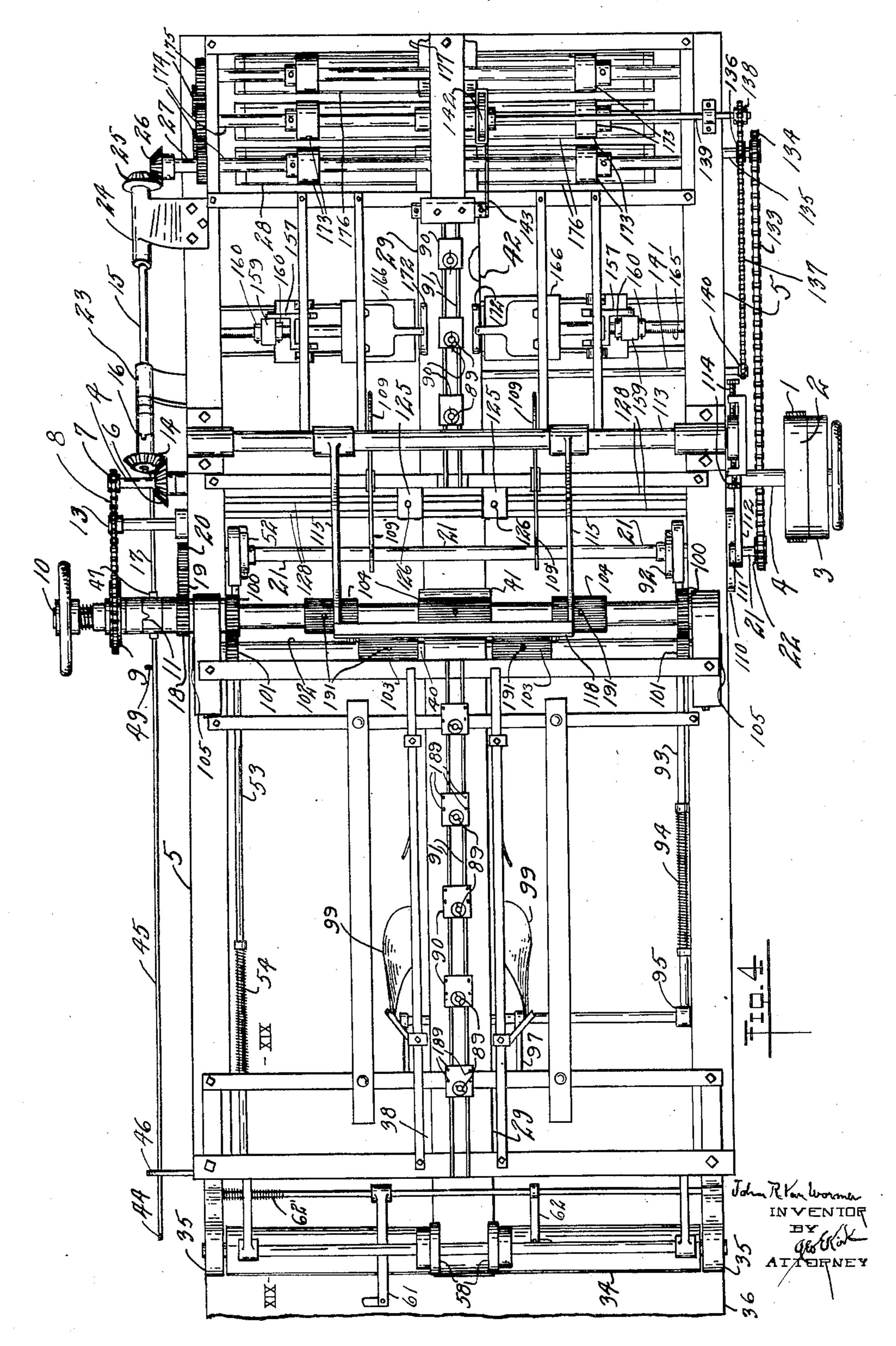

KNOCK-DOWN BOX MANUFACTURE

Filed June 16, 1924

5 Sheets-Sheet 1

Feb. 14, 1933.

