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(57) ABSTRACT

A semantic video object extraction system using mathemati-
cal morphology and perspective motion modeling. A user
indicates a rough outline around an 1mage feature of interest
for a first frame 1n a video sequence. Without further user
assistance, the rough outline 1s processed by a morphologi-
cal segmentation tool to snap the rough outline 1nto a precise
boundary surrounding the 1mage feature. Motion modeling
1s performed on the 1image feature to track its movement into
a subsequent video frame. The motion model 1s applied to
the precise boundary to warp the precise outline 1nto a new
rough outline for the 1image feature 1n the subsequent video
frame. This new rough outline 1s then snapped to locate a
new precise boundary. Automatic processing 1s repeated for
subsequent video frames.
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SEMANTIC VIDEO OBJECT SEGMENTATION
AND TRACKING

FIELD OF THE INVENTION

[0001] The invention relates to semantic video object
extraction and tracking.

BACKGROUND OF THE INVENTION

10002] A video sequence is composed of a series of video
frames, where each frame records objects at discrete
moments 1n time. In a digital video sequence, each frame 1s
represented by an array of pixels. When a person views a
video frame, 1t 1s easy to recognize objects in the video
frame, because the person can 1dentify a portion of the video
frame as being meaningful to the user. This 1s called
attaching semantic meaning to that portion of the video
frame. For example, a ball, an aircraft, a building, a cell, a
human body, etc., all represent some meaningful entities 1n
the world. Semantic meaning 1s defined with respect to the
user’s context. Although vision seems simple to people, a
computer does not know that a certain collection of pixels
within a frame depicts a person. To the computer, it 1s only
a collection of pixels. However, a user can identify a part of
a video frame based upon some semantic criteria (such as by
applying an is a person criteria), and thus assign semantic
meaning to that part of the frame; such identified data is
typically referred to as a semantic video object.

[0003] An advantage to breaking video stream frames into
one or more semantic objects (segmenting, or content based
encoding) i1s that in addition to compression efficiency
inherent to coding only active objects, received data may
also be more accurately reconstructed because knowledge of
the object characteristics allows better prediction of its
appearance 1n any given frame. Such object tracking and
extraction can be very useful in many fields. For example, in
broadcasting and telecommunication, video compression 1s
important due to a large bandwidth requirement for trans-
mitting video data. For example, 1n a newscast monologue
with a speaker 1n front of a fairly static background, band-
width requirements may be reduced if one identifies (seg-
ments) a speaker within a video frame, removes (extracts)
the speaker off the background, and then skips transmitting
the background unless 1t changes.

[0004] Using semantic video objects to improve coding
efficiency and reduce storage and transmission bandwidth

has been investigated 1n the up-coming international video
coding standard MPEG4. (See ISO/IEC JTC1/SC29/WG11.

MPEG4 Video Verification Model Version 8.0, July. 1997;
Lee, et al., Alayered video object coding system using sprite
and affine motion model, IEEE Tran. on Circuits and System
for Video Technology, Vol. 7, No. 1, January 1997.) In the
computer domain, web technology has new opportunities
involving searching and interacting with meaningful video
objects 1n a still or dynamic scene. To do so, extraction of
semantic video objects 1s very important. In the pattern
recognition domain, accurate and robust semantic visual
information extraction aids medical 1maging, industrial

robotics, remote sensing, and military applications. (See
Marr, Vision, W. H. Freeman, New York, 1982 (hereafter

Marr).)

[0005] But, although useful, general semantic visual infor-
mation extraction is difficult. Although human eyes see data
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that 1s easily interpreted by our brains as semantic video
objects, such identification 1s a fundamental problem for
image analysis. This problem 1s termed a segmentation
problem, where the goal 1s to aid a computer 1n distinguish-
ing between different objects within a video frame. Objects
are separated from each other using some homogeneous
criterta. Homogeneity refers to grouping data according to
some similar characteristic. Different definitions for homo-
ogeneity can lead to different segmentation results for the
same mput data. For example, homogeneous segmentation
may be based on a combination of motion and texture
analysis. The criteria chosen for semantic video object
extraction will determine the effectiveness of the segmen-
tation process.

[0006] During the past two decades, researchers have
investigated unsupervised segmentation. Some researches
proposed using homogeneous grayscale/or homogenous
color as a criterion for 1dentifying regions. Others suggest
using homogenous motion mformation to identify moving
objects. (See Haralick and Shapiro, Image segmentation
techniques, CVGIP, Vol. 29, pp. 100-132, 1985; C. Gu,
Multi-valued morphology and segmentation-based coding,
Ph.D. dissertation, LT'S/EPFL, (hereafter Gu Ph.D.), http://
ltswww.epfl.ch/Staff/gu.html, 1995.)

[0007] This research in grayscale-oriented analysis can be
classified 1nto single-level methods and multi-level
approaches. Single-level methods generally use edge-based
detection methods, k-nearest neighbor, or estimation algo-
rithms. (See Canny, A computational approach to edge
detection, IEEE Trans. Pattern Analysis and Machine Intel-
ligence, Vol. 8§, pp. 679-698,1986; Cover and Hart, Nearest
neighbor pattern classification, IEEE Trans. Information
Theory, Vol. 13, pp. 21-27, 1967; Chen and Pavlidis, Image

segmentation as an estimation problem, Computer Graphics
and Image Processing, Vol. 13, pp. 153-172, 1980).

[0008] Unfortunately, although these techniques work
well when the input data 1s relatively simple, clean, and fits
the model well, they lack generality and robustness. To
overcome these limitations, researchers focused on multi-
level methods such as split and merge, pyramid linking, and
morphological methods. (See Burt, et al., Segmentation and
estimation of image region properties through cooperative

hierarchical computation, IEEE Trans. On System, Man and
Cybernetics, Vol. 11, pp. 802-809, 1981).

[0009] These technologies provide better performance
than the prior single-level methods, but results are 1nad-
equate because these methods do not properly handle video
objects that contain completely different grayscales/colors.
An additional drawback to these approaches 1s that research
in the motion oriented segmentation domain assumes that a
semantic object has homogeneous motion.

[0010] Well known attempts have been made to deal with
these problems. These include Hough transformation, multi-
resolution region-growing, and relaxation clustering. But,
cach of these methods 1s based on optical flow estimation.
This estimation technique i1s known to frequently produce
inaccurately determined motion boundaries. In addition,
these methods are not suitable to semantic video object
extraction because they only employ homogeneous motion
information while a semantic video object can have complex
motions inside the object (e.g. rigid-body motion).

[0011] In an attempt to overcome these limitations, sub-
sequent rescarch focused on object tracking. This 1s a class
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of methods related to semantic video object extraction, and
which 1s premised on estimating an object’s current dynamic
state based on a previous one, where the trajectory of
dynamic states are temporally linked. Different features of
an 1mage have been used for tracking frame to frame
changes, e.g., tracking points, intensity edges, and textures.
But these features do not include semantic information about
the object being tracked; simply tracking control points or
features 1gnores important information about the nature of
the object that can be used to facilitate encoding and
decoding compression data. Notwithstanding significant
research 1n video compression, little of this research con-
siders semantic video object tracking.

