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nificance test; then, constructing a simplified deep forest
regression (SDFR) algorithm to learn a nonlinear relation-
ship between the selected process variable and the DXN
emission concentration; and finally, designing a gradient
enhancement strategy based on a residual error fitting (REF)
mechanism to improve the generalization performance of a
layer-by-layer learning process. The method 1s superior to
other methods 1n the aspects of prediction precision and time
consumption.
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SOFT MEASUREMENT METHOD FOR
DIOXIN EMISSION OF GRATE FURNACE
MSWI PROCESS BASED ON SIMPLIFIED

DEEP FOREST REGRESSION OF RESIDUAL
FITTING MECHANISM

TECHNICAL FIELD

The 1nvention belongs to the field of solid waste 1ncin-
eration.

BACKGROUND

Municipal solid waste (MSW) treatment aims to achieve

harmlessness, reduction and resource utilization, of which
MSW incineration (IMSWI) 1s currently the main method.
However, MSWI process 1s also one of the main industrial
processes currently emitting dioxins (DXN), a highly toxic
organic pollutant, accounting for approximately 9% of total
emissions. MSWI mainly uses technologies such as grate
furnaces, flmdized beds and rotary kilns, among which grate
furnace technology accounts for the largest proportion. The
optimized operation of the MSWI process based on the grate
furnace has an important contribution to the reduction of
DXN emissions. Therefore, 1t 1s necessary to conduct high-
precision real-time detection of DXN emission concentra-
tion.

Data-driven soit measurement technology can effectively
solve the above problems, that 1s, using machine learning or
deep learning methods to characterize the correlation
between easily measurable process variables and DXN
emission concentrations. This usually requires determining a
mapping function to predict DXN emission concentrations.
For example, genetic programming 1s combined with neural
network (NN) to model DXN emissions, but it 1s not suitable
for different types of incineration plants; the design 1s based
on back-propagation NN (BPNN).), but 1ts portability 1s not
good, and BPNN has serious over-fitting problems when
facing small sample problems; 1t adopts selective integration
and evaluation variable projection importance strategies,
and uses support vector machines and The nuclear latent
structure mapping algorithm selects valuable process vari-
ables to construct the DXN soft sensor model, but it cannot
represent depth features.

Based on 12 years of DXN data of an 800-ton grate
furnace, a simplified deep forest regression (SDFR) method
(SDFR-ref) with high accuracy and short time-consuming
residual fitting mechanism was proposed. The main 1nno-
vations of this article include: using decision trees to replace
complex forest algorithms, thereby reducing the size of the
deep forest ensemble model; using a residual fitting strategy
with learning factors between cascade layers to give the
model higher predictive performance; Mutual information
(MI) and significance test (ST) are used for feature selection
to simplify the mput of the soft sensor model. In China
incineration 1S the main MSW treatment method, and 1its
typical process 1s shown 1n FIG. 1.

As shown 1n FIG. 1, the MSWI process flow based on the
grate Turnace includes six stages: solid waste storage and
transportation, solid waste incineration, waste heat boiler,
steam power generation, flue gas purification and flue gas
emission. At present, MSWI factories are mainly concen-
trated 1in coastal areas, and more than 90% of them use grate
furnaces. The grate-type MSWI process has the advantages
of large daily processing capacity, stable operation, and low
DXN emission concentration. The detection of DXN emis-
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2

s10n concentration in this article 1s aimed at the “smoke G3”
position 1n the flue gas emission stage.

The MSWI plant studied 1n this article was 1gnited and put
into operation 1n 2009.

From 2009 to 2013, the emission level of DXN was not
higher than China’s environmental emission standard
(GB18485 2001), which is Ing I-TEQ/Nm"” (oxygen content
1s 11%). Correspondingly, the number of DXN detections
increased year by year, and finally stabilized at 4 times/year.
Since 2014, my country has revised the emission limit of
DXN (updated from Ing I-TEQ/Nm” to 0.1 ng I-TEQ/Nm").
Obviously, increasingly stringent emission restrictions have
led to a gradual increase in the number of DXN tests by
enterprises and governments, and the operating costs of
enterprises have also increased accordingly.

SUMMARY

The 1nvention aims to explore how to use MSWI process
data and limited DXN detection data to establish a DXN soft
measurement model to provide key indicator data for MSWI
companies’ for their DXN emission reduction optimization
control and cost reduction.

The invention proposes a modeling strategy based on
feature selection and SDFR-ref. The structure 1s shown 1n
FIG. 2.

As can be seen from FIG. 2, the proposed modeling
strategy 1ncludes a feature selection module based on MI
and ST and a SDFR module based on the residual fitting
mechanism. Feature selection module selects the corre-
sponding features by calculating the MI value and ST value
of each feature; for SDFR module, Layer-k represents the
k-th layer model, §,7“%"°¢ represents the output vector of the
first layer model, v, represents the augmented regres-
sion vector of the second layer input, §,7“4"°¢ represents the
average value of §,7°¥V?°, ¢ is the remaining learning rate
between each layer; x and X™**¢ respectively represents the
process data before and after feature selection; y, ¥ and e are
the true value, predicted value and prediction error respec-
tively.

