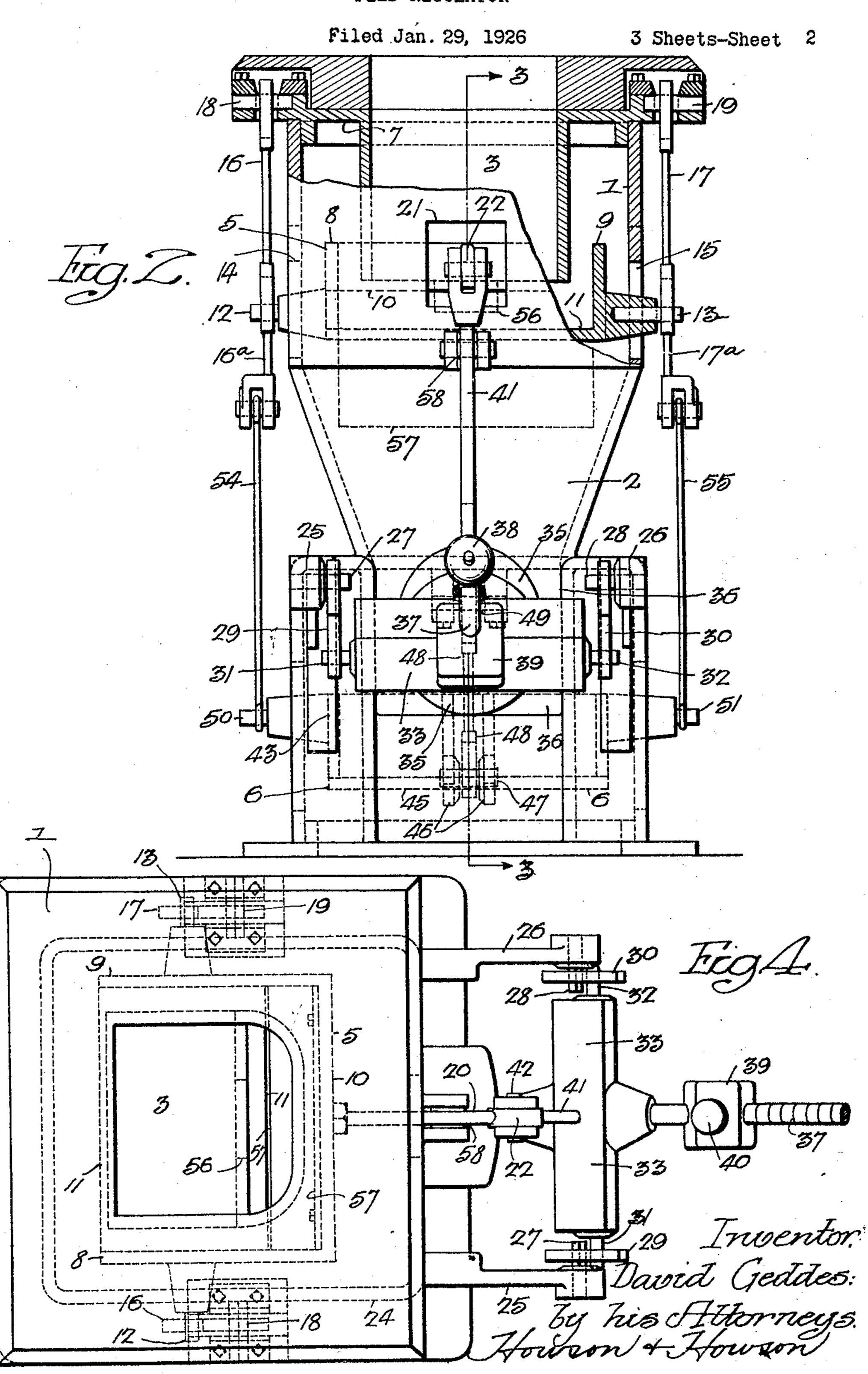

D. GEDDES

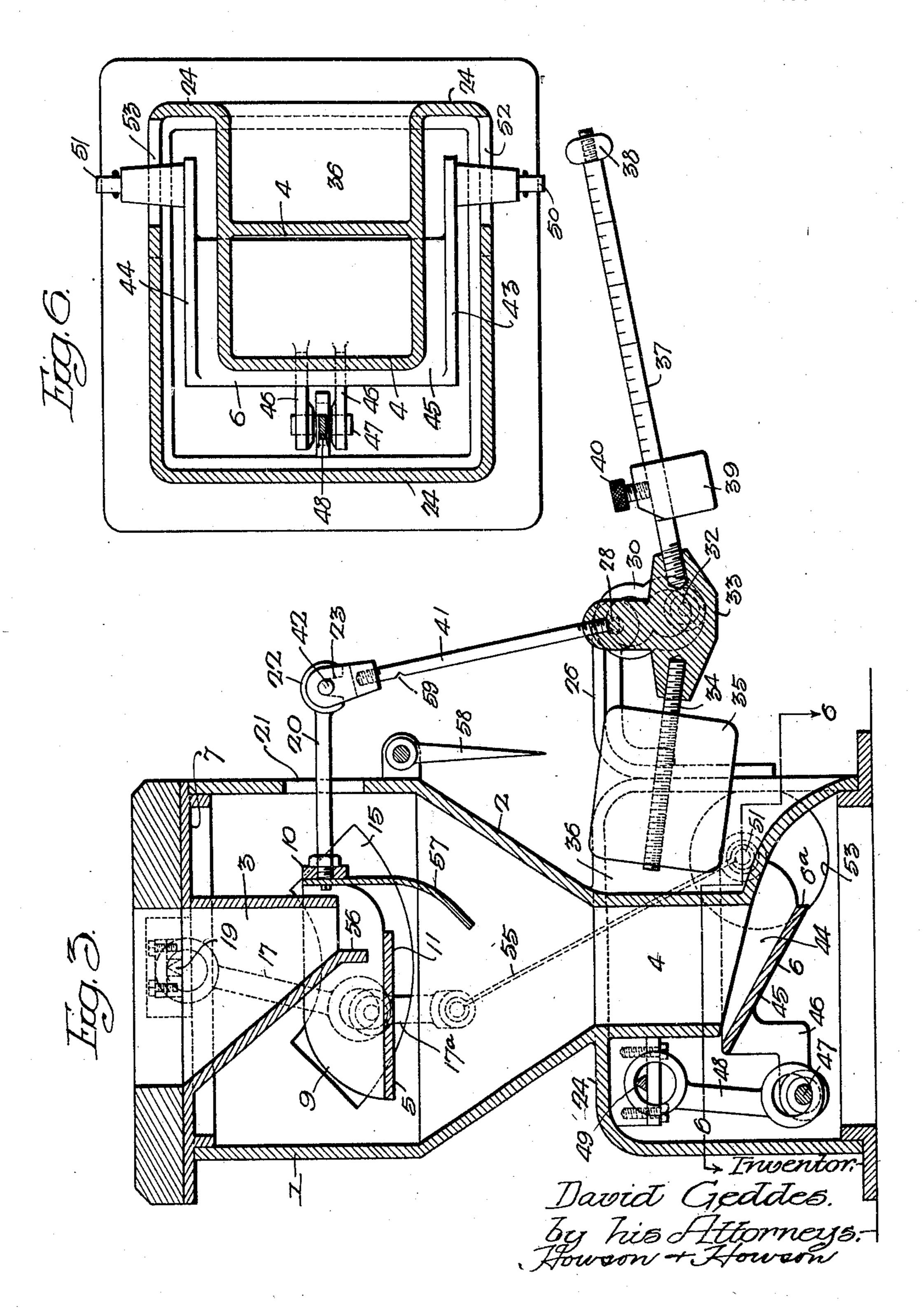
FEED REGULATOR


Filed Jan. 29, 1926

3 Sheets-Sheet 1

D. GEDDES

FEED REGULATOR



D. GEDDES

FEED REGULATOR

Filed Jan. 29, 1926

3 Sheets-Sheet 3

UNITED STATES PATENT OFFICE.

DAVID GEDDES, OF BERKELEY, CALIFORNIA.

FEED REGULATOR.

Application filed January 29, 1926. Serial No. 84 654.