[0012] Recently, some effort has been invested in semantic
video object extraction problem with tracking. (See Gu
Ph.D.; C. Gu, T. Ebrahimi and M. Kunt, Morphological
moving object segmentation and tracking for content-based
video coding, International Symposium on Multimedia
Communication and Video Coding, New York, 1995, Ple-
num Press.) This research primarily attempts to segment a
dynamic 1mage sequence into regions with homogeneous
motions that correspond to real moving objects. A joint
spatio-temporal method for representing spatial and tempo-
ral relationships between objects 1n a video sequence was
developed using a morphological motion tracking approach.
However, this method relies on the estimated optical flow,
which, as noted above, generally 1s not sufficiently accurate.
In addition, since different parts of a semantic video object
can have both moving and non-moving elements, results can
be further imprecise.

[0013] Thus, methods for extracting semantic visual infor-
mation based on homogeneous color or motion criteria are
unsatisfactory, because each homogeneous criterion only
deals with a limited set of mnput configurations, and cannot
handle a general semantic video object having multiple
colors and multiple motions. Processing such a restricted set
of 1nput configurations results in partial solutions for seman-
fic visual information extraction.

[0014] One approach to overcome limited input configu-
rations has been to detect shapes through user selected
points using an energy formulation. However, a problem
with this approach 1s that positioning the points 1s an
imprecise process. This results in imprecise 1dentification of
an image feature (an object within the video frame) of
interest.

SUMMARY OF THE INVENTION

[0015] The invention allows automatic tracking of an
object through a video sequence. Initially a user 1s allowed
to roughly i1dentify an outline of the object 1n a first key
frame. This rough outline 1s then automatically refined to
locate the object’s actual outline. Motion estimation tech-
niques, such as global and local motion estimation, are used
to track the movement of the object through the video
sequence. The motion estimation 1s also applied to the
refined boundary to generate a new rough outline in the next
video frame, which 1s then refined for the next video frame.
This automatic outline identification and refinement 1is
repeated for subsequent frames.

[0016] Preferably, the user is presented with a graphical
user mterface showing a frame of video data, and the user
identifies, with a mouse, pen, tablet, etc., the rough outline
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of an object by selecting points around the perimeter of the
object. Curve-fitting algorithms can be applied to {ill 1n any
gaps 1n the user-selected points. After this 1nitial segmenta-
tion of the object, the unsupervised tracking 1s performed.
During unsupervised tracking, the motion of the object is
identified from frame to frame. The system automatically
locates similar semantic video objects 1n the remaining
frames of the video sequence, and the identified object
boundary 1s adjusted based on the motion transforms.

[0017] Mathematical morphology and global perspective
motion estimation/-compensation (or an equivalent object
tracking system) is used to accomplish these unsupervised
steps. Using a set-theoretical methodology for image analy-
sis (1.e. providing a mathematical framework to define image
abstraction), mathematical morphology can estimate many
features of the geometrical structure in the video data, and
aid 1mage segmentation. Instead of simply segmenting an
image 1nto square pixel regions unrelated to frame content
(i.c. not semantically based), objects are identified according
to a semantic basis and their movement tracked throughout
video frames. This object-based mformation 1s encoded 1nto
the video data stream, and on the receiving end, the object
data 1s used to re-generate the original data, rather than just
blindly reconstruct it from compressed pixel regions. Global
motion estimation 1s used to provide a very complete motion
description for scene change from frame to frame, and is
employed to track object motion during unsupervised pro-
cessing. However, other motion tracking methods, e.g.
block-based, mesh-based, parametric estimation motion
estimation, and the like, may also be used.

|0018] The invention also allows for irregularly shaped
objects, while remaining compatible with current compres-
sion algorithms. Most video compression algorithms expect
to rece1ve a regular array of pixels. This does not correspond
well with objects 1n the real world, as real-world objects are
usually irregularly shaped. To allow processing of arbitrarily
shaped objects by conventional compression schemes, a user
identifies a semantically interesting portion of the video
stream (i.€. the object), and this irregularly shaped object is
converted 1nto a regular array of pixels before being sent to
a compression algorithm.

[0019] Thus, a computer can be programmed with soft-
ware programming instructions for implementing a method
of tracking rigid and non-rigid motion of an object across
multiple video frames. The object has a perimeter, and
initially a user identifies a first boundary approximating this
perimeter 1n a first video frame. A global motion transfor-
mation 1s computed which encodes the movement of the
object between the first video frame and a second video
frame. The global motion transformation i1s applied to the
first boundary to 1dentily a second boundary approximating
the perimeter of the object 1n the second video frame. By
successive application of motion transformations, bound-
aries for the object can be automatically identified in suc-
cessive frames.

[0020] Alternatively, after the user identifies an initial
approximate boundary near the border/perimeter of the
object, an inner boundary 1nside the approximate boundary
1s defined, and an outer boundary outside the approximate
boundary 1s defined. The nner border 1s expanded and the
outer boundary contracted so as to identily an outline
corresponding to the actual border of the object roughly
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identified 1n the first frame. Preferably expansion and con-
fraction of the boundaries utilizes a morphological water-
shed computation to classity the object and its actual border.

[0021] A motion transformation function representing the
fransformation between the object in the first frame and the
object of the second frame, can be applied to the outline to
warp 1t 1nto a new approximate boundary for the object in
the second frame. In subsequent video frames, 1nner and
outer boundaries are defined for the automatically generated
new approximate boundary, and then snapped to the object.
Note that implementations can provide for setting an error
threshold on boundary approximations (e.g. by a pixel-error
analysis), allowing opportunity to re-identify the object’s
boundary 1n subsequent frames.

10022] The foregoing and other features and advantages
will be more readily apparent from the following detailed
description, which proceeds with reference to the accompa-
nying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

10023] The file of this patent contains at least one drawing
executed 1n color. Copies of this patent with color draw-
ing(s) will be provided by the Patent and Trademark Office
upon request and payment of the necessary fee.

10024] FIG. 1 is a flowchart of an implementation of a
semantic object extraction system.

0025] FIG. 2 is a continuation flow-chart of FIG. 1.

0026] FIG. 3 shows a two-stage boundary outline
approximation procedure.

10027] FIG. 4 shows the definition and adjustment of In
and Out boundaries.

10028] FIG. 5 shows an example of pixel-wise classifica-
tion for object boundary identification.

10029] FIG. 6 shows an example of morphological water-
shed pixel-classification for object boundary identification.

10030] KFIG. 7 shows a hierarchical queue structure used
by the F1G. 6 watershed algorithm.

10031] FIG. 8 is a flowchart showing automatic tracking
of a semantic object.

10032] FIG. 9 shows an example of separable bilinear
interpolation used by the FIG. 8 tracking.

10033] FIG. 10 shows automatic warping of the FIG. 6
identified object boundary to generate a new approximate
boundary 1n a subsequent video frame.

10034] FIGS. 11-13 show sample output from the semantic
video object extraction system for different types of video
sequences.

