US012373570B2

a2 United States Patent (10) Patent No.: US 12,373,570 B2

Svlvester et al. 45) Date of Patent: Jul. 29, 2025
(54) ARTIFICIAL INTELLIGENCE BASED (56) References Cited
SECURITY REQUIREMENTS N
IDENTIFICATION AND TESTING u.5. PALENT DOCUMENIS
_ 7,191,337 B2* 3/2007 Bartley HO4L 63/102
(71) Applicant: Accenture Global Solutions Limited, 713/168
Dublin (IE) 9,609,015 B2* 3/2017 Natarajan HO4L 63/145
9916,439 B2* 3/2018 Jakubowski GO6F 21/53
2012/0137138 Al1* 5/2012 @G IC oo GOO6F 8/61
(72) Inventors: Chase Alan Sylvester, Prosper, TX FEERIETIE 707/694
(US); Ganesh Devarajan, Hawthorn 2017/0357927 A1* 12/2017 Antonio GOGF 8/30
Woods, IL (US) (Continued)
(73) Assignee: Accenture Global Solutions Limited, OTHER PUBILICATIONS

Dublin (IE)
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated Redirects

(*) Notice: Subject to any disclaimer, the term of this and_Forwards_Cheat_Sheet html.

patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 308 days. Primary Examiner — Jahangir Kabir
(74) Attorney, Agent, or Firm — Seed Intellectual
(21) Appl. No.: 17/876,425 Property Law Group LLP
(37) ABSTRACT
(22) Filed: Jul. 28, 2022 The proposed systems and methods apply natural language
processing to 1dentity implicit security requirements flowing,
(65) Prior Publication Data from mput text narratively describing desired features for a

soltware project. These systems and methods can i1dentily
hidden security requirements that may not be readily appar-
ent from the features described 1n the mput text. For

US 2024/0037243 Al Feb. 1, 2024

(51) Int. Cl. example, a story may include a feature of a return URL
GO6F 21/57 (2013.01) (Uniform Resource Locator), which 1s the URL for the
GO6F 40/279 (2020.01) website to which a user will be redirected. A security

vulnerability that would not be obvious from this feature 1s

(52) U.S. Cl. that a user might be directed to an attacker controlled site

CPC s GOor 21/577 (2013.01); GO6E 407279 instead of the originally intended site. A security require-

(2020.01); GO6F” 2221/033 (2013.01) ment that could counteract this vulnerability would be to
(58) Field of Classification Search include the {feature of veniying all redirects go to

CPC HO4L 9/50; HO4L 9/0618; HO4L 9/0643; Whitelisted Sites. The proposed systems and methods pro-
HO4L. 63/0435; HO4L, 9/0825; HO4L vide a Iframework for automated security requirements

63/045; HO4L, 63/126; GO6F 21/53; GO6F analysis capable of identifying unstated security require-
21/64; GO6F 16/27 ments early on 1n a soltware development lifecycle using

USPC oo 713/17¢ ~ Artificial intelligence techniques.
See application file for complete search history. 20 Claims, 9 Drawing Sheets
EQQ USER f*r{}mf L~ 310
EACH SENTENCE = 312
C
— | EACHFUNCTIONAL woRrD "3

!

KEY FUNCTIONAL WORDS
MAFRING DATABASE 320

NO
332 3
TS THIS NG
A FUNCTIONAL WORD

MAPPED TO ASECURITY -
" REQUIREMENT?

YES 334

- ISTHISA

- DUPLICATE INSTANCE
OF THIS SECURITY .
o REQUIREMENT?

" - 344

Y

ADD TO LIST 350

!

SECURITY REQUIREMENTS |——"370

¥

CSV FILE e 550

US 12,373,570 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2019/0089723 Al* 3/2019 Valgenti HO4L 63/1416

OTHER PUBLICATIONS

https://owasp.org/www-project-top-ten/2017/A5_2017-Broken

Access Control html#.

Riaz et al., “Hidden in Plain Sight: Automatically Identifying
Security Requirements from Natural Language Artifacts™; 2014
IEEE 2nd International Requirements Engineering Conference;
Aug. 25-29, 2014, http://www.slankas.net/papers/re 14main-hidden-
in-plain-sight-preprint.pdf.

El-Hadary et al., “Capturing Security Requirements for Software
Systems”, Journal of Advanced Research vol. 5, Issue 4, Jul. 2014,
pp. 463-472; https://reader.elsevier.com/reader/sd/pi1i1/
S20901232140003327token=9EC42237B6709EDA7EDA9231EB9
FAAOAS4CO388FSE0511C12940276C4189AFIDFBAC1ID2B521
9024967940D3 AEDEF2773D&orngimRegion=us-cast-1&ornginCreation=
20230125171841.

Hadavi et al., “Sescurity Requirements Engineering; State of the Art
and Research Challenges™, Proceedings of the International Multiconfer-
ence of Engineers and Computer Scientists 2008 vol. I. IMECS
2008, Mar. 19-21, 2008, Hong Kong ; https://www.laeng.org/
publication/IMECS2008/IMECS2008_pp985-990.pdt.

* cited by examiner

U.S. Patent Jul. 29, 2025 Sheet 1 of 9 US 12,373,570 B2

100

110

o USER STORY |
. ANALYSIS

~ AUTOMATED o
- CREATION OF
yooSECURITY

S TORIES

S F DEVELOFER
5 SECURITY
REQUIREMENTS

13U

US 12,373,570 B2

Sheet 2 of 9

Jul. 29, 2025

U.S. Patent

MOLLOANNGOD VOO T/ IdY 7 HSS

E@ﬁm@%m .
1 008AY I |
 ONILSTL
 JILYNOLNY |

06 NOLLOINNOD Y00

067

= [OISESI 10102 te

:.:....Z....::. .. Q.WN ZOMFUMZZDU QQQJQQ
- ASYHYIYO T30]

BN CINEENTER

. u{m..mﬁﬁwww A cncmmeneemememememememememen ZQMFQWEEQQ
082 NOILLOFNNOD WU
P w001 \2
 ONIdAYIN m o~
| WNOLLONNA | AN O %@mmm@%&&
o . B — e szqms.m mzﬁ.
" NOILOINNGO | SISATYNY NOLLOSNNGD
22 | w0017 idv/ HSS VIO Hoid] 1 0d Vv

MNOLLOINNOD ALY

(T a3ss3ssy

ACYIHTY JHYNOLOIG | ONiddYI

AN LNGO

wedid(O1S i LY ONdnG NOELY A D AedOLS
mmwm m.wzmwﬂ =l RO« KA) = e
L ALIENTOAS HIYINOGINY =Sy d
......... AUO0 HONOGHL U=V dANAD INDINOD | @ /
. .. . Zoz
J9E (037

U.S. Patent Jul. 29, 2025 Sheet 3 of 9 US 12,373,570 B2

300 "

L]
*
L]
Ly
L
- L]
L
* *
- *
+) b
: .
-
L
-
L
*
L]
*
LI I
LI}
L]
L]
-
MR R MR A AT e NN RN A N RN R e N R R e R R R e e R R R R e R e R
. *
[
e
* -
L
-
L]
L
L]
-
L
b 4
L]
*
L L]
e
" +
L L T T L T T O o o L o o T T e o A T R N N T o I L o I I L e e T I T - I L T L e I T L L O e A R L L L R A Y
B L b b b ohok o b ko ochoh ohod ko b hohohoh o hokod dd hochohd ok o b hoh o4 ok ok ool dowowohoh okl o onomow o h ook o bk ochh ok ohokod howok ko i1.I,l.'l.-i.i-i-iiq.h.ﬁ.'h'i.iiiil.l.-q.i.t 'ﬂ
N = i
L] L]
LY
L]
o
B3 L w
- L
LI L
LI Y L1
L] L
L *
L]
e
. -
+ -
- -
LA kA% %YW AE A h %% LELLAh% %A% LLAhdd AR Rl kE %A LALhd T E LA RR YLk R % h 1T WLk ks AL hkS YWY AL RdE AR AR WA AW
& =
l-"_l-h
L
-
e e N N A
L]
L
L]
n
L
-
L}
. *
-
: .
. B . . -
-
L ke
b L]
L]
a
L] L
b1
L] L3
"
L . L]
* -
L] * : b
L -
L - *
" B FA TS % %% YW EFYE S YEY YRR E T R ST RREL WYY EFT RS EYESTEFATE S OEE ST TEOEYTEEOSTATE YR WY EARFAE TS ST EL AT YT EY YWY ORAL T RYEREEEFATTYTYAEESESEEFTE
L]
L]
L
L]]
L] L]
L]
+ iy
- .
n N
L]
[
L
LI
LY
L]
L
[
Lt
L
LI]
-
L]
. -
L A e - NN
"1- - L]
h * ¥, -
- 2
[8
LY 2y
L1
L] [8
L1 *
L 2
L
- 2]
-
L] =
-
. L 3 +
. L *
L - L
- Lo bk koL Lk ko hchhhdw kol
- L]
L
L] L]
L]
-
L]
L]
-
L]
L]
*
L]
L
. N
'
k L]
-
L
L8
-
L1
L]
L]
-
. -
FALN WY W YR FAYE S W AW W LR AW AW FELAN
-h‘-h
'!.'ﬁh
L
R R R I N N N
LY
- =
M R AR AR e e Mk
L]

o F FFFFT A FS

LT L L L T PO PO O I L P

-
‘h-i-
[]

L]

L]
LI LI Y N N B B B N NI B L N NS

N L e

% OF ALY R RS S FLF SR RS W RO L

LN

>
w
-
m.,g
2
-
€2
o
-

Pyl
lhﬁ-
L]
-
i i A 3
A O e A o I O o o e e e e e e O e e e e m
L
A
L] -
*
L]
-
L [
[y .] s
n =
" *
L]
H A H LY
M -
L]
LY
- LY
NN N NN TS e N R N N e e N N N AN R T S R N N N N e N e N T N e e N e N N e e e T S e N N A N T Y e e N
'-‘-i.‘-i.
LY
aty
1
L e R N R NN,
L]
n
L
. L3
. *
b
L]
.
M LY
L]
* oy
L
[
L L]
u
- u
L T o T T e e e e T e e e R I I T e e I T e e e e N R I T e e e T I T e e N N Y

G. 3

U.S. Patent

Jul. 29, 2025 Sheet 4 of 9

......................... ‘

410

420

~ &30

- 440

~ 450

- TAS.

US 12,373,570 B2

US 12,373,570 B2

SHALOVHYHO
GIIYANT 5O
SNOIDITYIA B3 171
YAV NY A 1D
025 /
o 009
5
\r
:
& Oid

ASVEVIYO WOMA VIV | NOLLOINNOD HSS H3IAD
AHMOLS ¥ISN SAOYOINMOT] HL4AS ONISH SIUNOLS

L ASYEYIVO NCHA YYD
%mﬂuumnw I mmﬁﬁiﬁzg@m

Jul. 29, 2025

ATTYDILYINO LMY HISH OYOTINAOC
JOVAHILNI G3M / 1dY | ATIYOLLYINOLNY

| iYL 1T d ..
0LS 0CS 015

~
o
Qo
~
S
< \
<)
-

ATV ILLYWNOLNTY
S VA LN UM 7 IdY

0%

U.S. Patent Jul. 29, 2025 Sheet 6 of 9 US 12,373,570 B2

700
/ {20
710 PARSE DATA
....... G EN§§F§§A%§NV{3F E LE
USER STORY BEGINS COMPONENTS OF |
....................... ANDENDS 1 | USER STORY
G T
ANALYZE DATA 800
1 CHARACTER |
O B S hasd AR -
&30 \ ‘
| \ 82U] | ,
SEFARATE ARRAY LIST

WHITH EACH

EACH WORD |

NTHE |
USER STORY |

WORD = ONE |
 ELEMENT |

| BYENGLISH |
1 PUNCTUATION |

U.S. Patent Jul. 29, 2025 Sheet 7 of 9 US 12,373,570 B2

900

\

0 COMPARE 920

SENERATE be—o UNIGUE USER |
DICTIONARY LISTle— | STORY DATA |

!!

ii

. IDENTIFY |
------- . SECURITY |
 REQUIREMENTS |

I D B LT L T T . D T D T DL T B L P . T L T L L L L L T PP, D DO D B IR T L L L W TP, D B L D T P

!

930

-~ FU10

AUTOMATED REGEX |
CREATION MAPPING [™1020

ll

SECURITY REQUIREMENTS | _
DUPLICATE DICTIONARY |

!!

