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SYSTEMS AND METHODS FOR
SIMULATING MEDICAL IMAGES USING
GENERATIVE ADVERSARIAL NETWORKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. Provi-

sional Patent Application 62/706,768, filed Sep. 9, 2020,
titled “Systems And Methods For Simulating Medical
Images Using Generative Adversarial Networks”, the
entirety of which 1s hereby incorporated by reference.

FIELD

The present application generally relates to adversarial
networks and more particularly relates to systems and meth-
ods for simulating medical images using generative adver-
sarial networks.

BACKGROUND

After a patient has tissue biopsied for examination, a
pathologist will examine a portion of the tissue, such as a
slice of the tissue. In examining the tissue, the pathologist
may stain the tissue and capture an 1mage of the stained
tissue using magnification optics. The captured 1mage may
then be displayed on a screen for the pathologist to examine
to 1dentily potential disease or other medical conditions.

SUMMARY

Various examples are described for systems and methods
for stmulating medical 1mages using generative adversarial
networks. One example method for simulated medical
images using GANs includes receiving, by a generative
adversarial network (“GAN”), a plurality of training images,
the training 1mages associated with an aflliction and depict-
ing different stages of progression for the afiliction; gener-
ating, using the GAN, a latent space based on the training
images, the latent space comprising a first set of data points
indicating parameters associated with the training images;
generating, using the GAN, a second set of data points 1n the
latent space based on simulated 1mages generated from the
latent space, the simulated 1mages based at least in part on
the first set of data points* alter generating the second set of
data points: receiving a request for a first simulated image
associated with the afiliction; and generatlng and outputting,
by the GAN, the first 51mulated image based on the latent
space.

Another example method 1ncludes receiving, by a gen-
erative adversarial network (“GAN™), a plurality of training
images, the training 1mages associated with an afiliction and
depicting different stages of progression for the afiliction;
generating, using the GAN, a latent space based on the
training 1mages, the latent space comprising a first set of data
points indicating parameters associated with the training
images; and generating, using the GAN, a second set of data
points 1n the latent space based on simulated 1images gen-
crated from the latent space, the simulated 1mages based at
least 1n part on the first set of data points.

A further example method includes receiving, by a gen-
erative adversarial network (“GAN™), a seed 1mage associ-
ated with an aflliction; and generating and outputting, using
the GAN, a severity score based on a latent space and the
seed 1mage, the latent space comprising: a first set of data
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images associated with the aflliction and depicting different
stages of progression for the aflliction, and a second set of
data points generated by the GAN based on the first set of
data points, the parameters comprising indications of sever-
ity level of the afiliction.

One example device includes a non-transitory computer-
readable medium; and a processor in communication with
the non-transitory computer-readable medium, the processor
configured to execute processor-executable instructions
stored in the non-transitory computer-readable medium to
receive, by a generative adversarial network (“GAN”), a
plurality of training images, the training images associated
with an aflliction and depicting different stages ol progres-
sion for the afiliction; generate, using the GAN, a latent
space based on the training 1mages, the latent space com-
prising a first set of data points indicating parameters
associated with the tramning i1mages; generate, using the
GAN, a second set of data points 1n the latent space based
on simulated 1mages generated from the latent space, the
simulated images based at least in part on the first set of data
points; aiter generating the second set of data points: receive
a request for a first simulated 1mage associated with the
aflliction; and generate and output by the GAN, the first
simulated 1mage based on the latent space.

Another example device includes a non-transitory com-
puter-readable medium; and a processor 1n communication
with the non-transitory computer-readable medium, the pro-
cessor configured to execute processor-executable instruc-
tions stored 1n the non-transitory computer-readable medium
to receive, by a generative adversarial network (“GAN”), a
plurality of training images, the training images associated
with an afiliction and depicting different stages of progres-
sion for the aflliction; generate, using the GAN, a latent
space based on the tramning images, the latent space com-
prising a first set of data points indicating parameters
associated with the training 1images; and generate, using the
GAN, a second set of data points 1n the latent space based
on simulated 1mages generated from the latent space, the
simulated images based at least in part on the first set of data
points.

A further device includes a non-transitory computer-
readable medium; and a processor in communication with
the non-transitory computer-readable medium, the processor
configured to execute processor-executable instructions
stored 1n the non-transitory computer-readable medium to
receive, by a generative adversarial network (“GAN”), a
seed 1mage associated with an aflliction; and generate and
output, using the GAN, a severity score based on a latent
space and the seed 1mage, the latent space comprising: a first
set of data points indicating parameters associated with a set
of tramning 1mages associated with the aflliction and depict-
ing different stages of progression for the afiliction, and a
second set of data points generated by the GAN based on the
first set of data points, the parameters comprising indications
of severity level of the afiliction.

One example non-transitory computer-readable medium
includes processor-executable instructions configured to
cause a processor to receive, by a generative adversarial
network (“GAN”), a plurality of training 1mages, the train-
ing 1mages associated with an aflliction and depicting dii-
ferent stages of progression for the aflliction; generate, using
the GAN, a latent space based on the training images, the
latent space comprising a first set of data points indicating
parameters associated with the training images; generate,
using the GAN, a second set of data points 1n the latent space
based on simulated 1images generated from the latent space,
the simulated 1images based at least 1n part on the first set of
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data points; after generating the second set of data points:
receive a request for a first stmulated 1image associated with
the aflliction; and generate and output by the GAN, the first
simulated 1mage based on the latent space.

Another example non-transitory computer-readable
medium includes processor-executable instructions config-
ured to cause a processor to receive, by a generative adver-
sarial network (“GAN”), a plurality of training 1mages, the
training 1mages associated with an affliction and depicting
different stages of progression for the afiliction; generate,
using the GAN, a latent space based on the training 1mages,
the latent space comprising a first set of data points 1ndi-
cating parameters associated with the training images; and
generate, using the GAN, a second set of data points 1n the
latent space based on simulated 1mages generated from the
latent space, the simulated 1mages based at least in part on
the first set of data points.

A further example non-transitory computer-readable
medium includes processor-executable nstructions config-
ured to cause a processor to receive, by a generative adver-
sarial network (“GAN”), a seed 1mage associated with an
aflliction; and generate and output, using the GAN, a sever-
ity score based on a latent space and the seed image, the
latent space comprising: a first set of data points indicating
parameters associated with a set of training images associ-
ated with the aflliction and depicting different stages of
progression for the aflliction, and a second set of data points
generated by the GAN based on the first set of data points,
the parameters comprising indications of severity level of
the aflliction.

