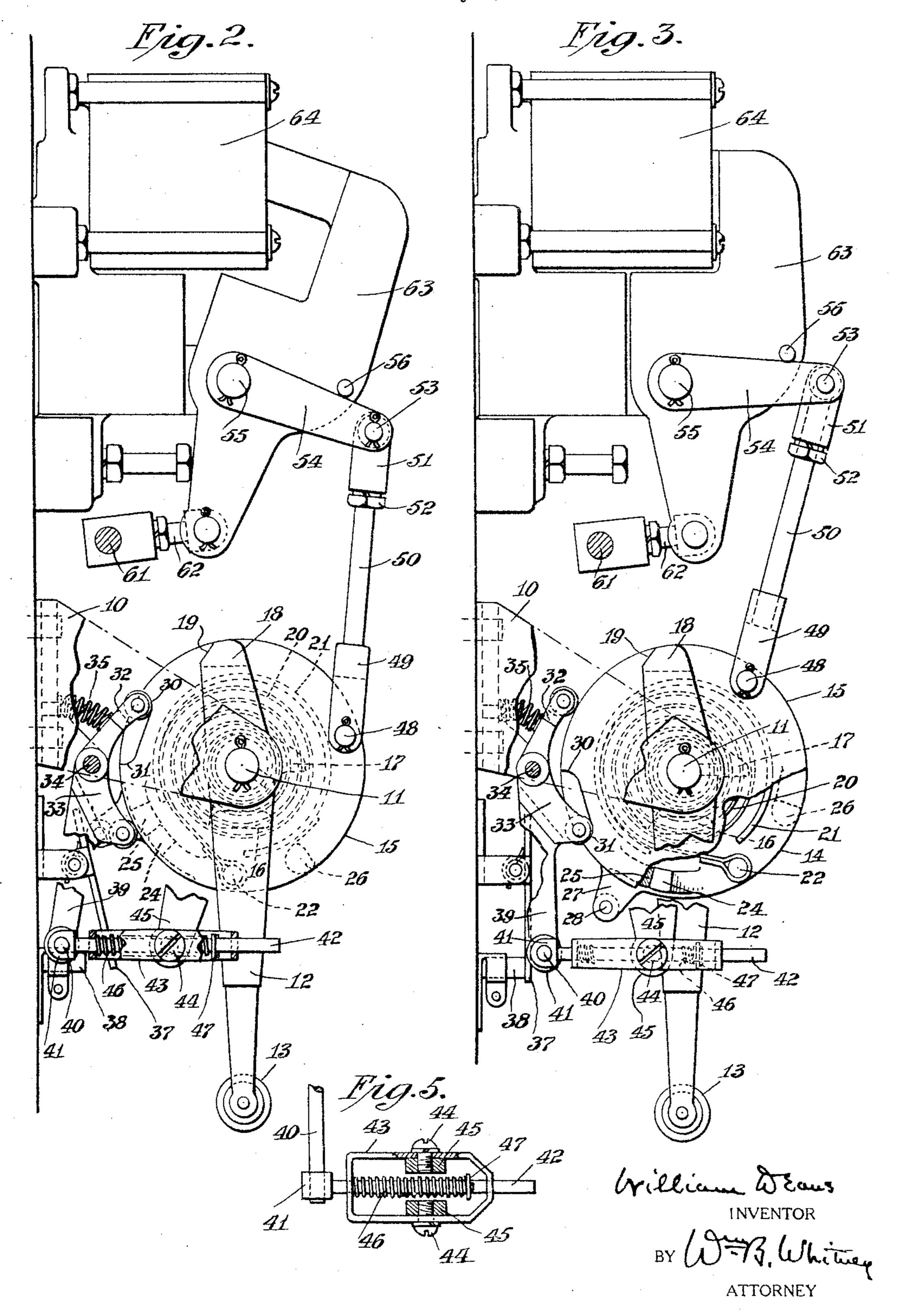

ELECTRIC SWITCH

Filed May 7, 1930


3 Sheets-Sheet 1

ELECTRIC SWITCH

Filed May 7, 1930

3 Sheets-Sheet 2

ELECTRIC SWITCH

Filed May 7, 1930

3 Sheets-Sheet 3

ATTORNEY

UNITED STATES PATENT OFFICE

WILLIAM DEANS, OF RIDGEWOOD, NEW JERSEY, ASSIGNOR TO SUNDH ELECTRIC COM-PANY, OF NEWARK, NEW JERSEY, A CCRPORATION OF NEW JERSEY

Application filed May 7, 1930. Serial No. 450,399.