1030

iii

| DATABASES |

ll

100L~

ll

USER STORIES]
ALREADY ASSESSED ™

ll

1040

KEY FUNCTIONAL | _~1080
WORDS MAPPING |

uu

bb

SECURITY :
REQUIREMENTS |

lllll ol B e L T I T L T I DL e I e . I L D T T . I O I e L T L I L DL L T D I . L L T L I L DL I O L T I D L L I e I T . I T O T T TR T . . O |

[* & > 1 o FF
L

1060

U.S. Patent Jul. 29, 2025 Sheet 8 of 9 US 12,373,570 B2

1100

LR A MEMORY

140} ' SECURITY
. et I REQUIREMENTS

DENTIFICATION
SY ST EM

| [DATAPUSH/PULL | |||
N4 AND CLEANING |||
MODULE

!l {ANALYSIS ENGINE | |||

OPLOAD 11
PROCESSOR | |||

™~ ~

| —— < s p
1 — < 0000 F

- o
o [
9 E— < [iiliibs P
L e — |
1 —— < [00s P

. =Y
{ T o }
SERVER

oY ST EM

1104

HATABASE

U.S. Patent Jul. 29, 2025 Sheet 9 of 9 US 12,373,570 B2

120U

N\

- RETREIVING, FROM A USER STORY | _~1210
| DATA REPOSITORY, USER STORY DATA |

PARSING THE USER STORY DATA ™ 1220

SEPARATING EACH WORD TN PP
THE USER STORY DATA AND -
CREATING A WORD LIST

CREATING A REGE}(FOR EACH
FUNCTIONAL WORD IN THE WORD
LIST TO PRODUCE A REGEX
FUNCTIONAL WORD LIST

1240

DETERM?NENG WORDS IN
THE REGEX FUNCTIONAL WORD |
LIST MATCH WORDS IN AKEY 12l
FUNCTIONAL WORDS
MAPPING DATABASE

IDENTIFYING AN ASSOCIATED SEGURITY i
. REQUIREMENT FOR EACHWORD |™~1260

LINKING THE SECURITY 4970
REQUIREMENTS WITH THE il
FIRST USER STORY

US 12,373,570 B2

1

ARTIFICIAL INTELLIGENCE BASED
SECURITY REQUIREMENTS
IDENTIFICATION AND TESTING

TECHNICAL FIELD

The present disclosure generally relates to the field of
language processing. More specifically, the present disclo-
sure generally relates to the identification of implicit security
requirements flowing from mput text narratively describing
desired features for a software project.

BACKGROUND

Soltware development often begins with software project
user stories. These user stories can include narrative text that
describes the desired features of a software project. In many
cases, user stories are written by non-technical team mem-
bers and are given to software developers to create the code
meant to realize the features described 1n the user story. The
user stories tend to focus on the desired features without
mentioning or acknowledging security risks the features
may 1invoke. Thus, the software developers are left to
determine 1f any of the features might create security risks.
Many times, the security risks are not obvious from the user
story and the software developers overlook such security
risks, leaving the security risks to be revealed later on 1n the
process ol software development or even after deployment
or integration ol an application. A need exists for finding
hidden, unstated security requirements in user stories.

While 1t 1s possible to “retrofit” protection 1nto applica-
tions post completion, this 1s the most expensive and least
ellective approach. Viruses, worms, and other attacks due to
security tlaws 1n applications cost businesses billions of
dollars 1n lost productivity, system recovery, and informa-
tion loss every vear.

Unfortunately, security 1s often an afterthought during
project development. Recognizing security requirements
carly, especially 1n the development phase, 1s important so
that security problems can be tackled early enough before
going further in the process and avoid rework. A more
cllective approach for security requirement engineering 1s
needed to provide a more systematic way for eliciting
adequate security requirements.

There 1s a need in the art for a system and method that
addresses the shortcomings discussed above.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be better understood with reference to
the following drawings and description. The components in
the figures are not necessarily to scale, emphasis instead
being placed upon 1llustrating the principles of the inven-
tion. Moreover, in the figures, like reference numerals
designate corresponding parts throughout the different
VIEWS.

FIG. 1 1s a schematic diagram of an overview of a security
requirement 1dentification process, according to an embodi-
ment;

FIG. 2 1s a schematic diagram of a security requirement
identification system, according to an embodiment;

FIG. 3 1s a schematic diagram of a process of identifying
security requirements during an assessment stage, according
to an embodiment;:

FIG. 4 1s a high-level overview of a security requirement
identification process, according to an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 1s a schematic flow diagram presenting a process
for retrieving user story data, according to an embodiment;
FIG. 6 1s a schematic tlow diagram presenting a process
for cleaning user story data, according to an embodiment;

FIG. 7 1s a schematic flow diagram presenting a process
for parsing user story data, according to an embodiment;

FIG. 8 1s a schematic tlow diagram presenting a process
for analyzing user story data, according to an embodiment;

FIG. 9 1s a schematic tlow diagram presenting a process
for comparing functional words, according to an embodi-
ment,

FIG. 10 1s a schematic diagram presenting a process for
assessing key functional words to identily security require-
ments, according to an embodiment;

FIG. 11 1s a diagram depicting example environments and
components by which systems and/or methods, described
herein, may be implemented; and

FIG. 12 1s a flow chart depicting a method for identiiying
security requirements during project development, accord-
ing to an embodiment.

SUMMARY

Implementations described herein provide for a security
requirement 1dentification and tracking system that auto-
matically determines, based on user story data for a project,
what security requirements should be linked to each key
functional word for a user story. The proposed systems apply
natural language processing (NLP) to collect data generated
from 1nput text of user stories (and related text) and generate
and manage databases that support the operation of the
security requirement identification system. A security
requirements duplicate dictionary can be provided to
improve the output generated for end-user consumption by
removal of duplicates of security requirements that would
otherwise increase the burden on the end-user to decide
which security requirements remain outstanding over time.
By reducing duplicates, the security requirements duplicate
dictionary can unclutter security requirement reports auto-
matically generated by the proposed systems. These security
requirement reports and/or the proposed databases linking
security requirements to user stories has a practical appli-
cation of improving the process of developing code with
appropriate security requirements.

The proposed systems can ensure accuracy and complete-
ness i 1dentification of security requirements by the utili-
zation of NLP techniques to parse each word from the user
story data, identily those words that represent functional
words, and analyze the data one by one as individual words,
rather than evaluating sentences or other phrases. In this
way, the security requirements that are dithcult to 1mmedi-
ately recognize based on the project requirements of a story
and, therefore, are susceptible to being overlooked, may be
quickly identified. For example, a project requirement of
creating profiles for users may not call out the need for
creating credentials for the profiles. However, creating pro-
files may inherently nvite security 1ssues related to others
breaking into the users’ profiles. Thus, creating credentials
to prevent these break-1ns may be a security requirement that
naturally follows creating profiles and, thus, should be
included 1n the project requirements. Analyzing full sen-
tences may not reveal such “hidden” security requirements
as creating credentials when creating user profiles. The
proposed system and methods provide a technical improve-
ment of applying NLP to process and analyze individual
words to help reveal these hidden security requirements.

US 12,373,570 B2

3

While the disclosed embodiments are based on software
project management, 1t 1s understood that other project-
based systems can benefit from NLP-based detection of
security-related 1ssues, as disclosed herein. For example,
systems that are being developed to support large-scale
operations may benefit from the disclosed techniques, as
disclosed herein. In addition, systems for managing and
tracking security 1ssues of other types of large, distributed
systems with many moving parts or stages of development,
can 1implement embodiments of the security requirement
identification system described herein. For example, facili-
ties such as factories, hospitals, manufacturing plants, as
well as other facilities with multiple components that rely on
cach other to perform optimally can be potentially impacted
by a wide variety of security 1ssues that can detract from
their performance over time. Tracking these 1ssues using the
proposed security requirement identification system can (a)
ensure security 1ssues are addressed preemptively and ethi-
ciently and (b) help the organization appreciate what types
of 1ssues are recurring and/or how often they occur, whether
the security requirement 1s a long-term or short-term 1ssue,
involves the distribution of resources, inter-personnel coms-
munication, or the operation of the devices and hardware
supporting the facility, etc. Such knowledge can signifi-
cantly improve the performance of the facility over the long
run, as well as reduce operating costs by fostering proactive
interventions during the facility’s development.

In different embodiments, the security requirement 1den-
tification system provides an early warning to developers to
incorporate specific mitigating features in the project. More-
over, automation of security requirement identification
increases the quality of the project during development,
thereby reducing errors relating to a project relative to
manual completion of the process.

In one aspect, the disclosure provides computer-imple-
mented method of 1dentifying security requirements during,
a project development lifecycle. A first step of the method
includes retrieving, from a user story data repository and at
a first time, user story data for a first user story, and a second
step of separating each individual word in the user story data
to create a first word list. A third step includes i1dentifying,
using NLP, whether each individual word 1n the first word
list 1s a functional word, and a fourth step includes creating
a regex for each individual word identified 1n the first word
list as a functional word to produce a first functional word
regex list comprising a first plurality of functional word
regexes. The method also includes a fifth step of determiming,
which functional word regexes 1n the first functional word
regex list have one or more corresponding security require-
ments 1 a key functional words mapping database, and a
sixth step of forming the one or more corresponding security
requirements 1nto a first list of security requirements. Fur-
thermore, a seventh step includes linking at least a first
security requirement of the first list of security requirements
with the first user story in the user stories already assessed
database, and an eighth step includes automatically gener-
ating and displaying a first report that identifies the first
security requirement together with the first user story.

In another aspect, the disclosure provides a non-transitory
computer-readable medium storing soiftware comprising
istructions executable by one or more computers which,
upon such execution, cause the one or more computers to:
(1) retrieve, from a user story data repository and at a first
time, user story data for a first user story; (2) separate each
individual word 1n the user story data to create a first word
list; (3) 1dentity, using NLP, whether each individual word 1n
the first word list 1s a functional word; (4) create a regex for

10

15

20

25

30

35

40

45

50

55

60

65

4

cach individual word identified in the first word list as a
functional word to produce a first functional word regex list
comprising a first plurality of functional word regexes; (5)
determine which functional word regexes 1n the first func-
tional word regex list have one or more corresponding
security requirements 1 a key functional words mapping
database; (6) form the one or more corresponding security
requirements nto a first list of security requirements; (7)
link at least a first security requirement of the first list of
security requirements with the first user story in the user
stories already assessed database; and (8) automatically
generate and display a first report that identifies the first
security requirement together with the first user story.

In another aspect, the disclosure provides a system for
identification of security requirements. The system com-
prises one or more computers and one or more storage
devices storing instructions that are operable, when executed
by the one or more computers, to cause the one or more
computers to: (1) retrieve, from a user story data repository
and at a first time, user story data for a first user story; (2)
separate each individual word in the user story data to create
a first word list; (3) i1dentity, using NLP, whether each
individual word 1n the first word list 1s a functional word; (4)
create a regex for each individual word 1dentified 1n the first
word list as a functional word to produce a first functional
word regex list comprising a first plurality of functional
word regexes; (5) determine which functional word regexes
in the first functional word regex list have one or more
corresponding security requirements in a key functional
words mapping database; (6) form the one or more corre-
sponding security requirements into a first list of security
requirements; (7) link at least a first security requirement of
the first list of security requirements with the first user story
in the user stories already assessed database; and (8) auto-
matically generate and display a first report that identifies
the first security requirement together with the first user
story.

Other systems, methods, features, and advantages of the
disclosure will be, or will become, apparent to one of
ordinary skill in the art upon examination of the following
figures and detailed description. It 1s intended that all such
additional systems, methods, features, and advantages be
included within this description and this summary, be within
the scope of the disclosure, and be protected by the follow-
ing claims.

While various embodiments are described, the description
1s intended to be exemplary, rather than limiting, and 1t will
be apparent to those of ordinary skill in the art that many
more embodiments and 1mplementations are possible that
are within the scope of the embodiments. Although many
possible combinations of features are shown in the accom-
panying figures and discussed 1n this detailed description,
many other combinations of the disclosed features are
possible. Any feature or element of any embodiment may be
used in combination with or substituted for any other feature
or element 1n any other embodiment unless specifically
restricted.

This disclosure includes and contemplates combinations
with features and elements known to the average artisan in
the art. The embodiments, features, and elements that have
been disclosed may also be combined with any conventional
features or elements to form a distinct invention as defined
by the claims. Any feature or element of any embodiment
may also be combined with features or elements from other
inventions to form another distinct invention as defined by
the claims. Therefore, 1t will be understood that any of the
teatures shown and/or discussed in the present disclosure

US 12,373,570 B2

S

may be implemented singularly or in any suitable combi-
nation. Accordingly, the embodiments are not to be

restricted except 1n light of the attached claims and their
equivalents. Also, various modifications and changes may be
made within the scope of the attached claims.