These illustrative examples are mentioned not to limit or
define the scope of this disclosure, but rather to provide
examples to aid understanding thereolf. Illustrative examples
are discussed in the Detailed Description, which provides
turther description. Advantages oflered by various examples
may be further understood by examiming this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into
and constitute a part of this specification, illustrate one or
more certain examples and, together with the description of
the example, serve to explain the principles and implemen-
tations of the certain examples.

FIG. 1 shows an example system for simulating medical
images using generative adversarial networks;

FIG. 2 shows an example illustration of a timeline of
images showing progression of a disease or medical condi-
tion;

FIG. 3 shows an example system for simulating medical
images using generative adversarial networks;

FIG. 4 shows an example graphical user interface of a
system for simulating medical 1mages using generative
adversarial networks;

FIGS. 5A-5C show an example system for simulating
medical 1mages using generative adversarial networks;

FIG. 6 shows an example method for simulating medical
images using generative adversarial networks;

FIG. 7 shows an example method for determining a
severity score for an 1mage of an aflliction using generative
adversarial networks; and

FIG. 8 shows an example computing device suitable for
simulating medical images using generative adversarial net-
works according to various examples.

DETAILED DESCRIPTION

Examples are described herein in the context of systems
and methods for simulating medical images using generative
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4

adversarial networks. Those of ordinary skill in the art will
realize that the following description 1s illustrative only and
1s not mntended to be 1n any way limiting. Reference will now
be made 1n detail to implementations of examples as 1llus-
trated 1n the accompanying drawings. The same reference
indicators will be used throughout the drawings and the
following description to refer to the same or like items.

In the mterest of clarity, not all of the routine features of
the examples described herein are shown and described. It
will, of course, be appreciated that in the development of any
such actual implementation, numerous implementation-spe-
cific decisions must be made in order to achieve the devel-
oper’s specific goals, such as compliance with application-
and business-related constraints, and that these specific
goals will vary from one implementation to another and
from one developer to another.

Images of tissue samples biopsied from a patient may be
examined by a pathologist to detect a disease or medical
condition (collectively an “affliction”) or to monitor the
progression of that aflliction. Recognizing signs of diflerent
afllictions in medical images 1s a diflicult task and requires
extensive training ol medical personnel, including medical
doctors. One way to provide training 1s to provide medical
images to personnel during training and teach them various
indicators of different afilictions. Over time, they will learn
to recognize different afllictions from medical 1mages, as
well as the level of progression or severity of the afiliction.
Once they are sufliciently trained, they may then begin to
examine tissue samples or medical 1images to diagnose or
monitor different afflictions.

However, various difliculties present themselves when
training medical personnel. First, suflicient numbers of
example medical 1mages are needed to enable medical
proiessionals to recognize signs or hallmarks of an afiliction.
These example 1images must show not only different afilic-
tions, but also different stages or severities of those afllic-
tions. In addition, once a piece of tissue has been resected for
pathological analysis, that tissue has been removed from the
patient and thus 1t 1s not possible to see how that tissue
sample would have changed over time as the afiliction
progressed. Thus, a tissue sample 1s a single snapshot in time
of the state of the tissue when sampled and future samples
will necessarily be of a different part of the tissue.

To help provide additional opportunities for training or to
project aflliction progression for a patient, systems and
methods according to this disclosure enable simulating or
synthesizing longitudinal medical 1images using generative
adversarial networks. Generative adversarial networks (each
a “GAN”) are a class of machine learning techmiques that
use a generator and a discriminator to develop a multi-
dimensional data space, referred to as a “latent space”
herein, from which information may be extracted to generate
a desired result. The process of developing the latent space
1s called “traiming” and involves using the generator and
some seed data to generate proposed outputs, €.g., recon-
structions of the seed data or wholly new outputs based on
interpolations of the data in the latent space. The discrimi-
nator receives the proposed output data and, using a prede-
termined statistical distribution, e.g., normal distribution,
uniform distribution, etc., determines whether the proposed
output suiliciently conforms to the statistical distribution to
be 1dentified as a member of the latent space. If the output
1s statistically acceptable, 1t will be accepted and the latent
space will be updated with the output data. If the output 1s
not statistically acceptable, 1t will be rejected and the latent
space will be adjusted to avoid generating similar output
data 1n the future.
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To generate a simulated 1mage, a suitable GAN, such as
an autoencoder GAN (“AEGAN”), 1s trained using a set of
training 1mages of tissue samples for a particular afiliction
and at various stages of the corresponding afiliction. The
training 1mages are supplied to the encoder, which encodes
them into the latent space and the AEGAN then develops the
latent space as discussed above. In some examples, the
images may be accompanied by additional information, e.g.,
labels, that 1dentifies the type of afiliction, the severity of the
aflliction, the age of the patient, the patient’s gender, etc.

Once the AEGAN 1s sufliciently trained, a user may
access the AEGAN and request a simulated image be
generated for the aflliction having a desired state of pro-
gression or severity. For example, 1 the AEGAN 1s trained
on medical images of melanoma, a user may request an
image showing a stage 3 melanoma. Alternatively, the user
may supply a pathology 1image for melanoma at a particular
stage ol development and request a generated 1mage at a
different stage, e.g., at a more advanced stage. The AEGAN
then generates an 1image based on the request and the traimned
latent space, and outputs the 1image for the user to view. It 1s
also possible to supply an 1mage to the AEGAN without an
assigned stage, and the AEGAN can determine the stage
based on the input 1image’s determined position within the
AEGAN’s latent space.

Using such a system, a user may view large numbers of
different simulated medical images without needing access
to a large library of real images, and thus may be trained
more efliciently and inexpensively. Such images may be
expensive or otherwise dithicult to obtain 1n large numbers.
In addition, once an 1image has been reviewed, it may not be
as ellective for traiming the same individual if re-used a
second or third time. Thus, a system that can generate
realistic but stmulated medical images may provide substan-
tial benefits to medical personnel.

This 1llustrative example 1s given to introduce the reader
to the general subject matter discussed heremn and the
disclosure 1s not limited to this example. The following
sections describe various additional non-limiting examples
and examples of systems and methods for simulating medi-
cal 1mages using generative adversarial networks.

Referring now to FIG. 1, FIG. 1 illustrates an example
system 100 for simulating medical images using GANs. In
this example, the system includes an image simulator 110,
which includes a GAN 122 that interacts with a latent space
114. The 1mage simulator 110 can accept images 120 and
also generate and output simulated images 130. In this
example the GAN 122 i1s an AEGAN, but 1n other examples
any suitable GAN may be used. Further diflerent types of
autoencoders may be employed by the AEGAN 1n different

T 1

examples, such as variational autoencoders, e.g., in a VAE-
GAN.

