 1s packaged by other entities such
as the data storage-to-internal network interfaces. During
handling the content of the retrieved data 1s not examined.
On the other hand during processing, an application
executes to substantively examine and/or modily the
retrieved data. Processing 1s generally executed by an appli-
cation executing upon an ofl-the-shelf operating system.

[0090] After performing any specified handling, the pack-
aged retrieved data 1s transmitted over the external network
20 to one of the connected clients 18. Similarly, the content
transfer access nodes 10 and 12 facilitate storing data
received via external network 20 onto the data storage nodes
14 without passing the data through a conventional proces-
sor/operating system incorporated into the supplemental
processor nodes 22.

[0091] The above-described processing differs from that
of conventional processors in several ways. First, the content
transter engine 50 has no general purpose caches. Instead the
internal memory 1s used as the primary working area, and
the external RAM 1s viewed as a storage device. Typically
processors view the external RAM as the primary working
arca, and on-chip memory 1s used to dynamically cache
portions of the working area in a manner that 1s transparent
to the software. Given that conventional processors need to
support a wide range of application architectures this gen-
eralized approach 1s clearly superior. But the content transfer
engine supports a highly specialized processing pattern, and
applications can be designed to simply work from the
equivalent of the internal cache directly, with the software
taking explicit responsibility for transferring to from the
external RAM. Second, the context switching required by
the CTE 50 to support this type of transfer 1s extremely
minimal compared to those under a conventional processor.
Switching execution units only occurs between interpretive
instructions (cooperative multi-tasking as opposed to pre-
emptive) and switching between connection contexts only
occurs at event dispatch. In conventional processor terms,
switching to a connection context 1s just an application
directed load and flush of a data cache. Loading and flushing
data caches occurs constantly 1n conventional processor
architectures.

10092] Additionally, conventional processor architectures
must save and restore registers, switch stack frames and
possibly shift memory maps. Third, the CTE 50 has no need
for memory mapping support. Conventional processors, and
the enfire VI family of protocols, go through many steps to
ensure that user-mode applications can use the buflers they
want to, at the memory addresses they desire. The CTE 50
provides buffers to content transfer daecmons (CTDs). The
CTDs do not attempt to control their own memory alloca-
tion, and hence do not really care where their data 1s stored,
or how the buifers they are handling are addressed. The
aforementioned content request handling 1s carried out, for
example, by the content transfer access node 10 including
the content transfer engine (CTE) 50 having a general
arrangement depicted 1in FI1G. 3. In addition to 1identifying a
set of functional components within the CTE 50, FIG. 3
depicts a set of logical paths linking the identified functional
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components of the CTE 50 to one another. Links are also
depicted between the CTE 50 and the external RAM 70, the
external network 20 and the internal network 16.

[0093] The CTE 50 includes a physical interface linking to
the 1nternal network 16. In particular, a bi-directional data
path 120 links the internal network interface engine 64 to the
internal network 16. In an embodiment of the 1nvention, the
internal network interface engine 64 supports cell-based data
fransmissions over the bi-directional data path 120. How-
ever, 1n alternative embodiments, the data transmitted over
the data path 120 1s arranged 1n other formats 1n accordance
with a variety of supported data transmission protocols.

10094] In accordance with an embodiment of the present
imnvention, data 1s transferred between the external RAM 70
and the internal network interface engine 64—thereby
bypassing costly conventional processor overhead. A bi-
directional data path 122 between the internal network
interface engine 64 and external RAM interface/bufler con-
trol 124 (corresponding to the buffer control 72 and memory
controller 74 in FIG. 2) facilitates content data transfers
between the internal network interface engine 64 and the
external RAM 70. A bi-directional address/data bus 126
links the external RAM mterface/buifer control 124 to the
external RAM 70. The bi-directional data path 122 and
bi-directional address/data bus 126 facilitate transmitting,

content data directly between the internal network interface
engine 64 and external RAM 70.

[0095] Data transfers to the internal network 16 from the
external RAM 70 are executed according to commands
ogenerated by the event engines 58. Upon generation by the
event engines 38, the commands are placed within the
internal network interface engine queue 62. Transfer of
ogenerated commands from the event engines 58 to the
internal network interface engine queue 62 are represented
by line 130. The queued commands are read by the internal
network interface engine 64 (represented by line 132). The
internal network interface engine 64 executes read and write
operations 1nvolving the external RAM 70 and internal
nodes connected via the internal network 16 (e.g., storage
nodes 14 and/or the supplemental processor nodes 22).

[0096] The internal network interface engine 64 is also
capable of generating events (e.g., commands or messages)
that drive the operation of the event engines 58. The internal
network interface engine 64 submits events (described
herein below) to the event queue 60 as represented by line
134. The queued events are read and executed by appropri-
ate ones of the event engines S8 (represented by line 136).
A bi-directional data path 138 between the event engines 58
and the external RAM interface/butler control 124 facilitates
submission of read and write requests by the event engines
58 to the external RAM interface/buffer controller 124. Such
requests concern transfer of data between the external RAM
70 and the internal network interface engine 64 and/or the
external network 1nterface engine 54. When capturing bufl-
ers for storing incoming data this interface 1s used to locate
a target memory location 1n the external RAM 72 to store the

received data, and then to store 1t. The posted event merely
refers to the buffer collected.

[0097] The output command posted to the external net-
work 1nterface engine queue 56 will typically contain ref-
erences to this data. Thus content transfer 1s controlled by
the C'TD, without requiring examination or processing of the
actual packet contents.
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0098]
0099] Converting Between Packets and Cells

0100] One of the functions performed by the CTE 50 is
converting data between a packetized form (for transmission
over the external network) and a cell form (for transmission
over the internal network). As previously mentioned, in the
illustrative embodiment of the present invention, data is
transmitted 1n the form of data cells over the internal
network 16. In an exemplary embodiment of the present
invention the cell/packet and packet/cell conversions are
executed within the internal network interface engine 64.
Such conversion functionality 1s embedded 1nto other com-
ponents of the CTE 50 (e.g., the external network interface
engine 54) in alternative embodiments of the invention.

[0101] Init’s outbound role (sending data over the internal
network 16), the internal network interface engine 64
receives event buflers from the internal network interface
engine queue 62. In response, the internal network 1nterface
engine 64 fetches a buflered packet from the external RAM
70 (via the buffer control 124) based upon a location pointed
to by the contents of an event retrieved from the queue 62.
The mternal network interface engine 64 generates a set of
cells from the retrieved buffered packet, and transmits the
cells to the internal network 16 via lines 120. Generating the
cells includes generating and appending a CRC-32 for the
data within the buffered packet. At the end of transmitting a
series of cells corresponding to the buffered packet to the
internal network 16, a buflering outbound depacketizer
within the internal network interface engine 64 releases the
event buller back to the buffer control 124.