DESCRIPTION OF EMBODIMENTS

The proposed systems can apply NLP to collect data
generated from nput text, utilize mapping database(s) to
analyze the data to determine which security requirements
apply to the input text, and output a report connecting
functional words from the input text with the security
requirements. For example, in exemplary embodiments
described below, the input text 1s software development user
stories (and other related text) and the security requirements
are those related to the user stories. The proposed systems
can ensure accuracy and completeness 1n 1dentification of
security requirements by the utilization of NLP techniques to
parse each word from the user story data, identify those
words that represent functional words, and analyze the data
one by one as mdividual words, rather than evaluating
sentences or other phrases. In this way, the security require-
ments that are dithicult to immediately recognize based on
the project requirements of a story and, therefore, are
susceptible to being overlooked, may be quickly i1dentified.
For example, a project requirement of creating profiles for
users may not call out the need for creating credentials for
the profiles. However, creating profiles may inherently
invite security issues related to others breaking into the
users’ profiles. Thus, creating credentials to prevent these
break-ins may be a security requirement that naturally
tollows creating profiles and, thus, should be included 1n the
project requirements. Analyzing full sentences may not
reveal such “hidden” security requirements as creating cre-
dentials when creating user profiles. The proposed system
and methods provide a technical improvement of applying
NLP to process and analyze individual words to help reveal
these hidden security requirements.

Secure project development 1includes integrating security
in different phases of the development lifecycle such as
requirements, design, implementation and testing. Early
consideration for security in requirement phase helps in
tackling security problems before further proceeding in the
process and 1n turn avoid rework. In order to integrate
security with requirement engineering, security require-
ments that identily and document requirements needed for
developing a secure system can be defined. Security require-
ments can typically be elicited by analyzing the assets to be
protected and the threats from which these assets should be
protected. The proposed systems and methods disclose a
project security requirement identification that provides a
more systematic way for alerting developers to aspects in
which security requirements may be 1nadequate.

As a general matter, the security requirements that will be
identified depend on the particular assets of the system, and
the threats that can harm such assets. Such threats typically
describe what the attacker can do in order to violate the
security concerns of the system, and can cause vulnerability
in the system. Thus, a vulnerability can refer to a weakness
in the system that may be exploited by an attacker. Such
threats can cause harm to the system because they violate
one or more of 1ts security concerns (confidentiality, integ-
rity, availability, accountability and authenticity).

Security management processes across project disciplines
ensure security 1s properly designed and built into the
system that 1s being developed. Security requirements are

10

15

20

25

30

35

40

45

50

55

60

65

6

usually defined by a security risk assessment, which 1s a
process ol identifying business risks, identitying system
vulnerabilities or weaknesses that can impact those risks,
and recommending mechanisms to control the vulnerabili-
ties. Specific confidentiality, integrity and availability
requirements for the new system and the development
environment are defined through this process. Security stan-
dards, guidelines and procedures provide security direction
to the implementation. They will help define how the
security requirements developed through the risk assessment
must be addressed 1n all areas of the development environ-
ment. They will include security standards for the develop-
ment environment infrastructure, procedures for the devel-
opment processes, standards for the design of the security
architecture and security guidelines for programming. It 1s
especially important to ensure the security of the develop-
ment environment because if these systems are broken into
and back doors are introduced, 1t may lead to later compro-
mise of the production system. It will be the responsibility
of all developers that these security controls are imple-
mented and adhered to throughout the development process.
With respect to the domain of software development
projects, from the standpoint of both cost and effectiveness,
considering security as an integral part of the software
development lifecycle 1s the best way to build and maintain
robust, reliable, and trustworthy applications. Incorporating,
security-based techniques in each phase of the software
development lifecycle (SDLC) can significantly improve
product quality and resistance to attack in the final product.
Although the examples described herein will focus on the
use of the proposed security requirement identification
approach during the SDLC, it should be understood that a
variety of other project development systems, such as sys-
tems for managing and tracking maintenance of other types
of large, distributed systems with many moving parts or
stages of development, can implement embodiments of the
security requirement identification tool described herein.
Tracking security 1ssues using the proposed security require-
ment 1dentification tool can (a) ensure 1ssues are addressed
ciliciently and 1n a timely fashion and (b) help the organi-
zation appreciate what types of 1ssues are recurring and/or
how often they occur, whether the 1ssue 1nvolves the distri-
bution of resources, inter-personnel communication, or the
operation of the devices and hardware supporting the facil-
ity, etc. Such knowledge can significantly improve the
performance of the facility over the long run, as well as
reduce operating costs by fostering proactive interventions.
In general, a requirements analysis 1s a critical security
activity that should be performed early in the SDLC. The
requirements analysis brings attention to requirements and
how systems interact with their environment to ensure that
a software project starts building on the right foundation, as
insecurities mntroduced in this early phase will only be
compounded in later phases. In other words, as developers
write requirements about what a system must do, they must
also consider what a system must not do. When they write
use cases, they should also produce misuse/abuse cases to
describe how a malicious user might interact with the
system. Requirements analysis also leads to a greater under-
standing and appreciation of risk, such as the business risk
ol a successtul attack against the application, how that event
may allect users and what business processes would be
necessary to manage damage control. The costs of liability,
redevelopment, and damage to brand image and market
share 1s part of this process.
As will be described in greater detail below, the proposed
embodiments are configured to assist project developers 1n

US 12,373,570 B2

7

identifying security requirements 1n a more systematic way
during the requirement engineering process. Security
requirements are used to provide a clear set of security
specific needs and expected behavior of a system, with the
goal of protecting systems assets (data and files) and block-
ing unauthorized access to the system from intentional
attacks to the application software systems and other forms
of mternet based security. Some examples include attacks
such as spam, denial of service, identity thelft, viruses, and
many other forms of intentional attacks.

Traditionally, requirements have been classified 1into two
major groups: lfunctional and non-functional. Functional
requirements are directed to functional aspects of the system
that can be directly tested and observed, and are related to
issues such as (but not limited to) access control, data
integrity, authentication, and wrong password lockouts fall
under functional requirements. Non-functional requirements
support auditability and uptime, and deal with, for example,
constraints, quality, data, standards, regulations, interfaces,
performance, reliability, and other implementation require-
ments. Thus, for purposes of this application, functional
words will refer to those words which are related to func-
tional requirements. Some non-limiting examples of func-
tional words could include “API”, “password”, “login”,
“mysql”, “‘oracle”, “backend”, “splunk”, “authenticate”,
“XML”, etc. As a general matter, the functional words that
will apply will depend on the functional area being devel-
oped, as well as the industry to which the project 1s directed.
For example, Web applications have APIs, while Cloud
platforms have cloud services—each of these functional
areas has i1ts own functional words that can translate to
different security requirements. The words can also be
unique to each organization depending on how they operate.

The apparatuses, methods, and non-transitory computer
readable media disclosed herein may address the atoremen-
tioned techmical challenges by utilizing artificial intelli-
gence-based NLP techniques to develop and manage data-
bases that will automatically 1dentity security requirements,
a process which may expedite project outcomes and may
turther increase the quality and accuracy of the product. In
different embodiments, the security requirements can be
generated 1n English (or other designated language) and are
domain-agnostic to enhance application security across
industries. In some embodiments, the proposed security
requirement 1dentification system 1s configured to ingest
code parsed mto a plurality of “functional words” and
automatically translate that word 1nto one or more “Security
Requirements™. In addition, rather than broadly analyze a
user story sentence-by-sentence, the proposed security
requirement 1dentification system 1s configured to examine
cach i1ndividual word (including, but not limited to, user
story titles, APIs, HI'TP Parameters, etc.) to trigger a secu-
rity requirement, without reliance on machine learning.
Instead, the security requirement identification system
includes a “Key Functional Words Mapping” database (see
FIG. 2) which 1s automatically built into a dictionary from
the database based on a mapping algorithm. Thus, 1n dii-
ferent embodiments, the security requirement identification
system can analyze each word to determine 11 the functional
word 1s mapped to a security requirement.

In some embodiments, the security requirements are pro-
vided to developers as Security Stories, which describe
impacting hacker scenarios, include recommendations and
mitigations to prevent hacker scenarios, and contain security
acceptance criteria. Often, these Security Stories are
designed to require only a brief review (typically a few
minutes) for developers to appreciate and absorb the security

10

15

20

25

30

35

40

45

50

55

60

65

8

requirement. This mnformation, though minimal, can signifi-
cantly decrease development time, as the Security Story
succinctly reports the pertinent information and proactively
provides the developer with the necessary mitigations to
prevent attack scenarios before development starts. In con-
trast, without such stories, the developer 1s by nature more
reactive, and must conduct their own research to understand,
cvaluate, and handle security risks, which then extends
development time and costs.

For purposes of introduction, FIG. 1 depicts a high-level
process 100 (or process 100) of continuous and automated
security story generation, according to an embodiment. A
security story can be identified based on a return URL or
functional keyword/phrase, other keyword, or signature, or
other parameters that are associated with risk for the project,
whether 1nadvertently or via a malicious user. The process
100 can be seen to include three broad stages, including a
first stage 110 (user story analysis), a second stage 120
(automated creation of security stories), and a third stage
130 (developers empowered to code with security require-
ments). In the first stage 110, the security requirement
identification system receives and processes user stories. In
some embodiments, automated API integrations to develop-
ment tools (e.g., Jira) can be performed and development
risk signatures identified (e.g., API, email, PII, etc.). In
different embodiments, user story data can provide the
system with information on what will be coded. In addition,
in some embodiments, the system can include an abuse/
hacker case registry that can be used to i1dentily potential
security risks.

During the second stage 120, various and multiple hacker
scenarios can be generated, and Security Acceptance Crite-
ria defined. In addition, secure code frameworks and miti-
gation strategies are provided to facilitate development 1n a
tailored process that 1s designed to reduce false positives.
Finally, 1n the third stage 130, the developer 1s presented
with the identified security requirements. Based on the
output of the security requirement identification system, the
developer can be cognizant of the security risks that should
be addressed before writing code, and 1s prepared with
knowledge of how security will test the 1ssue. The developer
can then code securely based on the requirements provided.

For purposes of 1llustration, two examples of an imple-
mentation of the proposed system are described below. In a
first example, a first user story (e.g., “User Story 13157) 1s
received by the security requirement i1dentification system.
The first user story 1s associated with the following charac-

teristics:
SUMMARY: Account: TV Common UI redirect to new

page
DESCRIPTION: Common Ul redirect to new page
CCEPTANCE CRITERIA: ACI: Create URL for New
Stack TV new story
AC2: If user 1s eligible for the new page then redirect
to the new URL (e.g., URL:https://newurl.com/
testing=true&return_url=)

The security requirement identification system processes
this information and generates a Security Story with the
following parameters:

SIGNATURES IDENTIFIED: “return_url”

SUMMARY: As an Attacker I would like to use the

“return_url” parameter to redirect users to attacker
controlled sites

VULNERABILITY TYPE: CWE-601: URL Redirection

to Untrusted Site (‘Open Redirect’)

IMPACT DESCRIPTION: Customers

Attacker controlled sites:

directed

1O

US 12,373,570 B2

9

a. Account Compromise
b. PII and Customer Data Exfiltrated

c. Ransomware

SECURITY ACCEPTANCE CRITERIA: Venty All
Redirects go to Whitelisted Sites

SECURITY REFERENCES: https://cheatsheetseries.o-
wasp.org/cheatsheets/Unvalidated_Redirects_and

Forwards Cheat Sheet.html
SECURITY CONTACT: xyz@email.com

As a second example, a second user story (e.g., “User
Story 1167") 1s recerved by the security requirement 1denti-
fication system. The second user story 1s associated with the
following characteristics:

SUMMARY: Engineering—Iotus enhance xyz endpoint

for contact email update

DESCRIPTION: As an architect I'd like to enhance MS

endpoint to support user level contact email update.

ACCEPTANCE CRITERIA: Request param: BAU

(email address 1s already supported) enhance endpoint
to use mS for user email update

The security requirement 1dentification system processes
this information and generates a Security Story with the
tollowing parameters:

SIGNATURES IDENTIFIED: “update” and “email”

SUMMARY: As an Attacker I would like to update
another user’s email address to take over the custom-
er’s account

VULNERABILITY TYPE: CWE-284: Improper Access
Control

IMPACT DESCRIPTION: Change Customer’s Email
a. Account Compromise
b. PII and Customer Data Exfiltrated

SECURITY ACCEPTANCE CRITERIA: Verily Autho-
rization Controls 1n place to prevent Userl from chang-
ing User2’s Data

SECURITY REFERENCES: https://owasp.org/www-
project-top ten/OWASP_Top_Ten_2017/Top_10-
2017 A5-Broken Access Control

SECURITY CONTACT: xyz@email.com
An overview of an embodiment of a security requirement

identification system (“system™) 200 1s depicted in the

diagram of FIG. 2. As shown 1n FIG. 2, the system 200 can
be seen to include multiple modules, components, and
repositories or databases, including a push/pull and cleaning
processor (“push/pull processor”) 210, an analysis engine

220, code-generated content 230, an upload processor 250,

a user story data repository 202, a user stories already

assessed/processed database 260, a key functional words

mapping database 270 (also referred to herein as the data-
base of functional words), a security requirements database

280, and an automated testing playbook repository 290. A

high-level walkthrough of the system 200 operation will be

provided, with greater details being discussed below with

reference to FIGS. 3-10.

