

G. A. BROWN

OIL DISPENSING APPARATUS

G. A. BROWN

OIL DISPENSING APPARATUS

UNITED STATES PATENT OFFICE.

GEORGE A. BROWN, OF ST. PAUL, MINNESOTA.

OIL-DISPENSING APPARATUS.

Application filed September 3, 1927. Serial No. 217,405.

Objects of the invention are to provide a 5 tank in which no drain faucets, valves or pipes, beneath the tank, are used; to provide siphon means in lieu of such drain pipes and faucets for emptying the tank; to provide means for preventing such overflow in the o delivery line of the tank as might create a fire hazard; to provide means for equalizing pressures between the siphon tube and tank, either as the result of expansion of the liquid when heated or when air pressure is 5 applied to obtain siphon action; to provide a tank having a plurality of compartments; to provide means accessible from one end of the tank for separately operating the siphon means in each compartment; to arrange such means to be locked by the same device; to provide means for creating a pressure within the tank to initiate siphon action; to provide a pressure relief valve; to provide an air intake valve which opens inwardly admitting is air and permitting out-flow of the liquid; to provide means whereby the tank can be completely emptied; and generally to provide a reinforced rigid structure which will withstand all the strains to which the device is put in use.

Other objects are to provide means whereby no leakage from the tank can take place under any ordinary conditions of use, or when the tank is overturned. This is a valuable fea-5 ture of the invention because leakage under almost every condition is a fire hazard.

Features of the invention include all the constructions, combinations and sub-combinations of the elements, including means o whereby the device is automatically conditioned for siphon action upon opening of valves in the delivery line, along with mecha-sleeve, is provided with trunnions 18 with nism for operating these two valves simul- which are engaged the corresponding termitaneously.

invention will be set forth in the description at 21, in this instance to a bracket depending

o through a plural compartment tank, each bore and is threaded to receive adjustable 105 compartment being equipped with one of the stops. The stop 27 engages the threads devices claimed herein;

the compartments;

This invention relates to improvements in truck tanks principally used for delivering gasoline to service stations.

the valve and valve operating mechanisms viewed in a manner similar to that of Figure 2, and showing the inner valve open;

Figure 4 is a view showing the inner valve closed, and showing the pivots of the links 60

vertically aligned; and

Figure 5 is a plan section on line 5—5 of

Figure 4.

The numeral 1 designates a tank which in this instance is divided by partitions into 65 compartments. The bottom of each compartment has a drain sump 5 covered by a suit able strainer member 6.

Inasmuch as the mechanisms for all tanks are the same only one mechanism will be de-

scribed in detail.

In order to dispense with the use of faucets, and of piping beneath the tank, and to generally reduce leakage to the minimum, a siphon device is provided by means of which 75 oil is delivered upwardly and outwardly from the top of the tank, into the service or delivery pipe, by siphon action, alone, except that this action is initiated by tank pressure. To this end, I provide a tube 10 vertically ar- 80 ranged and having its lower end passing through strainer member 6 and arranged in the drain sump 5. The upper end of this pipe is threaded and the threads are engaged with a coupling 12 as a valve stop. With 85 the coupling 12 is engaged a nipple 13 in turn threaded into a collar 14 of the tank, and having openings 15 or having a single port.

The series of radially arranged openings 15 90 function to equalize pressures between tank and pipe. To obtain siphon action, it is necessary to close the openings 15 in some manner, and for this purpose I provide a weighted valve 16, which is limited in open position, 95 by the coupling 12. This valve, as a collar or nal forks 19 of the arms of the lever 20. The Objects, features and advantages of the lever 20 is suitably pivoted intermediately 100 of the drawings forming a part of this ap- from the top inner side of the tank. The plication and in said drawings: lever, at that side of its pivot opposite the Figure 1 is a vertical longitudinal section valve 16, is bored, and a link 25 traverses the above the lever, and a stop 30 engages the Figure 2 is a cross section through one of threads therebelow. The shank of the link loosely traverses the lever 20. The link 25 Figure 3 is an enlarged detail section of passes through a suitable bushing 32, and has 110

its upper end pivotally connected as at 26 to a link 34 which in turn is pivotally connected as at 35 with a crank arm 36 in turn secured to a tubular crank operating element 38 which s is suitably journaled in brackets and extends rearwardly of the tank and is provided with receive the arm 39. For each compartment a the invention includes means by which if the 7 being designated 41. Both are tubular and provided with a projection 37 which engages s pass through one another, the element 41 being of the smaller diameter and passing through and being rotatably supported by the element 38. An operating lever for the 20 element 41 is indicated at 50. In this way 25 allel relation and are locked by opposingly the pivot 35 in a direction towards the right 5 bracket 40 and brought together and padlocked as at 53, thus securing the levers in inoperative position, either against accidental 30 displacement or tampering.