In this example, the system 100 trains the GAN 122
during a training phase to develop the latent space 114.
During tramning, tramming images, €.g., images 120, are
provided to the GAN 122, which parameterizes each image
and 1nserts 1t into the latent space 114. Training images may
be of any suitable type of medical image, such as pathology
1mages fluoroscopy 1mages, ultrasound 1 lmages, CT 1mages,
MRI images, etc. As data from successive 1mages 1S param-
cterized and added to the latent space, it increases the
density of mformation stored 1n the latent space 114. How-
ever, absent a significant number of training images, e.g.,
tens or hundreds of thousands of training 1mages, the latent
space 114 will lack suih

icient density to generate realistic
simulated 1mages. Thus, the GAN 122 will further improve
the density of the latent space 114 by generating simulated
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6

images and, using a discriminator, determine whether the
generated 1images are suiliciently realistic to be added to the
latent space 114. As images are generated, the discriminator
determines whether they are “realistic,” 1.e., 1t determines
the 1mage 1s a simulated image rather than an real 1mage,
based on a predetermined expected data distribution within
the latent space. If the discriminator correctly identifies a
simulated 1mage, the generator’s model 1s updated to better
interpolate the data within the latent space. If the discrimi-
nator incorrectly identifies a simulated image as a real
image, the discriminator’s model 1s updated to better apply
the distribution function to the data in the latent space.

In this example, the GAN 122 1s trained using both
training 1mages as well as corresponding severity scores (or
corresponding stages of development of an afiliction). Thus,
cach 1image supplied to the image simulator 110 will have a
corresponding severity score. Consequently, data in the
latent space 114 will also have corresponding severity
scores. Such information may be used both by the generator
and the discriminator as part of the training exercise dis-
cussed above, as well as when generating simulated 1images
alter then GAN 122 has been trained.

Once the latent space 114 has been sufliciently densely
populated, the 1mage simulator may then generate simulated
images. In this example, a user may request a simulated
image and provide a desired severity score. The image
simulator 110 will then generate a simulated 1mage based on
the latent space 114 and the supplied severity score, 1n the
same way that it generated simulated 1mages during the
training phase. The simulated image 1s then output, such as
by displaying 1t on a screen or saving 1t as an 1mage file to
a storage device.

In addition to supplying a severity score, 1 some
examples, the user may also provide an image (called a
“seed 1mage”) on which to base a simulated 1mage. As
discussed above, a pathology sample represents a snapshot
of the tissue 1n time, but 1t 1s not possible to see how the
sample will change over time, since it has been resected and
will not continue to grow. Thus 1s 1llustrated 1n FIG. 2, which
shows a seed 1mage 210 on a timeline 202. Depending on a
particular user’s interests, 1t may be desirable to show
progression of the afiliction shown in the seed image at a
different point in time, such as simulated 1mage 220, at a
time (t—y) or stage preceding the biopsy, or simulated 230 at
some later time (t+x) or stage of development.

For example, the user may obtain a pathology image from
a patient and supply it as a seed 1mage to the 1image simulator
110 along with a severnty score. The user may then request
a simulated 1image and supply a different severity score. The
image simulator may then parameterize the seed image as 1t
would during a training phase and then adjust those param-
cters based on the difference between the severity score
associated with the seed 1image and the severity score for the
requested 1mage. Because the image simulator 110 has been
trained, the adjustments to the parameters extracted from the
seed 1mage and based on the latent space will result 1n a
realistic simulated 1mage. Further, in some examples, the
seed 1mage may be incorporated into the latent space or used
to further train the image simulator 110.

A further extension of such an image simulator 110 may
enable a user to provide a seed 1mage and a severity score
and then request various simulated images with different
severity scores, such as by sliding a slider and seeing the
seed 1mage apparently change as the slider moves. Such a
technique may allow the user to view something akin to an
amimation of the progression of the afiliction based on the
seed 1image. This could be used for traiming or other educa-
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tional purposes for medical proiessionals, or to illustrate to
a patient how the aflliction will progress i1f they do not
undergo treatment. Using such a system, a user may quickly
and efliciently generate simulated images of afllictions of
interest.

Referring now to FIG. 3, FIG. 3 1llustrates an architecture
for an 1mage simulator 300 suitable for use with systems and
methods for simulating medical images using GANSs. In this
example, the image simulator 300 employs an AEGAN 302
machine-learning architecture; however any suitable GAN
may be employed, including a multi-scale GAN (e.g., a

multi-scale AEGAN).
The AEGAN 302 includes an encoder 310, a generator
320 and two discriminators 330a-b. In addition, the AEGAN

302 makes use of a distribution function 322 and a recon-
struction loss function (or just “loss function™) 340. Gener-
ated 1mage 332 and reconstructed image 334 are simulated
images generated by the AEGAN 302 durning training, but
generally are not part of the AEGAN 302 architecture itself.
Instead, they represent data generated and transmitted within
the AEGAN 302. Latent space 312 1s depicted as being
external to the AEGAN 302 1itself in this figure as 1t
represents a data space rather than part of the processing
components of the AEGAN 302; however, in some
examples 1t may be considered as a part of the AEGAN 302.
For example, i the case of an trained AEGAN, the latent
space 312 may be considered as a part of the AEGAN 302
in some examples.

The encoder 310 receives real images 310, which 1t
parameterizes and encodes within the latent space 312. The
parameterized real image 301 1s then used by the generator
320 to reconstruct the real image (reconstructed image 334),
which 1s then used to compute a loss function 340 indicating,
the amount of data loss with respect to the original real
image 301. The encoder 310 then adjusts parameters and
associated weights based on the reconstruction loss calcu-
lated based on the reconstructed image 334 to try to reduce
the value of the loss function 340. By iteratively reducing
the loss function 340 over successive real images, the
AEGAN 302 attempts to mimmize the value for the loss
function.

In addition to minmimizing the loss function 340, data
inserted into the latent space 312 1s used by discriminator
330a to perform adversarial training between the latent
space 312 and the distribution function 322. The distribution
tunction 322 represents a desired distribution for data within
the latent space 312. Any suitable distribution function may
be employed, such as a normal (or Gaussian) distribution
function.

