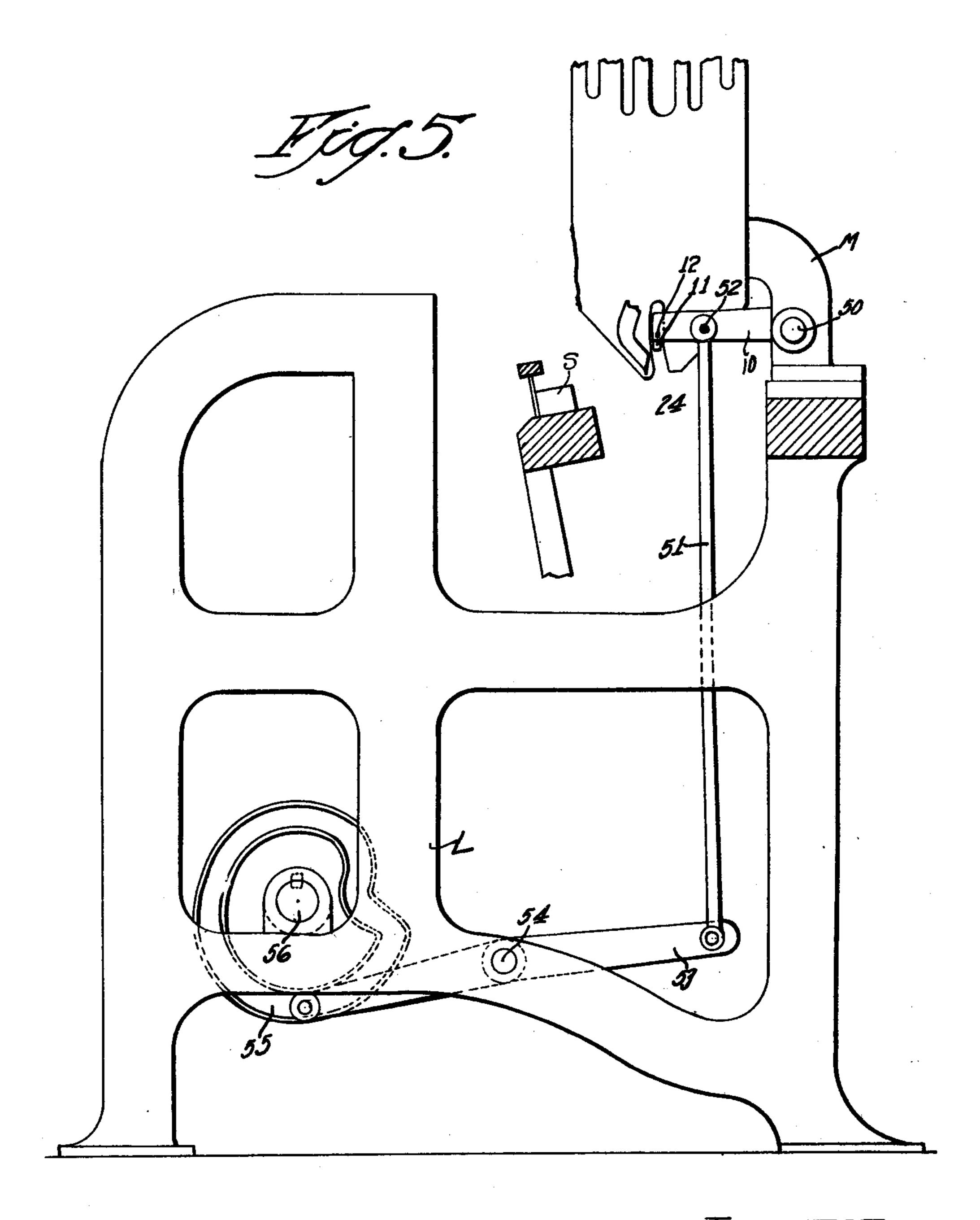

R. G. TURNER

WEFT DETECTOR IN REGULARLY MOVING TRANSFERRER



R. G. TURNER

WEFT DETECTOR IN REGULARLY MOVING TRANSFERRER

Filed July 3, 1926

2 Sheets-Sheet 2

TORNER TORNER ATTORNEYS

UNITED STATES PATENT OFFICE.