DETAILED DESCRIPTION

[0035] It is expected that the invention will be imple-
mented as computer program instructions for controlling a
computer system; these instructions can be encoded into
firmware chips such as ROMS or EPROMS. Such struc-
fions can originate as code written 1n a high-level language
such as C or C++, which 1s then compiled or interpreted into
the controlling mstructions.
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[0036] Computer systems include as their basic elements
a computer, an mput device, and output device. The com-
puter generally includes a central processing unit (CPU),
and a memory system communicating through a bus struc-
ture. The CPU includes an arithmetic logic unit (ALU) for
performing computations, registers for temporary storage of
data and instructions, and a control unit for controlling the
operation of computer system 1n response to instructions
from a computer program such as an application or an
operating system.

[0037] The memory system generally includes high-speed
main memory in the form of random access memory (RAM)
and read only memory (ROM) semiconductor devices, and
secondary storage 1n the form of tloppy disks, hard disks,
tape, CD-ROM, etc. and other devices that use optical or
magnetic recording material. Main memory stores pro-
grams, such as a computer’s operating system and currently
running application programs, and also includes video dis-
play memory. The mput and output devices are typically
peripheral devices connected by the bus structure to the
computer. An input device may be a keyboard, modem,
pointing device, pen, or other device for providing input data
to the computer. An output device may be a display device,
printer, sound device or other device for providing output
data from the computer. It should be understood that these
are 1llustrative elements of a basic computer system, and are
not intended to a specific architecture for a computer system.

[0038] In a preferred embodiment, the invention is imple-
mented as a software program code that 1s executed by the
computer. However, as noted above, the invention can be
encoded 1nto hardware devices such as video processing

boards and the like.

Overview

[0039] The implementation of the invention described
below 1s basically an object tracking and extraction system
that does not require any specific prior knowledge of the
color, shape or motion of the data the system processes.
Based on 1nitial user input, the system automatically gen-
erates accurate boundaries for an 1denfified semantic object
as the object moves through a video sequence. Preferably,
the semantic object 1s first defined by a user’s tracing an
initial outline for the object within an initial video frame.
After the object 1s defined, the object 1s tracked 1n subse-
quent frames. Preferably, a graphical user interface 1s pre-
sented to the user which allows the user to identify as well
as refine 1ndication of the object’s outline.

[0040] Preferred segmentation and tracking systems using
one or more homogeneous (i.e. similar) criteria are used to
indicate how to partition mput data. Such criteria overcomes
limitations 1n prior art methods of color or motion 1dentifi-
cation that do not provide for identification of semantic
video objects. Here, 1dentified object semantics 1s the basis
for evaluating homogeneous criteria. That 1s, color, motion,
or other 1denftification can be used to identify a semantic
object boundary, but the criteria 1s evaluated with respect to
the user-identified semantic object. Therefore object color,
shape or motion 1s not restricted.

10041] FIG. 1 shows the two basic steps of the present
system of semantic video object extraction. In the first step
100, the system needs a good semantic boundary for the
initial frame, which will be used as a starting 2D-template
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for successive video frames. During this step a user indicates
110 the rough boundary of a semantic video object 1n the
first frame with an input device such as a mouse, touch
sensifive surface, pen, drawing tablet, or the like. Using this
initial boundary, the system defines one boundary lying
inside 1n the object, called the In boundary 102 and another
boundary lying outside the object, called Out boundary 104.
These two boundaries roughly indicate the representative
pixels mside and outside the user-identified semantic video
object. These two boundaries are then snapped 106 into a
precise boundary that identifies an extracted semantic video
object boundary. Preferably the user is given the opportunity
to accept or reject 112, 114 the user selected and computer
generated outlines.

[0042] The goal of the user assistance is to provide an
approximation of the object boundary by just using the 1input
device, without the user having to precisely define or oth-
erwise 1ndicate control points around the image feature.
Requiring precise identification of control points i1s time
consuming, as well as limiting the resulting segmentation by
the accuracy of the imitial pixel definitions. A preferred
alternative to such a prior art method is to allow the user to
identify and portray the initial object boundary easily and
not precisely, and then have this initial approximation modi-
fied 1nto a precise boundary.

10043] FIG. 2 shows the second step 108, in which the

system finds similar templates in successive frames. Shown
in F1G. 2 are F,, representing each original frame, V,,
representing a corresponding motion information between
the current semantic object boundary and the next one, and
S., representing the final extracted semantic boundary. Note
that after completing boundary extraction S., this S; becomes
the starting frame F for the next frame 1+1. That 1s, the
results of a previous step becomes the starting input for the
next step. FIG. 2 shows the initial frame F,, and the tracking
of an object’s boundaries (from FIG. 1) through two suc-
cessive frames F,, and F.,.

10044] Step 108 depends primarily on a motion estimation
algorithm 116 that describes the evolution between the
previous semantic video object boundary and the current
one. Preferably a global perspective algorithm 1s used,
although other algorithms may be used instead. A tracking
procedure 118 receives as its input the boundary data S, and
motion estimation data V,. Once the motion information V,
1s known, the approximate semantic video object boundary
in the current frame can be obtained by taking the previous
boundary 1dentified by the user in the first step 100, and
warping 1t towards the current frame. That 1s, tracking
function 118 1s able to compute a new approximate bound-
ary for the semantic object in current frame F, by adjusting
previous boundary data S, according to motion data V,. As
was done with the user-defined initial boundary, the new
approximate boundary 1s snapped to a precise boundary S,,
and the process repeats with boundary S, becoming a new
input for processing a subsequent frame F.,.

10045] Both steps 100 and step 108 require the snapping of
an approximate boundary to a precise one. As described
below, a morphological segmentation can be used to refine
the initial user-defined boundary (step 110) and the motion
compensated boundary (S,) to get the final precise boundary
of the semantic video object.

[0046] Note that an error value may be included in the
processing of the subsequent frames to allow setting a
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threshold after which a frame can be declared to be another
initial frame requiring user assistance. A good prediction
mechanism should result in small error values, resulting in
eficient coding of a video sequence. However, 1n a lossy
system, errors may accumulate. Although allowing for fur-
ther user-based refinement 1s not necessary, such assistance
can 1ncrease the compression quality for complex video
sequences.

Boundary Approximation

10047] FIG. 3 shows the results of a two-part approxima-
tion procedure, where the first part 1s the user’s initial
approximation of an 1mage feature’s outline 148, and the
second part 1s refining that outline 150 to allow segmenta-
tion of the object from the frame.

10048] For the first part 148, there are two general methods
for 1dentitying the initial boundary. The first 1s a pixel-based
method 1n which a user inputs the position of interior
(opaque) pixels and exterior (transparent) pixels. This
method has the serious shortcoming that collecting the
points 1s time consuming and prone to 1naccuracies. In
addition, unless many points are collected, the points do not
adequately disclose the true shape of the image feature.

[0049] The second is a contour-based method in which a
user only indicates control points along the outline of an
object boundary, and splines or polygons are used to
approximate a boundary based upon the control points. The
addition of Splines 1s superior over the first method because
it allows one to fill in the gaps between the indicated points.
The drawback, however, 1s that a spline or polygon will
generally produce a best-fit result for the input points given.
With few points, broad curves or shapes will result. Thus, to
oget an accurate shape, many points need to be accurately
placed about the 1mage feature’s true boundary. But, 1f 1t 1s
assumed n nodes guarantees a desired maximal boundary
approximation error of e pixels, at a minimum the user must
then enter n keystrokes to define a border. For complex
shapes, n may be a very large number. In order to avoid such
reduce user effort, n can be decreased, but this approach
yields larger e vales.