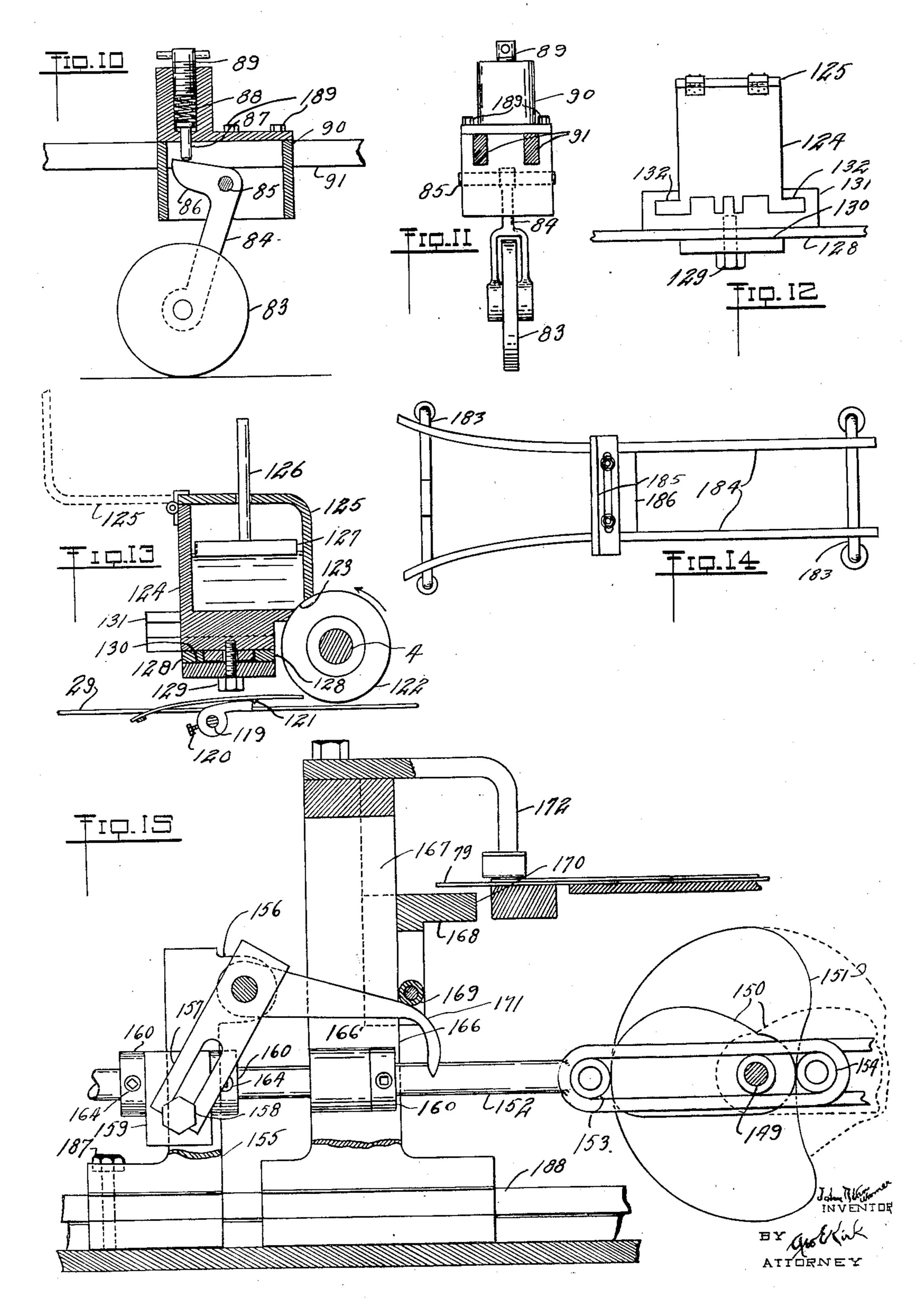

J. R. VAN WORMER

KNOCK-DOWN BOX MANUFACTURE

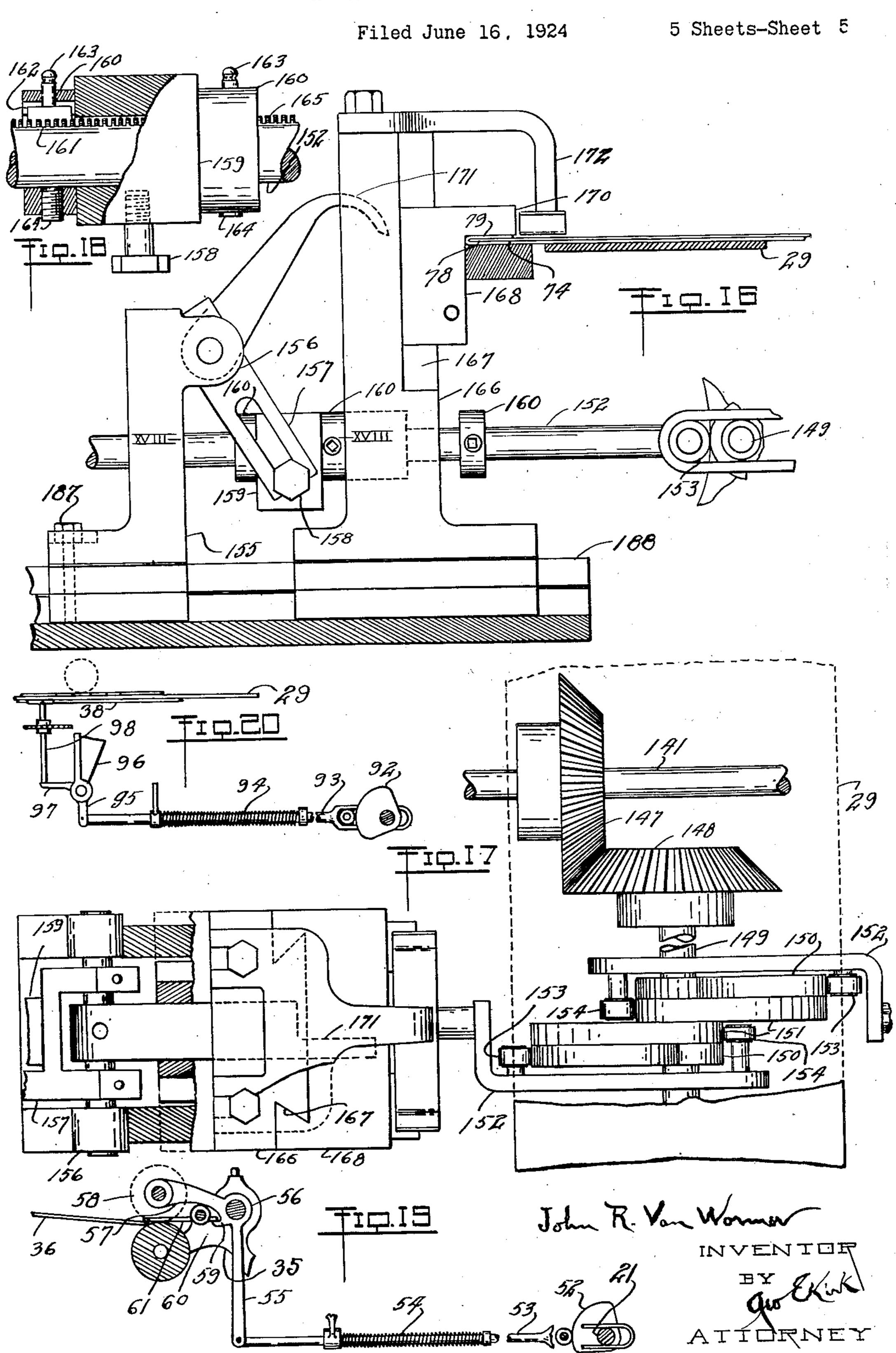

1,897,715

Filed June 16, 1924

5 Sheets-Sheet 2


KNOCK-DOWN BOX MANUFACTURE

KNOCK-DOWN BOX MANUFACTURE


Filed June 16, 1924

5 Sheets-Sheet 4

J. R. VAN WORMER

KNOCK-DOWN BOX MANUFACTURE

UNITED STATES PATENT OFFICE

JOHN R. VAN WORMER, OF TOLEDO, OHIO, ASSIGNOR, BY MESNE ASSIGNMENTS, TO THE GUARDIAN TRUST COMPANY, OF CLEVELAND, OHIO, A CORPORATION OF OHIO, TRUSTEE

KNOCK-DOWN BOX MANUFACTURE

Application filed June 16, 1924. Serial No. 720,307.

This invention relates to improvements in knock-down box manufacture for making ceptor and connected parts for holding the cartons of paper, cardboard, fiber composition or other similar material, and more particularly to the operation of folding and glueing and flattening the initial sheet of material out of which the carton is to be formed.

A further object of the invention is to blank shown in Fig. 8; provide an apparatus for forming and glueing the knock-down cartons in a manner which will permit the easy opening and formation of the carton in a simple manner.

A further object of the invention is to 15 provide an apparatus in which the folding, glueing and flattening operations are completely accomplished in a single machine closed side and its adjustable mounting; and delivered therefrom in knock-down Fig. 13 is a vertical sectional view of the section ²³ shipment.

A further object of the invention is to provide an apparatus which is of simple construction, is strong and durable, and well adapted for the purpose described.

With the above and other objects in view, the invention consists of the improved knock-down box manufacture and its parts and combinations as set forth in the claims, and all equivalents thereof.

In the accompanying drawings in which the same reference characters indicate the same parts in all of the views:

Fig. 1 is a side view of the machine for forming knock-down boxes, parts broken with as shown in Fig. 16, and also including away;

Fig. 2 is a diagrammatic view of the rollers and the path of travel of the conveyor belt forming part of the machine;

Fig. 3 is a fragmentary top view of the 40 feed table of Fig. 1, parts broken away;

Fig. 4 is a top view of the forward portion of the machine;

Fig. 5 is a side view of the forward portion of the machine, on the opposite side to that shown in Fig. 1 and on a larger scale;

Fig. 6 is a transverse sectional detail view taken on line VI-VI of Fig. 5 of the machine, showing manner of first holding the 50 box plank;

Fig. 7 is a side detail view of the interblanks while adhesive material is applied thereto;

Fig. 8 is a side view of one of the blanks 55 used in forming the knock down box;

Fig. 9 is a top view of a glued box in knock-down form as produced from the