RICHARD G. TURNER, OF WORCESTER, MASSACHUSETTS, ASSIGNOR TO CROMPTON & KNOWLES LOOM WORKS, OF WORCESTER, MASSACHUSETTS, A CORPORATION OF MASSACHUSETTS.

WEFT DETECTOR IN REGULARLY-MOVING TRANSFERRER.

Application filed July 3, 1926. Serial No. 120,491.

This invention relates to weft detectors for ertia of the moving parts to the end that the 55 looms and it is the principal object of the in- dev vention to provide a so-called side slip feeler on the weft at different rates of speed. which derives its movement from the inertia 5 of the detector when there is a sudden change in the force which acts to move the detector toward the surface to be detected.

In my co-pending application Ser. No. and set forth in the claims. 120,490 I have shown a weft detector of the In the accompanying drawings wherein I 10 caliper type dependent upon the inertia have shown a convenient embodiment of my thereof for the tendency to give an indication, said detector being mounted in a reg-15 transferrer arm is moved on detecting beats a full bobbin, of the loom toward the surface to be de- Fig. 2 is a view similar to Fig. 1 but with 70 of the energy stored in it. A detector of that insufficient supply of weft, 20 type is not capable of detecting down to such Fig. 3 is a top plan view looking in the fine limits as is possible with the side slip direction of arrow 3, Fig. 1, feeler and it is an important object of my invention to apply the principle set forth in line 4-4 of Fig. 3, and the aforesaid application to a detector having a side slipping yarn engaging element.

mount the yarn engaging element on a lever that I have provided a transferrer arm 10 raised position by a spring which is overcome and parallel to the axis of the shuttle and by the inertia of the moving lever and detec-bobbin. A plunger 12 is slidably mounted 35 upward movement immediately after con- transferrer arm by screw 16. The plunger contact of the detector with the yarn.

Because of the varying types of cloth plunger under the action of spring 13. which a loom is called upon to weave it is A latch 18 is pivoted as at 19 to the transnecessary from time to time to adjust the ferrer arm and moves in a vertical slot 20 sirable to have the detector strike the yarn the latch in a right hand direction around its substantially the same blow for all speeds of pivot so that a depending finger 23 of the 100 the loom, but this condition could not prevail latch will normally occupy the position unless a change were made with each differ- shown in Fig. 1. ent speed to lessen or increase the resistance offered to the inertia of the moving parts so indicated at 24 which is pivoted as at 25 to a

device may operate with uniform pressure

With these and other objects in view which will appear as the description proceeds, my invention resides in the combination and arrangement of parts hereinafter described

invention,

Fig. 1 is a rear elevation of a transferrer ularly movable transferrer of the type set arm having my improved detector applied forth in patent to Ryon No. 1,372,316. The thereto and showing the same in contact with

tected and when arrested in its motion the the detector moved to indicating position detector continues toward the yarn because when in contact with a bobbin having an

Fig. 4 is an enlarged vertical section on

Fig. 5 is a side elevation showing operating mechanism.

It is a further object of the invention to Referring to the drawings it will be seen 40 pivoted on the transferrer arm and held in having an extended portion 11 lying above tor, said spring, however, cooperating with in a portion of the transferrer arm and has 83 a surface of the lever to cause a deformation a shoulder 13 which receives the inner thrust of the spring in addition to its expansion for of a compression spring 14 the outer end of the purpose of giving the detector a quick which bears against a clip 15 held to the tacting with the yarn to lessen the time of 12 is provided with a head 17 which engages 100 the clip to limit inward movement of the

speed of the same with regard to the number extending through the arm, said latch having us of picks laid per minute. The energy stored a hook 21 which normally engages the head in a moving mass depends among other 17 to hold the parts in the position shown in things upon its rate of motion, and it is de- Fig. 1. A spring 22 tends normally to move