For purposes of reference, each step described 1n FIG. 2

1s shown on the diagram by a corresponding numeral. In a

first step (1), the system 200 1s configured to retrieve user

story data. In different embodiments, the push/pull processor

210 of system 200 can establish and/or communicate over an

SSH, API, or local connection to the user story data reposi-

tory 202 and obtain one or more user stories. A local

connection can be used, for example, for access to user
stories that are already on the system. In one example, the
user story data repository 202 can include business func-
tional requirements. The push/pull processor 210 can further
clean the received user story data before handing the data off
to the analysis engine 220 over a local connection. In some

10

15

20

25

30

35

40

45

50

55

60

65

10

embodiments, each user story can be recognized by its user
story Unique Identifier, for example a SHAS12 hash of the
content or, 1f provided by the database, a unique 1dentifier
normally found in user stories such as the <User Story
Application Name>:<Unique User Story Number>.

In a second step (2), the analysis engine 220 parses the
user story and extracts and/or generates content (1.e., content
generated through code 230) such as parsed user story
content 232, automatic Regex creation mapping 234, and
entries for a security requirements duplicate dictionary 236.
In a third step (3) the analysis engine 220 analyzes the user
story data, and 1n a fourth step (4), the user story data 1s
compared against already created security requirements
(with reference to the security requirements duplicate dic-
tionary 236). At a fifth step (5) the analysis engine 220 can
assess (e.g., over an SSH, API, or local connection) the user
story data based on key functional words to determine
security requirements. During this step, the analysis engine
220 access three databases, including the user stories already
processed database 260, key functional words mapping
database 270, and security requirements database 280,
which are each configured to provide data as needed to the
analysis engine 220. User stories already processed database
260 can contain user story unique 1dentifiers and the security
requirements already associated with the user stories corre-
sponding to the user story unique 1dentifiers. Key functional
words mapping database 270 map key functional words to
security requirements using the security requirements data-
base. Security requirements database 280 may include secu-
rity requirements for an application, which may be pre-
determined by users, such as subject matter experts.

Thus, 1n some embodiments, the system 200 1s configured
to 1dentily whether there are user stories for which security
requirements have already been created. In some embodi-
ments, each security requirement can be recognized by a
Unique Identifier, such as for example a SHAS12 hash of the
content or, 1f provided by the database, a unique 1dentifier
normally found 1n security requirements such as the <Secu-
rity Requirement Topic><Unique Security Requirement
Number>.

In a sixth step (6), the analysis engine 220 generates a
report 240 of security requirements that have been linked to
the user stonies (e.g., a CSV {formatted report and/or a
JSON-based output) which can show which sentence trig-
gered a security requirement, and/or the exact user story
and/or the specific user story feature one or more security
requirements were associated with. In other words, each
security requirement can be presented with the item that
triggered the identification or selection of that specific
security requirement, which can help developers or other
project stakeholders better appreciate the context for the
security requirement. Over a local connection, the upload
processor 250 checks for new security requirements and
retrieves data from the report 240 i a seventh step (7).
Finally, in an eighth step (8), the upload processor 250
shares the output over a local connection with the push/pull
processor 210, which pushes data security requirements to
the user stories already assessed database, and can also link
the data with appropriate features of the user story. This step
ensures the database 1s updated with a current record of
security requirements that have already been assessed for
cach user story. Such a step 1s useful as, during project
workilows, user stories may change and therefore security
requirements may need to be added. In order to streamline
the process and produce results that promote efliciency (and
reduce redundancy) for the end-user, only the new security
requirements can then be outputted.

US 12,373,570 B2

11

Furthermore, in some embodiments, as each security
requirement 1s 1dentified, automated testing playbook
repository 290 can perform a specialized security quality
testing session. This testing would be separate from any
standard scanning that may be completed (e.g., DAST,
AppScan, SAST, Checkmarx, etc.). Instead, the automated
testing playbook repository 290 would comprise one or
more ‘playbooks’ that store data that can be used to 1mple-
ment automated unit testing. In other words, each playbook
would serve as a reference for a particular project and allows
the developer or other team member to easily access 1nfor-
mation relevant to the current workflow, and to code the
necessary security requirements. In one example, a playbook
can include testing sequences, comments regarding each test
sequence, custom fuzzing tools, and a method to indicate to
the developer 11 the test passed or failed etc. that can offer a
comprehensive automated testing context, and support the
performance of security regression testing (e.g., ensuring
old/previous security defects are not reintroduced). In some
embodiments, the security requirements can include code
smppets, secure code frameworks, etc. In some embodi-
ments, the playbook can provide guidance for testing these
security requirements. In the case that a test fails 1n the
playbook, the user story may be updated in the user story
database. After running the tests, analysis engine 220 can
then update the user story database with comments indicat-
ing that a test failed (and/or related to why the test failed)
and what playbook from the playbook repository was
executed that failed. The developer can then pull that
playbook that executed and determine why the playbook
falled and what changes are needed for their code.

In some embodiments, each playbook in the automated
testing playbook repository 290 can be configured to con-
duct the specialized security quality testing such that each
test 1s customized and unique to each application. For
example, a functional area could be based on the security
requirement identified, 1n contrast to standard scans which
are not specific to the application and prone to false posi-
tives. Thus, 1n different embodiments, the automated testing,
playbook repository 290 stores these testing playbooks and,
once the developer deploys their code to a testing environ-
ment and indicates the user story (from the user story
database) as complete, the automated system would pull the
corresponding testing playbook(s) associated with the secu-
rity requirements and execute the security tests reporting the
results to development teams. For example, in some embodi-
ments, aiter completing the work of i1dentifying security
requirements, any user stories marked complete by the
developer can trigger analysis engine 1118 to pull the testing
playbooks and run the tests.

In some embodiments, the system 200 1s also configured
to perform self-healing actions in response to the output of
the automated testing playbook repository 290. As one
example, 11 a critical 1ssue 1s 1dentified as part of a regression
testing portion of the playbook, the system may determine
there 1s a risk for access to an S3 bucket disclosing appli-
cation secrets. In response, the system will perform seli-
healing to correct this. Thus, 1n addressing critical security
risks, the automated testing playbooks can be configured
with self-healing capabilities, such that the issue, once
identified, 1s automatically and immediately fixed. In the
above example of the S3 bucket being disclosed to the
internet, the pertinent playbook can be configured to “close
ofl” the bucket from the internet and turn ofl anonymous
access and/or perform any other healing functions based on
language that 1s included 1n the automated testing playbook.

10

15

20

25

30

35

40

45

50

55

60

65

12

If the system determines that the 1ssue still persists and/or
additional risks remain, then the system can automatically
generate an alert to notily an admin. In addition, the system
can record the action(s) that were taken to address the i1ssue.
If the errors are removed the system can learn that the
action(s) taken were correct and should be applied to similar
errors 1n the future. If, however, further errors are detected
that 1impact the code, the system can learn over time to
remove these action(s) as a response to the specific error, and
monitor and store any action(s) implemented by admins or
other entities for repairing the error. These healing action(s)
can be added to the repository in the event that the same
error 1s detected 1n the future.

The system automatically implements these processes to
identily security requirements, perform automated security
testing upon the completion of developer coding, and auto-
matically repair or correct critical security risks. In different
embodiments, the system 200 can automatically create secu-
rity requirements for specific and unique user data, and link
them to the user stories 1n a final report. In one example, the
entire user story and entire security requirement can be
presented on one line for improved visibility for developer
review.

Additional details regarding the process introduced in
FIG. 2 will now be discussed with reference to FIG. 3. In
FIG. 3, a flow diagram depicts an embodiment of a process
300 of identifying security requirements during the assess-
ment stage. In a first step, a user story 310 1s recerved by the
security requirement identification system. The security
requirement 1dentification system, for each sentence 312 in
the user story 310, can identily or classity all of the
functional words 1n the sentence using NLP techniques.
Each functional word 314 1n that respective sentence can be
parsed and analyzed. With reference to key functional words
mapping database 320, the system can determine whether
the given word 1s mapped to a security requirement at a first
query 330. If the determination 1s “no” 332, the next
functional word 314 for that sentence 312 can be similarly
evaluated. If there are no more functional words 1n the given
sentence, the next sentence (if any) 1s similarly processed.

If the determination 1s “ves” 334, the system can next
determine whether the mapped security requirement(s) for
this functional word 1s a duplicate at a second query 340. IT
the determination 1s “no” 344, the system can preclude the
security requirement from being added to the list (block
from list 350). I1 the system determination 1s “yes” 342, the
identified security requirement for the current functional
word can be added to the list 360, and can also be added to
security requirements duplicate dictionary 370. Finally, a
CSV report or file 380 listing the identified security reports
for the given user story can be generated.

Additional technical details are now provided with refer-
ence to FIGS. 4-10. In FIG. 4, a high-level overview of
security requirement i1dentification processing steps 400 1s
shown. In a first phase 410, user story data can be retrieved
from the repository. In a second phase 420, the user story
data 1s cleaned and pre-processed in preparation for data
parsing, which 1s performed in a third phase 430. In a fourth
phase 440, the parsed data 1s analyzed, and 1n a fifth phase
450, the analyzed data 1s compared to previously i1dentified
security requirements. In a sixth phase 460, the key func-
tional words are assessed, and 1n a seventh phase 470, a
report 1s generated for developer review. Each of these steps
will now be discussed 1n detail in FIGS. 5-10.

In FIG. 5, an embodiment of a process for retrieving user
story data 500 by the system i1s presented. In different
embodiments, the system can automatically retrieve user

US 12,373,570 B2

13

story data by utilizing a first connection 510 comprising an
API or Web mterface to automatically download user story
data from a database, a second connection 520 comprising
an SSH connection to the system to automatically download
user stories using SFTP (Secure File Transfer Protocol), and
a third connection 530 comprising a local connection, to a
database or file located on the system accessible by the
system. In FIG. 6, an embodiment of a process for cleaning
user story data 600 by the system 1s depicted whereby the
system 1s configured to clean the user story data from
malicious or invalid characters that can cause errors and
false negatives 1n 1dentifying 1f a functional word maps to a
security requirement. This 1s performed by the Data Pull/
Push and Cleaning Processor as shown in FIG. 2.

In FIG. 7, an embodiment of a process for parsing user
story data 700 by the system 1s depicted. In a first step 710,
the system receives the user story data and parses it to
determine where the user story begins and ends. In a second
step 720, a file can be generated automatically (e.g., in CSV
format) that separates out the individual components of the
user story (for example, User Story Unique Identifier, Title,
References, Acceptance Criteria, etc.). In some embodi-
ments, one user story with all 1ts individual components can
be represented per line 1n the file. In FIG. 8, an embodiment
of a process for analyzing user story data 800 by the system
1s shown. During this process, the system can use the newly
created file (see FIG. 7) and analyze each user story. For
example, 1 a first step 810, each word in the user story 1s
separated out or extracted. In some embodiments, the sepa-
ration process for ensuring each word can be analyzed by the
“Analyzing Engine”, as mtroduced 1n FIG. 2. In addition, 1n
different embodiments, the separation process can be based
on several features that may occur in the user story data,
including white space characters 820, special characters 830,
and punctuation 840. Thus, 1n some embodiments, each
word can be separated i there 1s a white space character,
including but not limited to tabs and new line characters
(e.g., in Linux® and Windows®), as well as separated 1f
there are special characters including, for example, the
following symbols “@#$ % "&*()_—-+={ } J\< >/, and
also separated based English punctuation including but not
limited to the following punctuation: ““““”,.?!:;'~". It can be
appreciated that separating each word individually 1s 1impor-
tant to ensure false positives and false negatives are avoided;
otherwise, the accurate 1dentification of security risks based
on functional words can be dimimished. Finally, 1n a second
step 850, the words are entered into a standard array list,
with each word representing one element in the array.

Referring next to FIG. 9, an embodiment of a process for
comparing functional words 900 by the system 1s presented.
In different embodiments, the system can compare each
functional word against already created security require-
ments. For example, a dictionary list 910 can be generated
using the unique pieces of data 920 from the user story as
well as any linked Security Requirements 930 11 any that
have already been 1dentified. The dictionary list 910 1s used
by the system 1n its assessment process to eliminate i1denti-
fying the same security requirement with a user story,
preventing duplicate values from occurring.