Fig. 10 is a vertical detail view of a guide 60 roll with connected parts in section;

Fig. 11 is a vertical detail view of the parts shown in Fig. 10 but at right angles thereto;

Fig. 12 is a detail rear side view of the 65 adhesive carrying reservoir showing its

Fig. 13 is a vertical sectional view of the form and in condition to be packed for adhesive carrying reservoir and connected parts;

> Fig. 14 is a top view of the receiver for the completed knock-down boxes;

Fig. 15 is a detail longitudinal, vertical sectional view on a larger scale, of the folding portion of the machine at the start of 75 the third folding operation, parts being broken away;

Fig. 16 is a similar view to Fig. 15 with the parts in the position of completing the flexing and flattening operation for folding 80 the box;

Fig. 17 is a top view of the sealing effecting cams and other parts associated therethe drive therefor and portions of the 85 sealer;

Fig. 18 is a longitudinal sectional detail view on a larger scale taken on line XVIII— XVIII of Fig. 16;

Fig. 19 is a vertical sectional detail view 90 of the blank receiving feed control taken on line XIX—XIX of Fig. 4; and

Fig. 20 is a detail side view of the first longitudinal folding effecting means coacting during the travel of the blank, at right 95 angles to the view shown in Fig. 6.

Referring to the drawings the reference numeral 5 indicates a main frame upon which is journaled the main transverse driving shaft 4 having fast and loose pulleys 100

3 and 2 respectively positioned thereon. A driving belt 1 (shown in Fig. 4) extending around loose pulley 2 may be shifted to fast pulley 3 to drive the machine. The main 27 before mentioned. driving shaft 4 extends transversely through the main frame 5, and at its opposite end portion carries a bevel pinion 6 and a sprocket wheel 7, the latter being on the outer end of the shaft. The sprocket wheel 10 7 has a sprocket chain 8 extending therearound and also around a sprocket wheel 9 49 coacting with the arms 12 and pins which is journaled on a shaft 10 also extend- 50 and 51, and also with the arm 17 so that ing transversely of the frame 5. The by thrusting the arm 44 away from the table sprocket wheel 9 is provided with a clutch 36, the operator can simultaneously shift the 15 hub face 11 positioned to engage a com- arms 12 and 17, and thereby disconnect the 80 plementary clutch member mounted fast main driving shaft 4 from driving connecon the shaft 10 to drive said shaft. A de-tion with the parts of the machine actuated pending rock arm 12 controls the reciproca- by the sprocket chain 8 and the shaft 15. tion of the clutch 11 to engaging and dis- The reverse reciprocation of the bar 45 20 engaging positions. A chain tightener guide serves to simultaneously connect these parts 85 13 is provided for the sprocket chain as for operating the machine. shown in Fig. 4.