The detecting unit comprises an element that the net effective inertia would be the lever 26 moving in the slot 20 about a stud 27 was same for all speeds. It is accordingly a fur- extending across said slot and secured to the ther object of my invention to provide ready transferrer arm. A boss 28 on the lever 26 means to vary the resistance offered the in-serves to stop a set screw 29 passing through

an extension 30 of the detector to limit right arm to limit upward movement of the lever hand motion of the detector about its pivot. 26 under action of the spring 40. A tension spring 31 is connected to the ex- As previously stated this detector is of

and the regular downward motion of the as at 52. The lower end of said rod is con-80 in moving the detector toward the yarn. shown in Figs. 1 and 13 of the Ryon patent. 85 during the time that the lay completes its the loom. produce wearing of the yarn under the transferrer arm is given a quick downward 90 detector to an objectionable degree. It is motion every detecting beat of the loom tion to overcome this wearing and the com- ir its downward motion as it approaches 30 tector is in contact with the yarn by de- the lever 26 is held in raised position by the 95 detecting movement, such movement not sudden stop at the bottom of its stroke the 35 starting until the transferrer has reached lever 26 because of its inertia continues to 100 its extreme downward position which usually move downwardly, being resisted in this coincides with the extreme forward posi- motion by spring 40. When the detector enthe yarn when the latter is practically at one side of a vertical line passing through rest and the objectionable relative motion of the pivot 25. If at this time sufficient yaru 105 the varn forwardly under the detector is is present for continued weaving the teeth avoided. By unit I mean that portion of of the detector will be embedded in the the structure supported by the transferrer yarn and side slipping movement along the 45 the bobbin when the transferrer arm comes if any relative angular motion of the detector 100 to rest.

a tension spring 40 one end of which is ent to resist sliding movement of the detector caught under a screw 41 secured in the lever as the latter reaches the downward limit of 50 26 preferably above the stud 27 and the its motion it will slide along the bare bobbin 116 other end of said spring is received by a until it engages the depending finger 23, furscrew 42 threaded in a lug 43 preferably ther movement of the detector after contact cast integral with the transferrer arm, said with said finger serving to give the latch screw being retained in adjusted position 18 a counter-clockwise movement against by a lock nut 44. The screw 42 permits the action of spring 22 sufficient to lift the izer adjustment of the tension of the spring 40 hook 21 from locking engagement with the and hence affords means to vary the re- head 17. Spring 14 will immediately move sistance offered the inertia of the moving the plunger 12 from the position indicated parts.

return movement of the detectors I form le- corresponds to an indication of weft exhaus ver 26 with a short extension 45 having an tion and a setting of the loom for a change upwardly curved surface 46 along which a in its operation. portion of the spring 40 extends, said exten- As shown in Figs. 2 and 4 when the design sion engaging a portion of the transferrer tector is in indicating position the left hand the spring approximation of the transferrer tector is in indicating position the left hand the spring approximation of the transferrer tector is in indicating position the left hand the spring approximation of the transferrer tector is in indicating position the left hand the spring approximation of the transferrer tector is in indicating position the left hand the spring approximation of the transferrer tector is in indicating position the left hand the spring approximation of the transferrer tector is in indicating position the left hand the spring approximation of the transferrer tector is in indicating position the left hand the spring approximation of the transferrer tector is in indicating position the left hand the spring approximation that the spring approximation is approximation of the transferrer tector is in indicating position that the spring approximation is approximation of the spring approximation of the spring approximation approximation of the spring approximation app

tension 30 and has the straightened part the type shown in my co-pending applica-5 thereof passed through an ear 32 and held tion Ser. No. 120,490 and in patent to Ryon 70 therein in adjusted position by a set screw No. 1,372,316 wherein the transferrer arm is 33. The matter thus far described is sub-given regular movements to present the destantially the same as that set forth in sev-tector to the surface to be detected on altereral co-pending applications, such for in- nate beats of the loom when the active stance, as Ser. No. 78,181. shuttle is under the magazine. The mecha- 75 As heretofore constructed the lever 26 has nism for effecting this movement is shown in been extended to the right of its pivot to Fig. 5 wherein the magazine M has a transengage a yielding stop carried by a fixed ferrer arm 10 pivoted thereto as at 50 and part of the loom such as the magazine frame operatively connected to an upright rod 51 transferrer arm has brought such extended nected to a cam lever 53 pivoted as at 54 to end of the lever periodically into engage- the loom frame L. The rear end of the ment with the stop so that continued down-lever is operatively connected to the cam 55 ward motion of the transferrer arm resulted which may be substantially the same as With such a construction it has been found Said cam is secured to the bottom shaft 56 that the detector is in contact with the weft and completes its revolution in two picks of