[n addition, {0,,,, 0.,. 0, T, o, K} represents the learning
parameter set of the proposed SDFR-ref, where: 0,,, repre-
sents the threshold of MI, o, represents the threshold of
significance level, and O represents the minimum sample in
the leal node number, T represents the number of decision
tfrees 1n each layer of the model, a 1s the learning rate in the
gradient boosting process, and K represents the number of
layers. The globally optimized selection of these learning
parameters can 1mprove the synergy between different mod-
ules, thereby improving the overall performance of the
model. Therefore, the proposed modeling strategy can be

formulated as solving the following optimization problem:

Augfea

min RMSE(FPFR74 (1)) = (1)

K T

23 DI NY

=1

CART
ﬂljf m am

2
: ﬂgﬁrRT] IRM}{N (XXSEI)] _ yn]

X = froaser (D, Osr, Osr)
O<a<?

1l =7 <500
l=f8=<N

l <= K <20
O=< o7 =1
0£55L£1

5.1,
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Among them, F>?"*7¥(*) represents the SDFR-ref model;
f,.. o ®)represents the nonlinear feature selection algorithm

proposed 1n this article; N represents the number of mod-
eling samples; y, represents the n-th true value; ¢, %
represents predicted value of I-th leaf node of first CART,
C, %" represents the predicted value of the 1-th leaf node
of T-th CART; D={X, yIXe R™*, ye R™'} represents the
original modeling data, which 1s also represents the input of
the feature selection algorithm M 1s the number of original
features; [ MKN(XXS“’E) is the indicator function, when X**¢

RMXN I (XS’E’) 1 when XXSEE RMXN I (XXSEE) 0.
4.1 Feature Selection Based on MI and ST

MI and ST are used to calculate the information correla-
tion between the original features (process variables) DXN
values, and achieve the best selection of features through
preset thresholds.

For the input data set, the nonlinear feature selection
algorithm f,_ . ,(*) proposed in the invention 1s defined as
follows:

D = froaser(D, Oas1, Osr) (2)

Among them, D**={X*¢, yIXeR" M ye RV!} respec-
tively represent the output of the proposed feature selection
algorithm, and M>“ is the number of selected features.

In fact, MI does not need to assume the potential joint
distribution of the data. MI provides an information quan-
fification measure of the degree of stafistical dependence
between random variables, and estimates the degree of
interdependence between two random variables to express
shared information. The calculation process 1s as follows:

p(xn,f: yﬂ) (3)

p(-xn,f): p(yﬂ)

1M, )= ) D Pl v log,

*ngf Vi

Among them, x; is the i-th eigenvector of x, X, ; 1s the n-th
value of the 1-th eigenvector, y represents the joint prob-
ability density; p(x, ;) and p(y,) represent the marginal
probability density of x,,; and y,,.

If the MI value of a feature 1s greater than the threshold
0,,, it is regarded as an important feature constituting the
preliminary feature set X"'. Furthermore, ST is used to
analyze the correlation between the selected features based
on MI and remove collinear features.

The Pearson coefhicient value PCoe between the selected

features x,*"' and XjM’r 1s calculated as follows:

v 4)
D == - =)

Among them X, and x X represent the average value of
M respeetwely,

X" and X, Mand x, M represent the n-th
value of X"w and x; M1 Z test is used te calculate the Z

value between features X I and X; ML,

test

=MI _ M

! J
Ztest =
JS? /N; + S3/N;

)
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Ameng them S, and S; represent the standard deviation of
x " and X ‘"N, and N; represent the number of samples of

XM and X"w

Furthermore, the p-value i1s obtained by looking up the
Z..... value 1n the table. At this point, we assume 1n H, that
there 1s no linear relationship between the 1-th and j-th
features, and the Pearson coefficient PCoe 1s regarded as the
alternative hypothesis H,. Based on the comparison of
p-value and significance level 8,, the final selected X
including the preferred features 1s determined. The criteria
are expressed as follows:

Accept H; (linearly dependent), (6)
reject Hy (linearly independent)
Accept Hy(linearly independent), p—value > 6y

reject H, (linearly dependent)

p—value <0 ST,

Based on the above assumptions, the collinear features
selected by MI are removed, thereby reducing the impact of
data noise on the training model.

4.2 SDFR (SDFR-Ref) Based on Residual Fitting Mecha-
nism

4.2.1 First Layer Implementation

The training set after feature selection is recorded as D%
The SDFR algorithm replaces the forest algorithm in the
original DFR with a decision tree, that 1s, CART. Each layer
contains multiple decision trees, and the tree nodes are
divided using the squared error minimization criterion. The
minimum loss function of this process 1s expressed as
follows:

(7)

szffCAHT —
: CARTYZ CART\? ]
min Z (JFLEﬁ — Eﬁgﬁ« ) + Z (yRIjghr ﬂRrghr )
7 R g 37 R prans
Among them, ¢, """ and cg,,,, """ are the outputs of

R;., and R, ., nodes respectively; y, . and yg,.,, represent
the true values in R, _, and Ry, ,, nodes respectively.