A lever 60 is mounted on and movable by the tubular element 38, and this lever 60 is connected by a link 61 with the operating handle or lever 62 of a quick opening throttle 35 valve, the casing of which is indicated at 65, gravity will act, when the tank is in upright 1 and which is connected at its lower side to position, to open the inner and close the outer nipple 66, and is thus in communication with valve and, on the other hand, when the tank tube 10. The handle or lever 62 passes is upside down, or in any position in which through suitable bushings in the casing and gravity can act on the inner valve, the inner 10 has at its opposite end secured a valve mem- valve will be closed and the outer valve 1 ber 64 which carries the double wedge disks, opened. Therefore, when the tank is in upengaging with the tapered seats. This is a right position and the outer valve is closed preferred form of valve but its construction by hand, the valve which controls the vent forms no part of the present invention. It openings in the siphon tube will be exposed 45 simply controls outlet from the tube 10. This or opened, in this instance by the downward 1 valve is connected on that side opposite the movement of the valve. On the other hand. nipple 14 with a nipple 67 as part of a stand- if when the tank is in upright position, on ard swivel elbow generally indicated at 68, a vehicle and if the operator should fail to the construction of this elbow forms no part close the outer valve, the toggle lock will be of the present invention. The delivery hose broken by the natural joggling motion of the 1

of this elbow or coupling. plugs are arranged diametrically in pairs. construction is thus provided which will pre-Three of the plugs being arranged in the sides went emptying of the tank when it is over 1: of each tank compartment proper and the turned; will prevent leaking of the tank fourth being arranged in the bottom of the through the delivery pipe at all times; and drain sump. A safety blow-off valve 72 is will cause the tank to be automatically vented provided at the top of each compartment and through the delivery pipes 10, if overturned. an air inlet check valve 73 is also provided. The tanks of the present type are ordinarily 1: Fluid under compression is introduced into mounted upon a truck chassis, Figure 2 shows each compartment through a valve 75. The a view of one way of mounting. Inasmuch construction of this valve 75 is not shown. as the mounting forms no part of the inven-It may be of any preferred type, such as a tion, the elements are not described in deas tire valve. A filler opening 76 for each com-tail.

partment is closed by a suitable cap 77, and a strainer member 78 surrounds the filler open-

ing at the inner side.

The present device is also adapted to function to automatically open the outer valve 7 when the tank is over-turned, and lies in an operating lever 39. The rear end of the an upside down position, or in any position element 38 is supported by a bracket 40 and in which gravity can act on the sleeve or extends rearwardly through this bracket to inner valve. Another important feature of valve operating element similar to 38 is pro- outer valve is inadvertently left open, it will vided. Only two compartments have been be automatically closed as the result of moillustrated and, therefore, only two valve op- tions of the vehicle upon which the tank is erating elements have been shown, the second mounted. For this purpose, the lever 36 is laterally against the link 34 to limit movement of the links in a direction toward the left as viewed in Figure 4. The element 36 engages in such a manner that when the outer valve is completely open the axis of 8 all the operating levers are accessible from rotation of the elements 38 and 41, the axis one position. The levers, when in their in- of the pivot 35, and axis of the pivot 26, will operative position, which corresponds to a be vertically aligned. It will thus be seen closed position of the outer valve, lie in par- that any force acting to slightly disalign related arms 52 hinged at one end to the as viewed in Figure 4, will permit the weighted sleeve valve to act in a manner to continue this disalignment toward the right, and eventually cause the links to assume the position shown in Figure 3 in which the outer valve 9 is closed. Therefore, the outer valve inadvertently left open cannot long remain so, after the vehicle is in motion.

The device thus provides means whereby or pipe is connected directly to the free end vehicle with the result that the weighted inner valve will fall and cause the outer valve Fusible plugs 70 fill vent openings. The to close. What may be termed a fool-proof

Operation.