Main drive

30 pinion 14 and controlled by a depending against the depending arm 55 of a lever 95 pinion to the shaft 15.

35 with an intermediate gear 19, and said gear swung upwardly to clear the conveyer belt 100 gear 20 is mounted on one end of a transverse shaft 21 extending transversely through the main frame 5, and on the oppo-40 site side of the frame carries a sprocket (Figs. 4 and 5) mounted on said bar 60, 105 wheel 22 as shown in Figs. 4 and 5.

Conveyer belt

The downwardly and rearwardly extend-45 ing shaft 15 journaled in main frame bearings 23 and 24, has a bevel pinion 25 mounted on its lower end which is in mesh with bevel pinion 26 mounted on shaft 27. Said shaft 27 extends through and is journaled 50 transversely in the frame 5 and carries a 55 roller 30 carried by a transverse shaft 31, said side is provided with fractional end 120 ried by an adjustable arm 33 swung downwardly from the upper portion of the main frame 5. From this point the belt conveyer 60 29 extends upwardly and around a terminal roller 34 carried by brackets 35 mounted on the main frame and extending towards the feed table 36, as clearly shown in Figs. 1, 2, 4 and 5. From the terminal roller 34 the 65 belt 29 passes over the way 38 having rollers 74. Extensions 79 from the ends 74 are 130

39, thence around roller 40 and then downwardly and beneath the large idler roller 41 and over guide rollers 43 to the drive roller

$Clutch\ control$

Adjacent the feed table 36 is located a handle 44 connected to the bar 45 which is carried by guides 46 and 47 mounted on the main frame 5. The bar 45 has pins 48 and 75

Feed control

The transverse shaft 21 adjacent one end The bevel pinion 6 is in mesh with a portion is provided with a cam 52, as shown 90 bevel pinion 14 loosely mounted on a rear- in Figs. 4 and 19, for thrusting the bar 53 wardly and downwardly extending shaft 15 towards the table 36 and against the rejournaled on one side of the main frame 5. sistance of the spring 54 surrounding said Clutch elements 16 are formed in part on the bar. The thrust movement of the bar 53 is arm 17 for drivingly connecting the said fulcrumed on a shaft 56 and having upper arms 57 which carry a pair of feed rollers The shaft 10, near the clutch 11, is pro- 58, so that in the timed relation of the rotavided with a pinion 18 which is in mesh tion of the shaft 21, the feed rollers 58 are 19 is in turn in mesh with a gear 20. Said 29 which is traveling over the roller 34 adjacent the table 36. The lever arms 55 and 57 carry a finger 59 movable to turn a rock bar 60, and swing stop members 61 and 62 downwardly against the resistance of torsion spring 62'.

The blank

The blank used in forming the box is 110 shown in Fig. 8, and comprises a sheet of material having longitudinal parallel lines of spaced scorings 63 and 64, short longitudinal lines of scorings 65 and 66, and spaced transverse scorings 67, 68, 69 and 70. 115 long roller 28 as a main driving means for The blank has cut in portions 72 from the a conveyer belt 29. The conveyer belt passes intersections of scorings 67 and 69 with around the main driving roller 28 and ex- the scorings 63 and 64. The scorings 63, tends downwardly and around an idler guide 64 and 67 form one side 73 of the box and thence around a belt tightener roller 32 car- portions 74 extending therefrom. The scorings 63 and 64 between the scorings 67 and 69 form the box bottom 75 and said bottom portion is provided with end portions 76 extending beyond the scorings 63 and 64. 125

The scorings 63 and 64, between the scorings 69 and 70, form a box side 77 opposite to box side 73 and is formed with fractional end extensions 78 which coact with the ends

1,897,715

coated with an adhesive to cause the ends the ends 76 of the blanks pass thereover. 74 to adhere to the end portions 78. The This movement of the parts folds the end scorings 63 and 64 between the scorings 70 and 71 form the top portion 80 of the box. The end portions 76 as thus folded upwardly 5 and said top portion is provided with tuck-during their travel, pass under adjustable 70 in end flaps 81, and a tuck-in terminal tongue 82.

Blank guidance

on the table 36 in position to have its tongue roller 40. 82 coact with the stop 62, and with the edge of the flap 81 resting against the stop 61 15 as the pair of receiving rolls 58 are raised. This movement positions the end portions of the box blank upon the conveyer belt 29 adjacent the roller 34 to prevent travel of said blank on said belt due to the stops 61 20 and 62. As the shaft 21 is continuously rotated, the cam 52 is effective in permitting the spring 54 to swing the pair of receiving rollers 58 downwardly to yieldingly engage the box blank resting on the belt. Simul-26 taneously with this engagement, the stops 61 and 62 are moved out of the path of travel of the engaged box blank, and the blank will be immediately moved by said belt, thus providing for the blanks being 30 intermittently fed into the machine in a timed and registered sequence. The box the guide 38 and supporting rollers 39 therefor.

During this travel, definite guidance of the box blank is provided by mounting over the belt 29, justifier rolls 83 either singly or mounted in pairs. Said rolls are carried by and journaled in depending bell crank 40 arms 84 mounted on fulcrum pins 85 connected to the frame 5, and the horizontally extending arm portions 86 of said bell mounted on the rock shaft 113, and likecranks are yieldingly engaged by pins 87 as shown in Fig. 10. Springs 88 yieldingly 45 hold the pins in engagement with the arm portions 86 and the tension of said springs may be adjusted by screws 89. The last mentioned parts forming guide roll assemblies are mounted in housings 90 carried by ⁵⁰ bars 91. This construction provides for adjusting the tension of the rollers 83 upon the blanks carried by the belt 29 to more firmly hold the traveling blanks in position on said belt.