To then train the AEGAN 302, a discriminator 33054 takes
a simulated or reconstructed image and evaluates 1t to
determine if 1t 1s a “realistic” simulated 1image. Based on the
result from the discriminator 3306, the i1mage may be
rejected 1f 1t 1s “‘unrealistic,” or 1t may be accepted as
“realistic.” If the discriminator correctly identifies an 1mage
as unrealistic, the results are backpropagated to the generator
to 1mprove 1ts model, and thus 1ts 1mage generation. Simi-
larly, errors made by the discriminator 3305 are backpropa-
gated to 1t to improve 1ts model and thus 1ts ability to detect
unrealistic generated 1mages.

In some examples the AEGAN 302 maybe trained using
both training 1images as well as additional information, such
as a severity score for a corresponding affliction, or the
identity of the afliliction itself. Such information may be
provided in a “label” along with the traiming image 301.
Information from the label may be incorporated into the
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latent space or it may be provided to the generator or
discriminator to help train the generator’s or discriminator’s
models.

For example, real images with severity scores ranging
from a minimum to maximum value, e.g., 1 to 10, may be
represented as vectors (or tuples) within the latent space
along with a corresponding label. A generator attempting to
generate a realistic simulated 1image with a particular sever-
ity score may then generate a vector based on vectors in the
latent space with a corresponding label, ¢.g., by interpolating
between nearby vectors 1n the latent space. The simulated
image along with the severity score, when provided to the
discriminator, may be evaluated as being realistic or unre-
alistic as well as for 1ts corresponding severity score. The
discriminator then determines whether the simulated 1image
1s a “realistic” image for that severity score based on the
latent space, an expected data distribution within the latent
space, and a parameterization of the generated image. The
results are used to further adjust the discriminator’s model
(11 the discriminator 1ncorrectly classifies the 1image), or the
generator’s model (if the discriminator accurately rejects the
image as “unrealistic”). Thus, 1 addition to training the
AEGAN 302 to generate realistic simulated images, 1t may
be trained to generate such 1images based on mputted sever-
ity scores.

It should be appreciated that references above made to
severity scores may be any suitable gradation applied to
medical 1images. In some cases, e.g., with cancer, severity
scores may correspond to stages of cancer development,
while 1n some cases, severity scores may be based on widely
recognized severity indicators or based on subjectively
generated scores for the training images.

In addition, i1t should be appreciated that training 1mages
or seed 1mages may be provided 1n a number of different

resolutions. To handle such differences, the AEFGAN 302

may indicate a resolution of an 1mage as a part of a label 1n
the latent space and insert the parameterized 1image nto the
latent space 312 using the resolution information.

After suflicient training images (whether real or simu-
lated) have been provided to the AEGAN 302 such that the

images 1t generates are suiliciently realistic, e.g., based on
the output of the loss function 340 reaching an acceptable
level or based on a review by a human evaluator, it may then
be used to generate simulated 1mages for use 1n a training or
other live system.

Once the AEGAN 302 has been sufliciently trained, it
may be used to generate simulated images for use. As
discussed above, simulated 1mages may be generated based
on a desired severity of an aflliction 1n the simulated image.
Further, the trained AEGAN 302 may accept a seed image
as an iput and modily that image based on the latent space
312 and a corresponding severity score. For example, the
AEGAN 302 may parameterize the seed image using the
encoder 310, and then modily the parameters based on the
latent space and the specified severity. The modified param-
cters may then be used by the generator 320 to generate a
simulated 1mage. Thus, a real pathology image 301 may be
input into the image simulator 300, optionally with a sever-
ity score, and the image simulator 300, using the generator
320, generates and outputs a simulated image 350. Alterna-
tively, a simulated 1image 350 may be generated without an
inputted real image 301.

While the example above has been described in the
context of an AEGAN, other techmiques may be used as
well. For example, any suitable type of GAN may be
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employed. Further, different types of autoencoders may be
employed, such as vanational autoencoders in a VAEGAN,
etc.

Referring now to FIG. 4, FIG. 4 shows an example user
interface (“UI”) for an image simulator, such as the image
simulators 110, 300 shown 1in FIGS. 1 and 3. The Ul shown
in FIG. 4 1s a graphical Ul (*GUI”) 400 displayed on a
display screen 402. The GUI 400 and includes several GUI
components to enable a user to interact with an image
simulator, e.g., image simulators 110, 300. The GUI 400
provides options to allow a user to select an affliction of
interest 410. Such a GUI component 410 may not be
employed 1n some examples, such as in a case where only
a single type of afiliction 1s available for simulation.

The user may use GUI component 420 to select and view
a seed 1mage 420 and GUI component 430 to select a
corresponding severity score to be provided to the image
simulator 110, 300. As discussed above, one or both of a
seed 1mage 410 or a severity score 1s not required in some
examples. Instead, the image simulator 110, 300 may be
requested to generate a simulated realistic 1mage of the
selected aflliction. If no severity score 1s provided, the GUI
may select a severity score randomly or it may use a default
score or the last inputted severity score.

After selecting a seed image 420 (optionally) and a
severity score 430 (optionally), the user may select the
“generate 1mage” GUI component 440 to send a signal to the
image simulator 110, 300 to cause it to generate a simulated
image based on either (or both) the seed 1image 420 or the
severity score 430 (or use a default or otherwise internally
selected severity score, 11 the user does not provide one). The
generated 1mage 1s then recerved from the image simulator
110, 300 and displayed by GUI component 470. Alterna-
tively, the user may provide a seed 1image without providing,
a severity score, and may then select GUI component 450 to
obtain the severity score corresponding to the seed image.
Finally, the user may select the “submit training data™ GUI
component 460 to submit the seed 1image and severity score
to further train a GAN for simulating medical 1images.

In some examples, the user may be provided with one or
more GUI components to allow the user to adjust the
simulated 1mage (or generate a new simulated 1mage) by
adjusting a severity score. In this example, the GUI 400
includes a slider bar 442 with a slide control 444 that may
be moved to change a severity score. For example, i1 the
slide control 444 1s moved to the right, a severity score may
be increased and supplied to the image simulator 110, 300,
while movement to the left reduces the severity score. As the
slide control 444 1s moved, the resulting severity score may
be sent to the image simulator, which may then generate a
new simulated image and display 1t in GUI component 470.
In some examples, the then-currently displayed image may
be supplied as the seed image for the next simulated image.
Thus, as the user slides the slide control 444, the GUI 400
may provide new simulated images 470 substantially in real
time, thereby giving the illusion of an animation or movie of
the pathology sample over time. Such functionality may
allow a user to see and understand how aflliction progression
occurs 1n real time.