forward motion and the result of this is to In the normal operation of the loom the an important feature of my present inven- by cam 55, the transferrer arm being arrested paratively long time during which the de- the bobbin. During this downward motion pending upon the inertia of the downwardly spring 40 and the comparatively light spring moving detector unit composed as shown 31 holds the stop screw 29 against the lug herein of element 24 and lever 26 to give the 28. As the transferrer arm is brought to a tion of the lay, so that the detector engages gages the surface to be detected it will be to arm which is movable by its inertia toward bobbin will be resisted and there will be little and the supporting lever 26. If, on the In carrying out my invention I provide other hand, there is insufficient yarn presin Fig. 1 to that shown in Fig. 2, a condition In order to provide for the quick upward which as set forth in the aforesaid patent 125

1,683,214

end of the spring 40 will be bent in the form ferrer arm, the carrier being normally held of a slight curve by contact with the surface away from the surface to be detected and 46 and this deformation of the spring in ad- being moved toward the surface with the dition to the expansion thereof as brought transferrer arm, the detector upon the ar-3 about by the downward motion of the de- resting of movement of the transferrer arm 70 tector and lever 26 places said spring under toward the surface being acted upon solely an additional strain, the effect of which is by the inertia of said detector to move toto raise the lever and detector very quickly ward the surface and tending to have an after the inertia of the parts has been spent. indicating movement. I find in actual practice that a detector made 3. In a weft detector for looms having a 75 as set forth herein will leave less waste on surface to be detected, a side slipping weft the bobbin than is the case with previously detector movable along the surface to be known detectors mounted on transferrer detected to give an indication of weft exarms.

necessary to give the detector its indicating detector being normally held away from the 85 the axis of the spring 40 when the same is inertia force thereof to move toward the surwrapped around the surface 46. Also, when a change in the rate of running of the loom toward the surface. and hence the rate at which the transferrer arm descends has been made a corresponding adjustment can be made in the tension of the spring 40 by the screw 42.

Having thus described my invention, it will be apparent that changes and modifications may be made therein by those skilled in the art without departing from the spirit face, a lever pivoted to the transferrer arm, and scope of the invention, and I do not a pivotal connection between the lever and 100 wish to be limited to the details herein dis- the detector, a spring connected to the lever

closed but what I claim is:

surface to be detected, a side slipping weft the surface, said detector and lever moving detector movable along the surface to be detected to give an indication of weft exhaustion, a carrier for the detector with regard to which the latter is movable angularly, a supporting structure on which the carrier is mounted and with respect to which the same is movable, means to move the supporting structure toward the surface to be detected and to arrest movement thereof toward the surface, and resilient means to hold the carrier in normal position away from the surface, the carrier and detector being moved toward the surface by the structure and overcoming the resilient means solely by the inertia force of said carrier and detector and tending to have an indicating movement the greater part of the weight of the lever

surface to be detected, a side slipping west a pivotal connection between the lever and detector movable along the surface to be the detector, a spring connected to the lever detected to give an indication of weft ex- and the transferrer arm and tending norhaustion, a transferrer arm, means to move mally to hold the lever and arm away from the transferrer arm toward the surface to be the surface, said detector and lever moving detected and to arrest movement thereof as toward the surface with the transferrer arm the same approaches the surface, a carrier for and acting solely by reason of the inertia

haustion, a transferrer arm, means to move From the foregoing it will be seen that I the transferrer arm toward the surface to be 80 have provided a weft detector of the side slip detected and to arrest such motion as the type mounted in the transferrer arm of the arm approaches the surface, a lever pivoted loom and that I depend upon the inertia of thereto, and a pivotal connection between a freely movable part to supply the force the detector and the lever, said lever and movement. Furthermore, it will be seen surface to be detected and being movable that the lever 26 will be given a quick up- toward said surface by the transferrer arm, ward movement due to the deformation of the lever and detector tending solely by the face as the transferrer arm ceases its motion ""

4. In a weft detector for looms having a surface to be detected, a side slipping weft detector movable along the surface to be detected to give an indication of weft exhaustion, a transferrer arm movable toward the surface to be detected and arrested in such motion as the same approaches the surand the transferrer arm and tending nor-1. In a weft detector for looms having a mally to hold the lever and arm away from toward the surface with the transferrer arm 105 and acting solely by reason of the inertia thereof against the spring to move toward the surface to be detected and tending to have an indicating movement when motion of the transferrer arm toward the surface is arrested.