First end fold

The shaft 21 on its end remote from the gear 20 and cam 52 carries a cam 92 which coacts to thrust bar 93 against the tension co of spring 94 (Figs. 5 and 20) to rock the angle levers 95 carried by bracket 96 mounted on the main frame 5. Said angle levers 95 have their upper arms 97 extending towards the feed table 36 and engage plungers conveyer belt 29 by passing between the

portions 76 on the score lines 63 and 64. curved guide means 99 to further direct the said end portions 76, during their travel, into completely folded down position against the inner side of the bottom por-The box blank in flat condition with its tion 75 of the blank. The partly folded 75 scoring groove on its lower side is placed blank now travels with the belt 29 to the

Mid-bottom transverse fold

The shaft 10 has mounted thereon ad- 80 jacent the inner sides of the frame 5, pinions 100 which are in mesh with pinions 101 mounted on an adjacent parallel shaft 102 which carries the roller 40 and the milled adjustable roller sections 103. Said milled 85 rollers are staggered with relation to milled roller sections 104 mounted on the shaft 10.

The shaft 102 is journaled at its opposite ends in bearing blocks 105 slidably positioned in bearings 107 mounted on the main 90 frame 5, and yieldingly engaged by springs 106 positioned in the bearings 107 to force the shaft 102 towards the shaft 10.

The partly folded blank, having its ends 76 folded towards each other, passes over the 95 roller 40, and upon engaging the milled blank is moved by the belt in the region of rollers 103 is forced off the belt 29 and forwardly upon guides 108 and will be moved to the adjustable stops 109.

The portion of the shaft 21 projecting 100 outwardly from one side of the main frame 5 and adjacent the sprocket wheel 22 carries a cam 110 which is engaged by a roller 111 carried by an arm 112, and said arm is adjustably mounted on a rock shaft 113 by 105 set screws 114. Folder arms 115 are also wise arm 116 which is pivotally connected to a downwardly extending rod 117'. A coiled spring 117 surrounds the lower por- 110 tion of the rod and bears against the frame and the rod and indirectly yieldingly holds the roller 111 in engagement with the cam 110. As the shorter radius of the cam 110 is reached by the roller 111, the folder arm 115 115, which has a toothed or plate portion 118 at its free end, will be forced downwardly by the said cam 110, and the toothed or plate portion 118 will strike downwardly on the score line 68 of the blank. This move- 120 ment will fold the inwardly folded end portions 76 as well as the bottom portion 75 of the blank transversely as distinguished from the longitudinal fold occurring during the travel of the blank to the trans- 125 verse folding position.

After the transverse folding operation the partly folded blank is redelivered to the 98 for thrusting said plungers upward as milled rollers 103 and 104 on the relatively 136

5 and 104 the partly folded blank is carried sprocket chain 137, said sprocket chain also 70 by the belt beneath the idler roller 41 and then travels with the belt 29 in a horizontal direction. The breaking of the crosswise scores in the blank is effected by the passage 10 of the collapsed blank around roller 41.

Adhesive applying device

Adjacent the main shaft 4 and parallel 15 therewith is journaled a bar or shaft 119 (Fig. 13) provided with spring guide arms 121 adjustably connected thereto by set screws 120. These yielding guide arms 121 serve to direct the blank extensions 79 from 20 the end portions 74 upwardly against the adhesive applying rollers 122 which are mounted on the main drive shaft 4. Said rollers 122 bear against and close outlet openings 123 formed in adhesive carrying reservoir 124 carried by the main frame 5. Preferably the adhesive material used is in the form of a glue which may be applied cold.

The adhesive reservoir 124 has an angu-39 larly shaped hinged cover 125 through which the stem 126 of a packer head or piston extends, to permit thrusting the head downwardly to force the adhesive material towards the outlet opening and the adhesive applying roller 122. Extending in a plane parallel to the bar or shaft 119 are spaced mounting strips 128 to form a groove or slot for adjustably receiving the lower ribbed portion of the reservoirs 124. Bolts 129 extending through cross bars 130 and the slot and threaded into the bottom portions of guide tracks 131 adjustably hold the guide tracks in position. The guide tracks extend longitudinally of the frame 5. The reser-45 voir 124 is formed with flanges 132 which coact with the guide tracks in permitting the reservoirs to be adjusted toward and away from the adhesive applying rollers 122.

As the shaft 4 rotates continuously during the operation of the machine, even though the conveyer belt be idle, the adhesive material in the reservoirs will not bind the rollers to the reservoirs during said operation.

Blank guiding

Guide rollers similar to rollers 83 carried by the housing 90 engage the twice folded blank in traveling through the portion of the machine applying the adhesive material to the partly formed blank.

Intercepter

A sprocket chain 133 extends around the sprocket wheel 22 and downwardly and forwardly therefrom and also around sprocket

yieldable shafts 10 and 102. Adjustable wheel 134 which is mounted on the shaft guide arms 109' lim., the upward flapping 135. Adjacent the sprocket wheel 134 and of portions of the blank during the last on the same shaft 135 is mounted another mentioned folding. From the rollers 103 sprocket wheel 136 around which extends a extending around sprocket wheel 138 mounted on shaft 139 and thence around sprocket wheel 140 mounted on shaft 141, as shown in Fig. 5.

The shaft 139 is provided with a cam 142 75 for reciprocating bar 143 which is pivotally connected at its opposite end to a short arm 144 mounted on a shaft 145 and has an intercepter 146 extending downwardly therefrom. The driving sequence is so arranged 80 that the intercepter may hold the first longitudinal and additional transversely folded blanks against travel with the conveyer belt notwithstanding the blanks are resting on the belt. At this period of holding the ex- 85 tensions 79 are coated with the adhesive and then flexed over and upon the portions 78 and flattened thereagainst to effect sealing. The holding action of the intercepter is for a brief interval of time for maintaining registry in the flexing and flattening in the seal-

Sealing

ing operation.