This invention relates to electric switches. and, specifically, to a device for manually effecting the closure of an electric switch, of ings, in which—

either hand or automatic type.

10 movable and the stationary contacts is necessarily imperfect, and arcing and the resultant burning of the contacts occur. And it is possible for the operator to "tease" the contacts, by alternately closing and opening them, and 15 thereby cause damage to the switch and possibly injury to himself through the arcing so produced.

will be effected positively and practically in- ber of a switch of purely manual type. stantaneously without being subject to con- In the specific embodiment here shown,

trol by the operator.

ed when swung in one direction to first ten- power disk, respectively. operator to drop back to its initial idle posi-45 tion, and means for locking said member in what may be designated as its closed position, to hold the switch contacts firmly closed, and releasable manually or automatically to release said member and allow the switch con-59 tacts to spring open.

For a full understanding of the invention, reference is made to the accompanying draw-

Figure 1 is a front elevational view of one In a switch operated simply and directly practical, and the preferred, embodiment of 65 by an operator the contacts are subject to my new switch-actuating device and, by way considerable burning. With slow actuation of illustration, an automatic switch of the of the movable contact member there is a pe- across-the-line starter type with which the riod during which the contact between the device is operatively connected to thereby provide a combined automatic and hand co starter, showing the switch open and the parts of the actuating device correspondingly positioned; Fig. 2 is a side view of the switch magnet and of the actuating device. with parts in section and other parts broken 65 away, on the line 2, 2 of Fig. 1 and showing the parts in the same position in which they The object of my present invention is to are there shown; Fig. 3 is a view correspondprovide a simple and efficient manually oper- ing to Fig. 2 but showing the parts in the po-20 ated device which can be operatively con-sition they occupy when the switch has been 70 nected with the movable member or members closed; Fig. 4 is an exploded view showing, in of a switch, either a switch of purely manual perspective, parts of the actuating device; type or an automatic switch which will there- Fig. 5 is a detail, partly in elevation and by be converted into a combined manual and partly in section; and Fig. 6 is a view, simi-25 automatic switch, and by means of which the lar to Fig. 3, showing the actuating device 75 actual closing, and opening, of its contacts operatively connected with the movable mem-

the device has a bearing support 10, adapted To this end my new switch-actuating de- to be secured by bolts in position on the usual 80 vice comprises, broadly stated, a movably panel, which carries, fixed in openings in mounted spring-actuated member adapted to the outer ends of its two forwardly projecting be connected up with and to control the mov- arms, a bearing pin 11 upon which are jourable contact or contacts of a switch, means naled the arms of a forked lever 12, carrying 35 for releasabily locking said member in what an operating handle 13, and, between the 85 may be designated as its open position, to hold arms of this lever, two disks 14 and 15 which open the switch contacts, a hand lever adapt- may be described as the actuating and the

sion the actuating spring of said member and One arm of the hand lever has an out-40 then to release the locking means holding it wardly projecting stop lug 16 which in co- 90 in open position, to allow the member under operation with a shoulder 17 on the end of the actuation of the spring to close the switch the adjacent arm of the bearing support contacts, and when it is itself released by the serves to limit the forward and upward swing of the lever. The other arm of the lever is extended, at 18, to the periphery of the disk 95 15 and terminates in an inclined cam end 19 which functions in a manner presently to be described.