Referring now to FIG. SA, FIG. 5A shows an example
system for simulating medical 1mages using generative
adversarial networks. In this example, the system 500
includes multiple client devices 510a-» and multiple cloud
servers 320a-m, all interconnected by network 530. Note
that ‘n” and ‘m’ are used to denote any suitable number of
client devices or cloud servers and that the number of client
devices need not be the same as the number of cloud servers.
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The client devices 510aq-» may be used by users to execute
software to simulate medical 1mages using GANs, which
may 1include training the GANs or using the GANs to
generate simulated 1images.

To enable the clients 510a-c to perform such functionality,
they may communicate with one or more cloud servers
520a-c. In this example, the clients 510a-c execute front-end
soltware to present a GUI to the user, e.g., the GUI 400
shown 1n FIG. 4, to generate simulated images. The cloud
servers 520a-c execute 1mage simulation soitware, such as
image simulation software 110, 300 described above with
respect to FIGS. 1-3, which employ trained GANs to gen-
crate simulated images. Thus, a user may interact with a
GUI, which transmits commands to the cloud servers 520a-c
to cause the cloud servers 520 to train a GAN or to generate
a simulated 1image using a GAN.

For example, a user at a client 510a may execute software

at the client 510aq, which connects to one of the cloud
servers, €.2., cloud server 520a. The user may then select a
type of aflliction using the corresponding GUI element 410.
They may then select a seed 1image 420 and a severity score
430, and may then activate the generate image GUI element
440. In response, the client 510a transmits the selected
aflliction, the seed 1image, and the severity score to the cloud
server 520a, which uses a trained GAN, e.g., an AEGAN,
corresponding to the selected afiliction. The cloud server
520a then generates the requested simulated image and
provides the image to the requesting client device 510a,
which displays the simulated image using the corresponding
GUI element 470.
To enable such functionality, each of the cloud servers
520a-¢ may execute i1mage simulation software trained
based on one or more afllictions, which may enable the
cloud servers 520a-c¢ to generate simulated 1mages for a
variety of diflerent afilictions. To enable such functionality,
the cloud servers 520a-c may be configured in various ways.
For example, referring to FIG. 5B, a cloud computer 520q
may execute multiple different types of 1mage simulation
software 322a-n, each of which may be trained to generate
simulated 1mages of different afilictions. Thus, one 1mage
simulation software application 522a may be tramed to
generated simulated 1mages of melanoma, while another
image simulation software application 5225 may be trained
to generate simulated images of breast cancer. Thus, as client
iput 1s received by the cloud server 5204, the cloud server
520a first determines the type of simulated images to be
generated and then executes the corresponding 1image simu-
lation software application, e.g., application 3522a. Subse-
quent client input related to the same aflliction are routed to
that particular 1mage simulation soitware application 522a.
Further, it should be appreciated that the cloud server 520q
may receive client input from multiple different clients
substantially simultaneously and, consequently, may
execute various types of image simulation software 522a-j
concurrently to generate any requested simulated 1mages
and provide them to the requesting client(s) 510a-c. As
above with respect to ‘m’ and ‘n,” °;” denotes any arbitrary
number of 1mage simulation soitware applications 522a-;.

FIG. 5C illustrates a different configuration of a cloud
server 520b. In this example, the cloud server 5205 executes
one 1mage simulation software application 5225 that uses
one ol multiple trained GANs 526a-k to generate simulated
images. As client input 1s received from one or more client
devices 510a-n, the 1nput 1s provided to the 1image simula-
tion soitware 524, which then selects the appropriate GAN
526a-k based on an aflliction 1dentified in the client input.
The client input, e.g., a seed 1mage or severity score, may be
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provided to the appropriate GAN 526a-4, which generates a
simulated 1image based on the client input. The cloud server
52056 then responds to the requesting client 510a-7 with the
generated 1mage. As above with respect to ‘m, ‘n,” and °}.’
‘K> denotes any arbitrary number of GANs 526qa-%.

For the configurations of cloud servers 520a and 52056
discussed above with respect to FIGS. 3B and 5C, 1t should
be appreciated that 1n either case, the respective cloud server
may execute as many instances ol a particular image simu-
lation application 522a-j or 524 based on client requests or
cloud server capacity. Thus, for example, while cloud server
5206 1s shown with only one copy of image simulation
software 524, which employs multiple different GANs
526a-k as described above, the cloud server 52056 may 1n fact
execute multiple instances of the image simulation software
application 524 or multiple 1nstances of a particular GAN
526a-k as needed to handle client mput. Further, while the
example cloud servers 520a-b are each 1llustrated as a single
computing device, it should be appreciated that each may be
implemented as a distributed group of computing devices
functioning, from the clients’ perspective, as a single cloud
Server.

While the discussions of the client devices 510aq-r and
cloud servers 520a-m has related to generating simulated
images, they may also train GANs based on training images
as described above with respect to FIGS. 1 and 3. In
particular the client devices 510q-» may employ the GUI
400 to submuit traiming data, e.g., an affliction, a seed 1image,
and a severity score, by using the corresponding GUI
clement 460. The training data may be transmitted to the
corresponding cloud server 520a-m, which uses the training
data to further train a corresponding GAN, e.g., as a part of
image simulation software 522a-j or one of GANs 526a-%.

Referring now to FIG. 6, FIG. 6 shows an example
method 600 for simulating medical images using GANs. The
example method 600 will be discussed with respect to the
image simulation soitware shown 1n FIG. 3 and the systems
shown 1 FIGS. 1 and SA-5C; however, any suitable image
simulation software or system according to this disclosure
may be employed.

At block 610, the image simulation software 300 receives
one or more training medical 1mages associated with an
aflliction and, for each training pathology image, a corre-
sponding severity score. In this example, a computing
device, e.g., the computing device 800 shown and described
with respect to FIG. 8, access the tramning pathology
image(s), which may be stored locally 1n memory on the
computing device 800, e.g., 1n non-volatile storage, and
provide the traiming 1mage(s) to the image simulation soft-
ware. In some examples, such as the example shown 1n FIG.
5A, a remote server, e.g., a cloud server 520a-m, may
receive training 1images via a network 530 from one or more
client devices 510a-r. The client devices 510a-» may trans-
mit the training medical images using a GUI 400 as
described in more detail with respect to FIG. SA, or they
may be provided using any other suitable technique, e.g., by
uploading the medical images using the file transier protocol
(“F'TP”), networked access to the cloud server’s non-volatile
storage device, etc.

In some examples, training medical 1mages may include
multiple 1images of the same piece of tissue, e.g., a multiple
different resolutions, which may be referred to as a “stack™
of 1mages or a “multi-resolution stack.” These multiple
images may each be submitted as discrete i1mages for
purposes of training without reference to each other. How-
ever, 1 some examples, the 1mages may be submitted and
associated with each other. For example, a stack of five
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images may be submitted as five related files, or as a single
image file with multiple embedded 1mages of difierent
resolutions.