Internal Network Interface Engine

10102] An output request is made by posting an event that
references a “smart bufler” to the external network interface
engine queue 56. As previously described for the external
interface, the mternal interface transmits each portion of the
described output to a buffer set aside 1n the external RAM
70. After each segment 1s transmitted, the claim on that
portion of the smart buffer set aside in RAM 70 1s released.
Finally the claim on the smart buifer itself 1s released when
the requested data has been transmitted entirely. With regard
to data transmission to the internal network, the internal
network 1nterface engine 64 translates each segment 1nto a
series of 1nternal network cells.

[0103] In the exemplary embodiment of the invention, the
internal network interface engine 64 receives a sequence of
one or more cells from the mternal network 16 1n accordance
with known data cell delivery specifications and data com-
munications techniques—or variations of such standards.
The internal network interface engine 64 converts the
received cells 1into packets. The internal network interface
engine 64 supports concurrent construction of one packet
per assigned reception channel. Each received cell corre-
sponds to a unique reception channel that distinguishes a
received cell for a particular packet from other cells received
by the CTE 50 that are associated with other mncomplete
packets being constructed within the CTE 50. In view of the
need to distinguish packets under construction, the internal
network interface engine 64 reassembles a maximum of one
packet per reception channel at any given instance in time.
To maintain such support, the buffering 1nbound packetizer
of the internal network interface engine 64 stores a packet
reception state for each designated reception channel (e.g.,
expecting packet start/middle packet, accumulated packet
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length, accumulated CRC-32 value, etc.). The buffering
inbound packetizer latches a context bufler in internal RAM
assoclated with each reception channel based upon a start
cell for each packet to be constructed. The internal network
interface engine 64 also invokes the external RAM interface/
buffer control 124 to establish a data buffer within the
external RAM 70 to the extent needed to handle an incoming
packet. The options for allocating the bufler are as previ-
ously described for the external network interface engine.

[0104] Thereafter, the data payload in the corresponding
received cells 1s stored within the established data buffer.
When a packet 1s complete, the internal network interface
engine 64 creates an event message. The packet completion
event message 1s placed within a designated one of the event
queues 60 associated with a particular event engine of the set
of event engines 38 that will handle the completed packet.

[0105] Regardless of the manner in which a packet is
accumulated, once 1t 1s complete, the constructed packet’s
CRC 1s validated. If the constructed packet’s CRC is good,
the payload 1s delivered to a dedicated destination. Other-
wise CRC failure 1s tallied for statistical tracking, and the
packet 1s dropped. For buffered inbound packetizing, when
a packet is invalid (e.g., a failed CRC-32 check), the
buffering mbound packetizer of the internal network inter-
face engine 64 releases the current builfer associated with the
incoming data packet.

0106] External Network Interface Engine

0107] Having described the portions of the CTE 50 most
closely associated with data transfers over the internal
network 16, attention 1s now directed to portions of the CTE
50 components that facilitate data transfers between the
external RAM 70 and the external network 20. Such trans-
fers are performed, for example, by the CTE 50 to provide
retrieved data from one of the data storage nodes 14 to a
requesting client via the external network 20. The external
network interface engine 54 receives and transmits packets
to/from the external network. In an exemplary embodiment
the external network interface engine 54 manages a device
bus and the network interface engine devices on the device
bus. In accordance with an embodiment of the present
mvention, data 1s transferred between the external RAM 70
and the external network interface engine 54. A bi-direc-
tional data path 142 between the external network interface
engine 54 and external RAM interface/buifer control 124
facilitates content data transfers between the internal net-
work 1nterface engine 64 and the external RAM 70. The
bi-directional data path 142 and bi-directional address/data
bus 126 facilitate transmitting content data directly between

the external network interface engine 64 of the CTE 50 and
external RAM 70.

[0108] To capture packets, the external network interface
engine 54 responds to a packet ready condition (typically in
the form of a status line and/or interrupt from an actual
network interface engine device) by transferring just the
packet header from the actual interface. This 1s illustrated in
FIG. 13 as the “headerReceived” transition from the “idle”
state.

10109] Fields of the header are used to find the hash entry

for this connection. If none exists a new context 1s allocated
and placed 1n the hash table. Fresh context allocations come
from a reserved pool of “unknown connection” contexts.
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This limaits the total resources that can be tied down respond-
ing to new external network connection requests.

[0110] Such limits represent yet another manner in which
the system defends against Denial-of-service attacks. If the
context resource pool 1s exhausted, then the incoming frame
1s discarded. A diagnostic tally of all such discards 1s kept.
After assigning a context, the header 1s examined to deter-
mine the capture type (serial or RDMA) and the total packet
S1Z€.

[0111] Having determined the capture type and packet
size, the context 1s latched for the identified capture type. As
detailed herein, latching the capture builer for a context finds
or allocates a buffer to capture the incoming data. Once a
capture buffer i1s allocated, the fetched header 1s stored in
that buffer. Then a DMA transfer from the external network
device to the capture buffer 1s requested.

[0112] The DMA transfer either completes successfully

(as shown by the “goodTransferNotice” transition in FIG.
13) or an error is detected, such as an invalid CRC (as shown
by the “badTransferNotice”). If the DMA transfer is suc-
cessful the captured bytes are committed. At this point the
immediate collection 1s complete, and the context 1is
unlatched. In an external protocol dependent fashion the
interface engine determines whether use of the current butfer
has ended. If use of the current buffer is done, then the buffer
1s released. Otherwise the engine returns to an “idle” state.
The one condition where a bufler 1s always “done” 1s when
it has been completely filled. On a bad transfer notice the
context 1s unlatched and the buffer 1s aborted.

0113] External Network Output Requests

0114] Data transfers between the external network 20 and
the external RAM 70 are executed according to commands
generated by the event engines 58. Upon generation by the
cvent engines 38, the commands are placed within the
external network interface engine queue 56. Transfer of
generated commands from the event engines 58 to the
external network interface engine queue 56 are represented
by line 144. The queued commands are read by the external
network interface engine 54 (represented by line 146). The
external network interface engine 54 executes read and write
operations 1nvolving the external RAM 70 and external
nodes connected via the external network 20 (e.g., clients

18).

[0115] The external network interface engine 54 i1s also
capable of generating events (e.g., commands or messages)
that drive the operation of the event engines 58. The external
network interface engine 54 submits events (described
herein below) to the event queue 60 as represented by line
148. The queued events are read and executed by appropri-
ate ones of the event engines S8 (represented by line 136).

[0116] Context Mutual Exclusion by Serialization

[0117] One requirement of object-oriented network pro-
cessing 1s that the system must ensure that the events for any
ogrven object must be processed serially. The processing of
event N for object/connection X must be completed before
the processing for event N+1 for object/connection X starts.
Conventional approaches to solving this problem include
assigning each object to a single processing thread, and use
of semaphores or locks to ensure that if two threads do try
to update the same context, that the second one will be
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forced to wait for the first’s completion. These conventional
solutions consume system resources and can result in delays
in handling events. Static assignment of threads is low
overhead, but can result in some threads being idle while
others are backed up in processing their input queue.