Specifically, the nodes are determined in the following
way:

{Rﬁeﬁg, ) ={x* |2 = 5] (8)

Reign: (s 8) = {2 | 3! > s

Among them, j and s represent segmentation features and
segmentation values respectively; x, ¢! is the j-th eigenvalue
of the selected feature x°¢. Therefore, CART can be

expressed as:

)
HCART (5el) =

Yo )

Among them, L represents the number of CART leaf

nodes, c¢,“**’ represents the output of the 1-th leaf node of

CART, and 1 Ef:mer(}ts":"‘f) is the indicator function, when x>
cR CART’ I CART (XSEI)ZI, when XSEEE RECART,

I CA RT(XSEE)_O
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The first-level model containing multiple CARTS 1s rep-
resented as follows:

| T (10)
ISDFR(XSEI) _ ?Zhﬁm?(_)

=1

Among them, f,°”""(*) represents the first layer model in
SDFR, T represents the number of CARTs 1n each layer

model, h, ,““**’(*) represents the t-th CART model in layer
1.

Furthermore, the first-layer regression vector ¥,
from the first-layer model f,>”*"(*) is expressed as follows:

Regvec

~ Regver
= AR )

hC’AHT( )] [ CART

CART
le 5 e ]

» Cp g

Among them, ¢, “**" represents the predicted value of

the 1-th leaf node of the first CART, represents the predicted
value of the I-th leaf node of the T-th CART.

The augmented

regression vector V,**&? is obtained by

merging the layer regression vectors ¢,%°%V*° and is
expressed as follows:

Avefea ~ Regvec al

Vi o :fFeaCﬂm(yl A ) (12)

Among them, {,. '(*) represents the eigenvector com-

eaCom
bination function.

v, "8 is then used as the feature mput for the next layer

In the invention, the DXN true value 1s no longer used 1n
subsequent cascade modules, but the new true value 1s
recalculated through the gradient boosting strategy. There-
fore, the invention uses the following formula to calculate
the loss function of the squared error:

SDFR 1 J 1) SDFR 2 (13)
(D)= 5 D 08 = APFRC),)

i=1

SDFR 1
Ll ( (1)

I

Among them, L,°”"*(*) represents the squared error loss

function in SDFR-ref; y, "'’ represents the n-th true value of
the first layer training set.

The loss function L,>?"* is further used to calculate the
gradient direction as shown below.

(;LL( giljpfSDFR( ))- (14)

J EDFR( )

| SDFR _ 7SDFR

Among them, 6, >”“*is the gradient of the nth true value

of layer 1; £,>"" R(') represents the arithmetic mean of the
initial true value, that is

SDFR

— _Zyn:

y represents the n-th true value.
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6

Then, the objective function 1s:

(15)

T
ISDFR(;CS’EI’) GSDFR(_) +{HZ [Ef’?RT, EEA}RT]IR(XSEI)
=1

Among them, f,°”"*(*) is the first layer model; o repre-
sents the learning rate; [.(x>¢) represents when x°¢ R,
[(x>*)=1, when x°¢eR, [,(x°*)=0.

Therefore, the true value of the second level 1s:

(16)

—Regvec

p = y—ﬁ)SDFR(-)—{}ffiSDFR(-) =y _{}{ﬁSDFR(_) =y —aP,

Among them, y, 1s the true value of the first layer model,
that is, y,=y, y is the true value vector of DXN; ¥,%8"¢
represents the mean value of the first layer regression vector.
4.2.2 k-th Layer Implementation

The training set of the k-th layer based on the augmented
regression vector of the (k—1)-th layer 1s expressed as
DkSﬂ:{{V(k-]),nﬂugm}p]Na Vieks V- 1)AMgfm 1s the augmented
regression vector of the (k—1)-th layer, and y, 1s the k-th true
value.

First, establish the k-th level decision tree h,“**/(*)
according to formulas (7) and (8). The k-th level model 1s
expressed as follows:

T (17)
SDFR Augfea

1
_ CART (
(R 1): =7 § 'h
=1

Among them, f,°”“%(*) represents the k-th layer model,

and h, ,““®*(*) represents the k-th layer of the t-th CART
model.

Then, the augmented regression vector v,”*&¢? of the k-th
layer 1s expressed as follows:

Auvgtea ~ Regvec e
Vi 4 :kaeaCﬂm(yl * :ISI) (1)

Among them, ¥,7“4V*° represents the regression vector of
the k-th layer, that is, §,%¥V*°=[h, bC;RT( AP P 1)

Then, calculate the gradient 6,° accordmg to formulas
(12) and (13). The true value of (k+1)-th layer 1s expressed
as follows:

(:Hegve:: (19)

—Regvec
ol

Yi+1 = V1 TV

4.2.3 K-th Layer Implementation

The K-th layer 1s the last layer of the SDFR-ref training
process, that 1s, the preset maximum number of layers, and
its training set is D >“'={{v (K-1). A”‘gﬁ"“}n_l Vit

First, build a decision tree model h,“**/(*) through the
training set D.°¢" and further obtain the K-th layer model
f 2P, Then, calculate the K-th layer regression vector
Resvee according to the input augmented regression vector

Y&
V(K_I)A“gfm, which 1s expressed as follows:

j;;;zi’gw?ﬂ [hCART( )? (20)

hCAHT( )]
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Among them, h, ,“***(*) represents the first CART model
of the K-th layer, h ,“**/(*) represents the T-th CART

model of the K-th layer.