The sprocket chain 137 in driving the 95 shaft 141 brings about the flexing, flattening and the sealing completing operation. Said shaft 141 is provided with a bevel gear 147 (Fig. 17) which is in mesh with a bevel pinion 148 mounted on shaft 149 which also car- 100 ries a pair of cams 150 and 151. These cams are arranged in rights and lefts so that bars 152 may be simultaneously oppositely reciprocated. The bar 152 carries a roller 153 which coacts with the cam 150, and a roller 105 154 which coacts with cam 151. The bar 152 may pass through an adjustable fixed guide member 155. This guide member 155 has a bearing 156 for an angled lever member having a slotted arm 157 which coacts 110 with a pin 158 carried by a block 159 adjustably held by collars 160 mounted on the bar 152. Said collars 160 have rack jaws 161 which extend into the collar way 162. Pins 163 extending upwardly through the collars 115 may be manually operable to shift the rack jaws 161 (Fig. 18) in the ways 162 when the collars 160 are released from said bar 152 by unscrewing set screw 164.

The rack 161 coacts with rack portions 120 165 on the bar 152 for maintaining the collars 160 in their desired adjusted positions. Loosely mounted on the bar 152 and shiftable toward and away from the collars 160 is mounted a carrier 166 having a guideway 125 167 into which extends a vertically reciprocable member 168 carrying a roller 169. The member 168 has an overhanging portion or projection 170.

As the cam 160 coacts with the roller 163 130

1,897,715

to pull the bar 152 away from the guide 155, the pin 158 serves to rock the arm 157 on the fulcrum 156 (Figs. 15, 16 and 17) and cause the arm 171 to ride beneath the roller 169 5 and lift the member 168 in the guide 167 into engagement with the overhanging portion 170 and cause said portion to rise against the lower side of the blank extension opposite to that provided with the adhesive

10 coating.

The overhanging arm 172 extending from the carrier 166 terminates in close proximity to the folded blank end portions 78 so that it will hold down the blank on the guide 42, 15 and the upward movement of the overhanging portion 170 will cause the flexing of the extension 79 on the score lines 65 and 66. The flexing movement is effected during the movement of the carrier 166 towards the 20 shaft 149, when the intermediate collar 160 engages bearing 166' (Fig. 15), but the rate of upward movement of the overhanging portion 170 is such as to cause the flexing of the blank extensions 79 at the score lines. ²⁵ Furthermore, as the member 170 rises, the free end of the arm 171 clears the roller 169 so that the member 168 can move downwardly and engage the flexed over blank extensions 79 and flatten such adhesive car-30 rying blank extensions against opposite blank portions for sealing the parts together. This flexing and flattening occurs while the intercepter 146 is holding the twice folded blank for the third folding or 35 second longitudinal folding operation.

The cams 150 and 151 rotate continuously and as the member 170 moves downwardly upon the extensions as unfolded for the flattening and sealing operation, there is a 40 slight pause, and then the recover travel occurs in the shifting of the carrier 166 back to starting position for a repetition of this cycle of operation as actuated by the inner

collar 160.

Flattening

As the intercepter 146 is raised, the thrice folded blank in its knock-down box assembly may continue its travel with the conveyer belt 29 and pass over the main driving roll 28 and there have the blank extensions 79 further flattened or rolled into sealing relation with other portions of the blank by pairs of rollers 173 mounted on shafts scribed.
174 and driven by gears 175 from the shaft What 27. Lower live rollers 176 oppose the pairs cure by Letters Patent is: of rollers 173 beyond the roller 28. The final roller 176 has a conveyer belt 177 over co which the sealed thrice folded blank, as a knock-down box, may pass for further flat- during said travel of the blank, said foldtening opening operation under gravity ing means embodying plungers lifting poridler rollers 178. After passing the rollers tions of the blank, guides directing the lift-178 the folder blanks are then discharged c5 upon the kicker 179 (Figs. 1 and 4).

Discharge grouping

Standards or legs 183 (Figs. 1 and 14) carry parallel bars 184, and an abutment 185 loaded by friction weights 186 to ride 70 upright along said parallel bars 184. The thrice folded blank upon the bottom portion 75 is folded on itself short of the end portions 74 and has been sealed with the end portions 78 by means of the member 75 168. These articles are thrust by the kicker 179 to have the folded bottom portion 75 of the formed knock-down box travel between the pair of rails 184 as the formed knock-down box assembly is now on edge 80 and in a vertical position, so that its projecting edges end portions 74 and 78 will ride on the bars or rails 184.

The yieldable mounting 180 for the kicker 179 permits yieldable thrusting of the successively formed knock-down boxes into position along the pair of rails 184 for packing said boxes on edge on said receiver. The resistance to such packing is yieldable as the abutment gradually slides along the 90

rails 184.

Adjustments are provided for the folders and guides to permit the making of boxes and styles of different sizes within a considerable range. There is therefore in the 95 disclosure of this invention, a machine which has a wide range of utility for the rapid production of symmetrical knock-down boxes or containers.

The stops, guides and sealing folders are adjustable along the main frame 5, and also the belt 29. Set screws 187 may adjust the folder member 155 on track 188. Set screws 189 permit guide housings 90 to be adjusted along the bars 91. Set screws 191 permit adjustment of the milled rollers 103 and 104 to insure folding and may partially overlap in their staggering.

The machine may be operated at a high production rate with unskilled labor in producing a product of high grade. The machine does not require extreme care when set up for operation and will handle in addition to different sizes of boxes, different thicknesses of stock for said boxes.