For example, in FIG. 10, an assessment based on key
functional words to determine security requirements process
1000 1s represented. In this phase, the analysis engine (see
FIG. 2) can rely on databases 1002, including (a) Parsed
User Story Content 232, corresponding to the user story data
parsed into an array list; (b) Automatic Regex Creation
Mapping 234, which i1s based on the Key Functional Words
Mapping database, such that a regex (regular expression,

10

15

20

25

30

35

40

45

50

55

60

65

14

1.€., a sequence of characters that forms a search pattern) 1s
automatically created for each functional word based on
security engineer’s input into “Key Functional Words Map-
ping’ database, and where each functional word regex 1s
mapped to a list of unique security requirements based on
the “Key Functional Words Mapping” database; (¢) Security
Requirements Duplicate Dictionary 236 created based on the
“User Stories Already Assessed Database, and uses a unique
identifier from the user story and maps this to a list of
security requirements already linked with the user story—it
the security requirement 1s already mapped to the user story,
it does not need to be mapped again, so the system can
climinate duplicate entries; (d) User Stories Already
Assessed Database 260 containing each user story’s unique
identifier and the security requirements that have already
been linked to 1t; (e) Key Functional Words Mapping 270, a
database which maps a key functional word to security
requirements using the security requirements database, in
some cases by way ol a one-to-many relationship with one
functional word being associated with more than one secu-
rity requirement, (1) Security Requirements Database 280
that store the security requirements for the application, and
includes each security requirement’s Unique Identifier, Title,
Description of Risk, Impact to Organization, and Informa-
tion on Mitigating/Preventing Risk, including secure code
frameworks to utilize, and (g) Automated Testing Playbook
Repository 290 storing custom code directed to each secu-
rity requirement and functional area and configured to
execute healing actions as appropriate in response to the
identification of a particular security requirement and user
story context.

In different embodiments, the analysis engine assesses
cach user story, as described earlier with reference to the
diagram of FIG. 3. Thus, the assessment phase can involve
a sequence of steps including (a) the analysis engine obtains
the output from the “Parsed User Story Content” and goes
through each word 1n each user story; (b) Using the diction-
ary from the “Automatic Regex Creation Mapping” output,
cach word 1s examined using regex to determine 11 a match
1s found; (c¢) If a match 1s found, the dictionary output from
“Key Functional Words Mapping™ 1s used to determine what
security requirements are associated with the match; (d)
Using the security requirements from the “Key Functional
Words Mapping” output, these security requirements unique
identifiers are then used as part of the “Security Require-
ments Duplicate Dictionary” to determine if the security
requirements have already been linked to the user story; (e)
If the security requirement cannot be found for the user story
in the “User Stories Already Assessed Database™ the user
story 1s linked to the security requirement and this 1s updated
in the “Security Requirements Duplicate Dictionary”; and
(1) repeating the process with the examination of each word
in each user story until all the user stories have been assessed
and security requirements are linked with them.

In different embodiments, following the assessment
phase, the system i1s configured to generate a report of
security requirements mapped with the user stories. In one
example, the report can be used for security metrics track-
ing, and furthermore, for creating security requirements 1n
the user story database to link security requirements with
user stories, as well as to provide mput 1nto the “User Stories
Already Assessed” Database. In some embodiments, the
report can list the security requirement and the user story
that the security requirement 1s associated with in a single
line. For example, the key components of the security
requirement (e.g., Security Requirement Unique Identifier,
Title) including all the details of the user story (e.g., User

US 12,373,570 B2

15

Story Unique Identifier) can be arranged on one line. In
different embodiments, the report can include various types
of information for describing each security requirement,
such as the “issuekey™ or “story identification number”,
“1ssueid”, “featured”, “abusecase #7, “keyword”, “abuse
case registry number”, “hacker use case”, “CWE related to”,
“vulnerability 1mpact”, “recommendation”, “references”,
“security team contact”, “keywords”, etc. In one example,
all of these values for a single security requirement can be
displayed on a single line (row). While the security require-
ments 1dentification system 1s described as generating the
report in CSV format for the sake of explanation, 1t will be
understood that the security requirements identification sys-
tem may generate reports in other spreadsheet and document
or file formats. The security requirements identification
system may also transmit a notification email or SMS
message to one or more of the project team members.

In some embodiments, the system can also perform a
check to 1dentily any new security requirements have been
added and retrieve data from the report to update 1ts own
databases. In one embodiment, the system can be configured
to automatically communicate with the “Upload Processor™,
which can determine 1f there are new security requirements
that need to be linked with user stories. For example, this
check can correspond to a push to see 1f new security
requirements are associated with a retrieval of the data. In
response, the system can then push the ‘new’ data repre-
senting the security requirements to the user stories already
assessed database, and include links to appropriate features
or the User Story. In one example, new security require-
ments 1dentified are pushed to the “Cleaning Processor” to
ensure the data 1s in the right format to be uploaded. The new
security requirements are then created and inserted 1nto the
“User Story Database™.

As described herein, the security requirements 1dentifica-
tion system oflers substantial advantages to project devel-
opment paradigms. The security requirements 1dentification
system has shown to lead to a 99% percent reduction 1n
manual assessment time through i1ts automated analyzing
engine for assessing security requirements, leading to more
time for security resources to help in other areas of the
organization.

In one example, processes beyond the development of the
business user story (e.g., built by the business or product
owners and located in a user story database) and the sub-
sequent updates (e.g., by a security analyst) when the
functional words are to be mapped to security requirements
could be automatically executed as the system continuously
reviews user stories and identifies new security require-
ments. In some embodiments, when a developer codes the
user story, they can almost immediately view the associated
security requirements, for example via a linking of the
security requirement to a user story. In such cases, the same
flow or process a developer uses to assess their user story
when preparing to code can also represent the same process
by which security requirements can be securely added.

In addition, the proposed security requirements identifi-
cation system oflers the ability to scale to hundreds of
thousands of user stories across the business or organization
and automatically create security requirements as part of the
organization’s SDLC. Developers are then able to build unit
tests based on the security requirements that have been
identified, increasing the time they can spend on writing
code, mstead of researching security risks, or filling out
manual surveys associated with user bias.

FIG. 11 1s a schematic diagram of an environment 1100
for a security requirements identification system (or system

10

15

20

25

30

35

40

45

50

55

60

65

16

1100), according to an embodiment. The environment 1100
may include a plurality of components capable of perform-
ing the disclosed methods. For example, environment 1100
includes a user device 1102, a computing/server system
1108, and a database 1104. The components of environment
1100 can communicate with each other through a network

1106. For example, user device 1102 may retrieve informa-
tion from database 1104 via network 1106. In some embodi-

ments, network 1106 may be a wide area network (“WAN"),

¢.g., the Internet. In other embodiments, network 1106 may
be a local area network (“LAN”).

As shown 1n FIG. 11, components of the system 1114 may
be hosted 1n computing system 1108, which may have a
memory 1112 and a processor 1110. Processor 1110 may
include a single device processor located on a single device,
or 1t may include multiple device processors located on one
or more physical devices. Memory 1112 may include any
type of storage, which may be physically located on one
physical device, or on multiple physical devices. In some
cases, computing system 1108 may comprise one or more
servers that are used to host the system.

While FIG. 11 shows one user device, 1t 1s understood that
one or more user devices may be used. For example, 1n some
embodiments, the system may include two or three user
devices. In some embodiments, the user device may be a
computing device used by a user. For example, user device
1102 may include a smartphone or a tablet computer. In
other examples, user device 1102 may include a laptop
computer, a desktop computer, and/or another type of com-
puting device. The user devices may be used for inputting,
processing, and displaying information. Referring to FIG.
11, environment 1100 may further include database 1104,
which stores test data, training data, and/or other related data
the security requirements identification system as well as
other external components. This data may be retrieved by
other components for system 1114. As discussed above,
system 1114 may include a data push/pull and cleaning
module 1116, an analysis engine 1118, and an upload
processor 1120. Each of these components may be used to
perform the operations described herein.

FIG. 12 1s a flow chart illustrating an embodiment of a
method 1200 of for identification of security requirements
during a project development lifecycle. As shown in FIG.
12, a first step 1210 of the method 1200 includes retrieving,
from a user story data repository and at a first time, user
story data for a first user story, and a second step 1220 of
separating each individual word 1n the user story data (also
referred to as parsing the user story data) to create a first
word list. A third step 1230 includes 1dentitying, using NLP,
whether each individual word in the first word list 1s a
functional word, and a fourth step 1240 includes creating a
regex for each individual word 1dentified 1n the first word list
as a functional word to produce a first regex list comprising
a first plurality of functional word regexes. The method 1200
also 1ncludes a fifth step 1250 of determining which func-
tional word regexes 1n the first functional word regex list
have one or more corresponding security requirements 1n a
key functional words mapping database, and a sixth step
1260 of forming the one or more corresponding security
requirements 1nto a first list of security requirements. Fur-
thermore, a seventh step 1270 includes linking at least a first
security requirement of the first list of security requirements
with the first user story in the user stories already assessed
database, and an eighth step 1280 includes automatically
generating and displaying a first report that identifies the first
security requirement together with the first user story.

US 12,373,570 B2

17

In other embodiments, the method may include additional
steps or aspects. In another example, the method 1200
turther includes step of, in response to linking at least the
first security requirement of the first list of security require-
ments with the first user story in the user stories already
assessed database, mapping the first security requirement to
the first user story in a security requirements duplicate
dictionary. The method many further include determining a
second functional word regex of the first functional word
regex list 1s associated with the second security requirement
in the key functional words mapping database. The method
many further include determining that the second security
requirement 1s already mapped to the first user story in the
security requirements duplicate dictionary. In some embodi-
ments, the method may include comparing second security
requirement with security requirements i1dentified in a secu-
rity requirements duplicate dictionary for the first user story
to determine whether the second security requirement 1s
already mapped to the first user story.

The method may further include, 1n response to deter-
mimng that the second security requirement 1s already
mapped to the first user story 1n the security requirements
duplicate dictionary, refraining from mapping the second
security requirement to the first user story a second time 1n
the user stories already assessed database or the security
requirements duplicate dictionary. The method may further
include, 1n response to determining that the second security
requirement 1s already mapped to the first user story in the
security requirements duplicate dictionary, removing any
duplicates of the second security requirement from the first
report. The method may further include, 1 response to
determining that the second security requirement 1s already
mapped to the first user story 1n the security requirements
duplicate dictionary, eliminating any duplicate entries of
linking together the second security requirement with the
first user story in the security requirements duplicate dic-
tionary.

The method may further include, 1n response to deter-
mimng that the second security requirement 1s not mapped
to the first user story in the security requirements duplicate
dictionary, mapping the second security requirement to the
first user story in the user stories already assessed database
and updating the security requirements duplicate dictionary.

In another example, the method 1200 further includes
steps of determining a first functional word regex of the first
functional word regex list 1s associated with a second
security requirement, comparing the second security
requirement with security requirements identified 1n a secu-
rity requirements duplicate dictionary for the first user story,
determining the second security requirement differs from the
security requirements 1dentified 1n the security requirements
duplicate dictionary, and linking, 1n response to the second
security requirement differing, the second security require-
ment to the first user story (in other words, only permitting,
the association/link to be created when the security require-
ment 1s unique with respect to the security requirements
duplicate dictionary).

In some embodiments, the method also includes steps of
determining a first functional word regex of the first func-
tional word regex list 1s associated with a second security
requirement, comparing the second security requirement
with secunity requirements 1dentified in a security require-
ments duplicate dictionary for the first user story, the secu-
rity requirements duplicate dictionary listing at least a third
security requirement, determining the second security
requirement matches the third security requirement, and
precluding, in response to the second security requirement

10

15

20

25

30

35

40

45

50

55

60

65

18

matching the third security requirement, the second security
requirement from being linked to the first user story more
than once 1n the first report.

In some embodiments, the method also includes steps
automatically mputting, 1n response to generating the first
report, the first report into a user stories already assessed
database, wherein a security requirements duplicate diction-
ary 1s based on data stored in the user stories already
assessed database. The method may include retrieving, from
the user story data repository and at a second time subse-
quent to the first time, updated user story data for the first
user story. The method may include separating each indi-
vidual word 1n the updated user story data to create a second
word list. The method may include identitying, using NLP,
whether each individual word 1n the second word list 15 a
functional word. The method may include creating a regex
for each 1individual word 1dentified 1in the second word list as
a functional word to produce a second functional word regex
list comprising a second plurality of functional word
regexes. The method may include determining that a first
functional word regex in the second functional word regex
list corresponds to a second security requirement 1n the key
functional words mapping database. The method may
include automatically referring to the security requirements
duplicate dictionary to determine whether the second secu-
rity requirement had been previously linked to the first user
story. The method may include, in response to determining,
that the first security requirement had not been previously
linked to the first user story, automatically generating and
displaying a second report that identifies the second security
requirement together with the first user story.