Finally, the output value after gradient boosting with
learning rate o 1s:

(K-1)
—Regvec
Y= — Vi

k=1

(Z21)

= Regvec

Among them, V, represents the mean value of the
k-th layer regression vector.

4.2.4 Prediction Output Implementation

After multiple layers are superimposed, each layer 1s used
to reduce the residual of the previous layer. Finally, the
SDFR-ref model can be expressed as:

T (22)

K
G{Z Z [ CART ? E%RT]IR (ISEI)

Cl,f s e
k=1 =1

K
FSDFR—r@“(xS‘e!) _ Z ﬁCSDFR(_ ) =
k=1

Among them, I,(x°¢") means [ ,(x**)=1 when x**’e R, and

[(x**)=0 when x*“¢R.

Since FPP7%79(s) is calculated based on addition, the final

predicted value cannot be simply averaged. Therefore, 1t 1s
necessary to first calculate the mean value of the regression
vector of each layer. Taking layer 1 as an example, 1t 1s as
follows:

(23)
~gdd

1 T
~ Regver
?Z;Vl &

=1

T

%Z[hFART(_): ?thRT(_)]

CART]

3

Add K predicted values to get the final predicted value, as
shown below:

5 (24)

N
y= %Zyn + G:%ZZ[(:E’;’HT,
n=1

T (05

Among them, ¥ 1s the predicted value of SDFR-ref model;
o means [(x**)=1 when x> €R, and I(x**)=0 when.
XSEEE R

DESCRIPTION OF DRAWINGS

FIG. 1 1s the typical process flow of MSWI based on grate

15 furnace;
FIG. 2 1s the modeling strategy proposed in the invention.
EMBODIMENTS
This embodiment uses a real DXN data set to verify the
20 effectiveness of the proposed method. The DXN data comes
from the actual MSWI process of an incineration plant in
Beijing 1n the past 12 years, including 141 samples and 116
process variables. The process variables cover the four
stages of MSWI, namely solid waste incineration, waste heat
25 boiler, flue gas purification and flue gas emission, and Table
1 shows the detailed information.
TABLE 1
20 type of the procedure variable
stage
wasie
solid waste heat flue gas flue gas
35 Pprocedure variable incineration boiler treatment €Mmission
Temperature 42 5 6 /
Velocity 18 / / /
Flux 15 5 6 /
Pressure 2 7 / /
Liquid level / 1 / /
40 Concentration / / 1 8
Total 77 18 13 8
116
45

The sample sizes of the training, validation and test sets
are respectively Y2, Va4 and Y4 of the original sample data.

TABLE 2

Abbreviations of procedure variables

Stage

solid waste
incineration

procedure variables uint Abbreviations
combustion temperature | * C. T1
combustion temperature 2 “ C. 12
combustion temperature 3 * C. T3
maximum temperature at which a grate burns * C. T4
temperature if the dry grate left inlet * C. T5
temperature if the dry grate right inlet * C. T6
temperature in the left side of the drying and * C. T7
burning sections of inner grate wall

temperature in the left side of the drying and > C. T8
burning sections of outer grate wall

temperature in the right side of the drying and “ C. T9
burning sections of inner grate wall

temperature in the right side of the drying and “ C. T10
burning sections of outer grate wall

left inner temperature of combustion grate 1-1 * C. T11
left outer temperature of combustion grate 1-1 * C. T12
right inner temperature of combustion grate 1-1 * C. T13
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TABLE 2-continued

Abbreviations of procedure variables

10

Stage procedure variables uint Abbreviations
right outer temperature of combustion grate 1-1 > C. T14
left inner temperature of combustion grate 1-2 “ C. T15
left outer temperature of combustion grate 1-2 “ C. T16
left inner temperature of combustion grate 2-1 “ C. T17
left outer temperature of combustion grate 2-1 > C. TI1¥
Outlet air temperature of primary air preheater > C. T19
air temperature of the combustion grate inlet > C. T20
temperature of cooling air outlet “ C. T21

flue gas temperature of fluidization fan outlet ° C. T22

purification

solid waste  air flux of the left combustion grate km3N/h LAFI

incineration

waste heat cooling water flux of the secondary superheater t/h CWFI

boiler

flue gas supply flux of urea solvent L/h FUS|1

treatment Bag pressure difference kPa BP1

flue gas O, concentration of CEMS system %o OC]
purification  Dust concentration of CEMS system mg/m3N DC:
HCL concentration of CEMS system mg/m3N HC]
CO, concentration of CEMS system %o CC

First calculate the MI value between the 116 process
variables and the DXN emission concentration. The 1mnven-
tion sets the threshold value 0o, , of MI=0.75 to ensure that
the amount of information between the selected process
variable and the DXN emission 1s as large as possible, the
initial number of features selected 1s 30; Further, the sig-
nificance level is set 0, =0.1 and the final selected process
variable are T2, T4, T5, T6, T7, T9, T10, T16, T20, T21,
LLAF1, FUSI, DC1 and CC1, 14 1n total. The linear corre-
lation between the selected process variables 1s weak, which
demonstrates the effectiveness of the method used.