> The two disks are operatively connected by a coil spring 20 which, housed as shown 100

within an annular chamber formed by a back and front ends of a supporting frame flange 21 on the inner face of the actuating 43, which frame is operatively connected disk, is fixed at its looped outer end upon a with the armature of the magnet 36 by pivot pin 22 set into the inner face of the actuat- screws 44 44 set through openings in its ⁵ ing disk 14 and at its inner end is secured by sides into the sides 45 45 of the forked tail ⁷⁰ means of a pin 23 to the inwardly projecting of the armature, the push-rod and frame hub of the power disk 15. The disks are also provided on their inner faces, respectively, with oppositely disposed co-operating stop 10 lugs 24 and 25.

The actuating disk 14 has on its outer face a peripheral shoulder lug 26 against which the adjoining arm of the hand lever is adapt- usually be connected in series with the coil of ed to bear, to operatively engage and rotate the disk, and also a radially projecting ear 27 in the outer end of which is set an outwardly projecting screw pin 28 carrying an elongated roller 29, of insulating material, the function of which will later appear.

The periphery of the power disk 15 is notched, adjacent the back of the stop lug 25, to provide two oppositely disposed shoulders 30 and 31, and operatively related to these shoulders, respectively, are two oppositely disposed lock levers 32 and 33 which carry friction rollers journaled in their outer ends and are themselves journaled, the lever 33 straddling the lever 32, upon a bearing pin 34 fixed in the arms of the bearing support 10. The friction roller of the lock lever 32, which may be designated as the open position lock, is yieldingly held against the periphery of the disk by a compression spring 35, by which it will be forced into the notch the hand lever when such lever is swung forwardly and upwardly. The lock lever 33, which may be designated as the closed position lock, may in like manner be yieldingly engage the shoulder 31 when brought into position therefor, and may be forced back therefrom to unlock the disk in any suitlock lever is controlled by a no-voltage re- of magnet 64. lease magnet 36 of the clapper type, the coil The operation of the device as used with of which is in a circuit controlled by switch the automatic starter is as follows: contacts 37 and 38 in turn controlled by the insulator roller 29 carried by the actuating disk 14, through the following connections: extending arm 39 in the lower end of which

being yieldingly held in normal position relative one to the other by a spring 46 bearing at one end against the rear end of the frame and at the other end against a collar 47 75 pinned in position from the rod. A normally closed push-button switch (not shown) will the magnet 36 by means of which its circuit can be opened and the magnet de-energized at 80 any time. It will be observed that the parts are so related that when the magnet 36 is energized and draws in its armature the tail of the armature will be swung forwardly and carry with it the supporting frame 43 85 to thereby tension the spring 46 which, acting through push rod 42, rod 40 and arm 39, presses forwardly the friction roller of the lock lever, and, further, that when the armature is released on the de-energization of 50 the magnet its tail will be rocked rearwardly and carry with it the frame 43 in manner to cause the rear end of the frame to strike a hammer blow against the bearing head 41, thereby insuring the withdrawal of the lock 95 lever and the release of the disk.

For its operative connection with a switch the power disk 15 carries pivotally mounted at its periphery upon a pin 48 the forked in the disk, in position to engage the shoul- head 49 of a connecting rod 50. And where 100 der 30, whenever the disk is so rotated as to the device is to be used with an automatic bring the notch opposite it, and will be forced starter, as illustrated in Figs. 1—3, this conback out of the notch and out of engagement necting rod is connected with the armature with the shoulder, to release the disk, by the of the switch magnet by a head 51 into which inclined cam end 19 of the extended arm of the outer end of the rod is threaded and 105 adjustably locked by a nut 52, which head is pivoted upon a pin 53 between the inturned ends of two levers 54 54 pivotally mounted in turn upon the extended ends of the pivot held by a spring with its friction roller bear-pin 55 of the armature and acting on the 110 ing against the periphery of the disk and armature in one direction through pins 56 56 ready to spring into the notch therein and set into the sides thereof. The starter here shown, which is a typical across-the-line automatic starter, comprises three sets of switch contacts the movable members 60 60 115 able manner, as by means of a manual re- of which are operatively connected by bar 61 lease lever. As here shown, however, this and link 62 with the tail of the armature 63