[0050] The limitations inherent to either prior art method
may be overcome by combining the precision of the first
pixel-based approach with the etficiency of the second
spline/polygonal one, mto a pixel-polygon approach for
fixing an initial border around an 1mage feature of interest.
The complexity of the shape, e.g. straight or complicated
boundary, can control whether a polygonal or pixel-wise
approach 1s used for a particular portion of the boundary
surrounding the 1image feature of interest. After the initial

border is fixed, it is adjusted (FIG. 1 steps 102-106) to fit the

semantic object’s actual border.

[0051] As shown, a user has marked, with white points,
portions of the left image 148 to 1dentily an 1image feature of
interest. Although 1t 1s preferable that the user define an
entire outline around the 1image feature, doing so 1s unnec-
essary. As indicated above, gaps in the outline will be filled
in with the hybrid pixel-polygon method. The right image
150 shows the 1nitial object boundary after gaps 1n the 1nitial
outline of the left image 148 have been filled in. By allowing
the user to draw the outline, the user 1s able to define many
control points without the tedium of specifying each one
individually. In the prior art, allowing such gaps in the
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border required a tradeofl between precision and conve-
nience. The present invention avoids such a tradeoif by
defining In and Out boundaries and modifying them to
precisely locate the actual boundary of the (roughly) indi-
cated 1image feature.

Approximation Adjustment

10052] FIG. 4 shows in detail the definition of In and Out
boundaries. The 1nitial boundary B._.. 200 1s the one 1nitially
provided by the user assistance (FIG. 3) as an approxima-
tion of the image feature’s true object boundary B 202. Since
the user 1s attempting to trace the real boundary as closely
as possible, 1t 1s known that the real video object boundary
1s not too far away from B, . 200. Therefore, an interior In
boundary B 204 and an exterior Out boundary B__, 206 are
selected to limit the searching area for the real object
boundary. B; lies strictly inside the image feature while B_
lies outside the 1mage feature.

[0053] Preferably, morphological operators are used to
obtain B; and B__,. Morphology 1s a method of performing
shape-based processing that allows extraction of portions of
an 1mage. Morphology 1s applicable to 2D and 3D data, and
works well with segmentation methods, since segmentation
was developed for processing multidimensional images. The
following is a brief overview of the erosion and dilation (B
and Boyr) operations. More detailed mathematical defini-
fions can be found 1n many textbooks.

[0054] For dilation of a set X by symmetrical structuring
S, the dilation 1s the locus of the center of S when S touches
X. This can be written as d (X)={x+s, x&X, s&&S}, which
1s also known as Minkowski addition. Similarly, for erosion
of a set X by a symmetrical structuring S, the erosion 1s the
locus of center of the structuring element S when S 1is
included in X. This can be written as € (X)={y, Vs&S,
y+s&X!}, which is Minkowski subtraction. Here, B; =
€.(B,.;), and B__=0.(B, ), € and 0 are respectively mor-
phological erosion and dilation operators, where
B. cB. .cB

In___ —init — “~out*

[0055] The term erosion refers to an operation in which a
structure element of particular shape 1s moved over the input
image, and wherever the structure fits completely within the
boundaries of a shape 1n the input 1image, a pixel 1s placed
then an output image. The net effect 1s that eroded shapes are
smaller 1n size 1 the output image, and any input shapes
smaller than the size of the probe disappear altogether (being
smaller means they cannot contain the structure element).
The term dilation refers to an operation 1n which a structure
clement 1s moved over the imput 1mage, and when the
structure element touches the boundary of a shape m the
input 1mage, then a pixel 1s placed 1n the output 1image.

[0056] Preferably a square structure element s will be used
for the erosion and dilation operations, although it 1s under-
stood by those skilled 1n the art that different shapes may be
used to achieve different results. With use of a proper user
interface, a user can interactively choose the size and shape
of the structure element, as well as perform preliminary
trials of the effectiveness of the element so chosen, so long
as the selection satisfies B = B< B_ ..

[0057] Pixels lying along B, 204 and B__, 206 respec-
fively represent pixels belonging inside and outside the
semantic video object defined by the user. After defining the
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In and Out boundaries, the next step is to classify (see FIG.1,
step 106) each pixel between B_ , and B, to see determine
whether it belongs to the semantic video object or not (i.e.
determine whether it 1s an interior pixel). Classification
means employing some test to determine whether a pixel
belongs to a particular group of pixels; 1n this case, classi-
fication refers to determining whether a particular pixel
belongs to Out pixels (pixels outside the semantic video
object) or to In pixels (pixels inside the object). Defining In
and Out boundaries has reduced the classification search
space since the boundaries give representative pixels inside
and outside of the semantic object. It 1s understood by those
skilled 1n the art that different classification methods may be
used to classily pixels.

[0058] Classifying a pixel requires finding cluster centers
and then grouping (classifying) pixels as belonging to a
particular cluster center. Two types of cluster centers are
defined, the first being an In cluster-center 216 for pixels
inside the semantic video object, and the second being a Out
cluster-center 218 for those pixels outside of the object. The
more cluster centers that are defined, the more accurately a
pixel may be classified. Since we already know that B, and
B_ . identily mnside and outside pixels, a preferred method 1s
to define cluster centers to be all of the pixels along the B,
and B__, boundaries.

out

A

[0059] Cluster centers are denoted as {1, I, ..., 1 __;}
and {0y, O, ...,0__;}, where I and Og are 5-dimensional
vectors (1, g, b, X, y) representing the color and position
values for each center. As denoted, there are m In cluster
vectors and n Out cluster vectors. To classify the pixels, the
three-color components (r, g, b) and the pixel location (X, y)
are used as the classification basis. To group the pixels, each
pixel inside the subset of pixels defined by B, and B__, (a
reduced search area) is assigned to the closest cluster center.
Once the cluster centers have been defined, assigning pixels
to a cluster center 1s by one of two methods. The first method
is through pixel-wise classification (see FIG. 5), and the
second method by morphological watershed classification
(see FIG. 6), which produces results superior over pixel-
wise analysis.

Pixel-wise Classification

[0060] FIG. 5 shows an example of pixel-wise classifica-
tion. For each pixel p 250 between the In 252 and Out 254
boundaries, which surround the object’s real boundary 256,
the pixel’s absolute distance to each cluster center 1s com-
puted, such that

dj=_wc01ar$(|r_rj |+|g_gj|+|b_bj|)+wcamd(|x_xj|+|y_yj|):
O<i<mn,

di=Wegtor *([F=17|+| g~ &;|+0=b5)+Weooral =] +|y-¥3)),

O<j<n,
[0061] where w__, . and w___ , are the weights for the
color and coordinate information. The summation of w__;_,
and w___ . 1s 1. As noted above, preferably each pixel of the
In and Out boundary 1s used to define a cluster center is
defined to be pixels along the In and Out boundaries; shown
are three representative pixels from each boundary 252, 254.