From the foregoing description it will be seen that the machine is of very simple construction for the work it accomplishes and is well adapted for the purpose de-

What is claimed and it is desired to se-

1. A conveyor for effecting travel of a cut and scored blank, in combination with folding means for the blank on a scoring 125 ed portions as the conveyor shifts the blank along, and a succession of rollers including 130

a pair of rollers and a single roller holding er coacting with said carrier for shifting

the blank to the conveyor.

comprising a conveyor for a blank for a rial embodying a sealer for an adhesive 5 knock-down box, independently yieldable coating region comprising a movable mem- 70 pairs of rollers and additional single rollers ber, a carrier therefor, means for moving out of alignment along said conveyor with the carrier toward the material, and a fixsaid pairs of rollers for holding the blank edly mounted rocker coacting with said carto the conveyor, and material fold effecting rier for shifting the member during carrier 10 means acting upon the sheet material as de-travel, said carrier travel shifting the mem- 75 livered to said rollers by said conveyor.

conveyor belt, a way for the belt, a succes- in flattening the flexed portion against the sion of rollers yieldably opposing the belt material in completing the fold. 15 to hold the material for travel with the 10. A machine for handling sheet mate- 30 belt, independent means for varying adjustment of said yieldable rollers, and material fold effecting means as to which the material and belt travel, said means acting upon 20 the sheet material as delivered to said rollers

by said conveyor.

4. A knock-down box machine embodying veyor having connections for actuating the means for moving a flat blank, mechanism interceptor. effective during such movement for folding 11. A knock-down box machine embody-25 portions of the blank up out of the plane ing a driving shaft, adhesive coating rolls 90 direction, adhesive applying means for then from said driving shaft. 30 coating a portion of the blank, and blank 12. A knock-down box machine embody- 95 hesive coated blank portion.

embodying a conveyor belt for the material folders to be driven from said main shaft. 40 terial laterally beyond the belt to urge the mechanism including a clutch from said 105

belt conveyed material.

6. A machine for handling sheet material ⁴⁵ embodying a conveyor belt for moving sheet material, a plunger movable against the material during material shifting to flex a portion of said material, and stationary guides for directing the flexed portion into folded over position.

7. A machine for handling sheet material embodying a conveyor belt for moving sheet material, a plunger movable against the ma-55 terial during material shifting to flex a portion of said material, stationary guides for directing the flexed portion into folded over position, and rollers holding the material against the belt to preclude warping of the 60 material.

8. A machine for handling sheet material embodying a sealer for an adhesive coating region comprising a movable mem-

the member during carrier travel.

2. A machine for handling sheet material 9. A machine for handling sheet mateber to clear the rocker after the material 3. In the handling of sheet material, a is flexed to then move against the material

> rial embodying a conveyor, flexing and flattening means for effecting folding of the material as resting on the conveyor, an interceptor for holding the material against travel with the conveyor during said flex- 35 ing and flattening, and a drive for the con-

of the blank and over upon the blank, there- thereon, two longitudinal folders, a transafter devices for doubling the folded blank verse folded therebetween, and clutch mechaduring its further travel, in the same general nism for connecting the folders to be driven

portion flexing and flattening means for ing a main shaft, adhesive coating rolls bringing a blank portion against the ad-thereon, two longitudinal folders, a transverse folder therebetween, and a clutch to 5. A machine for handling sheet material connect one longitudinal and the transverse

and laterally beyond which the material ex- 13. A knock-down box machine embodytends, rollers for changing the direction of ing a main shaft, adhesive coating rolls the belt, roughened feed roll sections at the thereon, two longitudinal folders, a transdirection change for engaging the sheet ma-verse folder therebetween, transmission material in taking the direction change of main shaft to connect one longitudinal and said belt, and means for acting upon said the transverse folder to said transmission mechanism, a second clutch for connecting the transmission mechanism to the other longitudinal folder, and a common 110 control for said clutches.

14. A machine for converting scored blanks into knock-down boxes embodying a feed table, a conveyor for receiving the blank as fed from the table, a guide co- 115 acting with the conveyor handled blank, a first folder for the guided traveling blank, a guide way from the conveyor, a second folder for the first folded blank portion coacting to direct the blank from the way 120 back to the conveyor, an adhesive coating delivering means past which the conveyor may shift the twice folded blank, an interceptor, a guide coacting with the blank as traveling from the coating delivering means 125 to the interceptor, flexing and flattening means for effecting a third folding of the blank at the adhesive coated region for sealber, a carrier therefor, means for moving ing as the guided blank is held by the in-65 the carrier toward the material, and a rock-terceptor, rolls for further flattening the 130

blank, said conveyor delivering the blank and said blank having two sets of flaps; to said rolls, a receiver, and a kicker for de- and means to secure the flaps of each set livering the blanks from the rolls as to said together. receiver.

10 ing thereof.

as bending the sheet material, clear of the of the other set together. lever to further flex the material to fold 22. A machine of the character described,

rectly applying adhesive to the upper side gage and partially collapse the blank on of the material, sheet material flexing means said line at one face of the blank and incoacting with the material adjacent the ad- cluding two other members extending crosshesive receiving region for causing the ma- wise of the blank and engaging the opposite and flattening means coacting with the bers engaging one of said portions and the flexed region to fold the blank on itself ad- other of said other members engaging the

rial embodying a member movable upward-portions so bent to gluing mechanism; 105 ly transversely of the plane of the material means to apply glue to one of said sets of and coacting with the material in bending flaps; and means to press the flaps having the material over toward itself, said mem-glue applied and the corresponding flaps ber being shiftable in said transverse travel of the other set together. 45 to oppose the plane of travel of the mate- 23. A machine of the character described, 110 rial, and means for shifting the member comprising means for feeding a blank in against the material in flattening the bent a desired path; means for collapsing out

against the material.