120

Assuming that the contacts of the starter are open, the armature of its actuating magnet and the parts of the manual actuating The lock lever has at its back a downwardly device will be positioned as shown in Figs. 1 and 2. The hand lever 12 hangs idle. The 125 is fixed a laterally projecting rod 40. The power disk 15, which has been rotated in a outer end of the rod 40 extends through and clockwise direction (as seen in Fig. 2) by the is pivoted in an opening in a bearing head 41 downward thrust of the armature 63 acting carried by a push rod 42 which extends through pins 56, levers 54 and connecting through and reciprocates in openings in the rod 50 far enough to allow the friction roller 130

of lock lever 42 to spring forward into en- by force the friction roller of rock lever 43 gagement with the shoulder 30, is locked in from behind the shoulder 31, the power disk open position. The insulation roller 29 car- 15 is unlocked from its closed position, the ried by the actuating disk 14, which has also contacts of the starter snap open as usual been rotated in a clockwise direction by the when released, and the parts of the device is action of spring 20 until stopped by the engagement of stop lug 24 with a stop lug 25, tions. bears on the tail of and holds open the movable contact 37 of the switch in the circuit of 10 the no-voltage release magnet 36, so that the tail of the armature of this magnet, now deenergized, is at the rearward limit of movement, relieving the forward spring pressure a single pole switch or one of several similar on the lock lever 33. To effect the closure of and operatively connected members of a mul-15 the contacts of the starter, the hand lever tiple pole switch, by an adjustable head 51a, ED 12 is swung forwardly and upwardly, and, similar to the head 51 hereinabove described, by the engagement of an arm thereof with which is pivoted upon a pin 53^a between the the shoulder lug 26 rotates the actuating disk outer ends of two rock levers 54^a (one only 14 in a counter-clockwise direction to there-20 by wind up or tension the spring 20. The first movement of the actuating disk also straddle its fulcrum point. swings the insulation roller 29 from the tail of switch contact 37, which thereupon closes with the result that the no-voltage release inbefore described. 25 magnet 36, being now energized, draws in its — It will be seen that the closure of the switch [6] armature, rocks the tail of the armature to its forward position, and thrusts the supporting frame 33 forward to thereby tension the spring 46 and press the friction roller of 30 lock lever 33 against the periphery of the power disk 15 (see Fig. 3). Finally, as the hand lever 12 nears the limit of its upward. It is also to be observed that, by reason of movement, as determined by stop lug 16 and its unidirectional connection with the magshoulder 17, the cam end 19 engages the net armature of an automatic switch, so long 25 outer fork end of lock lever 32 and forces that lever back and out from behind the shoulder 30; whereupon the power disk 15, thus released and under the actuation of the spring 20, is immediately and rapidly rocked 40 counter-clockwise to thrust the connecting rod 50 upwards and through the levers 54 and pins 56 to rock the armature 63 and thereby close the contacts of the starter. This rotary movement of the disk 15 brings it to 45 a position in which the friction roller of lock lever 33 will spring forward and bear against the shoulder 31 and so lock the power disk in its contact closing position; and it also shifts the shoulder lug 25 forwardly 50 against shoulder lug 24, so that when the by Letters Patent, is hand lever is released and drops back to idle 1. In a device of the character described, position the actuating disk 14 is held in place and does not follow the movement of the lever. The parts are now all in the position 55 shown in Fig. 3, and there they are held un-switch, means for releasably locking said 120 til the no-voltage release magnet 36 is de- member in positions corresponding when so energized and releases its armature, either operatively connected with the switch both on a failure of current in its circuit or by the to the open and to the closed positions by its

are returned to their original starting posi-

For use in the operation of a hand switch, as illustrated in Fig. 6, the connecting rod is connected directly to the movable contact 5 member 60° of the switch, which may be either the only movable contact member of here shown) rigidly attached, as by screws to the opposite sides of the member 60°, to 55

The actuating device is the same, and its operation is substantially the same, as here-

contacts is effected solely by the action of the spring 20, after the power disk has been unlocked from its open position, and so is entirely independent of any movement of the hand lever either before or after the unlocking of the disk.

as the device is idle and the power disk locked 100 in open position the levers 54 are withdrawn from the pins 56 so that the switch can be operated automatically by its magnet in the usual manner and without interference.