Further, some examples may receive training images
associated with multiple diflerent afflictions and correspond-
ing severity scores. In some such examples, the image
simulation software may process each of the training 1mages
and a corresponding aflliction identifier to 1nsert the training
images into the latent space. Because the different training
images are associated with different afilictions, they each
may be iserted into the same latent space, but labelled
according to aflliction, and thus will tend to cluster accord-
ing to affliction.

At block 620, the image simulation software 300 gener-
ates a latent space having a first set of data points based on
the received training medical 1mages. For example, as
discussed above with respect to FI1G. 3, the traiming medical
images may be parameterized into a set of data points by an
autoencoder, ¢.g., encoder 310, as a part of an AEGAN 302
and 1inserted into the latent space 312, along with the
corresponding severity score. The parameterized medical
images may then be reconstructed and used to reduce or
minimize an error value of a loss function 340 generally as
discussed above with respect to FIG. 3. Using such a
technique, an 1nitial latent space 312 may be generated based
on this first set of training medical 1mages.

As discussed above with respect to block 610, 1n some
examples, training medical 1images may include a multi-
resolution stack of images. In some examples, these 1images
may be processed separately, but associated within the latent
space, €.g., using labels. Alternatively, the different resolu-
tion 1mages may be treated as different portions or regions
of a single image and encoded into the latent space together

along with a label i1dentitying the data as being a multi-
resolution 1mage. Such a label may include other informa-
tion, such as i1dentifications of which portions of the image
are ol which resolution, the number of different 1images
represented, etc. Using such a technique, the image simu-
lation software may embed multi-resolution and individual
images within the same latent space.

At block 630, the image simulation software 300 gener-
ates a second set of data points 1n the latent space based on
simulated medical 1mages. As discussed above, to further
densify the latent space, the AEGAN 302 may use adver-
sarial training between a generator 320 and a discriminator
330H to generate additional data points within the latent
space. To perform adversarial training, the generator 320
generates simulated medical images, which are provided to
the discriminator 33056. The discriminator 3306 attempts to
determine whether the 1mage 1s “realistic”. If the discrimi-
nator 3306 determines the simulated pathology image 1s
“realistic,” the discriminator 3306 1s updated to better 1den-
tify stmulated medical images. 11 the discriminator identifies
the simulated pathology 1mage as being a simulated pathol-
ogy 1mage, 1.e., not realistic, the generator 1s updated to
create more realistic medical 1images, based on the distribu-
tion function. As “realistic” medical 1images are generated,
they are parameterized and used to populate the latent space
312. Over time, this adversanal training process can produce
a dense latent space that can be used by a generator 320 to
generate realistic simulated medical 1images of a particular

aflliction and having a desired severity.
While the description above with respect to block 630 1s

not specific to single 1mages or multi-resolution stacks,

multi-resolution stacks may be synthetically generated for
adversarial tramning using these same techniques as
described above. Thus, 1n some examples, image simulation
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software 300 may be capable of densitying a latent space
that includes individual images or groups of associated
1mages.

At block 640, the image simulation software 300 receives
a request for a simulated 1mage. In this example, the user
uses the GUI 400 to identily an aflliction and a severity score
and selects the “generate 1mage” GUI element 440. In some
examples, the i1mage simulation software 300 may be
executed locally on the user’s computing device; however,
in some examples, as described above with respect to FIGS.
5A-3C, the image simulation software 300 may be executed
by a cloud server 520a-m and, thus, the simulated 1mage 1s
generated at the cloud server 520a-m and may be later
transmitted to a user’s client device 510a-n, where 1t 1s
displayed or otherwise stored. I a latent space 1includes data
corresponding to multiple afilictions, the selected afiliction
may be used to obtain data from corresponding portions of
the latent space. Alternatively, the identified aflliction may
be used to select a GAN or latent space corresponding to the
identified aflliction. Further, in some examples, the user may
be presented with the option to request a multi-resolution
stack of 1mages, 11 the latent space includes data to enable
generation of such stacks of 1images. If the user selects the
option, such mformation may be received with the request
for the simulated 1mage.

In some examples, the user may use the GUI 400 to
provide a seed 1image to the 1mage simulation software 300.
I1 the request for the simulated 1image at block 640 includes
a seed 1mage, the method proceeds to block 642. Otherwise,
the method proceeds to block 650. It should be appreciated
that the seed image may be a multi-resolution stack, in some
examples.

To send a seed 1mage at block 642, the user may use the
GUI 400 to browse for the desired seed image and, once
identified, may selected the “generate 1image” GUI element
440. The seed 1mage 1s then provided to the image genera-
tion software 300, whether executing locally on the user’s
computing device or remotely, such as on a cloud server
520a-m. The seed 1mage may be received along with the
request for the simulated image or separately from the
request 1tself, such as in a subsequent message or file
transier transaction.

At block 630, the 1mage simulation soitware 300 uses the
AEGAN 302 to generate a simulated pathology 1mage or
multi-resolution stack of 1images for the afiliction based on
the severity score. Thus, 1n this example, the AEGAN 302
generates a set ol image parameters based on the latent space
and then generates an 1mage using those 1mage parameters,
similar to how the generator reconstructs a training image to
mimmize the loss function. If the AEGAN 302 recerved a
seed 1mage with the request, the AEGAN 302 parameterizes
the seed 1mage using the encoder 310. The parameters may
then be adjusted by the generator 320 based on a specified
severity level and the data within the latent space 312. The
adjusted parameters may then be used by the generator 320
to generate a simulated pathology 1image 1n the same way a
reconstructed image was created from a real image during a
training phase, as described above with respect to FIG. 3.

After 1t 1s generated, the simulated pathology image 1s
provided to the GUI 400, which displays it 1in the simulated
image GUI element 470. In examples where the image
simulation software 300 1s executed locally on the user’s
computing device, the image simulation soiftware simply
displays the generated pathology 1image for the user. In other
examples where the image simulation software 300 1is
executed remotely from the user’s computing device, such
as 1n the case of the system 500 of FIG. SA, the generated
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pathology i1mage 1s transmitted to the user’s computing
device, e.g., via a network 530, where it 1s received and
displayed. Once the simulated pathology image has been
displayed, the user may save the image for later use, zoom
or pan within the image, or otherwise interact with the
1mage.

After completing the method 600, it may be performed
again, such as based on a new request from the user, or based
on changes made in the GUI, e.g., to the slider control 444
to adjust the severity of the aflliction in the generated image.