In this embodiment, the hyperparameters of SDFR-ref are
empirically set as follows: the minimum number of samples
1s 3, the number of random feature selections 1s 11, the

number of CARTs 1s 500, the number of layers 1s 500, and
the learning rate 1s 0.1. RE, BP neural network (BPNN),
XGBoost, DFR, DFR-clic and ImDFR modeling methods
are used for experimental comparison. The parameter set-
tfings are as follows: 1) RF: the minimum number of samples
1s 3, the number of CART 1s 500, and the random feature
selection 1s 11; 2) BPNN: The number of hidden layer
neurons 1s 30, the convergence error 1s 0.01, the algebra 1s
1500, and the learning rate 1s 0.1; 3) XGBoost: The mini-
mum number of samples 1s 3, the number of XGBoost 1s 10,
the regularization coefhcient 1s 1.2, and the learning rate 1s

25

30

35

40

45

0.8;4) DFR and DFR-clic: the minimum number of samples
1s 3, the number of CART 1s 500, the number of random
feature selection 1s 11, and the number of RF and CRF 1s 2
respectively.

The performance of the modeling method 1s evaluated
using RMSE and R”, which are defined as follows:

N (25)
D =Pt V= 1)

k=

RMSE =

(26)

N N
R'=1- Z(yn —?H)Z/Z(yn -3
n=1 n=1

Among them, y, represents the n-th true value, ¥, repre-
sents the n-th predicted value, y represents the average
output value, and N represents the number of samples.

On this basis, 30 repeated experiments were conducted on
seven methods, and Table 3 shows the statistical results.
Table 4 gives the statistical results of training time.

TABLE 3

statistical results

RMSE R?
mean optimum mean optimum
Method set value variance value value variance value
RF training 1.0993E-02 2.5498E—-08 1.0704E-02  8.5783E—0 1.7106E-05 8.6522E—-01
Validation 1.9794E-02 3.9919E-08 1.9471E-02  5.1479E-0] 0.6301E-05 5.3056E—-01
Test 1.6775E-02 6.1264E—08 1.6349E-02  5.9723E—0] 1.4143E-04 6.1750E-01
BPNN training 3.0495E—-03 6.5539E-07 2.8748E—03  9.8832E—0 0.5015E-05 9.9028E—01
Validation  3.2603E—02 24818E-04 2.1896E—02 —6.1325E-0 4.0544E+00 4.0635E-01
Test 3.1648E-02 2.1475E-04 1.8531E-02 -7.3037E—0] 3.3001E4+00 5.0856E—01
XGBoost  training 1.0125E-02 0.0000E+00 1.0125E-02  R.7942E—0] 3.1877E-31 R.7942E—-01
Validation  2.5207E-02 1.2452E-35 2.5207E-02  2.1325E—0! 1.9923E-32 2.1325E—-01
Test 1.9748E—02 1.2452E—35 1.9748E-02  4.4189E—-0] 5.1004E-32 4 .4189E—-01
DFR training 1.1508E—-02 7.8541E-09 1.1347E-02  8.4422E—-0] 5.7639E-06 R.4855E—-01
Validation  2.0654E—-02 1.0405E-08 2.0463E—-02 4.7175E—0 2.7248E-05 4.8151E-01
Test 1.7762E—02 1.6786E—-08 1.7558E-02  5.4852E—-0] 4.3515E-05 5.5883E-01
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TABLE 3-continued
statistical results
RMSE R>
mean optimum mean optimum
Method set value variance value value variance value
DFR- training 7.9183E-03 1.7761E-06 5.5822E—03  9.2423E—-0' 6.7227E-04 9.6335E—01
clfc Validation  2.0084E-02 1.4533E-07 1.9410E-02  5.0034E-0] 3.60156E-04 5.3348E—-01
Test 1.6968E-02 OS.9144E-08 1.6430E-02 5.8785E—0] 2.3681E-04 6.1370E-01
ImDFR training 7.7000E-03 / / 0.2420E—0 ] / /
Validation  2.3700E-02 / / 1.3120E—-0] / /
Test 1.7900E-02 / / 6.6360E—0] / /
SDFR- training 6.6200E—04 4.7281E-09 5.2456E-04  9.9950E—0] 1.2323E-08 9.9970E-01
ref Validation 2.1700E-02 6.9600E-07 2.0200E-02  4.1450E-0] 2.1000E-03 4.9700E—01
Test 1.4500E-02 6.5875E—07 1.3100E-02 6.9780E—-0 1.2000E-03  7.5300E-01
TABIE 4 has better modeling accuracy and generalization perfor-
mance, and the training cost 1s lower than the state-of-the-art
the statistical results of training time 20 ensemble models. Therefore, SDFR-ref is easier for practi-
Time cal applications.
Method mean value variance optimum value What is claimed is:
RE ) 4138E+01 6.2333E-01 2.3153E+01 = 1. A soft measurement method for dioxin emission of
XGBoost 0.7248E+01 3.5522F-01 9.6595E4+01 . .
DER 4 251 3E+00 5 275 3EL0A 5 ATASE+0D grate furnace MSWI process based on simplified deep forest
DFR-clfc 8.287 1E+02 1.0154E+05 3.4013E+02 regression of residual fitting mechanism, comprising:
SDFR-ref 3.7039E+01 1.5538E400 3.4474E+01 : . . :
a feature selection module based on Mutual information