[0118] The CTE 50 solves this problem by dynamically
assigning a context/object to a specific execution unit when
it makes a dispatch. If there are no currently dispatched
events for that context, one of the event engines 1s picked
arbitrarily. To ensure that this selection 1s statistically bal-
anced, and that 1t can be done without requiring references
to tables stored 1n external memory, the preferred imple-
mentation 1s to make the selection based upon a hash of a
dispatched routine handle. However there are a wide range
of algorithms to make a balanced selection with low over-

head.

[0119] When a dispatch 1s made the CTE increments a

count of dispatched events for that context, and records a
selected event engine of the event engines 38. As long as that
count remains non-zero, all future dispatches for this con-
text/object will be placed on the same queue. At the comple-
tion of dispatching each event, the selected event engine will
decrement the dispatch count for the context/object. When
the count returns to zero, the choice of event queue 1s once
again unlatched and can be dynamically assigned to a later
event assoclated with the context/object.

[0120] Queues

[0121] In an exemplary embodiment, queues are a funda-
mental element for interfacing the execution units (engines)
and the CTDs §9 and device control routines that they run.
Each of the queues depicted 1n FIGS. 2 and 3 feeds a single
execution unit. When a calling component seeks to send a
message to another component of the CTE 50, the calling
component posts a message to the target queue. Posting may
be a result of buffer capture or may be the result of a
successiul event dispatch by an event engine. The receiving
component 1s responsible for fetching the received messages
from 1ts queue.

[0122] Furthermore, events need not always be posted
immediately to a particular queue when they arise. In an
exemplary embodiment of the invention, a ticker within the
internal network interface engine 64 posts events received
from a time deferred request queue (not shown in the
figures). The ticker accepts event messages and buffers them
for a designated time period. The ticker reposts the event
message to an appropriate one of the event queues 60 after
a designated wait period specilied in the received event
message.

[0123] In an embodiment of the invention, message
queues are implemented entirely upon a chip containing the
processing components of the CTE S0 (i.e., no external,
off-chip memory is utilized), and there is no access delay for
making an external call to off-board memory. Because, 1n the
exemplary embodiment, the message queue storage 1s on-
chip, the capacity of each queue 1s not dynamically modi-
fiable. Instead, changes to queue size are carried out in

FPGA core or based upon a parameter accessed when the
FPGA 1s mitialized.

10124] The various queues 56, 60, and 62 store request
“notifications” rather than the requests themselves. The
request nofifications, an exemplary format of which 1is
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discussed herein below with reference to FIG. 10, include a
command and a pointer to additional instructions and/or data
stored within external random access memory 70 managed
by the buffer control 72 and memory controller 74. Trans-
ferring notifications, rather than the buffered requests them-
selves, between components reduces memory transfers
within the data access server system embodying the present
invention and streamlines data transfer procedures.

[0125] As those skilled in the art will readily appreciate,
the above described hardware/firmware arrangement
depicted mn FIG. 3 1s exemplary of an architecture for
facilitating transfer of large amounts of data, retrieved from
a storage device via the internal network 16 (e.g., switch
fabric), to a requesting external device connected via an
external network. The architecture of the content transfer
access node 10 depicted in FIGS. 2 and 3 has only limited
processing capabilities for facilitating the data transfers. The
result 1s a relatively inexpensive high-throughput server
interface for providing information assets to connected
clients over an external network.

[0126] Turning now to FIG. 4, an exemplary context
format 200 and related data structures are depicted. The
context represents the state of a particular task being per-
formed by the CTE 50. A class state ID 202 provides a
pointer to a class state record 203. The class state record 203
includes a memory pool ID 204 that corresponds to a
particular butfer pool from which buffer space 1s allocated to
a particular context object. A dispatch target 205 describes a
particular type of action to be performed by the particular
context object to which the context 1s assigned. In an
embodiment of the invention, the class state also includes an
event engine routine handle that identifies a code routine
executed 1n association with the particular class state.

[0127] A set of memory pools are associated with each of
a set of capture bufler types. The memory pool ID 204 points
to a particular memory pool record 206 associated with one
of the set of capture buifer types. A memory pool record
includes two fields: a list head field 208 and a list tail field
210. The list head field 208 stores a value corresponding to
the location of a first free builer control block 1n a linked list
of free bufler control blocks representing unused ones of
memory blocks allocated to the particular memory pool. The
list tail field 210 stores a value corresponding to the location
of a last free bufler control block 1n the linked list of free
buffer control blocks. In an illustrative embodiment the list
head 208 and list tail 210 comprise a total of 48 bits. The first
four bits are reserved, the next twenty bits specity a location
in the external RAM 70 where the first free buffer control
block 1s located, the next four bits are zero, and the final
twenty bits specily a location 1n the external RAM 70 where
the last free bufler control block for a particular memory
pool 1s located.

[0128] For each network interface engine (e.g., internal
and external), the context includes a corresponding capture
buffer descriptor 220, 240. Each internal network capture
buffer descriptor 220 and external network capture bufler
descriptor 240 includes an optional handle (pointer or other
reference) referencing a capture buffer having a format of
the type depicted by capture buller control block 222.
Non-null handles indicate that the process of capturing a
buffer for this context on that network interface engine 1s
in-progress. Each instance of the capture buffer control
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block 222 includes, by way of example, a copied to bufler
address 224 that 1dentifies a location where a buflered data
block commences. A logical length 226 1dentifies the portion
of the buffer that has fully captured (or otherwise logically
valid) content. By contrast, an allocated length field 228
identifies the total length of the memory allocated to a
particular capture buifer. As discussed previously above, the
dispatch target field 205 includes one of an extensible set of
various target descriptors (see, FIG. 9). As indicated by
target queue 230, 1mn addition to pointing to a particular
memory pool (field 229), the capture buffer can also point to
a particular event queue that receives notifications/requests
for a particular class of tasks. As indicated by arrows 232,
the event queues 60 1n turn include queue entries that specily
buffer ID’s pointing back to an instance of the capture bufler
control block 222. Furthermore, a smart output buifer 234,
in an embodiment of the present invention, includes a list of
segment descriptor/builer reference pairs that reference mul-
tiple instances of the capture buffer control block 222. In
such cases, the segment descriptor specifles an operation/
task, and the buffer reference (as depicted by lines 236)
specifles a particular instance of the capture buifer control
block 222 upon which the operation/task 1s to be performed.

[0129] Sub-fields within the internal network capture
buifer descriptor 220 of the context 200 also track a commit
limit and total committed fields. These sub-fields support
reporting of partial delivery over the internal network when
the out-of-order capability of RDMA ftransfers 1s invoked.
An exemplary buffer allocation scheme involving partial
delivery 1s described herein below. A buffer use count 238
stores a value 1ndicating a the capture bufler capture buifer
1s released.