5 withdraw some liquid. We first create a pressure in a compartment by introduction of compressed air through the coupling 75. The pressure is equalized within the tank and tube 10, by means of the ports 15. One of the 10 levers, like 39, is operated to cause rotation

It will be noted that when the outer valve 10, takes place. is fully open, the axis of the tubular elements 38 and 41, the axis of the pivot 35, and the 20 axis of the pivot 26 are aligned vertically. Furthermore, it will be noted that the stop 37 engages the link 34 so that this alignment is always obtained when the outer valve is in its wide open position or when the sleeve 25 valve is in fully closed position. The mechanism is thus positioned so that if the operator fails to close the outer valve, the natural vibrational motion of the vehicle will cause one of the pivotal points to become disaligned, 30 that is the point 35, and when this happens, the weight of the sleeve valve will operate to positively automatically close the outer valve.

the discharge through the tube at the outer side of the tank, a valve for closing said port, and connections between the valves whereby gravity action of the inner valve to open the port will cause the outer valve to close.

most, a valve for controlling the discharge in the tank adjacent that side of the tank through the tube at the outer side of the which is normally uppermost, a valve for tank, a valve reciprocable upon the tube to controlling discharge through the tube at the 60 close said port, and connections between the outer side of the tank, an inner gravity oper-

the tank, and having a port within the tank tank is relieved.

and above the intake end of the tube, a valve 65 for controlling the discharge through the tube at the outer side of the tank, a valve to filled, let it be supposed that we wish to close the port, and connections between the valve to open the port will cause the outer 70

5. A tank having a siphon tube traversing valve to close. the tank to deliver from its top, said tube having a port within and adjacent the upper side of the tank, a valve at the outer side of the 75 41, and open the outer valve 65. This causes tank for controlling flow through the tube, the inner or sleeve valve to close the equaliz- a valve adapted to open or close the port, a ing ports 15. Siphon action is initiated and lever for translating the inner valve, a link discharge from the tank, through the tube connected with the lever and sealingly slidable in the tank wall and projecting at the 80 outer side, a valve operating member having links connecting it with said first mentioned link and with said outer valve, the arrangement being such that when the outer valve is manually moved to open position, the inner 85 valve closes the port and the arrangement further being such that the weight of the inner valve opens the port and automatically

6. A tank having as the sole means for 90 closes the outer valve. emptying it, a siphon tube having its intake end adjacent the bottom of the tank and having its delivery end projecting through and above the tank, said pipe having a port within the tank adjacent that side of the tank 95 which is normally uppermost, a valve for controlling discharge through the tube at the 1. A tank having a siphon tube having its outer side of the tank, an inner gravity oper-35 delivery end projecting through the tank, and able valve adapted to close the port, and conhaving a port within the tank and above the nections between the valve, such that the 100 intake end of the tube, a valve for controlling and such that when the tank is upturned the gravity action of the inner valve to close the port will open the outer valve.

7. A tank having as the sole means for 2. A tank having a siphon tube having its emptying it, a siphon tube having its intake delivery end projecting through the tank end adjacent the bottom of the tank and havhaving a port within the tank adjacent that ing its delivery end projecting through and side of the tank which is normally upper- above the tank, said pipe having a port withvalves whereby when the outer valve is able valve adapted to close the port, and con-3. A tank having a siphon tube having its action of gravity of the inner valve to open delivery end projecting through the tank, and the port will cause the outer valve to close having a port within the tank and above the and such that when the tank is upturned the intake end of the tube, a valve for controlling gravity action of the inner valve to close the the discharge through the tube at the outer port will open the outer valve, the said tank side of the tank, a valve to close the port, and having a well lying outwardly beyond the connections between the valves whereby the outer surface of the tank, and the intake end opening of the outer valve will cause the of said siphon tube being arranged within the inner valve to close the port.

4. A tank having a siphon tube having its oil, or very little oil, will escape through the delivery end projecting through the top of siphon tube, but whereby pressure within the

8. A tank having a siphon tube having its tween the valves whereby gravity action delivery end projecting through the tank and the inner valve in one direction will open the having a port within the tank adjacent that port and cause the outer valve to close, and tube, a valve for controlling discharge gravity action of the inner valve to close opthrough the tube at the outer side of the tank, erates the outer valve to open it. and of substantial weight, and arranged to open and close the port, and connections be-

wall of the tank opposite the intake end of the whereby when the tank is upturned the

In witness whereof, I have hereunto set my hand this 29th day of August, 1927. GEORGE A. BROWN.