The invention relates to devices or mechanisms for regulating or controlling the flow along the line 3-3 of Fig. 2. of liquid or granular material in a continuous uniform stream. A mechanism em- Fig. 5 is a detailed view showing, in per- 60 b bodying the invention can be used for regulating the flow of water, oil and other Fig. 6 is a horizontal sectional view taken liquids, or for regulating the flow of granu- along the line 6-6 of Fig. 3. lar material, such as grain, sand, crushed Referring to the drawings, 1 represents 10 convenience and simplicity, I shall herein preferably being rectangular in form. The

²⁰ wheat, the character of the material may supply and guide ducts 3 and 4. vary as to smoothness, as to size of the The supply duct 3 is preferably formed 25 these variations.

30 valves thereof, erratic and uneven flow being completely filled under ordinary operating thus avoided.

35 cannot be clogged by foreign matter such as material through the said duct. As illusthe rate of flow.

be apparent from the following specification front wall. The side walls 8 and 9 are far and claims.

however, that the drawings are for illustrative purposes only, and are not to be construed as defining or limiting the invention, the claims forming a part of this specification being relied upon for that purpose.

Of the drawings:

Fig. 1 is a side view of a feed regulator embodying the invention.

Fig. 2 is an end view with certain parts broken away.

Fig. 3, is a vertical sectional view taken

Fig. 4 is a plan view.

spective, the upper valve.

rock, coal and the like. For the sake of the main casing of the apparatus, this casing 65 refer to the device as being used for con- casing 1 is connected with a hopper 2. Extrolling the flow of grain, particularly tending downward into the casing 1 is a subwheat, but it will be understood that the in-stantially vertical supply duct 3, through vention is not limited to such use. which the material to be regulated is intro- 70 The principal object of the invention is to duced into the apparatus. Connected with provide a regulator which will provide a the hopper 2 is a vertical discharge duct 4. uniform flow of material without any varia- A valve 5 and a platform 6, adapted to be tion thereof on account of variations in the controlled in the manner hereinafter set character of the material. In the case of forth, are associated respectively with the 75

grains, as to dampness, and otherwise, and as a part of a cover 7 which extends over the mechanism embodying the invention the top of the casing 1. The supply duct 3 maintains a uniform flow notwithstanding extends through this cover and is adapted to 80 be connected at its upper end with a suitable A further object of the invention is to supply pipe or duct (not shown), through provide a regulator which is so constructed which the material to be regulated is supand controlled as to avoid any tendency for plied. It will be understood that this supperiodic or oscillatory movements of the ply pipe is large enough to keep the duct 3 85

conditions.

A further object of the invention is to The valve 5 is horizontally movable under provide a feed regulator which has smooth or across the discharge end of the supply surfaces, and which is so constructed that it duct 3, and serves to regulate the flow of 90 nails, straw and the like, and so constructed trated the valve 5 comprises side walls 8 that such foreign material cannot change and 9, a front wall 10, and a bottom 11, which extends transversely between the side Still further objects of the invention will walls but which is spaced away from the 95 enough apart and are high enough to extend In the accompanying drawings, I have on both sides of the bottom part of the duct shown the embodiment of the invention 3, when the valve is in its assembled posiwhich I now deem preferable, this embodi- tion. As illustrated the valve 5 is supported 100 45 ment being particularly adapted for grain, by means of trunnions 12 and 13 which exespecially wheat. It will be understood, tend laterally, and which respectively project through slots 14 and 15 formed in the sides of the casing 1. Links 16 and 17 are provided at the respective sides of the 105 casing; these links being supported on knife edges 18 and 19 mounted on the lateral projecting edges of the cover 7. The links 16 and 17 are provided with apertures into which the trunnions 12 and 13 respectively 110 project. In this way the valve 5 is supported, but is at the same time free to move

horizontally under the control of the mechanism to be described.

5 forward through an opening 21 in the casing 1.

At its forward end the rod 20 is provided form of a downward opening notch 23.

tional size and shape as the casing 1. Car-links the forward end of the platform 6 is 80 and 30 which engage trunnions 31 and 32 the position of the other. 5 jecting forward from the hub is a balance of the supply duct, this flange extending 90 extreme end, and also carrying a counter- the material on the valve. adjusted position by means of the screw 40. ward and is curved rearward to direct the 95 It will be seen that the arm 41, co-operating is curved so as to be semi-circular in form, 100 nions 12 and 13.

serves to operate the valve 5 in a horizontal charged therefrom over the edge 6a thereof. beam 34.