In some embodiments, the method also includes steps
automatically mputting, 1n response to generating the first
report, the first report into a user stories already assessed
database, wherein a security requirements duplicate diction-
ary 1s based on data stored in the user stories already
assessed database. The method may include retrieving, from
the user story data repository and at a second time subse-
quent to the first time, updated user story data for the first
user story. The method may include separating each indi-
vidual word 1n the updated user story data to create a second
word list. The method may include identitying, using NLP,
whether each individual word 1n the second word list 15 a
functional word. The method may include creating a regex
for each individual word 1dentified in the second word list as
a functional word to produce a second functional word regex
list comprising a second plurality of functional word
regexes. The method may include determining that a first
functional word regex in the second functional word regex
list corresponds to a second security requirement 1n the key
functional words mapping database. The method may
include automatically referring to the security requirements
duplicate dictionary to determine whether the second secu-
rity requirement had been previously linked to the first user
story. The method may include, in response to determining,
that the first security requirement had been previously linked
to the first user story, automatically generating and display-
ing a second report that identifies the second security
requirement together with the first user story only once.

In some embodiments, the key functional words mapping
database provides information mapping each key functional
word to one or more security requirements. In one example,
separating each word 1s based on detection of one or more
ol a white space character, special character, and punctuation
marks. In some embodiments, the method also includes
parsing the user story data to identify a plurality of user story
components, where the first report 1s generated as a CSV file,

US 12,373,570 B2

19

cach security requirement 1s assigned one line in the first
report, and the user story components for the user story
linked with said security requirement are included in the
same line.

In some other embodiments, the method 1200 further
includes steps of retrieving, from an automated testing
playbook repository, a first automated testing playbook
associated with the first security requirement, automatically
performing a {first test based on the first automated testing,
playbook, and automatically generating and displaying a
second report that identifies results of the first test. In such
cases, the method can also include steps of identitying,
during the first test, a first issue, and then automatically
executing, based on a plurality of healing actions included 1n
the first automated testing playbook, a first healing action to
resolve the first 1ssue.

In another example, the method 1200 also includes steps
of automatically mputting, in response to generating the first
report, the first report into a user stories already assessed
database, where a security requirements duplicate dictionary
1s based on data stored in the user stories already assessed
database, retrieving, from the user story data repository and
at a second time subsequent to the first time, updated user
story data for the first user story, separating each individual
word 1n the updated user story data to create a second word
list, identitying, using NLP, whether each individual word 1n
the second word list 1s a functional word, creating a regex for
cach individual word identified in the second word list as a
functional word to produce a second functional word regex
list comprising a second plurality of functional word
regexes, determining that a first functional word regex in the
second functional word regex list corresponds to a second
security requirement 1n the key functional words mapping
database, automatically referring to the security require-
ments duplicate dictionary to determine whether the second
security requirement had been previously linked to the first
user story, and, in response to determining that the first
security requirement had not been previously linked to the
first user story, automatically generating and displaying a
second report that identifies the second security requirement
together with the first user story. In some embodiments,
automatically referring to the security requirements dupli-
cate dictionary to determine whether the second security
requirement had been previously linked to the first user story
may include comparing the second security requirement to
the security requirements already linked to the first user
story 1n the security requirements duplicate dictionary. In
some embodiments, the updated user data for the first user
story may include updates made to the first user story as it
1s groomed over time.

As described herein, embodiments of the security require-
ments 1dentification system are configured to automatically
and with a high degree of accuracy 1dentify security risks as
carly as possible during project development. Early 1denti-
fication of security requirements—belore a developer even
starts writing code—1is favorable for securing code frame-
works. As user story data 1s received, typically in a ‘rough’,
chunky, and/or unstructured or random format, such as
shellcode. Thus, the system 1s configured to first clean the
received data before detecting and extracting functional
keywords, where each user story can be shown on one line
(row) 1n an array. This can occur by the removal of special
characters and punctuation marks, and replacement with
white spaces. Each word, separated, can be evaluated to see
if 1t matches data in the key functional words mapping
database. After each word 1n the user story 1s processed, the
system can move to the next line down to process and

5

10

15

20

25

30

35

40

45

50

55

60

65

20

identily security requirements for the next user story. In one
example, the key functional words mapping database
receives the separated words and creates regex statements of
cach word, and then analyzes the statement relative to 1ts
own database. In the case of a match, the system can cause
the security requirements mapped to that functional word to
be linked with the user story.

Each security story can represent one keyword (e.g.,
return URL, API, etc.) that 1s mapped to one or more related
security requirements in the key functional words/groups
mapping database that holds the entire mapping and can be
configured to grow as the system i1dentifies further security
issues. The system works in conjunction with a security
client database which 1s based on a security requirement
database and has a unique identifier with a bridge for each
security requirement.

Furthermore, the inclusion of a user stories already
assessed database can enable the system to avoid duplication
of security requirements that have already been flagged and
presented to the developers, thereby limiting the ‘noise’ that
the developer 1s asked to attend to. Thus, if there are
duplicates for a security requirement or 1t has otherwise
already been called out for that user story, the security
requirement will not be added to the list, ensuring each
security requirement only shows up once. If there 1s a new
security story, i1t can be added to the dictionary for that user
story. If the user story 1s modified and 1s reprocessed by the
security 1dentification system, the system can determine that
the story has been analyzed before, and whether the key
functional words would trigger the same security require-
ments as during the previous process. It the security require-
ments are the same as before, they are excluded or will not
be added. If the security requirements differ from the ones
identified previously, they are added. The report that is
generated for the modified or updated user story can only
identify the new security requirements, rather than re-list the
entire set of security requirements.

To provide further context, 1n some embodiments, some
of the processes described herein can be understood to
operate 1n a system architecture that can include a plurality
of virtual local area network (VLAN) workstations at dii-
ferent locations that communicate with a main data center
with dedicated virtual servers such as a web server for user
interfaces, an app server for OCR and data processing, a
database for data storage, etc. As a general matter, a virtual
server 1s a type of virtual machine (VM) that 1s executed on
a hardware component (e.g., server). In some examples,
multiple VMs can be deployed on one or more servers.

In different embodiments, the system may be hosted at
least 1n part mm a cloud computing environment oflering
ready scalability and security. The cloud computing envi-
ronment can include, for example, an environment that hosts
the document processing management service. The cloud
computing environment may provide computation, sofit-
ware, data access, storage, etc. services that do not require
end-user knowledge of a physical location and configuration
of system(s) and/or device(s) that hosts the policy manage-
ment service. For example, a cloud computing environment
may include a group of computing resources (referred to
collectively as “computing resources” and individually as
“computing resource”). It 1s contemplated that implementa-
tions of the present disclosure can be realized with appro-
priate cloud providers (e.g., AWS provided by Amazon™,

GCP provided by Google™, Azure provided by
Microsoit™, etc.).
In different embodiments, applications of the system are

bult and deployed by a software framework. A software

US 12,373,570 B2

21

framework 1s a universal, reusable software environment
that provides particular functionality as part of a larger
software platform to facilitate development of software
applications. Software frameworks may include support
programs, compilers, code libraries, tool sets, and applica-
tion programming interfaces (APIs) that enable develop-
ment of a software application. Some 1mplementations can
provide a user device and/or component management plat-
form that 1s capable of facilitating the development of
soltware applications through the use of a user interface
designed to be simple to use, and re-usable soitware com-
ponents (e.g., buttons, links, fields, graphics, and/or the like)
that can be displayed in the user interface and generated in
multiple different software frameworks and/or programming,
languages for a variety of platforms. For example, the
component management platform may provide a first sofit-
ware application that includes a user interface through which
a user can develop a second software application. The user
may use features of the user interface to create software
components that are displayed in the first soitware applica-
tion (e.g., the Ul) using a first programming language (e.g.,
hypertext markup language (HI'ML) or another program-
ming language associated with the first software application)
and generated 1n a first software framework (e.g., a software
framework associated with the software application being
developed). The user intertace may include features, such as
drag and drop operations for the creation of software com-
ponents and selectable software component characteristics,
to facilitate creation and customization of software compo-
nents. In some implementations, the component manage-
ment platform may store components that were previously
generated by users, generate copies of software components
in multiple software frameworks and/or for diflerent plat-
forms, and make software components available for users to
include 1n software applications that are under development.

In this way, a user device and/or cloud server may
tacilitate the development of soitware applications 1n mul-
tiple software frameworks and for multiple platiorms, with-
out requiring special knowledge or repeated component
development on the part of a user, and 1n a manner designed
to be relatively quick and eflicient. Special software frame-
work knowledge and/or familiarity may not be required, for
example, by using a user interface to enable the generation
ol software components in multiple software frameworks 1n
a single integrated development environment, such as a
web-based integrated development environment that 1s
accessible from any device with a web browsing application
browser. Some non-limiting examples of such frameworks
include Microsoft. NE'T™, the EMC™ 1ntegrated develop-
ment environment, the Microsoft™ Visual Studios inte-
grated development environment for writing and debugging
code, and the Eclipse™ integrated development environ-
ment for incorporation of open source code. Reusable soft-
ware components may significantly increase the speed and
elliciency of software development, including facilitating
more eflicient use of software developer time and computing
resources (€.g., Processor resources, memory resources,
and/or the like). Some implementations may reduce network
communications relative to a purely cloud-based application
development solution, e.g., by enabling the user device to
perform much of the functionality for component and soft-
ware application development without the need to interact
with a server computer over a network, which would intro-
duce latency into the development process. Furthermore,
some 1mplementations described herein use a rigorous,
computerized process to perform tasks or roles that were not
previously performed. Also, automating the process for

10

15

20

25

30

35

40

45

50

55

60

65

22

generating software components conserves computing
resources (€.g2., Processor resources, mMemory resources,
and/or the like) and time that would otherwise be wasted by
using manual development processes for attempting to cre-
ate multiple software components in multiple software
frameworks.

In some embodiments, the software development appli-
cation may be an application installed on and executed by
the user device. In some implementations, the software
development application may be a web-based application
designed to execute a web application (e.g., an application
operating on a server computer or the component manage-
ment platform, and mmplemented 1n HIML, JavaScript,
and/or the like). The software development application may
be written 1 a variety ol programming languages and
provide a variety of diflerent types of user interface ele-
ments, which may be used 1n the development of a new
soltware component and/or another software application. In
some embodiments, the software development application
includes a component toolbox. The component toolbox may
be presented via a user interface offering one or more
interactable user interface elements, such as buttons, which
are associated with software components. For example, the
component toolbox may include one or more buttons for the
generation ol soltware components, such as iput compo-
nents (e.g., buttons, checkboxes, dropdown lists, toggle
buttons, text fields, and/or the like), navigational compo-
nents (e.g., search fields, sliders, pagination indicators, links,
icons, and/or the like), informational components (e.g.,
tooltips, progress bars, message boxes, images, and/or the
like), and/or the like. In some implementations, the compo-
nent toolbox may include user interface elements that gen-
crate a software component based on a pre-existing software
component (e.g., a previously created software component).
In some implementations, the component toolbox may
include a user interface element designed to enable the
creation of a new soltware component, which may enable a
user of the user device to define a new type of software
component.

For purposes of this disclosure, the Application Program-
ming Interfaces (APIs) may refer to computer code that
supports application access to operating system functional-
ity. A platform dependent API may be understood to rely on
the functionality of a particular software platform. The
platform dependent API may use device specific libraries or
native code allowing access to the mobile device at a low
level. The API can be configured to provide a wide range of
visualization dashboards for document processing manage-
ment, as will be discussed below.

It should be understood that the systems and/or methods
as described herein may be implemented using different
computing systems, components, modules, and connections.
An end-user or administrator may access various interfaces
provided or supported by the policy management service,
for example, via one or more devices capable of receiving,
generating, storing, processing, and/or providing informa-
tion, such as information described herein. For example, a
user device may include a mobile phone (e.g., a smart phone,
a radiotelephone, etc.), a laptop computer, a tablet computer,
a desktop computer, a handheld computer, a gaming device,
a wearable communication device (e.g., a smart wristwatch,
a pair of smart eyeglasses, etc.), or a similar type of device.
In some implementations, user device may receive iforma-
tion from and/or transmait information to the policy manage-
ment service platform. For example, a device may include a

US 12,373,570 B2

23

bus, a processor, a memory, a storage device, an 1nput
component, an output component, and a communication
interface.

Embodiments may include a non-transitory computer-
readable medium (CRM) storing software comprising
instructions executable by one or more computers which,
upon such execution, cause the one or more computers to
perform the disclosed methods. Non-transitory CRM may
refer to a CRM that stores data for short periods or in the
presence ol power such as a memory device or Random
Access Memory (RAM). For example, a non-transitory
computer-readable medium may include storage devices,
such as, a hard disk (e.g., a magnetic disk, an optical disk,
a magneto-optic disk, and/or a solid state disk), a compact
disc (CD), a digital versatile disc (DVD), a floppy disk, a
cartridge, and/or a magnetic tape.