While I have illustrated and described my new switch actuating device in what I now consider the best form for the practical embodiment thereof, it is to be understood that the device can be variously modified in its several details, within the scope of the up- 110 pended claims, without departing from the spirit or sacrificing the substantial advantages thereof.

What I claim as new, and desire to secure

the combination of a movably mounted member adapted to be operatively connected with the movable contact or contacts of an electric opening of the circuit by means of the push- contacts, a spring adapted to move said membutton switch hereinabove mentioned. And ber from contact-open to contact-closed powhenever the no-voltage release magnet is sition, a hand-lever adapted when moved in de-energized, its armature rocks forwardly one direction to tension said spring while by gravity, the supporting frame 43 is thrust said member is locked in contact-open posirearwardly by its tail and delivers a ham-tion and then to release the member from mer blow upon the bearing head 41 to there- the locking means and thereafter to drop 130 back to its initial starting position, and at the limit of its rearward movement adapt-

it in contact-closed position.

the combination of a member mounted to reciprocate forwardly and backwardly to a limited extent and operatively connected with the movable contacts of an electric 10 switch, locking means adapted to lock said 5. In a device of the character described, 75 member against forward movement on reaching the limit of its backward movement, locking means adapted to lock said member ited extent, means for locking said member against backward movement on reaching the against forward movement when at the lim-15 limit of its forward movement, a power it of its backward movement, a power spring 80 spring associated with and adapted to effect operatively associated with and adapted to the forward movement of said member, a effect the forward movement of said member, second member mounted to reciprocate for- manually operated means for tensioning said wardly and backwardly to a limited extent spring while the member is locked at the limit and adapted by its forward movement to of its rearward movement adapted when the 85 tension said spring while said first member spring has been suitably tensioned to release is locked against forward movement, manu-said member from said locking means, means ally-actuated means operative to effect the controlled by a no-voltage release magnet in forward movement of said second member a circuit controlled by said manually operthrough a one-way connection therewith and ated means for locking said member at the 90 at the limit of such movement to effect the limit of its forward movement adapted to release of said first member from the means locking it against forward movement, and means independent of said manually-actuat- necting said member with the movable coned means for releasing said first member tact or contacts of an electric switch. from the means locking it against backward movement.

reaching the limit of its backward movement, a power spring associated with and adapted to effect the forward movement of said member, manually operated means for tensioning said spring while said member is locked at the limit of its backward movement adapted when the spring has been suitably tensioned to effect the release of said member from said locking means, means for releasably locking co power actuation.

limit of its backward movement, a power spring operatively associated with and adaptmember, manually operated means for ten-

means independent of the hand-lever for re- ed when the spring has been suitably tenleasing the member from the means locking sioned to release said member from said locking means, means controllable by a no-volt-2. In a device of the character described, age release magnet for releasably locking said 70 member at the limit of its forward movement, and means for operatively connecting said member with the movable contact or contacts of an electric switch.

the combination of a member mounted to reciprocate forwardly and backwardly to a limeffect the release of said locking means by a hammer blow, and means for operatively con-

6. In a device of the character described, the combination of an actuating and a power 3. In a device of the character described, disk mounted side by side to rock upon a comthe combination of a member mounted to re- mon axis, means comprising a rod pivotally ciprocate forwardly and backwardly to a lim- attached to the periphery of the power disk 100 ited extent, locking means adapted to lock for operatively connecting said disk with said member against forward movement on the movable contact or contacts of an electric switch, means for locking the power disk against forward rotation at a position corresponding to the open position of the switch 105 contacts when the disk is operatively connected therewith, a coil power spring attached at one end to the actuating disk and at the other end to the power disk in manner when tensioned by the forward rotation of the actuat- 110 ing disk to rock the power disk forwardly to said member at the limit of its forward move- effect the closure of the switch contacts when ment when moved thereto by the action of said said power disk is operatively connected spring, and means for effecting an operative therewith, a hand lever pivotally mounted on connection of said member with the movable the axis of the actuating disk and adapted 115 contacts of a power-actuated switch through through a one-way connection therewith to a one-way connection with the reciprocatory rock the said disk forwardly to tension the power element, whereby the switch can be ac- power spring while the power disk is locked in tuated manually without interfering with its its open position and when the spring has been suitably tensioned to release the power disk 120 4. In a device of the character described, from its said locking means, and means for the combination of a member mounted to re- releasably locking the power disk at its forciprocate forwardly and backwardly to a ward position, to hold the switch contacts limited extent, means for locking said mem- closed when said disk is operatively connectber against forward movement when at the ed therewith, when moved to such position by 125 said spring.