49 carried by the upper part of the housing form 6 serves to move it downward, and, at

24. By means of the construction described, the platform 6 is supended at its rear end so The front wall 10 of the valve 5 carries a as to be capable of substantially horizontal horizontally projecting rod 20 which extends movement. The platform is provided at its front end with laterally projecting trun- 70 nions 50 and 51 which project outward through openings 52 and 53 in the housing with a head 22 having a pivot aperture 24. The before mentioned links 16 and 17 therein. As shown, this aperture is in the are provided with downward extending extensions 16a and 17a which are pivotally con- 75 The casing 1 is supported upon and pref-nected with links 54 and 55. These links erably formed integrally with a housing 24 extend downward and forward, and at their which surrounds the discharge spout 4, and lower ends engage the before-mentioned is preferably of about the same cross-sec- trunnions 50 and 51. By means of these ried by the front wall of the housing 24 are supported. It will be seen that by means of two forward projecting brackets 25 and 26 the links 54 and 55 the valve 5 and the provided with inward projecting studs 27 platform 6 are connected together so that the and 28. Carried by these studs are links 29 position of one will to some extent control

projecting laterally from a hub 33. Pro- Preferably in order to properly control jecting rearward from the hub 33 is a bar the flow of material through the supply duct 34 carrying a weight 35 which projects into 3 and past the valve 5, I provide a dependa recess 36, formed in the housing 24. Pro- ing flange 56 at the bottom of the rear wall beam 37 carrying a fixed weight 38 at its quite close to the valve 5 and projecting into

weight 39 which is adjustable along the The front wall 10 of the valve preferably beam. The weight 39 can be clamped in carries an apron 57 which extends down-Projecting upward from the hub 33 is an flow of material and to discharge it at a arm 41 which is forked at its upper end and point vertically disposed above the discharge carries a pivot pin 42 fitting the before- duct 4. Preferably as clearly shown, in mentioned bearing aperture 23 in the rod 20. Fig. 4, the front wall of the supply duct 3 with the rod 20, serves to support and bal- or substantially so. This causes the flow of ance the valve 5, the said valve being other- material to be more or less concentrated towise movable about the axis of the trun- ward the center of the mechanism when the valve 5 is partly closed. The material dis-From the foregoing description, it will be charged from the apron 57 is delivered diapparent that the mechanism described rectly to the platform 6 and is then dis-

direction. The weight 35 is heavy enough. In order that the valve 5 may be entirely to counterbalance the weights 38 and 39, and closed and held in closed position, I provide the result is that the weight 35 tends to move a suitable latch device. As illustrated a 100 the arm 41 in the counter-clockwise direc- latch 58 is horizontally pivoted on the castion and to thus hold the valve 5 in its ing 1 at the front thereof, and the arm 41 extreme rearward or open position. The is provided with a notch 59. By swinging force tending to thus move the valve rear- the arm 41 forward and by setting the front ward can be reduced and regulated by ad-end of the latch 58 in the notch 59, the valve justing the position of the weight 39 on the 5 is held in its extreme forward position so as to entirely stop the flow of material.

The platform 6, associated with the dis- When the regulator is idle, that is when charge duct 4, has side walls 43 and 44 and no material is being supplied to it, the valve an inclined bottom 45 connecting the said 5 is normally held wide open by the weight side walls. The side walls are so spaced as 35 and the platform 6 is in its upper posito extend at each side of the duct 4 when the tion by the links 54 and 55. When material platform is in operative position. The plat- to be regulated is supplied to the regulator, form 6 is provided at its rear end with a this material initially passes freely through forked lug 46 carrying a bearing pin 47. A the supply duct 3 and past the valve 5. This link 48 is provided, this link having at its flowing material is deflected by the apron lower end an aperture which receives the 57 and falls directly from the lower edge bearing pin 47. The link has at its upper of the apron onto the platform 6. The end an aperture which receives a knife edge weight of the material falling on the plat1,682,958