Embodiments may also include one or more computers
and one or more storage devices storing instructions that are
operable, when executed by the one or more computers, to
cause the one or more computers to perform the disclosed
methods.

Furthermore, an mput component includes a component
that permits the device to receive mformation, such as via
user mput (e.g., a touch screen display, a keyboard, a
keypad, a mouse, a button, a switch, and/or a microphone).
Additionally, or alternatively, input components may
include a sensor for sensing information (e.g., a global
positioning system (GPS) component, an accelerometer, a
gyroscope, and/or an actuator). The output component
includes a component that provides output information from
a device (e.g., a display, a speaker, and/or one or more
light-emitting diodes (LEDs)).

A communication interface includes a transceiver-like
component (e.g., a transceiver and/or a separate recerver and
transmitter) that enables a device to communicate with other
devices, such as via a wired connection, a wireless connec-
tion, or a combination of wired and wireless connections.
The communication interface may permit the device to
receive information from another device and/or provide
information to another device. For example, a communica-
tion interface may include an Ethernet interface, an optical
interface, a coaxial interface, an infrared interface, a radio
frequency (RF) interface, a universal senial bus (USB)
interface, a Wi-Fi1 interface, a cellular network interface,
and/or the like.

Soltware instructions may be read mto memory and/or
storage devices from another computer-readable medium or
from another device via communication interface. When
executed, soltware instructions stored in memory and/or
storage device may cause processor to perform one or more
processes described herein. Additionally, or alternatively,
hardwired circuitry may be used 1n place of or in combina-
tion with software instructions to perform one or more
processes described herein. Thus, mmplementations
described herein are not limited to any specific combination
of hardware circuitry and software.

In some implementations, a policy management service
may be hosted 1n a cloud computing environment. Notably,
while implementations described herein describe a policy
management service as being hosted in cloud computing
environment, 1n some implementations, a policy manage-
ment service may not be cloud-based (1.e., may be 1imple-
mented outside of a cloud computing environment) or may
be partially cloud-based.

Cloud computing environment can include, for example,
an environment that hosts the policy management service.
The cloud computing environment may provide computa-

10

15

20

25

30

35

40

45

50

55

60

65

24

tion, software, data access, storage, etc. services that do not
require end-user knowledge of a physical location and
configuration of system(s) and/or device(s) that hosts the
policy management service. For example, a cloud comput-
ing environment may include a group of computing
resources (referred to collectively as “computing resources”™
and individually as “computing resource”).

Computing resources includes one or more personal com-
puters, workstation computers, server devices, or other types
of computation and/or communication devices. In some
implementations, computing resources may host the policy
management service. The cloud resources may include com-
pute instances executing in computing resource, storage
devices provided in computing resource, data transier
devices provided by computing resource, etc. In some
implementations, computing resource may communicate
with other computing resources via wired connections,
wireless connections, or a combination of wired and wire-
less connections. In some embodiments, a computing
resource 1ncludes a group of cloud resources, such as one or
more applications (“APPs”), one or more virtual machines
(“VMs”), virtualized storage (*VSs™), one or more hyper-
visors (“HYPs”), and/or the like.

Application includes one or more software applications
that may be provided to or accessed by user devices.
Application may eliminate a need to install and execute the
soltware applications on a user device. For example, an
application may include software associated with the policy
management service and/or any other software capable of
being provided via a cloud computing environment, while in
some embodiments, other applications are provided via
virtual machines. A virtual machine can include a software
implementation of a machine (e.g., a computer) that
executes programs like a physical machine. A virtual
machine may be either a system virtual machine or a process
virtual machine, depending upon use and degree of corre-
spondence to any real machine by virtual machine. A system
virtual machine may provide a complete system platform
that supports execution of a complete operating system
(“OS”). A process virtual machine may execute a single
program, and may support a single process. In some embodi-
ments, virtual machines may execute on behalf of a user
(e.g., a user of user device or an administrator of the policy
management service), and may manage infrastructure of
cloud computing environment, such as data management,
synchronization, or long-duration data transfers.

Virtualized storage includes one or more storage systems
and/or one or more devices that use virtualization techniques
within the storage systems or devices of computing
resources. In some embodiments, within the context of a
storage system, types ol virtualizations may include block
virtualization and file virtualization. Block virtualization
may refer to abstraction (or separation) of logical storage
from physical storage so that the storage system may be
accessed without regard to physical storage or heteroge-
neous structure. The separation may permit administrators
of the storage system flexibility in how the admainistrators
manage storage for end users. File virtualization may elimi-
nate dependencies between data accessed at a file level and
a location where files are physically stored. This may enable
optimization ol storage use, server consolidation, and/or
performance ol non-disruptive file migrations.

Hypervisors may provide hardware virtualization tech-
niques that allow multiple operating systems (e.g., “guest
operating systems”) to execute concurrently on a host com-
puter, such as a computing resource. Hypervisors may
present a virtual operating platform to the guest operating

US 12,373,570 B2

25

systems, and may manage the execution of the guest oper-
ating systems. Multiple instances of a varnety of operating
systems may share virtualized hardware resources.

A network includes one or more wired and/or wireless
networks. For example, networks may include a cellular
network (e.g., a fifth generation (3G) network, a long-term
evolution (LTE) network, a third generation (3G) network,
a code division multiple access (CDMA) network, etc.), a
public land mobile network (PLMN), a local area network
(LAN), a wide area network (WAN), a metropolitan area
network (MAN), a telephone network (e.g., the Public
Switched Telephone Network (PSTN)), a private network,
an ad hoc network, an intranet, the Internet, a fiber optic-
based network, and/or the like, and/or a combination of
these or other types of networks.

An “interface” may be understood to refer to a mechanism
for communicating content through a client application to an
application user. In some examples, interfaces may include
pop-up windows that may be presented to a user via native
application user interfaces (Uls), controls, actuatable inter-
faces, interactive buttons or other objects that may be shown
to a user through native application Uls, as well as mecha-
nisms that are native to a particular application for present-
ing associated content with those native controls. In addi-
tion, the terms ““‘actuation” or “actuation event” refers to an
event (or specific sequence of events) associated with a
particular mput or use of an application via an interface,
which can trigger a change 1n the display of the application.
Furthermore, a “native control” refers to a mechanism for
communicating content through a client application to an
application user. For example, native controls may include
actuatable or selectable options or “buttons™ that may be
presented to a user via native application Uls, touch-screen
access points, menus items, or other objects that may be
shown to a user through native application Uls, segments of
a larger interface, as well as mechanisms that are native to
a particular application for presenting associated content
with those native controls. The term “asset” refers to content
that may be presented 1n association with a native control in
a native application. As some non-limiting examples, an
asset may include text in an actuatable pop-up window,
audio associated with the interactive click of a button or
other native application object, video associated with a user
interface, or other such imformation presentation.

In addition to the algorithms and techniques described
above, one or more of the following techniques may be
utilized by one or more of the disclosed embodiments: RPA,
Mongo DB, Artificial Intelligence (Al) Modules such as
Python, Image to Text, OCR, Computer Vision, Image
comparison (phase comparison), Image Validation (1image to
text, then text to text comparison), Learning Algorithms,
Similarity Analytics, Sequencing algorithms, Random For-
est, graph Convolutional Neural Networks (gCNN), Data
Clustering with weighted data, Data Visualization, Rocket
Chat, and D3JS.

For purposes of the current description, the terms “orga-
nization,” “client,” “orgamization resources,” or “client
resources” refer to database resources (1.e., data, metadata,
programs, and other resources) that are maintained 1 a
central multi-tenant database for access by users who have
appropriate access privileges. Such resources can generally
be managed by a server and data storage system maintained
by a platform provider, as opposed to computers within the
actual client (tenant) businesses themselves. In addition, a
Cloud Service Provider (CSP) may include an organization
that provides a cloud computing resource to a client device
and/or a user of a client device. Furthermore, the term

22 14

5

10

15

20

25

30

35

40

45

50

55

60

65

26

“component” refers to software applications and other sys-
tem modules and features comprising or supporting the
multi-tenant architecture.

The methods, devices, processing, circuitry, and logic
described above may be implemented in many different
ways and 1n many different combinations of hardware and
soltware. For example, all or parts of the implementations
may be circuitry that includes an 1nstruction processor, such
as a Central Processing Unit (CPU), microcontroller, or a
microprocessor; or as an Application Specific Integrated
Circuit (ASIC), Programmable Logic Device (PLD), or
Field Programmable Gate Array (FPGA); or as circuitry that
includes discrete logic or other circuit components, includ-
ing analog circuit components, digital circuit components or
both; or any combination thereof. The circuitry may include
discrete interconnected hardware components or may be
combined on a single integrated circuit die, distributed
among multiple integrated circuit dies, or implemented 1n a
Multiple Chip Module (MCM) of multiple integrated circuit
dies 1n a common package, as examples.

Accordingly, the circuitry may store or access instructions
for execution, or may implement its functionality 1n hard-
ware alone. The instructions may be stored 1n a tangible
storage medium that 1s other than a transitory signal, such as
a flash memory, a Random Access Memory (RAM), a Read
Only Memory (ROM), an Frasable Programmable Read
Only Memory (EPROM); or on a magnetic or optical disc,
such as a Compact Disc Read Only Memory (CDROM),
Hard Disk Drive (HDD), or other magnetic or optical disk;
or in or on another machine-readable medium. A product,
such as a computer program product, may include a storage
medium and 1nstructions stored 1n or on the medium, and the
instructions when executed by the circuitry 1n a device may
cause the device to implement any of the processing
described above or illustrated 1n the drawings.

The implementations may be distributed. For instance, the
circuitry may include multiple distinct system components,
such as multiple processors and memories, and may span
multiple distributed processing systems. Parameters, data-
bases, and other data structures may be separately stored and
managed, may be incorporated mto a single memory or
database, may be logically and physically organized in many
different ways, and may be implemented in many difierent
ways.

Example implementations include linked lists, program
variables, hash tables, arrays, records (e.g., database
records), objects, and 1implicit storage mechanisms. Instruc-
tions may form parts (e.g., subroutines or other code sec-
tions) of a single program, may form multiple separate
programs, may be distributed across multiple memories and
processors, and may be implemented 1n many different
ways. Example implementations include stand-alone pro-
grams, and as part of a library, such as a shared library like
a Dynamic Link Library (DLL). The library, for example,
may contain shared data and one or more shared programs
that include 1nstructions that perform any of the processing
described above or illustrated in the drawings, when
executed by the circuitry.

While various embodiments of the invention have been
described, the description 1s intended to be exemplary, rather
than limiting, and 1t will be apparent to those of ordinary
skill 1n the art that many more embodiments and implemen-
tations are possible that are within the scope of the iven-
tion. Accordingly, the invention 1s not to be restricted except
in light of the attached claims and their equivalents. Also,
various modifications and changes may be made within the
scope of the attached claims.

US 12,373,570 B2

27

We claim:
1. A method for identification of security requirements,

the method comprising:

retrieving, from a user story data repository and at a first
time, user story data for a first user story;

separating each individual word 1n the user story data to
create a first word list;

identifying, using natural language processing, whether
cach individual word 1n the first word list 1s a functional

word;

creating a regular expression (regex) for each individual
word 1dentified 1n the first word list as the functional
word to produce a first functional word regex list
comprising a first plurality of functional word regexes;

determining which functional word regexes in the first
functional word regex list have one or more corre-
sponding security requirements in a key functional
words mapping database, wherein the one or more
corresponding security requirements indicate require-
ments of security to protect assets associated with the
user story data from internet attacks to the assets;

forming the one or more corresponding security require-
ments mto a first list of security requirements;

linking at least a first security requirement of the first list
ol security requirements with the first user story in a
user stories already assessed database; and

automatically generating and displaying a first report that
identifies the first security requirement together with
the first user story.

2. The method of claim 1, further comprising;:

in response to linking at least the first security require-
ment of the first list of security requirements with the
first user story in the user stories already assessed
database, mapping the first security requirement to the
first user story in a security requirements duplicate
dictionary;

determining a second functional word regex of the first
functional word regex list 1s associated with a second
security requirement in the key functional words map-
ping database;

determining that the second security requirement 1s
already mapped to the first user story in the security
requirements duplicate dictionary; and

in response to determining that the second security
requirement 1s already mapped to the first user story in
the security requirements duplicate dictionary, refrain-
ing from mapping the second security requirement to
the first user story a second time.