[0130] The external network capture buffer descriptor 240,
as mentioned above, stores a reference (optional) to an
instance of a capture buifer control block 222. Instances of
external network capture bullers correspond to data transfers
from the external network 20 into the external RAM 70. An
assigned engine queue 250 specifies one of the set of event
engines 38 that has been assigned to handle the task asso-
ciated with the particular context.

[0131] As explained herein above, the CTE 50 dynami-

cally assigns a context/object to a specific execution unit
when 1t makes a dispatch. The dispatch count 260 1dentifies
the number of dispatches associated with a particular con-
text. If there are no currently dispatched events for that
context, one of the event engines 1s picked arbitrarily. When
a dispatch 1s made the CTE increments a count of dispatched
events for that context, and records a selected event engine
of the event engines 58. As long as that count remains
non-zero, all future dispatches for this context/object will be
placed on the same queue. At the completion of dispatching,
cach event, the selected event engine will decrement the
dispatch count for the context/object. When the count
returns to zero, the choice of event queue i1s once again
unlatched and can be dynamically assigned to a later event
associated with the context/object.

[0132] In an exemplary embodiment of the present inven-
tion all buffers are referenced by twenty-bit buffer IDs that
are 1mndexes to buifer control blocks. Four distinct types of
buffer control blocks are supported tables, code routines,
allocated buflers and free buffers. The buifer control blocks
for tables and code routines are 64 bits each, and 128 bits are
required for allocated and free buffers.
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[0133] A pre-defined location holds the buffer control
block for butfer ID zero. This 1s pre-defined to be a table that
holds the buffer control blocks for all tables and code
routines. Buifer ID “one” 1s reserved for the table holding
the buffer control blocks for allocated and free buifers. The
first element 1n the table holding the buffer control blocks
will have a buffer ID higher than the buffer ID of the last

entry 1n the table/code-routine table.

10134] Turning now to FIG. 5, a 64-bit table memory
control block format 1s defined. A table buffer address 300
points to the first entry 1n a table containing memory control
blocks (both 64 and 128-bit). The next 8 bits, field 302 of the
memory control block are zeroes (a format marker). A
sixteen-bit record size 304 specifies the size of each record.
An allocated table size 306 (only 16 of 24 bits are specified)
indicates the number of bytes allocated to hold the records;
this must be a multiple of the record size.

[0135] An exemplary 64-bit code routine memory control
block format 1s defined 1n FIG. 6. While their content and
usage 1s different, code routine memory control blocks are
identical 1n format to table control blocks. Code routine
memory control blocks include eight 1°s as a format marker
312 and all zeroes 1n the record size 314. Rather than a buffer
s1ze, routine size 316 stores a size of a code routine.

[0136] Turning to FIG. 7, the fields are depicted for an

allocated buffer control block. Types of buffers include
capture (described herein above with reference to FIG. 4),
direct and smart output. Each instance of a 128-bit memory
control block includes a copied to bufler address 320 that
identifies a location where a buifered data block commences.
A logical length 322 1dentifies the portion of the allocated
space that 1s logically usable. For output buffers this would
indicate to the network interface engine how much of the
buffer should be examined for output specifications (or
data). For capture buffers it indicates how large the fully
committed portion of the butfer 1s. An allocated length 324
identifies the total length of the memory allocated to a
particular allocated buffer. A format marker 326 indicates
whether a particular buffer 1s a smart output bufler, simple
output buffer, or a capture buffer. A memory pool ID 328
indicates which one of a total of 256 potential memory pools
with which a particular memory buffer 1s associated. A
designated queue 330 1dentifies the event queue of the set of
event queues 60 with which the memory buffer 1s associated.
An event target 334 comprises a description of a particular
event and specifies how to process the buifer’s contents.
Examples of event formats are described herein below with
reference to FIG. 9. A buifer use count field 336 identifies
the number of users of a particular buffer. The bufler use
count field 336 1s incremented when a bufler 1s allocated or
attached. It 1s decremented each time a claim on it 1s
released. When 1t 1s decremented back to zero it will be

placed back 1n 1ts assigned home memory pool by appending
it to the tail of that pool’s free list.

[0137] A free buffer control block format (one that has not
been allocated to an event) is summarized in FIG. 8. The
free buffer control block format 1s similar to the builer
control block depicted in FIG. 7. The 1dentifying difference
1s that a free bulfer has a zero use count, while an allocated
buffer has a non-zero use count. The memory address,
allocated buffer length and use count fields are aligned, so as
to allow references to buifer control blocks without prior
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knowledge as to whether the specific control 1s free or 1n use.
Each mstance of a 128-bit memory control block includes a
copied to bulfer address 340 that 1dentifies a location where
a buffered data block commences. A next set of 24 bits 342
are reserved (all zero). An allocated length 344 identifies the
total length of the memory allocated to a particular free
buffer. A memory pool 348 indicates which of a total of 256
potential memory pools with which a particular memory
buffer 1s associated. A next set of twenty-eight bits 350 are
undefined. They may have leftover content from when this
buffer control block was last allocated. A next free buifer 352
(20 bits) identifies the address of a next free buffer control
block (thereby enabling chaining of free buffer control
blocks). A buffer use count field 354 1dent1ﬁes the number of
users of a particular buffer. In a “free buffer” this value 1s
zero by definition—if there were claims upon the buifer then
it would not be a free buliler.

[0138] Turning now to FIG. 9, a set of exemplary event
targets (40 bits) are depicted. In general, the first section of
an event comprises a format marker field specitying an event
type. This 1s a variable length “Huflman” style encoding,
which 1s well-known technique in the field.

[0139] The first type 400 (Internal Network Target) speci-
fies the packet header information required for an Internal
Network Target. This format 1s used for output requests
placed on the 1mternal network event queue. Normally this 1s
only used for output requests from CTDs, but a context state

may specily forwarding event notices directly to an XCTD
via the internal network.

[0140] The second type 401 (Table Update) is used by a
CTD or XCTID to send updates to specific tables. This
mechanism 15 used to bootstrap the CTE. The target specifies
which table is being updated (16 bits) and a record offset of
the new data (20 bits). Normally both the ‘set’ and ‘clear’
flags are set, causing the enftire content of the addressed
records to be replaced. By setting only ‘set’ or ‘clear’ the
updater may request bit-wise setting or clearing of bits in the
target record.

[0141] The third type 402 (Ticker Target) is used by CTDs
fo request notification after a specific period of time has
clapsed. The target speciiies the context that 1s to receive the
event and the minimum number of 1implementation-defined
clock ticks that must transpire first.

[0142] The fourth type 403 (External Network Target) is
used by the CTD to request output on the external network.
The target details the set of external network ports that are
acceptable for sending this traffic. In most configurations the
CTD finds all ports acceptable, but there could be configu-
rations where different ports lead to different sub-networks.