[10062] A pixel 250 is assigned to a cluster-center 252, 254
according to 1ts minimal distance from a cluster-center. If the
pixel 1s classified to one of the In cluster-centers 252, then
the pixel 1s considered inside the user-defined semantic
object. If a pixel 1s assigned to one of the Out clusters 254,
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then the pixel 1s considered to be outside the semantic
object. A precise semantic object boundary 1s located at the
meeting of the In and Out pixel regions. That 1s, as pixels are
classified, In and Out regions are grown around the cluster
centers. When there are no more pixels to classily, the
boundary where the In and Out regions meet defines the
semantic object’s precise boundary. The final In area con-

stitutes the segmented semantic video object (1.e. the iden-
tified real border 202 of FIG. 4).

[0063] A drawback to such pixel-wise classification is that
it requires an object to have a color fairly different from the
background. Although this is often the case (and is usually
pre-arranged to be so, €.g. blue-screening), when the colors
are close, edges will be imprecisely snapped to the middle
of the interior and exterior outlines, depending on where the
user draws the outline and the expanded number of pixels.
(The term snapped represents the cumulative effect of clas-
siftying pixels, in which the In and Out Borders are eflec-
tively moved closer to the actual object boundary.) An
additional drawback 1s that during classification, no use 1s
made of a pixel’s spatial relation to neighboring pixels. That
1s, a pixel could be tagged with higher-level semantic-type
characteristics of the image (e.g. sizes, shapes and orienta-
tion of pixel regions), which would facilitate segmentation
and reconstruction of the image. But pixel-wise classifica-
tion ignores the spatial relations of pixels, resulting 1n a
process sensitive to noise, and which may also destroy pixel
gecometrical relationships.

Watershed Classification

[0064] FIG. 6 shows a Morphological watershed classi-
fication approach, a preferred method over pixel-based clas-
sification. The morphological watershed approach over-
comes the pixel-based limitation of color distinctiveness,
and 1t also uses the semantic-type mformation contained 1n
pixel spatial relationships.

[0065] Program code for implementing the morphological
watershed method starts from cluster centers and approaches
cach pixel p between the clusters of B, 302 and B_ , 304,
and 1s based upon an extension to a gray-tone only region-
growing version of the watershed algorithm to provide a

multi-valued watershed method able to handle color images
(see Gu Ph.D.).

[0066] This multi-valued watershed starts from a set of
markers extracted from the zones of interest and extends
them unfil they occupy all the available space. As with
pixel-based classification, preferably makers are chosen to
be the pixels of the In and Out borders. The available space
to classify 1s then the points between B, 302 and B_ , 304.
The multi-valued watershed classification process differs
from the classical pixel-wise gray-scale approach which
does not emphasize spatial coherence of the pixels. The
classical pixel-wise gray-scale approach just uses a distance
function to measure the similarity of two pixels. In contrast,
the multi-valued watershed method chooses a point because
it 1s 1n the neighborhood of a marker and the similarity
between the point and marker 1s the highest at that time than
between any other pair of points and neighborhood markers.

[0067] Calculation of similarity can be divided into two
steps. First, the multi-valued representation of the marker 1s
evaluated. Second, the difference between the point and
multi-valued representation 1s calculated. The multi-valued
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representation of the marker uses the multi-valued mean of
the color 1image over the marker. The distance function is
defined as the absolute distance

di=|r-r;|+|g-g;|+|b-b;, O<i<(m+n).

[0068] Intuitively, two filling floods are starting from In
and Out positions, where these floods run into the middle
place where the object boundary 1s defined. In this method,
the spatial coherence 1s considered in the region-growing
procedure. Therefore, the result 1s much less sensitive to the
existing noise in the data.

[0069] The efficacy of a multi-valued watershed approach
depends on the scanning method used. Preferred implemen-
tations use code for a scanning method which uses a
hierarchical queue. (See Meyer, Color image segmentation,
4™ Tnternational Conference on Image Processing and its
applications, pp. 303-304, Netherlands, May 1992.) A hier-
archical queue 1s a set of queues with different priorities.
Each queue 1s a first-in-first-out data structure. The elements
processed by the queue are the pixel positions in the space,
which also defines the way of scanning. The hierarchical
queue structure bears the notion of two orders: the priority
of the queues and the order 1nside a queue. At any time, the
pixel position pulled out the queue is the one that 1s 1n the
queue of highest priority and entered that queue the earliest.
If the queue with higher priority has been empty, the pixel
in the first non-empty queue of lower priority 1s considered.

[0070] FIG. 7 shows a hierarchical queue structure that
can be used by the FIG. 6 multi-valued watershed algo-
rithm. Once the In and Out markers are extracted, the
classification decision step (FIG. 1, step 106) 1s fulfilled by
the multi-valued watershed to classity all uncertain arcas
between B; and B__, to the In and Out markers. The priority
in the hierarchical queue 1s defined as the opposite of the
distance between the pixel concerned and the representation
of the marker. In practice, the representation of the marker
1s calculated as 1ts mean color value.

[0071] Generally, a multi-valued watershed is composed
of two stages: 1nitialization of the hierarchical queue and the
flooding. The 1nitialization consists of putting all the neigh-
borhood pixels of all ‘in” and ‘out” markers into the hierar-
chical queue according to their similarity with the corre-
sponding markers. The more similar the pair, the higher the
priority. Note that it may happen that a pixel is put mto
different queues several times because it 1s 1n the neighbor-
hood of several markers.

[0072] After the initialization, the flooding procedure
starts. The flooding follows a region growing process (€.g.
defining a region based upon pixels sharing a certain char-
acteristic), but from a set of known markers and under the
constraint of the In and Out boundaries defining the scope of
the classification process. The flooding procedure begins to
extract a pixel from the hierarchical queue. If this pixel has
not yet been classified to any marker, the distance between
this pixel and all the neighboring markers are calculated. At
last, this pixel 1s classified to the most similar marker, and
the multi-valued representation of that marker 1s then
updated to take into account this new arrived pixel. Simi-
larly, all pixels 1n the neighborhood of the recently classified
pixel are then processed, and they are placed into the
hierarchical queue according to their similarity (distance
value) to the representation of the marker. The more similar
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the points, the higher the pixel’s priority 1n the queue.
Gradually, all the uncertain areas between B, and B_ , will
be assigned to the markers.

[0073] When there are no more pixels to classify, pixels
assigned to a In marker are pixels interior to the image
feature (semantic video object) defined by the user (FIG. 1,
step 110), and pixels assigned to an Out marker are similarly
considered pixels exterior to the semantic object. As with
pixel-wise classification, the locations where the In and Out
pixel regions meet 1dentifies the semantic object’s boundary.
The combination of all In pixels constitutes the segmented
semantic video object.

Semantic Object Tracking

[0074] FIG. 8 1s a flowchart showing automatic subse-
quent-frame boundary tracking, performed after a semantic
video object has been 1dentified in an 1nitial frame, and its
approximate boundary adjusted (i.e. after pixel classifica-
tion). Once the adjusted boundary has been determined, it is
fracked into successive predicted frames. Such tracking
continues iteratively until the next initial frame (if one is
provided for). Subsequent frame tracking consists of four
steps: motion prediction 350, motion estimation 352, bound-
ary warping 354, and boundary adjustment 356. Motion
estimation 352 may track rigid-body as well as non-rigid
motion.