5. In a weft detector for looms having a surface to be detected, a side slipping weft detector movable along the surface to be detected to give an indication of weft exhaustion, a transferrer arm movable toward the surface to be detected and arrested in such motion as the same approaches the surface, a lever pivoted to the transferrer arm. when the motion of the structure is arrested. lying to one side of the pivotal connection 2. In a weft detector for looms having a between the lever and the transferrer arm, the detector movably mounted on the trans- thereof against the spring to move toward 130

offered by the spring to the movement of the transferrer arm toward the surface and to lever and detector.

surface to be detected, a side slipping weft to the movement of the transferrer arm actdetector movable along the surface to be ing to move the detector toward the surface 65 10 detected to give an indication of weft ex- and along the latter at substantial exhaushaustion, a transferrer arm movable toward tion of weft, the inertia energy being the the surface to be detected and arrested in only force acting on said detector tending such motion as the same approaches the sur- to move the same toward and along the face, a lever pivoted to the transferrer arm, surface to be detected. the greater part of the weight of the lever 9. In a weft detector for looms having a 20 and the transferrer arm and tending nor- a support for the unit movable toward the mally to hold the lever and arm away from surface to be detected, the said surface mov-25 acting against the spring to move toward support toward the surface and to bring 30 one direction to resist the inertia of the lever surface and support come to rest, the movelever to give said spring an additional def- inertia force of the unit. ormation whereby said spring will be ad- 10. In a weft detector for looms having a ditionally effective to restore the lever and surface to be detected, a side slipping weft 90 detector to normal position after the inertia detecting element, a carrier for the detectof said parts has been spent.

surface to be detected, a side slipping de- the surface being detected to indicate subtector unit, a support for the unit movable stantial exhaustion of weft, means to move 95 toward the surface to be detected, said unit the support toward the surface to be dehaving a portion movable along and in con-tected and to cause a sudden arresting of tact with the surface at exhaustion of weft, such motion, resilient means to hold said means to move the support toward the sur- carrier in raised position relatively to the face to be detected and to cause a sudden support, the carrier to be moved toward the 100 arresting of such motion, the detecting unit surface to be detected by the inertia thereof being movable relatively to the support to- upon sudden arresting of the support, a secward the surface to be detected solely by the ond resilient means to hold the element norinertia energy stored in said unit due to the mally in raised position with respect to the motion of the support, the inertia energy support, said second resilient means tending too moving the unit to cause indication of weft to cause the detecting element to assume its

8. In a weft detector for looms having a exhaustion. surface to be detected, a detector element of the side slipping type movable along and in contact with the surface at substantial weft depletion to indicate weft exhaustion.

the surface to be detected and tending to a carrier for said element with respect to have an indicating movement when motion which the element is movable, a transferrer of the transferrer arm toward the surface arm on which the carrier is movably mountis arrested, and means to vary the resistance ed, and means to cause movement of the 60 arrest such motion abruptly, the inertia en-6. In a weft detector for looms having a ergy stored in the element and lever due

lying to one side of the pivotal connection surface to be detected, a detector unit of the between the lever and the transferrer arm, side slipping type having a portion movable a pivotal connection between the lever and along and in contact with the surface to be the detector, a spring connected to the lever detected at substantial exhaustion of weft, 75 the surface, said detector and lever moving ing toward and from the support and being toward the surface with the transferrer arm momentarily at rest when in its nearest posiand tending by reason of the inertia thereof tion to the support, and means to move the 80 the surface to be detected and tending to said support to rest abruptly when the surhave an indicating movement when motion face is momentarily at rest, the inertia enof the transferrer arm toward the surface ergy of the unit acting to move the same is arrested, said spring being deformed in toward the surface to be detected when the 85 and detector, and means carried by the ment of the unit being caused solely by the

ing element, a support for the carrier, said 7. In a weft detector for looms having a element movable along and in contact with exhaustion when the weft is depleted. normal position after indication of weft

> In testimony whereof I have hereunto affixed my signature.

> > RICHARD G. TURNER.