3. The method of claim 1, turther comprising;:

in response to linking at least the first security require-
ment of the first list of security requirements with the
first user story in the user stories already assessed
database, mapping the first security requirement to the
first user story i1n a security requirements duplicate
dictionary;

determining a second functional word regex of the first
functional word regex list 1s associated with a second
security requirement 1n the key functional words map-
ping database;

determining that the second security requirement 1s not
mapped to the first user story in the security require-
ments duplicate dictionary; and

in response to determining that the second security
requirement 1s not mapped to the first user story in the
security requirements duplicate dictionary, mapping
the second security requirement to the first user story in

10

15

20

25

30

35

40

45

50

55

60

65

28

the user stories already assessed database and updating
the security requirements duplicate dictionary.

4. The method of claim 1, further comprising:

automatically inputting, in response to generating the first
report, the first report into the user stories already
assessed database, wherein a security requirements
duplicate dictionary 1s based on data stored in the user
stories already assessed database;

retrieving, from the user story data repository and at a
second time subsequent to the first time, updated user
story data for the first user story;

separating each individual word 1n the updated user story
data to create a second word list:;

identifying, using natural language processing, whether
cach i1ndividual word in the second word list 1s the
functional word;

creating a regex for each individual word 1dentified in the
second word list as the functional word to produce a
second functional word regex list comprising a second
plurality of functional word regexes;

determining that a {first functional word regex in the
second functional word regex list corresponds to a
second security requirement in the key functional
words mapping database;

automatically referring to the security requirements dupli-
cate dictionary to determine whether the second secu-
rity requirement had been previously linked to the first
user story; and

in response to determining that the first security require-
ment had not been previously linked to the first user
story, automatically generating and displaying a second
report that identifies the second security requirement
together with the first user story.

5. The method of claim 1, further comprising;:

automatically inputting, in response to generating the first
report, the {first report mnto a user stories already
assessed database, wherein a security requirements
duplicate dictionary 1s based on data stored in the user
stories already assessed database;

retrieving, from the user story data repository and at a
second time subsequent to the first time, updated user
story data for the first user story;

separating each individual word 1n the updated user story
data to create a second word list;

identifying, using natural language processing, whether
cach individual word in the second word list 1s the
functional word;

creating a regex for each individual word 1dentified 1n the
second word list as the functional word to produce a
second functional word regex list comprising a second
plurality of functional word regexes;

determiming that a first functional word regex in the
second functional word regex list corresponds to a
second security requirement in the key functional
words mapping database;

automatically referring to the security requirements dupli-
cate dictionary to determine whether the second secu-
rity requirement had been previously linked to the first
user story; and

in response to determining that the first security require-

ment had not been previously linked to the first user
story, automatically generating and displaying a second
report that identifies the second security requirement
together with the first user story only once.

US 12,373,570 B2

29

6. The method of claim 1, further comprising:

retrieving, from an automated testing playbook reposi-

tory, a first automated testing playbook associated with
the first security requirement;

automatically performing a first test based on the first

automated testing playbook; and

automatically generating and displaying a second report

that identifies results of the first test.

7. The method of claim 6, turther comprising;:

identifying, during the first test, a first 1ssue; and

automatically executing, based on a plurality of healing
actions included in the first automated testing play-
book, a first healing action to resolve the first issue.

8. A non-transitory computer-readable medium storing
soltware comprising 1nstructions executable by one or more
computers which, upon such execution, cause the one or
more computers to:

retrieve, from a user story data repository and at a first

time, user story data for a first user story;

separate each individual word 1n the user story data to

create a first word list;

identily, using natural language processing, whether each

individual word in the first word list 1s a functional
word:
create a regular expression (regex) for each individual
word 1dentified in the first word list as the functional
word to produce a first functional word regex list
comprising a first plurality of functional word regexes;

determine which functional word regexes in the first
functional word regex list have one or more corre-
sponding security requirements in a key functional
words mapping database, wherein the one or more
corresponding security requirements indicate require-
ments of security to protect assets associated with the
user story data from internet attacks to the assets;

form the one or more corresponding security requirements
into a first list of security requirements;

link at least a first security requirement of the first list of

security requirements with the first user story in a user
stories already assessed database; and

automatically generate and display a first report that

identifies the first security requirement together with
the first user story.

9. The non-transitory computer-readable medium storing,
software of claim 8, wherein the instructions further cause
the one or more computers to:

in response to linking at least the first security require-

ment of the first list of security requirements with the
first user story in the user stories already assessed
database, map the first security requirement to the first
user story 1n a security requirements duplicate diction-
ary,

determine a second functional word regex of the first

functional word regex list 1s associated with a second
security requirement in the key functional words map-
ping database;

determine that the second security requirement 1s already

mapped to the first user story in the security require-
ments duplicate dictionary; and

in response to determining that the second security

requirement 1s already mapped to the first user story in
the security requirements duplicate dictionary, refrain
from mapping the second security requirement to the
first user story a second time.

10. The non-transitory computer-readable medium storing
software of claim 8, wherein the instructions further cause
the one or more computers to:

10

15

20

25

30

35

40

45

50

55

60

65

30

in response to linking at least the first security require-
ment of the first list of security requirements with the
first user story in the user stories already assessed
database, map the first security requirement to the first
user story 1n a security requirements duplicate diction-
ary.,

determine a second functional word regex of the first

functional word regex list 1s associated with a second
security requirement 1n the key functional words map-
ping database;

determine that the second security requirement 1s not

mapped to the first user story in the security require-
ments duplicate dictionary; and

in response to determining that the second security

requirement 1s not mapped to the first user story in the
security requirements duplicate dictionary, map the
second security requirement to the first user story in the
user stories already assessed database and updating the
security requirements duplicate dictionary.

11. The non-transitory computer-readable medium storing
software of claim 8, wherein the instructions further cause
the one or more computers to:

automatically input, in response to generating the first

report, the first report into the user stories already
assessed database, wherein a security requirements
duplicate dictionary 1s based on data stored in the user
stories already assessed database;

retrieve, from the user story data repository and at a

second time subsequent to the first time, updated user
story data for the first user story;

separate each individual word in the updated user story

data to create a second word list:;

identily, using natural language processing, whether each

individual word 1n the second word list 1s the functional
word:

create a regex for each individual word 1dentified in the

second word list as the functional word to produce a
second functional word regex list comprising a second
plurality of functional word regexes;

determine that a first functional word regex 1n the second

functional word regex list corresponds to a second
security requirement in the key functional words map-
ping database;

automatically refer to the security requirements duplicate

dictionary to determine whether the second security
requirement had been previously linked to the first user
story; and

in response to determining that the first security require-

ment had not been previously linked to the first user
story, automatically generate and display a second
report that identifies the second security requirement
together with the first user story.

12. The non-transitory computer-readable medium storing
software of claim 8, wherein the instructions further cause
the one or more computers to:

automatically input, in response to generating the first

report, the first report mnto a user stories already
assessed database, wherein a security requirements
duplicate dictionary 1s based on data stored in the user
stories already assessed database;

retrieve, from the user story data repository and at a

second time subsequent to the first time, updated user
story data for the first user story;

separate each individual word in the updated user story

data to create a second word list:;

US 12,373,570 B2

31

identify, using natural language processing, whether each
individual word 1n the second word list 1s the functional
word;

create a regex for each individual word 1dentified in the

second word list as the functional word to produce a
second functional word regex list comprising a second
plurality of functional word regexes;

determine that a first functional word regex in the second

functional word regex list corresponds to a second
security requirement 1n the key functional words map-
ping database;

automatically refer to the security requirements duplicate

dictionary to determine whether the second security
requirement had been previously linked to the first user
story; and

in response to determining that the first security require-

ment had been previously linked to the first user story,
automatically generate and display a second report that
identifies the second security requirement together with
the first user story only once.

13. The non-transitory computer-readable medium storing
software of claim 8, wherein the instructions further cause
the one or more computers to:

retrieve, from an automated testing playbook repository, a

first automated testing playbook associated with the
first security requirement;

automatically perform a first test based on the first auto-

mated testing playbook; and

automatically generate and display a second report that

identifies results of the first test.

14. The non-transitory computer-readable medium storing
software of claim 13, wherein the instructions further cause
the one or more computers to:

identify, during the first test, a first issue; and

automatically execute, based on a plurality of healing

actions included in the first automated testing play-
book, a first healing action to resolve the first 1ssue.

15. A system for identification of security requirements,
the system comprising one or more computers and one or
more storage devices storing instructions that are operable,
when executed by the one or more computers, to cause the
one or more computers to:

retrieve, from a user story data repository and at a first

time, user story data for a {irst user story;

separate each individual word 1n the user story data to

create a first word list;

identily, using natural language processing, whether each

individual word in the first word list 1s a functional
word:
create a regular expression (regex) for each individual
word 1dentified in the first word list as the functional
word to produce a first functional word regex list
comprising a first plurality of functional word regexes;

determine which functional word regexes in the first
functional word regex list have one or more corre-
sponding security requirements in a key functional
words mapping database, wherein the one or more
corresponding security requirements indicate require-
ments of security to protect assets associated with the
user story data from internet attacks to the assets;

form the one or more corresponding security requirements
into a first list of security requirements;

link at least a first security requirement of the first list of

security requirements with the first user story in a user
stories already assessed database; and

5

10

15

20

25

30

35

40

45

50

55

60

65

32

automatically generate and display a first report that
identifies the first security requirement together with
the first user story.
16. The system of claim 15, wherein the instructions
further cause the one or more computers to:
in response to linking at least the first security require-
ment of the first list of security requirements with the
first user story in the user stories already assessed
database, map the first security requirement to the first
user story 1n a security requirements duplicate diction-
ary.,
determine a second functional word regex of the first
functional word regex list 1s associated with a second
security requirement in the key functional words map-
ping database;
determine that the second security requirement 1s already
mapped to the first user story in the security require-
ments duplicate dictionary; and
in response to determining that the second security
requirement 1s already mapped to the first user story in
the security requirements duplicate dictionary, refrain
from mapping the second security requirement to the
first user story a second time.
17. The system of claim 15, wherein the instructions
further cause the one or more computers to:
in response to linking at least the first security require-
ment of the first list of security requirements with the
first user story in the user stories already assessed
database, map the first security requirement to the first
user story 1n a security requirements duplicate diction-
ary.,
determine a second functional word regex of the first
functional word regex list 1s associated with a second
security requirement 1n the key functional words map-
ping database;
determine that the second security requirement 1s not
mapped to the first user story in the security require-
ments duplicate dictionary; and
in response to determining that the second security
requirement 1s not mapped to the first user story in the
security requirements duplicate dictionary, map the
second security requirement to the first user story in the
user stories already assessed database and updating the
security requirements duplicate dictionary.
18. The system of claim 15, wherein the instructions
further cause the one or more computers to:
automatically 1nput, 1n response to generating the first
report, the first report into the user stories already
assessed database, wherein a security requirements
duplicate dictionary 1s based on data stored in the user
stories already assessed database;
retrieve, from the user story data repository and at a
second time subsequent to the first time, updated user
story data for the first user story;
separate each individual word in the updated user story
data to create a second word list;
1dentify, using natural language processing, whether each
individual word 1n the second word list 1s a functional
word:
create a regex for each individual word 1dentified in the
second word list as the functional word to produce a
second Tunctional word regex list comprising a second
plurality of functional word regexes;
determine that a first functional word regex 1n the second
functional word regex list corresponds to a second
security requirement 1n the key functional words map-
ping database;

US 12,373,570 B2

33

automatically refer to the security requirements duplicate
dictionary to determine whether the second security
requirement had been previously linked to the first user
story; and

in response to determining that the first security require-
ment had not been previously linked to the first user
story, automatically generate and display a second
report that identifies the second security requirement
together with the first user story.

19. The system of claim 15, wherein the instructions

turther cause the one or more computers to:

automatically input, in response to generating the first
report, the first report mto a user stories already
assessed database, wherein a security requirements
duplicate dictionary 1s based on data stored 1n the user
stories already assessed database;

retrieve, from the user story data repository and at a
second time subsequent to the first time, updated user
story data for the first user story;

separate each individual word in the updated user story
data to create a second word list;

identify, using natural language processing, whether each
individual word 1n the second word list 1s the functional
word;

create a regex for each individual word 1dentified 1n the
second word list as the functional word to produce a

10

15

20

34

second functional word regex list comprising a second
plurality of functional word regexes;

determine that a first functional word regex 1n the second
functional word regex list corresponds to a second
security requirement in the key functional words map-
ping database;

automatically refer to the security requirements duplicate
dictionary to determine whether the second security
requirement had been previously linked to the first user
story; and

in response to determining that the first security require-
ment had been previously linked to the first user story,
automatically generate and display a second report that
identifies the second security requirement together with
the first user story only once.

20. The system of claim 135, wheremn the instructions

further cause the one or more computers to:

retrieve, from an automated testing playbook repository, a
first automated testing playbook associated with the
first security requirement;

automatically perform a first test based on the first auto-
mated testing playbook; and

automatically generate and display a second report that
identifies results of the first test.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