19. In a machine for making boxes, the means for advancing the blank in such col- 115 combination of means for feeding a blank lapsed form; means for applying glue to in a desired path; means for collapsing out portions of the blank when advanced in of said path those portions of the blank such collapsed form; and means for sealing which are to form the bottom of the box; the glued portions, said glue applying 55 means for feeding the blank in such col- means acting on the blank while the latter 120 lapsed form; and means for securing por- is in a path which is substantially a longitions of the blank when fed in such col- tudinal extension of the path of the blank lapsed form.

20. A machine of the character described, 24. A machine for making a box from a

21. A machine of the character described, 15. A box making machine embodying a comprising means for feeding a blank; 70 conveyor, a folding device therealong, and means for bending adjacent portions of a adjustable roughened face oppositely rotat- blank out of the path of said feed on a line ing sections laterally beyond the conveyor crosswise of the blank and into parallelism for driving the box therebetween in a fold- with each other, said portions being intermediate of the end portions of the blank 75 16. A sheet material handling machine and said blank having two sets of flaps, embodying a folding device for a portion said bending means including two members of sheet material upon itself comprising a extending crosswise of the blank, one mempair of slidable members, one mounted in ber engaging one of said portions and the 15 the other, an actuator for the members, and other member engaging the other of said 80 a lever from the actuator to shift the one portions; means to feed the blank with said member in effecting bending of a portion portions so bent to gluing mechanism; of sheet material out of its plane, said actu- means to apply glue to one of said sets of ator in further movement directly actuating flaps; and means to press the flaps having 20 the other member to shift the one member, glue applied and the corresponding flaps 85

the material back on itself. comprising means for feeding a blank; 17. A machine for handling sheet ma- means for bending adjacent portions of a 25 terial embodying a conveyor, an adhesive blank out of the path of said feed on a line 90 receiver, a lower side edge outlet for said crosswise of the blank and into parallelism receiver and including an outer roll which with each other, said portions being intercloses the outlet and contacts with the ad- mediate of the end portions of the blank hesive within the receiver, said roll being and said blank having two sets of flaps, 30 engaged by said conveyed material for di-said bending means including means to en-95 terial to positively engage the adhesive roll, face of the blank, one of said other mem- 100 jacent the adhesive coated region. other of said portions to complete said col-18. A machine for handling sheet mate- lapse; means to feed the blank with said

material portion into flattened position of said path those portions of the blank which are to form the bottom of the box;

when fed by said feeding means.

60 comprising means for feeding a blank; blank having flaps extending transversely 125 means for bending adjacent portions of a from that portion of the blank which is blank out of the path of said feed on a line to form the bottom of the box; means to crosswise of the blank and into parallelism fold said flaps over into substantial paralwith each other, said portions being inter- lelism with said portion; means to collapse 65 mediate of the end portions of the blank said portion; and means to hold said flaps 130

in folded over position until said collapsing flaps having glue applied and the corremeans acts.

bottom of the box, means for assembling the roll to break said crosswise scores. 13 folded flat through the bottom of the box.

15 bottom of the box, means for feeding the feeding the blank in such collapsed form, 80 securing other portions of the blank to- blank when fed in such collapsed form. gether while such blank is in such collapsed 32. In a machine for making boxes the

23 lapsed blank from the machine.

bottom wall and said side liners, means for such collapsed form. Ed folding some of said side walls over the In witness whereof I affix my signature. 95 other of said side walls, and securing said side walls together, and means for delivering the resultant product from the machine. 28. In a machine for making boxes the

25 combination of means for feeding a blank in a desired path, means for collapsing out of said path those portions of the blank which are to form the bottom of the box, means for positioning the blank for action 40 by said collapsing means, means for feeding the blank in such collapsed form and means for applying glue to portions of the blank

when fed in such collapsed form.

29. A machine of the character described 45 comprising means for feeding a blank, means for bending adjacent portions of a blank out of the path of said feed on a line crosswise of the blank and into parallelism with each other, said portions being intermediate of the end portions of the blank and said blank having two sets of flaps, said bending means including means to engage and partially collapse the blank on said line at one face of the blank and including two 55 other members extending crosswise of the blank and engaging the opposite face of the lank, one of said other members engaging one of said portions and the other of said other members engaging the other of said co portions to complete said collapse, means to move the first mentioned engaging means out of the path of the blank, means to feed the blank with said portions so bent to gluing mechanism, means to apply glue to one es of said sets of flaps, and means to press the

sponding flaps of the other set together.

25. In a machine for making collapsible 30. A machine of the character described bottom boxes, means for feeding a blank comprising means for collapsing a blank 5 through the machine, means for folding having crosswise scores, a roll, and means 70 portions of the blank that are to form the for bending the collapsed blank around said

box and means for delivering the box from 31. In a machine for making boxes the the machine in assembled condition and combination of means for feeding a blank in a desired path, means for squaring up 75 26. In a machine for making collapsible the blank transversely preparatory to colbottom boxes, means for feeding a blank lapsing, means for collapsing out of said through the machine, means for folding path those portions of the blank which are portions of the blank which are to form the to form the bottom of the box, means for blank in such folded form, and means for and means for securing portions of the

form and means for delivering said col- combination of means for feeding a blank in a desired path, means for squaring up 85 27. In a machine for making collapsible the blank longitudinally preparatory to colbottom boxes, means for feeding a blank lapsing, means for squaring up the blank through the machine, said blank comprising transversely preparatory to collapsing, a bottom wall, back and front walls, side means for collapsing out of said path those 25 liners, side walls attached to said back and portions of the blank which are to form the 90 front walls, means for folding said side bottom of the box, means for feeding the liners over onto said bottom wall, means blank in such collapsed form, and means for for folding the resultant blank through the securing portions of the blank when fed in

JOHN R. VAN WORMER.

100

110

105

115

120

125

130