the same time, to partly close the valve 5. increased. The net result is an increased 5 weight 35 to keep the valve 5 open and the length of the sliding contact. By reason of 70 valve 5 correspondingly closed, the valve 5 of the valve 5. serves to cutoff or reduce the flow, and the re- Exactly the opposite action takes place 10 sult is that a condition of equilibrium is when the valve 5 moves in the closing direc- 75 It will be readily apparent that the positions of the valve and platform are controlled in part by the weight of the flowing material, and in part by the action of the counterweight 35 modified by the adjustable weight 39. By adjusting this latter weight, the 20 position of the parts can be changed and the rate of flow can be correspondingly changed.

It will be understood that it is the weight of the material impinging upon and sliding upon the platform 6 which, for any given 25 adjustment of the weight 39, regulates the amount of material flowing per unit of time. Let it be assumed that the material being regulated is wheat, and that the mechanism has been adjusted to provide the desired rate of flow for wheat of the average condition. If a quantity of wet wheat reaches the regu-flow can be readily adjusted by adjusting the lator, this will flow more slowly and the weight mechanism, that is by adjusting the consequence is that there is less weight per position of the weight 39. unit of time impinging upon and sliding I claim: upon the platform 6. Therefore, there is a 1. The combination in a feed regulator, of 100 the valve 5 closed, and the valve 5 opens flow of material through the duct, means to a slight extent, thus increasing the flow until the desired weight per unit of time impinges upon the platform.

smooth and dry wheat reaches the regulator, valve for moving the valve in the closing diweight tends to further lower the platform the initial engagement of the material with strict the flow so that the required weight tions in the position of the valve. per unit of time impinges upon the plat- 2. The combination in a feed regulator, of

form.

moves, the apron 57 moves with it, thus movable across the bottom of the duct for changing the position of the initial engage- regulating the flow of material there. ment of the material with the platform 6. through, means tending to hold the valve in Movement of the valve 5 in the opening open position, a pivoted regulating platform direction (by reason of decreased flow as onto which material is delivered from the clearly explained) decreases the leverage of the position of engagement with respect to the pivotal support of the platform 6, but at the same time provides a greater distance between the position of engagement and the by material engaging therewith, and means discharge edge 6a. Thus the leverage of the automatically serving to change the position inpact is somewhat decreased but the acutal of the initial engagement of the material weight of material sliding on the platform is with the platform and thereby change the 130

It will be seen that the weight of the ma-tendency for the platform to move downterial impinging upon the platform 6 serves ward, this increase resulting not only from to overcome in part the tendency of the the rate of flow, but also from the increased platform 6 in its upper position. As the this cumulative action, the platform 6 serves platform 6 is thus partly lowered and the to very quickly stop the opening movement

reached between the valve 5 and the plat- tion, and by reason of the cumulative action form 6, the condition being such that a described the platform 6 serves to very steady uniform flow of material is permitted. quickly stop the closing movement of the

valve 5.

The rapid building up of resistance to 80 change of position, as described in the preceeding paragraphs, largely prevents any vibratory or oscillatory movement of the valve.

The flange 66 projecting into the material 85 on the valve 5 serves as an additional stabilizer to mechanically dampen any vibratory

or oscillatory movement.

From the foregoing description, it will be seen that the weight impinging upon the 100 platform 6 must at all times be such as to exactly balance the weight mechanism comprising the weights 39, 37 and 36. Thus the flow is controlled to provide a definite weight per unit of time, and this rate of 95

reduced tendency for the platform to hold a supply duct, a valve for regulating the tending to hold the valve in open position, a pivoted regulating platform onto which material is delivered from the supply duct, a 105 Similarly if a quantity of particularly connection between the platform and the this will flow more freely with the result rection when the platform is moved by mathat a greater weight per unit of time will terial engaging therewith, and means autoimpinge upon the platform 6. This greater matically serving to change the position of im-6, and to correspondingly close the valve the platform and thereby change the leverage 5. The valve 5 is closed far enough to re- of said platform in accordance with varia-

a substantially vertical supply duct having It will be seen that when the valve 5 one side thereof convex, a valve horizontally supply duct, a connection between the platform and the valve for moving the valve in the closing direction and toward the convex side of the duct when the platform is moved

leverage of said platform in accordance with 6. The combination in a feed regulator, of variations in the position of the valve.