[0143] The fifth type 404 (Context Target) is used upon
buffer capture and for communication between CTDs. It
specifies the target context (20 bits), the generation (4 bits)
and the capture type (2 bits). The generation is zero for
packet capture. For CTD generated events it 1s any number
orcater than that of the event currently being processed. This
limitation prevents “chain reactions” in faulty software
where a single event results 1 posting two events, which
result 1n posting four events, etc.

[0144] The sixth type 405 (Simulated Input Target) allows
a CTD to simulate input with a supplied buffer that is to be
treated as though 1t were raw input received upon the
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specified channel. For example, the mternal network inter-
face engine could be told to simulate reception on a given
Node Channel and then be supplied an array of cells. This
feature 1s mtended to support debugging and diagnostics.

[0145] As mentioned herein above, the CTE 50 includes a
set of message queues 56, 60 and 62 that buffer request/
command transmissions between internal components of the
CTE 50. Referring to FIG. 10, in an embodiment of the
invention, each message 1s 3 bytes (24 bits). The first four
bits 410 identify a specific event completion notification
type. The remaining twenty bits 412 comprise a pointer to
buffer in the external RAM 70 associated with the event and
created by the external RAM interface/buifer control 124 of
the CTE 50.

[0146] Turning now to FIG. 11, a set of buffer depictions
illustrate another aspect of an embodiment of the present
invention enabling buffers to {ill in an out-of-order manner
while still enabling prompt use of totally delivered portions
of the buifer. An important feature of an exemplary embodi-
ment of the ivention i1s the ability to 1ssue large read
requests and then receive partial completion notifications as
the requested content 1s delivered. This approach allows the
storage network to exercise flexibility in scheduling deliv-
eries.

[0147] The more conventional approach would use more,
smaller buffers so as to allow for a steady tlow of completion
notifications. The conventional approach, however, reduces
the flexibility of the scheduler. Depending on the internal
network protocols, the requests may have to be dealt with 1n
sequential order. At a minimum, scheduling would be con-
strained to respect the boundaries between the requests. A
single transfer could not be scheduled that crossed the
artificial boundaries between sequential requests.

[0148] When files are stored in non-contiguous sectors on
storage media maintained on the storage nodes 14, optimum
scheduhng of the drive head may requlre reading blocks

“out of order”, 1.e. 1n an order that differs from the logical
arrangement of the data 1n the file. Requiring the server to
deliver the blocks 1n order either causes more disk head
motion or storage-side buffering (until the complete file is
retrieved). Out-of-order delivery facilitates the greatest flex-
ibility for disk data delivery scheduling while eliminating
the need for extra disk side buffering. Augmenting out-of-
order delivery with early completions allows the use of
larger buffers without the increasing pipeline delay that
waiting for complete delivery of those larger buifers would
entail. As shown 1 FIG. 11, the ability to support partial
completions with out-of-order delivery 1s achieved by logi-
cally dividing each capture buffer into three zones (uncom-
mitted, partially committed and fully committed).

10149] FIG. 11 depicts a sequence of commits to a data
capture bufler. Initially, the buffer 1s completely empty. The
first commit operation adds a data block having a size of “4”
and an offset “10.” Thus, since a gap exists at the beginning
of the buffer, the fully committed value remains at zero. The
value of the highest location in the buifer containing data,
“147, 1s stored 1n the total committed field. Total committed
data size 1s set to 4.

[0150] Next, a data block of size “6” is added to the buffer
starting at location zero. The total committed 1s 1increased to

10, the highest filled location remains “14,” and the fully
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committed range 1n the data buffer 1s increased to “6.” The
next commit 1s size “4” beginning at oifset “6.” The commuit
limit remains unchanged at “14.” At this point the total
committed 1s 1ncreased from “10” to “14” and now equals
the commit limit (now “14”). Therefore, the fully committed
field can be updated to “14. ” A partial completion event can
now be posted that specifies the readiness of data up to
location 14 to be transmitted from the data capture butfer to
a specified destination.

[0151] The remaining two diagrams of FIG. 11 depict the
completion of two more commits. The first of the two adds
data to the end of the buffer and increases the total com-
mitted and the commit limit. The second of the two commits
adds data to fill a gap and complete the space of the data
capture bulifer.

[0152] Turning now to FIG. 12, a set of states and
transitions are depicted that summarize the creation of data
packets from a set of received cells in accordance with an
embodiment of the present invention. There are two primary
states “Not In Packet” state 700 and “In Packet” state 716
between these two states, cell collectors perform sequences
of operations 1n association with state transitions. From the
“Not In Packet” state 700 the normal course of events 1s to
receive a “startCell”. The startCell 1s processed as follows.
At action 702 the packet size 1s extracted from the start cell
header. Next, at action 704 the capture buifer 1s latched for
the type of capture (serial or RDMA) and the packet size
promised. If during action 704 no capture butler 1s available,

an ovverun 1s tallied at action 706 and the collector returns
to the “Not In Packet” state 700.

[0153] Otherwise if a capture buffer is available, then at
action 708 the CRC accumulation field 1s zeroed. Next, at
action 710 the packet size collected field 1s zeroed. Next, at
action 712, the base address for the collection (w1th111 the
capture buf) 1s obtained. For RDMA packets this 1s the
RDMA offset from the packet base. For serial packets it 1s
after any previous packets already collected for this buffer.
Thereafter, at action 714 the cell’s payload 1s stored, with the
CRC and length being accumulated. The collector transi-
tions to the “In Packet” state 716.

[0154] From the “Not In Packet” state 700 the following

error handling reactions are required. On receipt of an

“endCell” the “nMissedEnds” tally 1s incremented at action
720 and then the Not In Packet state 700 1s reentered. On

receipt of a “midCell” the “nStrayCells™ tally 1s incremented
at action 722 and then the Not In Packet state 700 1s

reentered.

[0155] From the “In Packet” state 716 the following is

done 1n response receipt of a “midCell”. In response action
714 stores the cell’s payload, with the CRC and length being
accumulated. The In Packet state 716 1s reentered.

[0156] From the “In Packet” state the following operations
are executed 1n the following i1dentified states 1n response to
receiving an “endCell.” The cell’s payload 1s stored per
action 724, with the CRC and length being accumulated.
Action 726 checks the accumulated CRC. If 1t 1s bad, the
capture buffer 1s aborted at action 728, the bad packet
counter 1s incremented at action 730, the context port is
unlatched at action 732 and the collector returns to the “Not
In Packet” state 700. Otherwise, at action 726 1if the CRC 1s

valid, the collected bytes are committed at action 740 and
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the context port 1s unlatched at action 732 before the
collector returns to the “Not In Packet” state 700.

[0157] From the “Not In Packet” state a “solo cell” may
also be received. A solo cell 1s processed as though it were
both a start and end cell. After extracting the packet size at
action 760, at action 752 a capture buffer 1s latched for the
packet size promised. If during action 752 no capture bufler
1s available, an ovverun 1s tallied at action 754 and the
collector returns to the “Not In Packet” state 700. Otherwise,
action 756 1s entered wherein the CRC accumulation field 1s
zeroed.