Referring now to FIG. 7, FIG. 7 shows an example
method for simulating medical images using GANs. The
example method 600 will be discussed with respect to the
image simulation soitware shown 1n FIG. 3 and the systems
shown 1n FIGS. 1 and SA-5C; however, any suitable 1mage
simulation software or system according to this disclosure
may be employed.

At block 710, the image simulation software 300 receives
one or more tramning medical 1mages associated with an
aflliction and, for each training pathology image, a corre-
sponding severity score generally as discussed above with
respect to block 610.

At block 720, the image simulation software 300 gener-
ates a latent space having a first set of data points based on
the received training medical 1mages generally as discussed
above with respect to block 620.

At block 730, the image simulation software 300 gener-
ates a second set of data points 1n the latent space based on
simulated medical images generally as discussed above with
respect to block 630.

At block 740, the image simulation software 300 receives
a seed 1mage and a request for a severity score. In this
example, the user uses the GUI 400 to identily an aflliction
and provide a seed 1mage. The user may then select a GUI
component 450 to obtain a severity score corresponding to
the seed 1mage.

To send a seed 1mage, the user may use the GUI 400 to
browse for the desired seed image and, once 1dentified, may
selected the “determine severity” GUI element 440. The
seed 1mage 1s then provided to the 1mage generation soit-
ware 300, whether executing locally on the user’s comput-
ing device or remotely, such as on a cloud server 520a-m.
The seed 1image may be received along with the request for
the severity score or separately from the request itself, such
as 1n a subsequent message or file transier transaction.

At block 750, the image simulation soitware 300 uses the
AEGAN 302 to parameterize the seed image and determine
a corresponding location within the latent space 312. Based
on the determined location, the 1image simulation software
300 can determine a severity score based on the parameter-
1zed 1mage’s proximity to other data in the latent space and
the corresponding severity scores.

After determining a severity score for the seed 1mage, 1t
may be provided to the user via the GUI, such as by updating
the severity score GUI component 430 to show the deter-
mined severity score.

As discussed above with respect to FIG. 6, 1n some
examples, the i1mage simulation software 300 may be
executed locally on the user’s computing device; however,
in some examples, as described above with respect to FIGS.
5A-5C, the image simulation software 300 may be executed
by a cloud server 520a-m and, thus, the seed 1mage and the
request for the severity score may be transmitted to the cloud
server 520a-m from a user’s client device 510a-n, and the
determined severity score may be transmitted to the user’s
client device where 1t may be displayed.
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Referring now to FIG. 8, FIG. 8 shows an example
computing device 800 suitable for use 1n example systems or
methods for simulating medical images using GANs accord-
ing to this disclosure. The example computing device 800
includes a processor 810 which 1s 1n communication with
the memory 820 and other components of the computing
device 800 using one or more communications buses 802.
The processor 810 1s configured to execute processor-ex-
ecutable istructions stored in the memory 820 to perform
one or more methods for simulating medical 1mages using
(G ANs according to different examples, such as part or all of
the example method 600 described above with respect to
FIG. 6. The computing device, in this example, also includes
one or more user input devices 850, such as a keyboard,
mouse, touchscreen, microphone, etc., to accept user input.
The computing device 800 also includes a display 840 to
provide visual output to a user.

The computing device 800 also includes a communica-
tions iterface 840. In some examples, the communications
interface 830 may enable communications using one or
more networks, including a local area network (“LAN”);
wide area network (“WAN”), such as the Internet; metro-
politan area network (“MAN”); point-to-point or peer-to-
peer connection; etc. Communication with other devices
may be accomplished using any suitable networking proto-
col. For example, one suitable networking protocol may

include the Internet Protocol (“IP”), Transmission Control
Protocol (“TCP”), User Datagram Protocol (“UDP”), or

combinations thereol, such as TCP/IP or UDP/IP.

While some examples of methods and systems herein are
described 1n terms of solftware executing on various
machines, the methods and systems may also be 1mple-
mented as specifically-configured hardware, such as field-
programmable gate array (FPGA) specifically to execute the
various methods according to this disclosure. For example,
examples can be implemented 1 digital electronic circuitry,
or 1n computer hardware, firmware, soltware, or 1n a com-
bination thereof. In one example, a device may include a
processor or processors. The processor comprises a com-
puter-readable medium, such as a random access memory
(RAM) coupled to the processor. The processor executes
computer-executable program instructions stored 1n
memory, such as executing one or more computer programs.
Such processors may comprise a microprocessor, a digital
signal processor (DSP), an application-specific integrated
circuit (ASIC), field programmable gate arrays (FPGAs),
and state machines. Such processors may further comprise
programmable electronic devices such as PLCs, program-
mable interrupt controllers (PICs), programmable logic
devices (PLDs), programmable read-only memories
(PROMs), electronically programmable read-only memories
(EPROMSs or EEPROMSs), or other similar devices.

Such processors may comprise, or may be in communi-
cation with, media, for example one or more non-transitory
computer-readable media, that may store processor-execut-
able 1nstructions that, when executed by the processor, can
cause the processor to perform methods according to this
disclosure as carried out, or assisted, by a processor.
Examples of non-transitory computer-readable medium may
include, but are not limited to, an electronic, optical, mag-
netic, or other storage device capable of providing a pro-
cessor, such as the processor 1n a web server, with processor-
executable instructions. Other examples of non-transitory
computer-readable media include, but are not limited to, a
floppy disk, CD-ROM, magnetic disk, memory chip, ROM,
RAM, ASIC, configured processor, all optical media, all
magnetic tape or other magnetic media, or any other medium
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from which a computer processor can read. The processor,
and the processing, described may be in one or more
structures, and may be dispersed through one or more
structures. The processor may comprise code to carry out
methods (or parts of methods) according to this disclosure.

The foregoing description of some examples has been
presented only for the purpose of 1llustration and description
and 1s not intended to be exhaustive or to limit the disclosure
to the precise forms disclosed. Numerous modifications and
adaptations thereof will be apparent to those skilled in the art
without departing from the spirit and scope of the disclosure.

Reference herein to an example or implementation means
that a particular feature, structure, operation, or other char-
acteristic described 1n connection with the example may be
included 1n at least one 1implementation of the disclosure.
The disclosure 1s not restricted to the particular examples or
implementations described as such. The appearance of the
phrases “in one example,” “in an example,” “in one 1mple-
mentation,” or “in an implementation,” or variations of the
same 1n various places 1n the specification does not neces-
sarily refer to the same example or implementation. Any
particular feature, structure, operation, or other characteris-
tic described 1n this specification 1n relation to one example
or implementation may be combined with other features,
structures, operations, or other characteristics described 1n
respect ol any other example or implementation.