a substantially vertical supply duct, a valve mechanism comprising a main weight tend-5 horizontally movable across the duct for ing to hold the valve in open position and an 70 regulating the flow of material through the adjustable counterweight acting in opposiduct, means tending to hold the valve in open tion to the main weight, a pivoted regulating position, a pivoted regulating platform onto platform onto which material is delivered which material is delivered from the supply from the supply duct, a connection between 10 duct, a connection between the platform and the platform and the valve for moving the 75 the valve for moving the valve in the closing valve in the closing direction when the platdirection when the platform is moved by form is moved by material engaging therematerial engaging therewith, and a deflector with, the engagement of the material with carried by the valve and automatically serv- the platform serving to balance the action ing to change the position of the initial en- of the weight mechanism, and means auto- 80 gagement of the material with the platform matically serving to change the effective and thereby change the leverage of said plat- leverage of the platform by moving the poform in accordance with variations in the sition of the initial engagement of the mateposition of the valve.

a supply duct, a valve for regulating the the position of the valve. flow of material through the duct, means 7. The combination in a feed regulator, of tending to hold the valve in open position, a a substantially vertical supply duct, a valve movable regulating platform onto which ma- horizontally movable across the bottom of terial is delivered from the supply duct, the the duct and separated therefrom for regu-" closing direction when the platform is moved ply duct, a connection between the platform edge when the valve is moved in the closing valve and in position to extend into material 100 the valve is moved in the opening direction, ency of the valve.

the valve. edge, the movement being toward the dis- anism. charge edge and away from the pivotal sup- 9. The combination in a feed regulator, of direction and away from the discharge edge horizontally movable across the bottom of and toward the pivotal support when the the duct for regulating the flow of material valve is moved in the opening direction.

a supply duct, a valve for regulating the 3. The combination in a feed regulator, of flow of material through the duct, a weight rial with the platform relative to the plat-4. The combination in a feed regulator, of form pivot in accordance with variations in 85

said platform having an edge at one side lating the flow of material through the duct, thereof over which the material is dis- means tending to hold the valve in open posicharged, a connection between the platform tion a movable regulating platform onto and the valve for moving the valve in the which material is discharged from the supby material engaging therewith, and means and the valve for moving the valve in the automatically serving to move the position closing direction when the platform is of the initial engagement of the material moved by material engaging therewith, and with the platform toward the said discharge means fixed against movement with the direction and away from the said edge when thereon for dampening any oscillatory tend-

and thereby change the leverage thereof in 8. The combination in a feed regulator, of accordance with variations in the position of a substantially vertical supply duct, a valve horizontally movable across the bottom of 105 5. The combination in a feed regulator, of the duct for regulating the flow of material a supply duct, a valve for regulating the flow therethrough, two similar parallel links for of material through the duct, means tending movably supporting one end of the valve to held the valve in open position, a movable at the opposite sides thereof, an arm for regulating platform onto which material is controlling the movements of said valve said delivered from the supply duct, the said plat- arm being horizontally pivoted below the form having a horizontal pivotal support level of the valve and having a pivotal conat one side thereof, and an edge opposite the nection therewith for supporting said valve pivotal support over which the material is at its opposite end, an adjustable weight discharged, a connection between the side of mechanism connected with the arm and tendthe platform opposite the pivotal support ing to hold the valve in open position, a and the valve for moving the valve in the pivoted regulating platform onto which maclosing direction when the platform is moved terial is delivered from the supply duct, and by material engaging therewith, and means a connection between the platform and the automatically serving to change the effective valve for moving the valve in the closing leverage of the platform by moving the po-direction when the platform is moved by sition of the initial engagement of the mate- material engaging therewith, the engagerial with the platform relatively to the piv- ment of the material with the platform servotal support and relatively to the discharge ing to balance the action of the weight mech

port when the valve is moved in the closing a substantially vertical supply duct, a valve therethrough, two similar parallel links for

movably supporting the valve, an arm hori- of a substantially vertical supply duct, a 65 5 mechanism connected with the arm and tend- prising side walls at opposite sides of the valve for moving the valve in the closing two similar parallel links for movably suping to balance the action of the weight mechanism, and a latch adapted to engage the arm for holding the valve in closed position.