(MI) and significance test (ST) and a simplified deep

[t can be seen from Table 3: 1) In the training set, the 30 forest regression (SDFR) module based on the residual
proposed method SDFR-ref has the average (6.6200E—-04 fitting mechanism; wherein the feature selection mod-
and 9.9950E—-01) and the best values (5.2456E—-04 and ule selects corresponding features by calculating MI
99970E—01) of RMSE and R~ has Optimal results; since no value and ST value of each feature; for the SDFR
randomness 1S iﬂtrOduced, the wvariance statistics of mOdllle, Layer_k represents 1 k-th 1ayer modelg S}]R‘Egvﬂc
XGBoost 1s almost 0', 2) In the validation seft, SDFR-ref has 33 represen‘[s an Ou‘[pu‘[ vector of a first Layer modelﬂ
no obvious advantage, and 1ts performance 1S Oﬂly better VIA“&fEH I'epresents augmented I'egressign vector of a
than BPNN, XGBoost and ImDFR; RF, DFR and The second layer input, §,%°%?° represents an average value
generalization performance of DFR-clic 1s almost the same; of §,%8v°¢ o is a remaining learning rate between each
3) In the test set, SDFR-ref .hﬂS the best measurement layer; x and respectively represents process data before
accuracy (1.4500E—02) and fitting performance (6.9730E— and after feature selection; y, ¥ and e are a true value,
01). predicted value and prediction error respectively;

, TO SUITL P, SDFR-ref ha.s tmote p owerful learning capa- in addition, {0,,, 0., 0, T, o, K} represents a learning
bilities compared with classic learning methods (RF, BPNN _

L parameter set of proposed SDFR-ref, where: 0,,, rep-
and XGBoost). In addition, SDFR-ref contrasts deep learn- 45 resents a threshold of ML, 8., represents a threshold of
g plemods (Dl,:R’ DFR-clic, ImDFR) to further.enh:fmce significance level, and O represents a minimum sample
the implementation of the model based on the simplified .

_ _ in a leal node number, T represents a number of
forest algorithm. The performance of SDFR-ref in the test . . : :
. o . decision trees 1n each layer of the model, a 1s the
set also shows that its generalization ability 1s stronger than . . . .
. e learning rate 1n a gradient boosting process, and K
other methods. Therefore, the proposed method 1s effective 50 ..
. represents the number of layers; a globally optimized
for DXN prediction of MSWI processes. lect £ these Tearn; hei hle of

Table 4 shows that the method proposed 1n the invention _Se ecthn Ol these lealillly p mgPeter 5> DEINE Cdpable ©
has a greater advantage in the average training time com- HIPIOVILE SYNEtsy between different modules, thereby
pared with the method that is also a decision tree. improving an overall performance of the model;

The invention proposes a method based on SDFR-ref to 55 whe{'em d PI'OPOSB‘_:I mode-hng strategy 15 formulated as
predict the DXN emission concentration in the MSWI solving the following optimization problem:
process based on the grate furnace. The main contributions
are as follows: 1) The feature selection module based on
mutual information and significance test effectively reduces (1)
the computational complexity and improves the prediction 60

performance; 2) The decision tree 1s used instead of the
forest algorithm 1n the deep integration structure, which has
excellent training speed and learning ability. For DFR and
DFR clic; 3) Due to the introduction of residual fitting, the
prediction accuracy of SDFR-ref i1s further improved.
Experimental results show that compared with traditional
ensemble learning and deep ensemble learning, SDFR-ref

65

min RMSE(FOPFR9 (1)) =

7

D) (RS

k=1 =1

CART
Gl:f .