[0075] In a given frame sequence, there are generally two
types of motion, rigid-body 1n-place movement and trans-
lational movement. Rigid motion can also be used to simu-
late non-rigid motion by applying rigid-motion analysis to
sub-portions of an object, in addition to applying rigid-
motion analysis to the overall object. Rigid body motion can
be modeled by a perspective motion model. That 1s, assume
two boundary images under consideration are B,_,(X, y)
which mcludes a boundary indicating the previous semantic
video object, and a current boundary indicated by B, (x', y').
Using the homogeneous coordinates, a 2D planar perspec-
five transformation can be described as:

X'=(a*x+b*y+c)/(g*x+h*y+1)
y'=(d*x+e*y+)/(g*x+h*y+1)

[0077] The perspective motion model can represent a
more general motion than a translational or affine motion
model, such that if g=h=0 and a=1, b=0, d=0, e=1, then
X'=x+c and y'=y+{, which becomes the translational motion
model. Also, if g=h=0, then x'=a*x+b*y+c and y'=d*x+e*y+
f, which 1s the atfine motion model.

[0078] To find the parameters of a perspective motion
model, (e.g. a through g), color information inside the
semantic video object can be used since 1t 1s a good indicator
of the global evolution of the semantic video object from
frame to frame. For example, assume two color images
under consideration are the previous frame F, _.(x, y) and
the current frame F, (x', y'). Since the focus is on the
evolution of the color information inside the semantic video
object, the goal 1s to minimize the prediction error E over all
corresponding pairs of pixels j mside the semantic mask of
F,_, and the current frame F:E=2w.*(F _,(X;, y;,)-F(x/,
yi)) =Zw.*e.”, where w; is set to 1 if (x;, y;) is inside the
semantic object, and (Xj', yj’) 1s 1nside the frame, otherwise
w; 18 set to zero.

[0079] Note that (x', y') generally do not fall on integer
pixel coordinates. Consequently, an interpolation of the
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color 1n F, should be performed when re-sampling values.
Preferably a bilinear interpolation in Fy is used (see FIG. 9).
So, assuming the four integer corner pixel coordinates
surrounding (x', y') in F, are v, v,, v, and v,(v=(X, y) and
v'=(x', y')), the interpolated pixel value (see FIG. 9) is
F (v)=F_(vo)+(F_1(v)-F 1 (vo) pHF_1(vo)-F

1(Vo))*qH(Fi_1(V3)-Fi_1(v2)-Fi_ 1 (v )+F_1(v0)) *p*q.

[0080] KIG. 9 shows an example of a separable bilinear
interpolation that can be used as the FIG. 8 interpolation
step. A Levenberg-Marquardt iterative nonlinear algorithm
1s employed to perform the object-based minimization in
order to get perspective parameters (a, b, ¢, d, e, f, g). The
Levenberg-Marquardt algorithm 1s a non-linear curve fitting
method useful for finding solutions to complex fitting prob-
lems. However, other least-squares or equivalent techniques
may also be used.

[0081] The algorithm computes the partial derivatives of ¢.
in the semantic video object with respect to the unknown
motion parameters (a, b, c, d, ¢, f, g). That is,
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dmg - D; X

65‘; yj[ ;61; ;61"]

— = — | x- + V.

Om; D, Y g X y’é)y’
685 65‘5

g =

“ . ﬁmk amg

[0082] where D; 1s the denominator, I'=F, ', I=F, _; and (m,,
m,, m,, m,, m,, m,, m,, m,)=(a, b, ¢, d, e, f, g, h).

|0083] From these partial derivatives, the Levenberg-Mar-
quardt algorithm computes an approximate Hessian matrix A
and weighted gradient vector b with components, and
updates the motion parameter estimate m by an amount

Am=A"'b.

[0084] A preferred implementation of the Levenberg-Mar-
quardt includes the following steps: computing, for each
pixel 1 at location (Xx;, y;) inside the semantic video object,
the pixel’s corresponding position (X', y'.), computing the
error ¢;, computing the partial derivative of ¢; with respect to
the m, , and adding the pixel’s contribution to A and b. Then,
the system of equations AAm=b 1s solved and the motion
parameters m™*=m®+Am are updated. These steps are
iterated until error 1s below a predetermined threshold.

Motion Estimation

[0085] Returning to FIG. 8, after prediction 350, the next
step 1s motion estimation 352. It 1s somewhat axiomatic that
a good estimation starts with a good imitial setting. By
recognizing that in the real world the trajectory of an object
1s generally smooth, this information can be applied to
interpreting recorded data to improve compression eifi-
ciency. For simplicity, it 1s assumed that the trajectory of a
semantic video object 1s basically smooth, and that the
motion information in a previous frame provides a good
oguess basis for motion m a current frame. Therefore, the
previous motion parameters can be used as the starting point




US 2001/0048753 Al

of the current motion estimation process. (Note, however,
that these assumptions are for simplicity, and all embodi-
ments need not have this limitation.) For the first motion
estimation, since there i1s no previous frame from which to

extrapolate, the initial transformation is set to a=e=1, and
b=c=d={=g=h=0.

Boundary Warping,

[0086] Once motion prediction 350 and estimation 352 is
computed, the previous boundary i1s then warped 354
according to the predicted motion parameters (a, b, ¢, d, e,
f, g, h), i.e., the semantic object boundary in the previous
frame (B,_,) is warped towards the current frame to become
to current estimate boundary (B."). Since the warped points
ogenerally do not fall on integer pixel coordinates, an 1nverse
warping process 1s performed 1n order to get the warped
semantic object boundary for the current frame. Although
one skilled in the art will recognize that alternate methods
may be employed, one method of accomplishing warping 1s
as follows.

0087] For each pixel (X', y') in F,, the inverse perspective
transformation based on motion parameter (a, b, c, d, e, {, g,
h) gives the mversely warped pixel (x, y) in F,_;. If any of
the four integer bounding pixels belongs to the previous
object boundary, then (x', y') is a boundary pixel in the
current frame. Based on the goal of the motion estimation,
it 1s clear that B;' 1s an approximation of the semantic video
object boundary 1n the current frame B, where this approxi-
mation has taken into account the rigid-body motion.

|0088] Unfortunately, besides rigid body motion, non-
rigid body motion also exists in many real situations. Such
motion 18 difficult to model. As noted above, 1t can be
modeled with rigid-motion analysis. A preferred implemen-
tation treats non-rigid motion as a boundary refinement
problem to be solved with a boundary adjustment step 406.
At this point, the approximation of B., which is the warped
previous object boundary B;_,, has already been computed.
With B., the same method used 1n the 1nitial frame segmen-
tation to solve the boundary adjustment problem may be
used again. The only difference is that B.' in the 1nitial frame
1s provided 1nteractively by a user and B;' in the subsequent
frame 1s produced by a motion estimation/motion compen-
sated procedure (i.e. automatically without user interven-
tion). B;' can be used to generate In boundary B, ' and Out
boundary B_ ' in the current frame. Once In and Out
boundaries are obtained, the morphological watershed step
(see FIG. 6 discussion above) will produce the real semantic

object boundary B..
[0089] The whole procedure is illustrated in FIG. 10,

which shows the creation of a subsequent frame’s (see FIG.
2) In 370 and Out 372 boundaries based on such warping.