[0158] While in the “In Packet” state 716 either a “solo-
Cell”or “startCell” may be received. After aborting process-
ing of a current packet, the solo and start cells are processed
as though the collector was 1n the “Not In Packet State”70(
after the current packet has been aborted. Aborting the
current packet accurs by aborting the current capture butfer
at action 760 and 762 for start and solo cells respectively.
The context port 1s unlatched at action 764 and 766, and the
“nMissedEnds” tally 1s incremented at actions 768 and 770
for start and solo cells respectively. The remaining steps
concern processing the cell as though the cell was received
while the collector was 1n the “Not In Packet State”700. In
particular, a promised packet size 1s extracted from a start
cell or a solo cell at stages 772 and 750, respectively.

[0159] Turning now to FIG. 13, a set of states summarize
how Ethernet frames are collected mto a packet 1n accor-
dance with an aspect of an 1llustrative data server interface.
Starting from an “Idle” state 800 the collector responds to
the “headerReceived” notice as follows. At action 802 the
header contents are read, and used to calculate a hash value.
The hash value 1s used at 802 to find the entry in the hash
table where this context should be. If 1t does not already
exist, then a new context 1s allocated if there are any
available 1n the context buifer pool for that purpose.

[0160] If at action 802 no context existed or could be
allocated (“[no context available]”) then the “MaxNewCon-

textDenials” tally i1s incremented at action 804 and the
Ethernet frame 1s flushed at action 806. The collector then

returns to the “Idle” state 800.

[0161] Otherwise if a context existed or can be created,
then at action 810 the capture type (serial or RDMA) and
packet size 1s determined from the header. Based upon the
acquired information, at action 812 the capture buffer 1s
latched for the port and capture type. If required by the
external protocol, the read header information 1s transferred
into the capture buifer at action 814. Next, at action 816 an
RDMA transfer 1s requested of the frame payload to the
capture buffer and the “Transferring payload to Capture
Bufler” state 820 1s entered. The “transferring payload to
Capture Bufler” state 820 completes with either a successtul
transfer or an error. In either case the collector returns to the
“Idle” state 800 (albeit via differing paths of sub-states/
operations). In the case of a good transfer, at action 822 the
collected bytes are commaitted and at action 824 the context
1s unlatched. Otherwise, in the case of a bad transfer the

capture buffer 1s aborted at action 826, and the context is
unlatched at action 824.

[10162] FIG. 14 summarized states and substates/opera-
tions within the life cycle of an exemplary one of the event
engines 58. Starting with a Waiting for Event state 1000, the
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event engine 1s activated. The Waiting for Event state 1000
occurs continuously 1n a parallel execution architecture, or
by having another event engine block 1n a co-routine 1mple-
mentation. As a result of activation the event engine will
enter the Dispatching Event state 1002. The Dispatching
Event state 1002 state will be explored 1n more detail later
herein with reference to FIG. 15. Normally this state is
exited with an “ok”™ status, indicating that an event has been
dispatched and the execution of 1ts response can now begin
at Instruction state 1004. Alternately, state 1002 can exat
with a “queue empty” status and return to the “Waiting for
Event” state.

10163] Execution proceeds from the Instruction state 1004
by fetching the next instruction from internal memory, the
opcode 1s decoded at state 1006 and the implementation of
that opcode 1s mmvoked during state 1008. The execute
opcode state 1008 exits 1n one of four available methods.
The result state transitions are labeled as “ok-done”1010,

“ok-DMA requested”1012, “successtul completion”1014
and “exception”1016.

[0164] The “ok-done” transition 1010 that returns to the
Fetch Execution state 1004 indicates that the instruction has

completed, and the event engine 1s ready to execute the next

instruction. In co-routine implementations there 1s a possi-
bility that the CTE 350 could shift execution to another

unblocked event engine between any instruction.

[0165] The “ok-DMA requested”transition 1012 indicates
that the engine has requested a DMA transfer to or from
external memory from buifer control. The event engine will
be blocked in wait state 1013 until that transfer has com-
pleted. At that point the event engine transitions to the fetch
instruction state 1004. In a co-routine 1mplementation, the
CTE shifts execution to an unblocked event engine.

[0166] The “successful completion” transition 1014 indi-
cates that the event has been fully processed without an
exception being raised. This transfers to a Completing
Successtully state 1015 which 1s explained with reference to

FIG. 16.

[0167] The “exception” transition 1016 occurs when an
Instruction raises an exception during the execution of a
routine instruction. Causes of exceptions imnclude divide by
zero, failure to complete before the dispatch deadline or use
of an invalid index. A “Completing with Exception™ state

1018 1s described herein below with reference to FIG. 17.

[0168] Referring now to FIG. 15, to dispatch an event an
event engine first consumes an event from 1ts event queue at
state 1100. If the event queue 1s empty, state 1100 1s exited
and state 1102 1s entered with a “queue empty status”.
Otherwise at action 1104 a buffer ID 1s extracted from the
consumed event. At action 1106 a DMA read 1s requested of

a buffer control block indexed by the buffer ID. A wait state
1108 1s entered.

[0169] When the DMA read completes, at action 1110 a
target context ID 1s extracted from the buffer control block.

This 1s used as the key to mitiating a DMA read of the

Context itself at action 1112. The event engine waits at state
1114 for the DMA read to complete.

[0170] When that read is complete at action 1116 the fault
status of the retrieved context 1s checked. If the context has

been quarantined due to uncorrected faults control passes to

Feb. 28, 2002

action 1118 and the current buifer i1s released. The event
engine returns to state 1110 and attempts to fetch an event
from 1ts mput queue.

[0171] Otherwise at action 1120 the event engine gets the
current context state from the retrieved context and starts a
DMA read of the context state’s data at action 1122. The
event engine waits at state 1124 for the context data read to

finish.

[0172] Upon completion at action 1126 a routine handle is
extracted from the context. At action 1128 the event engine
ensures that the cache register 1s set and sets the program
counter during action 1130.

[0173] If the code routine is already found within the
engine’s code cache then during action 1130 the program
counter merely needs to be pointed at that location and the
“ok” exit can be taken by the event engine during state 1132
to start execution of the routine.

[0174] Otherwise after the program counter is initialized
during action 1130, the code routine 1s DMA read into the
code cache. A DMA read 1s mitiated during action 1134 for
the code routine’s control block. After waiting at state 1136
for the DMA read to complete, at action 1138 the event
engine extracts the address and size of the code routine.
Next, at action 1140 a DMA read of the code routine 1s
nitiated and the event engine waits for 1ts completion during
state 1142. Thereafter, the event engine enters the exit state
1132 and execution of the loaded code routine 1s enabled.