2
- ﬁgﬂﬁT]jﬁM){N (XXSEf)] _yH]
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-continued
XM = froase(D, Opry Gsp)
O<a=x?2
l =7 <500
s.tel << N
l = K <20
O0=<oyr =1
O=<og =1

wherein, F>77579(s) represents the SDFR-ref model;
I~ <. (®) represents a nonlinear feature selection algo-

oy

rithm proposed; N represents a number of modeling
samples; vy, represents an n-th true value; ¢, ,“**"
represents predicted value of I-th lealf node of first
CART, C,,“**!, represents predicted value of the I-th
leaf node of T-th CART; D={X,yIXe RV ye RV}

represents an original modeling data and an input of the
feature selection algorithm, M 1s a number of original

features; Iﬁm ~(X**¢Y) 1s an indicator function, wherein
when Cle RN then  Lpwn(X)=1,

XXSE.‘f% RMKN,, then IRMW(XXSEE)ZO;

Feature selection based on MI and ST;

wherein MI and ST are used to calculate an information
correlation between the original features and dioxins
(DXN) values, and achieve a best selection of features
through preset thresholds;

wherein for an input data set, the nonlinear feature selec-
tion algorithm f.__._,(*) proposed i1s defined as follows:

when

D = froaser(D, Oagrs Os1) (2)

wherein, D%'={X5yIXe RV yeRM1 respectively
represent an output of a proposed feature selection
algorithm, and M?>¢! is a number of selected features:

wherein MI provides an information quantification mea-
sure of a degree of statistical dependence between
random variables, and estimates a degree of interde-
pendence between two random variables to express
shared information, with a calculation process as fol-
lows:

P(Xnis Yn) (3)
PXni)y, (V)

I, )= ) Pl yulog,

Ang Vn

wherein, X; 1s an 1-th eigenvector of X, Xx,,; 1s a n-th value
of an 1-th vector, y represents a joint probability den-
sity; p(X,, ;) and p(y,) represent a marginal probability
density of x,,; and y,,:

wherein when a MI value of a feature 1s greater than the
threshold 0,,,, the MI value is assigned as an important
feature constituting a preliminary feature set X**/; ST is
used to analyze a correlation between the selected
features based on MI and remove collinear features;

a Pearson coeflicient value PCoe between the selected
features x**/ and XjMI 1s calculated as follows:

(4)
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wherein, S; and S; represent a standard deviation of x

x,""; N; and N; represent a number of samples of x,*"
MI.

14

wherein, E Ml and X" represent an average value of x,*"

and x" respeetwely, X, and x, ' represent a n-th
value of x,* and X; Ml 7 _test is used to calculate the
value between features X ! and X MI.

_MI

IE’SI

f;}ﬂ _ ﬂﬂ (5)

Ztest =

and
and

wherein, a p-value 1s obtained by looking up a z,_, value

in a table; wherein in H, 1t 1s presumed that there 1s no
linear relationship between an 1-th and j-th features, and
the Pearson coefficient PCoe 1s regarded as an alterna-
tive hypothesis H,; based on the comparison of p-value
and significance level &, , a final selected X**** includ-
ing preferred features i1s determined; wherein criteria
are expressed as follows:

Accept Hq (linearly dependent), (6)
—val

reject Hy (linearly independent) p-value < ogr

Accept Hq (linearly dependent),

—value <
reject Hy (linearly independent) p-value <ogr

wherein based on the above assumptions, collinear fea-
tures selected by MI are removed, thereby reducing the
impact of data noise on a training model;

wherein a training set after feature selection 1s recorded as
D°¢; an SDFR algorithm replaces a forest algorithm in
the original DFR with a decision tree, that 1s, CART;
each layer contains multiple decision trees, and tree
nodes are divided using a squared error minimization
criterion; a mimimum loss function of this process 1s
expressed as follows:

Split“*" = )
. T CART\Z CARTN2
min Z (ygggr (?Leﬁ ) + Z (yﬁ'fghf ‘:Hirghr )
Kselep, x5 R gy
CART CART

wherein, ¢; ., and Cp; ., are the outputs of R, -,
and Ry, ., nodes respectively: y; . and Yz, .z represent
a true values in R, _, and Ry, ., .nodee 1'e81:)eet1*»rely'3

specifically, the nodes are determined in the following
way:

{Rﬂeﬁg, ) ={x* |2 = 5] (8)
Rrighe (f, 8) = {x°¢ [ 3¢ > 5]

wherein, | and S represent segmentation features and
segmentation values respectively; x, >¢! is a j-th eigen-
value of the selected feature x> therefere CART can
be expressed as:

I &)
HOART (521 = Z CARTIR?ART(XSEJ)

=1
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wherein, L represents a number of CART leal nodes,
c,“**" represents an output of the 1-th leaf node of

CART, and I, CART(XSEE) 1s the 1ndicator function, when
XSEEE RECART I T(XSEJ) 1 When XSE’EE RECARTI CART
(XSEE)—O,

a first-level model containing multiple CARTSs 1s repre-
sented as follows:

(10)
SDFR(:5¢/)

ZhC’AHT
T

wherein, f,>”“%(*) represents the first layer model in
SDFR, T represents a number of CARTs 1n each layer
model, h, ,“**’(¢) represents a t-th CART model in

layer 1;

wherein, a first-layer regression vector ¥,%¥"*¢ from a
first-layer model f.>”“%(s) is expressed as follows:

j)ngVEE [hCART( )? hCART( )] [ CART CART

Cli 5 - 5 €T ]