Sample Output

10090] FIGS. 11-13 show sample output from the semantic
video object extraction system for several video sequences.
These sequences represent different degrees of extraction
difficulty 1n real situations. To parallel the operation of the
invention, the samples are broken to parts, the first repre-
senting initial frame (user assisted) segmentation results,
and the second subsequent frame (automatic) tracking
results.

Dec. 6, 2001

[0091] The three selected color video sequences are all in
QCIF format (176x144) at 30 Hz. The first Akiyo 450
sequence contains a woman sitting in front of a still back-
oground. The motion of the human body 1s relatively small.
However, this motion 1s a non-rigid body motion because the
human body may contain moving and still parts at the same
time. The goal is to extract the human body 452 (semantic
video object) from the background 454. The second Fore-
man 456 includes a man 438 talking 1n front of a building
460. This video data 1s more complex than Akiyo due to the
camera being 1n motion while the man 1s talking. The third
video sequence 1s the well-known Mobile-calendar
sequence 462. This sequence has a moving ball 464 that 1s
traveling over a complex background 466. This sequence 1s
the most complex since the motion of the ball contains not
only translational motion, but also rotational and zooming
factors.

[10092] FIG. 11 shows initial frame segmentation results.
The first row 468 shows an 1nitial boundary obtained by user
assistance; this outline indicates an 1mage feature within the
video frame of semantic interest to the user. The second row
470 shows the In and Out boundaries defined inside and
outside of the semantic video object. For the output shown,
the invention was configured with a size of 2 for the square
structure element used for dilation and erosion. The third
row 472 shows the precise boundaries 474 located using the
morphological segmentation tool (see FIG. 6 above). The
forth row 476 shows the final extracted semantic objects.

10093] FIG. 12 shows subsequent frame boundary track-
ing results. For the output shown, the tracking was done at
30 Hz (no skipped frames). Each column 478, 480, 482
represents four frames randomly chosen from each video
sequence. FI1G. 13 shows the corresponding final extracted
semantic video objects from the FIG. 12 frames. As shown,

the 1nitial precise boundary 474 has been iteratively warped
(FIG. 8, step 354) into a tracked 484 boundary throughout

the video sequences; this allows implementations of the
invention to automatically extract user-identified 1image fea-
tures.

Conclusion

10094] Having illustrated and described the principles of
the present invention 1n a preferred embodiment, and several
variations thereof, 1t should be apparent to those skilled 1n
the art that these embodiments can be modified 1in arrange-
ment and detail without departing from such principles. In
view of the wide range of embodiments to which the
principles of the invention may be applied, 1t should be
recognized that the detailed embodiment 1s illustrative and
should not be taken as limiting the invention. Accordingly,
we claim as our invention all such modifications as may
come within the scope and spirit of the following claims and
equivalents thereto.

We claim:

1. A method of semantic object tracking of an object
depicted 1n a first, second, and third video frame, the object
having a precise border, the method comprising:

(a) defining an initial approximate boundary near the
border of the object 1n the first frame;

(b) defining an inner boundary inside the approximate
boundary;
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(¢) defining an outer boundary outside the approximate
boundary;

(d) expanding the inner boundary and contracting the
outer boundary to 1dentify an outline corresponding to
the border of the object on the first frame;

(e) identifying a motion transformation function repre-
senting the transformation between the object in the
first frame and the object of the second frame;

() warping the outline according to the motion transfor-
mation function to define a new approximate boundary
for object 1 the second frame; and

(g) repeating steps (b) through (d) with the new approxi-
mate boundary so as to automatically track the bound-
ary of the object between the second and third frames.

2. The method of claim 1, in which E 1s a morphological

erosion operator, O 1s a morphological dilation operator, and
B. . 1s the approximate boundary initially selected by the
user, where

the step of defining an mner boundary further requires
satisfying morphological relation B, =E (B; . ), and

the step of defining the outer boundary requires satistying,
morphological relation B_ =0 (B._.).

3. The method of claim 1, 1n which each video frame 1s
defined by a set of pixels, the inner and outer boundaries
defining a subset of pixels, wherein the step of expanding the
inner and outer boundaries includes:

1ini

sampling pixels within the object to define at least one
inside cluster-center pixel represented in multi-valued
format;

sampling pixels outside of the object to define at least one
outside cluster-center pixel represented 1n multi-valued
format; and

classifying each pixel of the subset of pixels to its closest
cluster-center.
4. The method of claim 3, wherein classifying each pixel
of the subset of pixels 1s morphological watershed based.
5. The method of claim 4, having m 1nside cluster-centers
and n outside cluster-centers, where morphological water-
shed pixel classification includes the step of:

starting with each cluster-center and calculating a simi-
larity to each pixel 1n the subset of pixels;

wherein similarity for an i pixel is evaluated by com-
puting the 1, pixel’s absolute distance d, from each
cluster-center ¢ as determined by d.=(|r___.D+(|g.~g:)+
(|b.-by]), O<i<(m+n).

6. The method of claim 4, 1n which morphological water-
shed pixel classification uses a hierarchical queue data-
structure for tracking a set of first-in first-out pixel queues,
cach queue having a priority ranking such that a pixel
removed from the hierarchical queue 1s removed from a
highest-priority queue within the set of queues, the method
including the steps of:

identifying a set of m 1n markers and a set of n out
markers;

initializing the hierarchical queue by placing all neigh-
borhood pixels of all in markers and out markers 1nto
the hierarchical queue according to a distance between
cach neighborhood pixel and each marker;
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removing a first pixel from the hierarchical queue;

1dentifying a subset of markers consisting of those mark-

ers within a predetermined distance from the first pixel;
and

determining 1f the first pixel has been classified to any
marker, and 1if not classified, classifying the first pixel
to a nearest marker of the subset of markers.

7. The method of claim 6, in which distance between a
pixel and a marker 1s determined by computing the mean
color value difference between the pixel and the marker.

8. The method of claim 6, in which pixels have red, green,
and blue color component values r, g, b, and the distance

between an i pixel and a marker is determined by

di=(‘rmarker_ri‘)+(‘gmarker_gi )+(‘bmarker_bi‘)? O<i<(m+ﬂ),
wherein pixels with lower d. values are first placed in the

hierarchical queue.

9. The method of claim 6, 1n which pixels have color
component values, and markers are represented 1n multi-
valued format, wherein:

the step of classifying the first pixel to the nearest marker
includes updating the multi-valued representation of
the nearest marker with the color component values of
the first pixel.

10. A computer readable medium having stored therein
computer programming code for causing a computer to
secgment an 1mage feature 1n a first video frame, the 1mage
feature having a border, comprising;:

code for defining an approximate boundary near the
border, where the approximate boundary 1s initially
selected by a user;

code for defining an inner boundary inside the border;

code for defining an outer boundary outside the border;
and

code for expanding the mner boundary and contracting

the outer boundary to define an outline corresponding
to the border.