[0175] Referring to FIG. 16, upon successful completion
the event engine determines at state 1200 1f all events that 1t
must post are currently postable. If not, and none of the
target queues have their matching execution units 1n the
“Other Full” state then at state 1202 the event engine sets its
own “Other Full” status flag and at state 1204 waits until 1t
1s time to recheck the postability of the dispatch results.
Thereafter, at state 1206 the event engine clears 1ts “Other
Full” flag and returns to state 1200. If at state 1200 waiting
could create a deadlock (a target “Other Full” flag is already
set) then the event engine must raise the deadlock exception
and complete handling of the dispatch as described for the

“Completing with Exception” state described below with
reference to FI1G. 17.

[0176] Otherwise the event engine creates any required
log entries at state 1210, DMA write them to external
memory at wait state 1212. At state 1214 the event engine
posts the events to the other queues, and at state 1216 the
event engine DMA writes its context data and state back to
external memory. The event engine waits for the DM A write
to complete at state 1218. When the DMA write 1s complete
at state 1220 the event engine decrements the context’s
dispatch count, and then at state 1222 releases the buifer
assoclated with the event.

[0177] Referring to FIG. 17, when an exception has been
raised, all pending results of the current dispatch must be
discarded. This requires at state 1300 releasing the buifers
assoclated with the events that would have been posted upon
a successtul completion. When possible, at state 1302 the
event engine allocates an exception report buffer. There 1s a
pre-designated report buffer for each type of event. At state
1304 that report buffer 1s filled and placed at the head of the
event engine’s mput queue. At state 1306, the event will
report to the object itself that 1t faulted, and require 1t to
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validate that its internal data 1s corrupt. If it cannot do so, or
faults while attempting to do so, the context will be marked
as quarantined. No further events will be dispatched to it.
The exception report buller will typically have a reference to
the original buffer, which will require that it be attached.
After handling the exception report buifer, at state 1308 the
engine will release its claim on the event buffer that caused
the exception and at state 1310 a signal 1s provided that the
event was processed (albeit unsuccessfully).

[0178] If the report buffer is full, then the event engine
passes from state 1306 to state 1312 wherein it increments
a counter that tallies lost exceptions. Next, at state 1314, the
event engine releases its claim upon the exception report
buffer. Lastly the event’s context dispatch count must be
decremented, just as 1t would have been with a successiul
completion.

10179] FIG. 18 illustrates the life cycle of a buffer control
block. It starts 1n the “Free” state 1400. After buffer control
72 removes the buffer control block from its memory pool’s
free list, 1t 1s assigned to perform a specific capture type for
a specific context. This mmvolves setting the 1nitial use count
to 1 at state 1402, initializing the logical length to zero at
state 1404, and setting the event target at state 1406. The
Event Target encodes the target context, the selected target
queue, the generation and the capture type (for generation
zero events). Target context and queue selection have been
described previously herein. The generation field 1s set to
zero when the buffer 1s being allocated for capture. When
events are sent by CTDs to other CTDs the generation field
must be set to a value higher than that of the event which is
currently being processed. The four types of capture are
mternal network serial mode, internal network RDMA
mode, external network serial mode and external network
RDMA mode. A given context may have at most one active
capture m-progress for each capture type.

[0180] For RDMA captures two additional fields (Total
Committed and CommitLimit) must be initialized to zero at
states 1408 and 1410. These ficlds are found in the context
data, rather than buffer control block to avoid wasting their
space on buflers that are not supporting RDMA capture. The
buffer 1s now 1n the Allocated state 1412. From the allocated
state 1412 the buifer may be further attached, which causes
the use count to be incremented at state 1414. The buifer
returns to the Allocated state 1412.

[0181] Also from the allocated state 1412 the buffer may
be committed at state 1416 or 1418. The act of commutting,
a portion of a capture buffer indicates two things. First it
indicates that the packet collector has received a portion
being committed and the portion has been validated by a
capture specific method, most typically a CRC32. Second,
by committing a portion of the capture buffer, the packet
collector yields its permission to further modify those bytes.
Committed bytes are ready for processing by an event
engine.

[0182] For serial captures the Logical Length is simply
incremented by the number of newly committed bytes at
state 1416. For RDMA (out-of-order) captures the Commit
Limit, Total Committed and Logical Length fields must be
updated as follows: if the base of the newly commutted data
(Commit.base) matches the current CommitLimit, then
CommitLimit 1s incremented by the newly committed size
(Commit.size) at state 1418, Total Committed is incremented
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by the newly committed size (Commit.size) at state 1420, if
the LogicalLength (which is the portion fully committed) is
equal to the newly committed base (Commit.base) then the
Logical Length 1s incremented by the newly committed size
(Commit.size) at state 1422, and lastly if all bytes below the
CommitLimit have been committed (TotalCommitted is
equal to CommitLimit) then the Logicall.ength can be set to
the TotalCommitted at state 1424. The rationale for out-of-
order commits was discussed more fully with reference to

FIG. 11.

[0183] After byte counter maintenance steps are com-
pleted the number of users 1s incremented, at state 1426 and
the event 1s posted to the target queue at state 1428. If the
target queue 1s full, then at state 1430 the execution unit’s
status 1s marked as “Other Full” before the execution unit
suspends 1tself at state 1432. The “Other Full” status will
prevent other execution units from suspending while trying
to post output requests to this execution unit’s queue. This
prevents the well-known “deadly embrace” deadlock, where
two execution units are each waiting for the other to empty
its input queue, but neither can because they are waiting for
the other to act first. The execution unit will be activated
from this “waiting to post” state 1432 after any execution

unit has completed processing an event. The flag 1s cleared
at state 1434 and the post re-attempted at state 1428.

|0184] As cach claim on the buffer is released, at state
1440 the number of users i1s decremented. Alternatively
when the last claim 1s released at state 1442 the buifer 1s
restored to the tail of i1ts home memory pool and returns to

the “free” state 1400.

[0185] Turning now to FIG. 19, a set of steps are depicted
that summarize an exemplary sequence of events/operations
for transmitting requested data from a data server to an
external client node. It 1s noted that in general, the disclosed
architecture of the CTE 50 enables applications, through the
use of status/control/nofification messages, to control the
transfer of data from a data storage node to a requesting
client for Internet, NAS, SAN and similar protocols without
incurring overhead associated with placing transferred data
payloads 1n the memory space of application software.

[0186] In an embodiment of the present invention appli-
cations are developed as a set of object classes. The resulting
objects are mvoked either as CTDs 59 on the CTE 50 1tselt
or as XCTDs 86 on a companion CTEX 88 running on the
supplemental processor node 22a. The CTE S50 captures
incoming packets and dispatches corresponding events to a
context object to which a particular client request 1is
assigned. By way of example, the context objects access
shared tables, generate output requests, generate messages to
other objects and modily their own data. The CTEX 88
performs the same function for extended content transfer
daemons (XCTDs) on the supplemental processor node 22a.