7. In combination, an electromagnetically ed to effect the forward movement of said controlled electric switch, a power disk rotatably mounted and connected with the arsioning said spring while the member is locked mature of the switch magnet by a one-way 130

connection operative to move said armature connection operative to move said armature to closed position to thereby close the switch to closed position to thereby close the switch when the power disk is rocked in a forward when the power disk is rocked in a forward direction and to return the power disk to its direction and to return the power disk to its starting position when released to allow the starting position when released to allow the 70 armature and switch to open, means for lock- armature and switch to open, means for locking the power disk at its starting position ing the power disk at its starting position against forward rotation, an actuating disk mounted at one side of the power disk to ro-10 tate coaxially thereof, a power spring operatively connected with the two disks in manner to be tensioned by the forward rotation of the actuating disk when the power disk is locked in starting position and when un-15 locked therefrom to rock the power disk forwardly to move said armature to closed position, manually operated means for rocking the actuating disk forwardly through a oneway connection therewith to tension the pow-20 er spring and adapted when said spring has been suitably tensioned to release the power disk from the locking means holding it at its starting position, and means for releasably locking the power disk in its forward 25 armature-closed position when rocked thereto by the power spring to hold said armature closed.

8. In combination, an electromagnetically controlled electric switch, a power disk ro-30 tatably mounted and connected with the armature of the switch magnet by a one-way connection operative to move said armature to closed position to thereby close the switch when the power disk is rocked in a forward 35 direction and to return the power disk to its starting position when released to allow the armature and switch to open, means for locking the power disk at its starting position against forward rotation, an actuating disk 40 mounted at one side of the power disk to rotate coaxially thereof, a power spring operatively connected with the two disks in manner to be tensioned by the forward rotation of the actuating disk when the power disk 45 is locked in starting position and when unlocked therefrom to rock the power disk forwardly to move said armature to closed position, manually operated means for rocking the actuating disk forwardly through a oneway connection therewith to tension the power spring and adapted when said spring has been suitably tensioned to release the power disk from the locking means holding it at its starting position, means for locking the 55 power disk in its forward armature-closed position when rocked thereto by the power spring to hold said armature closed, and means including a no-voltage release magnet controlled by the rocking of the actuating 60 disk for controlling said forward position locking means.

9. In combination, an electromagnetically controlled electric switch, a power disk rotatably mounted and connected with the ar-65 mature of the switch magnet by a one-way

against forward rotation, an actuating disk mounted at one side of the power disk to rotate coaxially thereof, a power spring op- 75 eratively connected with the two disks in manner to be tensioned by the forward rotation of the actuating disk when the power disk is locked in starting position and when unlocked therefrom to rock the power disk 80 forwardly to move said armature to closed position, manually operated means for rocking the actuating disk forwardly through a one-way connection therewith to tension the power spring and adapted when said spring 85 has been suitably tensioned to release the power disk from the locking means holding it at its starting position, means for locking the power disk in its forward armature-closed position when rocked thereto by the power 90 spring to hold said armature closed, and means including a no-voltage release magnet in a circuit controlled by the rocking of the actuating disk for controlling said forwardposition locking means in manner to effect the 95 withdrawal thereof by a hammer below.

10. In a device of the character described, the combination of an electromagnetically controlled electric switch and manual means for effecting a quick closure of the switch in- 100 cluding a one-way operative connection with. the armature of the switch magnet, whereby the switch can be operated automatically by its magnet without interference from the said manual means when not in use, and means 105 for effecting through such connections a quick closure of the switch contacts.

110

WILLIAM DEANS.

115

120