11. The medium of claim 10, in which movement of the
image feature 1s tracked across video frames, further com-
prising:

code for identifying a transform expressing a transforma-
tion of the 1mage feature between the first and a second
video frame; and

code for applying the transform to the outline of the 1mage
feature 1n the first frame to define a second approximate
boundary for the 1image feature in the second frame.

12. The medium of claim 11, wherein the code for
defining an 1nner and outer boundary, and the code for
expanding the inner boundary and contracting the outer
boundary, are applied to the second approximate boundary
to 1dentity a second outline.

13. The medium of claim 10, further comprising code for
receiving mput from a hand-held mput device, wherein such
mput 1s used to define the initial approximate boundary.

14. The medium of claim 10, 1n which each video frame
1s defined by a set of pixels having color and position values,
and where the inner and outer boundaries define a subset of
pixels, wherein the code for expanding the mner and outer
boundaries includes:
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sampling pixels within the 1mage feature to define at least
one 1nside cluster-center pixel represented 1 multi-
valued format;

sampling pixels outside of the 1mage feature to define at
least one outside cluster-center pixel represented 1n
multi-valued format; and

classifying each pixel of the subset of pixels to its closest

cluster-center.

15. The medium of claim 14, wherein the code for
classifying each pixel of the subset of pixels 1s pixel-wise
based.

16. The medium of claim 15, where there are m 1nside and
n outside cluster-centers, and pixel-wise classification
includes computing, for each pixel within the subset of
pixels, such pixel’s absolute distance to a cluster as deter-
mined by:

di=wcﬂ1¢_::-r*(|r_riD'l'(|g_gi|)+(lb_bil)'l_wcnurd('x_xil)'l_(b)_
yi|), O<i<m,

dj=wcc:-lc_::-1: * (l?"— ¥ |)+(|g_g]|)+(|b_b] |)+wcaard(|x__le)+(ly_
yi, O<i<n,

where w__;, . and w___ , are the weights for the color
coordinate information, and the summation of w

and w___ . 1S one.
17. The medium of claim 14, wherein the function for
classifying each pixel of the subset of pixels 1s morphologi-

cal watershed based.

18. The medium of claim 17, wherein there are m 1nside
cluster-centers and n outside cluster-centers, and each pixel
and marker has color component values r, g, b, where
morphological watershed classification includes code for:
starting with each cluster center and calculating a stmilarity
to each pixel 1n the subset of pixels; wherein similarity 1s
evaluated by computing such pixel’s absolute distance from
such cluster as determined by d.=(|r-r.[)+(|g—-g.])+(|b-b.]),
O<i<(m+n).

19. The medium of claim 17, in which there 1s code for a
hierarchical queue data structure tracking a set of first-in
first-out pixel queues, each pixel queue ranked from a lowest
to a highest priority queue, where a pixel removed from the
hierarchical queue 1s an earliest pixel to enter the highest-
priority queue, the code for morphological watershed clas-
sification including code for:

color

identifying a set of m 1n markers and a set of n out
markers;

initializing the hierarchical queue by placing all neigh-
borhood pixels of all markers into the hierarchical
queue according to a distance between each neighbor-
hood pixel and each marker;

removing a first pixel from the hierarchical queue;

determining if the first pixel has been classified to a
marker;

identifying a set of markers consisting of those markers
within a predetermined distance from the first pixel;
and

classifying the first pixel to a nearest marker of the set of
markers.

20. The medium of claim 19, 1n which determining the
distance to a marker 1s by computing the mean color value
difference between neighborhood pixels and each markers.
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21. The medium of claim 19, in which the code for
computing an i pixel’s distance to a marker is determined

by di=(‘rmarker_ri‘)+(‘ _gmarkergi‘) +(‘bmarker_bi‘) ’ O<i<(m+n);

wherein pixels with lower d. values are first placed in the

hierarchical queue.

22. The medium of claim 19, in which markers are stored
in multi-valued format, and wherein classifying the first
pixel to the nearest marker includes updating the marker’s
multi-valued representation with the color component val-
ues of the first pixel.

23. The medium of claim 10, in which E 1s a morpho-
logical erosion operator, O 1s a morphological dilation
operator, and B. . 1s the approximate boundary initially
selected by the user, wherein:

the code for defiming the 1nner boundary requires satis-
fying morphological relation B; =E.(B..), and the
code for defining the outer boundary requires satisfying
morphological relation B_ ,=0_(B,_;)-
24. A method of tracking motion of an object across
multiple video frames, the object having a perimeter, the
method comprising:

1dentifying a first boundary approximating the perimeter
of the object 1n a first video frame;

1dentifying a global motion transformation indicating the
movement of the object between the first video frame
and a second video frame; and

applying the global motion transformation to the first
boundary to 1dentify a second boundary approximating
the perimeter of the object 1n the second video frame.
25. The method of claim 24, further comprising the steps

of:

defining an 1nner boundary inside the first boundary;
defining an outer boundary outside the first boundary; and

snapping the mnner and outer boundaries to the perimeter
of the object 1n the first frame by expanding the inner
boundary and contracting the outer boundary to 1den-
tily an outline;

wherein the global motion transformation 1s applied to the
outline to 1dentify the second boundary approximating,

the perimeter of the object 1n the second video frame.

26. The method of claim 25, wherein for the first frame a
user 1dentifies the first boundary, and for subsequent frames,
oglobal motion transformations are used to identify tentative
boundaries of an object in such subsequent frames, which
are then snapped to 1dentify an outline for the object 1n each

such subsequent frame.
27. The method of claim 26, further including the step of:

computing an average error value E corresponding to
pixel coloration error across a particular tentative
boundary 1n a corresponding subsequent frame;

wherein 1 E exceeds a predetermined threshold, a user

can be prompted to identify the boundary of the object

in the corresponding subsequent frame, such identified

boundary serving as the tentative boundary from which

subsequent boundaries are determined in subsequent
frames.

28. The method of claim 26, in which each video frame

1s defined by a set of pixels from which the inner B. and

outer B_ . boundaries define a subset of pixels, and where E

out
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1s a morphological erosion operator, O 1s a morphological
dilation operator, and B._.. 1s the boundary selected by the
user, the method further comprising:

sampling pixels within the object to define at least one
inside cluster-center pixel represented 1in multi-valued
format;

sampling pixels outside of the object to define at least one
outside cluster-center pixel represented 1n multi-valued
format; and

classifying each pixel of the subset of pixels to its closest
cluster-center by calculating a similarity between such
pixel and each cluster-center;

wherein B, satisfies morphological relation B; =E (B, ),
and B__, satisfies morphological relation B__ =0 (B;_.).

out

Dec. 6, 2001

29. The method of claim 28, where clusters and pixels
have color components r, g, and b, and the step of classifying
pixels of the subset of pixels 1s morphological watershed
based, having m inside cluster-centers and n outside cluster-
centers, wherein similarity for an I™ pixel is the absolute
distance d. between the I™ pixel and each cluster-center c, as
determined by d.=(|r.-r;|)+(|g.~g)+(|b.~b,]), O<i<(m+n).

30. The method of tracking the object of claim 24,
wherein non-rigid motion 1s tracked across multiple video
frames by i1denfifying a global motion transformation for
movement of the object between the first and second video
frame, and by 1dentifying a local motion transformation for
movement of at least one sub-object within the object.
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