10. The combination in a feed regulator of a substantially vertical supply duct, and a valve extending substantially around said duct adapted to be horizontally movable across the bottom of the duct for regulating the flow of material therethrough, the said valve comprising side walls at opposite sides of the duct, a front wall in front of the duct and a floor between the side walls and spaced from the front wall.

11. The combination in a feed regulator, of a substantially vertical supply duct, a 30 valve extending substantially around said duct adapted to be horizontally movable across the bottom of the duct for regulating the flow of material therethrough, the said valve comprising side walls at opposite sides of the duct, a front wall in front of the duct and a floor between the side walls and spaced from the front wall, and a deflector for the material carried by the front wall of the valve.

12. The combination in a feed regulator, of a substantially vertical supply duct, a valve horizontally movable across the bottom of the duct for regulating the flow of material therethrough, the said valve com-Drising side walls at opposite sides of the duct, a front wall in front of the duct and a floor between the side walls and spaced from the front wall, two similar parallel links for movably supporting the valve, an arm horizontally pivoted below the level of the valve and having a pivotal connection therewith for controlling it, an adjustable weight mechanism connected with the arm and tending to hold the valve in open position, a movable regulating platform onto which material is delivered from the supply duct, and a connection between the platform and the valve for moving the valve in the closing direction when the platform is moved by material engaging therewith, the engagement of the material with the platform serving to balance the action of the weight 16. The combination in a feed regulator, mechanism.

zontally pivoted below the level of the valve valve horizontally movable across the botand having a pivotal connection therewith tom of the duct for regulating the flow of for controlling it, an adjustable weight material therethrough, the said valve coming to hold the valve in open position, a mov-duct, a front wall in front of the duct and 70 able regulating platform onto which mate- a floor between the side walls and spaced rial is delivered from the supply duct, a from the front wall, a deflector for the maconnection between the platform and the terial carried by the front wall of the valve, direction when the platform is moved by porting the valve, an arm horizontally 75 material engaging therewith, the engage- pivoted below the level of the valve and ment of the material with the platform serv- having a pivotal connection therewith for controlling it, an adjustable weight mechanism connected with the arm and tending to hold the valve in open position, a movable 80 regulating platform onto which material is delivered from the supply duct, and a connection between the platform and the valve for moving the valve in the closing direction when the platform is moved by material 85 engaging therewith, the engagement of the material with the platform serving to balance the action of the weight mechanism.

14. The combination in a feed regulator, of a substantially vertical supply duct, a 90 valve horizontally movable across the bottom of the duct for regulating the flow of material therethrough, two similar parallel links for movably supporting the valve, a horizontally pivoted hub below the level of 95 the valve, an arm extending upward from the hub and having a pivotal connection with the valve for controlling it, a weight carried by the hub and tending to move the arm to hold the valve in open position, a balance 100 arm carried by the hub, a counterweight adjustable along the balance arm and acting in opposition to the first said weight, a movable regulating platform onto which material is delivered from the supply duct, and 105 a connection between the platform and the valve for moving the valve in the closing direction when the platform is moved by material engaging therewith, the engagement of the material with the platform 110 serving to balance the action of the said weights.

15. The combination in a feed regulator, of a supply duct, a valve regulating the flow of material through the duct, means tending 115 to hold the valve in open position, a movable regulating platform onto which material is delivered from the supply duct, a pivoted link for supporting the platform at one end, and two parallel links connected with the 120 valve for supporting the platform at the other end, the last said links serving to move the valve in the closing direction when the platform is moved by material engaging 125 therewith.

of a supply duct, a valve regulating the flow 13. The combniation in a feed regulator, of material through the duct, means tending 1,682,958

to hold the valve in open position, a movable links connected with the valve for support-regulating platform onto which material is ing the platform at the other end, the last delivered from the supply duct, a guide duct said links serving to move the valve in the between the valve and the platform, side closing direction when the platform is moved walls for the platform at opposite sides of by material engaging therewith. the guide duct, a pivoted link for supporting the platform at one end, and two parallel

DAVID GEDDES.