Use herein of the word “or” 1s intended to cover inclusive
and exclusive OR conditions. In other words, A or B or C
includes any or all of the following alternative combinations
as appropriate for a particular usage: A alone; B alone; C

alone; A and B only; A and C only; Band C only; and A and
Band C.

The mvention claimed 1s:

1. A method comprising:

recerving, by a tramned generative adversarial network

(“GAN”), a severity score associated with an aflliction,

the severity score 1dentifying a stage of progression for

the aflliction; and

generating and outputting, using the trained GAN, a

simulated pathology image based on a latent space and

the severity score, the latent space comprising:

a first set of data points indicating parameters associ-
ated with a set of training pathology 1images associ-
ated with the afiliction and depicting diflerent stages
of progression for the afiliction, and

a second set of data points generated by the GAN based
on the first set of data points, the parameters com-
prising ndications of severity level of the aflliction.

2. The method of claim 1, further comprising receiving a
seed pathology image associated the severity score and a
corresponding aflliction, and wherein generating and out-
putting the simulated pathology image comprises modifying
the seed pathology image.

3. The method of claim 1, wherein:

the set of training pathology images 1s associated with a

plurality of afilictions and depict different stages of

progression for each of the afflictions; and

the parameters comprising indications of a severity level

of the respective aflliction.

4. The method of claim 1, wherein the GAN comprises an
autoencoder generative adversarial neural network (“AE-
GAN”).

5. The method of claim 1, wherein the set of training
pathology 1mages comprises multi-resolution pathology
image stacks.

6. The method of claim 1, wherein the GAN comprises a
variational autoencoder.
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7. The method of claim 1, wherein receiving the severity

score comprises receiving the severity score from a remote
computing device.

8. A method comprising:

receiving, by a trained generative adversarial network
(“GAN”), a seed pathology 1mage associated with an

aflliction; and

generating and outputting, using the trained GAN, a
severity score based on a latent space and the seed
pathology 1image, the severity score identifying a stage
of progression for the afiliction, the latent space com-
prising:

a lirst set of data points indicating parameters associ-
ated with a set of traiming pathology 1mages associ-
ated with the affliction and depicting different stages
of progression for the afiliction, and
a second set of data points generated by the GAN based

on the first set of data points, the parameters com-
prising indications of a severity level of the afiliction.

9. The method of claim 8, wherein the GAN comprises an

autoencoder generative adversarial neural network (“AE-
GAN”).

10. The method of claim 8, wherein the set of training

pathology 1mages comprises multi-resolution pathology

image stacks.

11. The method of claim 8, wherein the GAN comprises
a variational autoencoder.

12. The method of claim 8, wherein receiving the seed
pathology 1mage comprises receiving the seed pathology
image irom a remote computing device.

13. A system comprising:

a non-transitory computer-readable medium; and

one or more processors i communication with the non-

transitory computer-readable medium, the one or more

processors configured to execute processor-executable

instructions stored in the non-transitory computer-read-

able medium to:

receive, by a tramned generative adversarial network
(“GAN”), a severity score associated with an afllic-
tion, the severity score i1dentifying a stage of pro-
gression for the afils

liction; and

generate and output, using the GAN, a simulated
pathology i1mage based on a latent space and the
severity score, the latent space comprising:

a first set of data points indicating parameters asso-
ciated with a set of traimming pathology images
associated with the affliction and depicting ditfer-
ent stages of progression for the afiliction, and

a second set of data points generated by the GAN
based on the first set of data points, the parameters
comprising indications of severity level of the

affliction.

14. The system of claim 13, wherein the one or more
processors are configured to execute further processor-
executable instructions stored in the non-transitory com-
puter-readable medium to receive a seed pathology image
associated the severity score and a corresponding afiliction,
and modity the seed pathology image.

15. The system of claim 13, wherein:

the set of training pathology 1mages 1s associated with a
plurality of afilictions and depict different stages of
progression for each of the afflictions; and

the parameters comprising indications of a severity level
of the respective atlliction.
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16. The system of claim 13, wherein the GAN comprises
an autoencoder generative adversarial neural network (“AE-
GAN”).

17. The system of claim 13, wherein the set of traiming
pathology 1mages comprises multi-resolution pathology

image stacks.

18. The system of claim 13, wherein the GAN comprises
a variational autoencoder.

19. The system of claim 13, processor-executable instruc-
tions stored 1n the non-transitory computer-readable medium
to receive the severity score from a remote computing
device.

20. A non-transitory computer-readable medium compris-
ing processor-executable instructions configured to cause
one or more processors to:

recerve, by a tramned generative adversarial network

(“GAN”), a severity score associated with an aflliction,

the severity score 1dentifying a stage of progression for

the aflliction; and

generate and output, using the GAN, a simulated pathol-

ogy 1mage based on a latent space and the severity

score, the latent space comprising:

a first set of data points indicating parameters associ-
ated with a set of training pathology 1images associ-
ated with the aflliction and depicting different stages
of progression for the afiliction, and

a second set of data points generated by the GAN based
on the first set of data points, the parameters com-
prising ndications of severity level of the aflliction.

21. The non-transitory computer-readable medium of
claim 20, further comprising processor-executable instruc-
tions configured to cause the one or more processors 1o
receive a seed pathology 1image associated the severity score
and a corresponding afiliction, and modify the seed pathol-
0gy 1mage.

22. The non-transitory computer-readable medium of
claim 20, wherein:

the set of training pathology 1images 1s associated with a

plurality of afllictions and depict different stages of

progression for each of the afflictions; and

the parameters comprising indications of a severity level

of the respective atlliction.

23. The non-transitory computer-readable medium of
claam 20, wherein the GAN comprises an autoencoder
generative adversarial neural network (“AEGAN”).

24. The non-transitory computer-readable medium of
claiam 20, wherein the set of training pathology images
comprises multi-resolution pathology 1mage stacks.

25. The non-transitory computer-readable medium of
claim 20, wherein the GAN comprises a variational auto-
encoder.

26. The non-transitory computer-readable medium of
claim 20, further comprising processor-executable instruc-
tions configured to cause the one or more processors 1o
receive the severity score from a remote computing device.

277. The method of claim 1, wherein receiving the severity
score 15 based on a position of a slider 1n a graphical user
interface, and further comprising:

recerving a new severity score based on a changed posi-

tion of the slider; and

generating and outputting, using the GAN, a second

simulated pathology 1mage based on the latent space

and the new severity score.
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