(11)

wherein, ¢, ;, CART represents the predicted value of the
[-th leaf node of the first CART, C,.,“**/ represents the
predicted value of the 1-th leaf node of the T-th CART;

the augmented regression vector v,”*¥“? is obtained by
merging a layer regression vectors ¥,%°¥V*° and is
expressed as follows:
A ~R {
Vi = fFeaC'ﬂm(yl T x5 ) (12)
. 1 . -
wherein, ... (*®) represents an eigenvector combina-
tion function;
v,"&% is then used as a feature input for a next layer; a

DXN true value 1s no longer used in subsequent cas-
cade modules, but a new true value i1s recalculated
through a gradient boosting strategy; Therefore, the
following formula 1s used to calculate a loss function of
the squared error:

N , (13)
LfDFR( 511), SDFR ;.1 Z (1) SDFR )
wherein, L, °?“%(*) represents the squared error loss func-

tion in SDFR-ref; y ‘"’ represents an n-th true value of
a first layer training set;

the loss function L,>”** is further used to calculate a
gradient direction as shown below;

SDFH ( 5‘11): ﬁSDFR( )) (14)

d EDFH( )

1 £SDFR (_ 7SDFR

wherein, 6, """ is the gradient of the n-th true value of
layer 1; £,°7%(*) represents an arithmetic mean of an
initial true value, that is
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16

SDFR

Zyﬂ:'

y, represents the n-th true value;

wherein, an objective function 1s:

(15)

SDFR ef DFR CART CART el

wherein, £,°?7"(*) is the first layer model; o represents
the learning rate; [.(x>)) represents when x°“€R,
[.(x>¢)=1, when x*“¢ R, [(x**)=0;

therefore, a true value of a second level 1s:

V2 = (16

—Regvec

o R =R () =y - Y1 — oy

- SDFR( )_

wherein, Y1 1s a true value of the first layer model, that 1s,
y,;=Y, vV 1s a true value vector of DXN; le‘"g"’“"C repre-
sents a mean value of the first layer regression vector;
the tramning set of a k-th layer based on an augmented

regression vector of a (k—1)-th layer 1s expressed as

D = {{V iy ¥ VYl Veery ¥ is the aug-
mented regression vector of the (k—1)-th layer, and vy,
1S a k-th true value;

first, establish a k-th level decision tree h,“***(*) accord-
ing to formulas (7) and (8); A k-th level model 1s

expressed as follows:

(17)

Augfea
kEDFR (kg{‘) Z hEART
wherein, f,°”"*(*) represents the k-th layer model, and

h, ,““*'(*) represents a k-th layer of the t-th CART
model;

then, the augmented regression vector v,**€*? of the k-th
layer 1s expressed as follows:

Augfea ~Regvec e
Vi 4 — kaeaCam(yﬂc & 2 xS f) (18)

wherein, §, "¢ represents the regression vector of the
k-th layer, that is, §,7“*"*°=[h, ,“**/(*) h, AR
(*):

then, calculate the gradient ¢,°”"* according to formulas

(12) and (13); A true value of (k+1)-th layer 1s
expressed as follows:

(Free (19)

—Regvec
— yl + ... )

Y+l = V1 T Vi

the K-th layer 1s a last layer of an SDFR-ref training
process, that 1s, the preset maximum number of layers,
and its training set is D SEE—{{V(K T W 70

first, build a decision tree model h CART( ) through the
training set D.°¢ and further obtain the K-th layer
model f.>”" R('); Then, calculate the K-th layer regres-
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according to an input angmented
Angiea  which is expressed as

sion vector § ./ e8Vee

regression vector Vik-1
follows:

jf;egvec [hc,m;ﬂ( ), hC’ART( )] (20)

wherein, h, ,“**/(*) represents the first CART model of
the K-th layer, hy ,“**/(*) represents a T-th CART
model of the K-th layer;

finally, output value after gradient boosting with learning
rate o 1s:

K-1
( ) —Regvec

Yi=)1 — & Vi

(21)

wherein, y Regvec represents a mean value of the k-th layer

regression vector;

after multiple layers are superimposed, each layer 1s used
to reduce a residual of previous layer; finally, an
SDFR-ref model can be expressed as:

K K T (22)
FSDFR—r@f(xSef) _ ZﬁCSDFR(_) _ QZZ cf’f”, ngc;;e?]jﬁ(xsef)
k=1

k=1 1=
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wherein, [.(x>¢) means I.(x>*)=1 when x°*eR, and
[(x**)=0 when x_&R;
wherein F>?/#79(s) is calculated based on addition, a

final predicted value 1s not simply averaged; and first
calculate a mean value of the regression vector of each
layer as follows, taking layer 1 as an example:
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add K predicted values to get the final predicted value, as
shown below:
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and

wherein, ¥ 1s a predicted value of SDFR-ref model; means
[,(x°“)=1 when x°“€R, and [4(x°*)=0 when x°“¢R.
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