[0187] With reference now to FIG. 19, an exemplary
connection and corresponding client request includes the
following operations/steps. Initially at step 1500 an incom-
ing request from the external network 1s 1dentified as being
a new connection. In response, at step 1502 a new context
(context object) 1s assigned and an entry is created in the
external network interface’s packet identifying hash tables
assoclating the new connection with the new context.

|0188] Thereafter, at step 1504 the context object com-
pletes itial validating negotiations and establishment of the
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connection with a requesting client. An example of such
negotiations 1s completing the TCP three-part handshake.
Due to the wide variety and/or potential complexity of this
step, finishing establishment of the connection, particularly
validation of the user and any supplied credentials (such as
user password) will typically be passed by an event engine

within the CTE 50 to an XCTD running on the CTEX 88.

[0189] After the CTEX 88 validates the session, at step
1506 the CTEX 88 recassigns the external network packet
identifying the connection/context hash table entry to a new
context object that handles the in-session protocol for
responding to the client request(s). The original context
object 1s returned to the available pool of context objects for
processing/validating unknown connections.

[0190] Next, at step 1508 the new context object executing
on the CTE 50 and associated with an in-session protocol
1ssues/passes requests over the internal network to obtain
content requested via the validated client connection. This 1s
performed, by way of example, on a read-ahead basis that 1s
primarily regulated by available buffering rather than as a
direct response to a sequence ol incoming requests. The
requested data 1s transferred from one or more of the storage
nodes 14 via the internal network 16 directly to a content
transfer access node 10, thereby bypassing the supplemental
processor nodes 22. The content transfer engines generally
keep supervisory applications executing upon the supple-
mental processors aware of the status of data transfers and
connections. However, the status knowledge 1s acquired
through status noftifications passed to the supplemental pro-
cessor rather than direct observation of the transferred data
content by the supervisory applications executing on the
supplemental processor.

10191] During step 1510 the in-session context object
issues protocol-specific output messages (requests/re-
sponses) to the connected external client as material is
available and subject to any pacing specifications. The
potential applicable data transfer protocols include both
client-based pacing (in response to acks) and time-driven
pacing (aiming at a specific rate until nacked). Generally
there will be fewer internal network fetches (transferring
data directly from a data storage node to a content transfer
engine residing on the content transfer access node) than
external network transmits. For example, 1t would be com-
mon to fetch a 48 KByte HTML file 1n a single read over the
internal network, but 1t would take at least 32 separate TCP
secgments to deliver it. For extremely large deliveries, such
as streaming media, pacing drives transmission from the
buifer space assigned 1n the CTE 50 for the connection while

reads are 1ssued whenever the buffer drops below a config-
ured threshold.

10192] It is noted that execution of steps 1508 and 1510
can overlap. As 1llustrated 1n the examples discussed herein
above, this 1s especially true 1n cases where relatively large
files are transferred. In such 1nstances, the transfer of data
over an external interface to a requesting client commences
prior to completing transfer of the file from a storage node

to a buffer in the CTE 50.

10193] It is further noted that during both steps 1508 and
1510 the new in-session context object on the CTE 350
reports aggregate progress and exception conditions (if
present) to a corresponding XCTD executing on the CTEX
88 associated with an application executing upon the supple-
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mental processor node 22a. The application, executing upon
the supplemental processor 22a and potentially supervising
client data requests and corresponding responses, does not
directly access the transferred data. Instead, the application
executing upon the supplemental processor 22a observes,
via notifications from the CTE 350, the progress of data
transters. Based upon the notifications, the application 1ssues
control instructions via the XCTD to the CTE 50 performing
the actual data transfers.

10194] After completing a response to a file request or
alternatively when a session 1s completed, during step 1512
a hash entry for the associated CTD in the CTE 350 1s
removed from the hash table, the CTD notifies a correspond-
ing XCTD of the completion, and the CTD returns to the
available pool of CTDs for its object type.

10195] Illustrative embodiments of the present invention
and certain variations thereof have been provided in the
Figures and accompanying written description. The present
invention 1s not intended to be limited to these embodiments.
Rather the present mvention 1s mtended to cover the dis-
closed embodiments as well as others falling within the
scope and spirit of the invention to the fullest extent per-
mitted 1n view of this disclosure and the inventions defined
by the claims appended herein below.

What 1s claimed 1s:

1. A network server system for efficiently processing
requests for information assets stored upon a set of storage
drives, wherein the requests are received via a communica-
tively coupled network link, the server system comprising:

I

an 1nternal network communicatively coupling nodes
within the network data server system;

a supplemental processor node communicatively coupled
to the mternal network and comprising a general pur-
pose processor and operating system, and wherein the
supplemental processor supports executing application
programes;

a data storage node communicatively coupled to the
internal network, the data storage node comprising
storage media and conversion circultry for packaging
retrieved data from the storage media to a format for
transmission over the internal network; and

an external network access node supporting network
connections between the network server system and
client nodes via an external network, the external
network interface comprising:

an external network interface comprising an external
network 1nterface engine for executing data transfers
between the external network access node and the
external network,

an 1nternal network interface comprising an internal
network 1nterface engine for executing data transfers
between the external network access node and the
internal network, and

one or more event engines for executing information
asset transfers between the data storage device and
the external network 1n accordance with contexts,
maintained by the external network access node,
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describing a present state of executing mmformation
asset transfers performed by the one or more event
engines.

2. Amethod for processing requests for information assets
stored upon a set of data storage drives by a network server
system, wherein the requests are received via a communi-
catively coupled external network link, the method com-
prising the steps of:

receiving, by an external network access node via the
external network link, a request for an information
asset;

creating, by the external network access node, a context
for the request wherein the context includes a buifer
identification and a processing engine on the external
network access node assigned to execute the request;

submitting, by the external network access node, a request
for data from a storage node connected to the external
network access node by an internal network; and

receiving, by the external network access node from the
storage node, data corresponding to the request for data
from the storage node, and storing the received data
within memory on the external network access node
corresponding to the buifer identification, wherein data
transferred from the storage node to the receiving
external network node bypasses application memory
space on a general processor node; and
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transmitting, by the external network access node, the
data stored within memory corresponding to the buifer
identification, over the external network link.

3. A network server system for efficiently processing
requests for information assets stored upon a set of storage
drives, wherein the requests are received via a communica-
tively coupled network link, the server system comprising:

a supplemental processor node;
a network interface node comprising:

a network interface communicatively coupled to the
network link and configured to receive requests from
clients via the network link;

delegation logic facilitating: associating a request type
with at least a portion of a request, 1dentifying a
handler from a set of processing elements for execut-
ing at least the portion of the request based upon the
request type, and creating a data structure linking at
least the portion of the new request to the identified
handler processor; and

a data path from the set of storage drives to the network
interface, the data path facilitating data transfers
between the set of storage drives and the external data
access node containing the set of processing elements
that bypass the supplemental processor node.
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