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PREDICTIVE MAP GENERATION AND
CONTROL SYSTEM FOR AN
AGRICULTURAL WORK MACHINE

FIELD OF THE DESCRIPTION D

The present description relates to agricultural machines,
forestry machines, construction machines and turlf manage-

ment machines.
10

BACKGROUND

There are a wide variety of different types of agricultural
machines. Some agricultural machines include harvesters,
such as combine harvesters, sugar cane harvesters, cotton 15
harvesters, self-propelled forage harvesters, and windrow-
ers. Some harvesters can also be fitted with diflerent types
ol heads to harvest different types of crops.

A variety of different conditions 1n fields have a number
of deleterious effects on the harvesting operation. Therefore, 2¢
an operator may attempt to modify control of the harvester,
upon encountering such conditions during the harvesting
operation.

The discussion above 1s merely provided for general
background information and is not intended to be used as an 2>
aid 1n determining the scope of the claimed subject matter.

SUMMARY

One or more nformation maps are obtained by an agri- 30
cultural work machine. The one or more mformation maps
map one or more agricultural characteristic values at differ-
ent geographic locations of a field. An in-situ sensor on the
agricultural work machine senses an agricultural character-
istic as the agricultural work machine moves through the 35
field. A predictive map generator generates a predictive map
that predicts a predictive agricultural characteristic at dii-
terent locations 1n the field based on a relationship between
the values 1n the one or more information maps and the
agricultural characteristic sensed by the 1n-situ sensor. The 40
predictive map can be output and used in automated
machine control.

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not 45
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter. The
claimed subject matter 1s not limited to examples that solve
any or all disadvantages noted 1n the background. 50

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a partial pictonial, partial schematic 1llustration
ol one example of a combine harvester. 55

FIG. 2 1s a block diagram showing some portions of an
agricultural harvester in more detail, according to some
examples of the present disclosure.

FIGS. 3A-3B (collectively referred to herein as FIG. 3)
show a flow diagram illustrating an example of operation of 60
an agricultural harvester 1n generating a map.

FIG. 4A 1s a block diagram showing one example of a
predictive model generator and a predictive map generator.

FIG. 4B 1s a block diagram showing one example of a
predictive model generator and a predictive map generator. 65

FI1G. 5 15 a flow diagram showing an example of operation
of an agricultural harvester 1in recerving a map, detecting a

2

characteristic, and generating a functional predictive map
for use in controlling the agricultural harvester during a

harvesting operation.

FIG. 6A 1s a block diagram showing one example of a
predictive model generator and a predictive map generator.

FIG. 6B i1s a block diagram showing some examples of
1n-situ sensors.

FIG. 7 shows a flow diagram 1illustrating one example of
operation of an agricultural harvester involving generating a
functional predictive map using a prior information map and
an 1n-situ sensor input.

FIG. 8 1s a block diagram showing one example of a
control zone generator.

FIG. 9 1s a flow diagram illustrating one example of the
operation of the control zone generator shown in FIG. 8.

FIG. 10 illustrates a flow diagram showing an example of
operation ol a control system 1n selecting a target settings
value to control an agricultural harvester.

FIG. 11 1s a block diagram showing one example of an
operator interface controller.

FIG. 12 1s a flow diagram 1llustrating one example of an
operator interface controller.

FIG. 13 1s a pictorial illustration showing one example of
an operator intertace display.

FIG. 14 1s a block diagram showing one example of an
agricultural harvester 1 commumnication with a remote
server environment.

FIGS. 15-17 show examples of mobile devices that can be
used 1n an agricultural harvester.

FIG. 18 1s a block diagram showing one example of a
computing environment that can be used in an agricultural
harvester.

DETAILED DESCRIPTION

For the purposes of promoting an understanding of the
principles of the present disclosure, reference will now be
made to the examples illustrated in the drawings, and
specific language will be used to describe the same. It will
nevertheless be understood that no limitation of the scope of
the disclosure 1s intended. Any alterations and further modi-
fications to the described devices, systems, methods, and
any further application of the principles of the present
disclosure are fully contemplated as would normally occur
to one skilled 1n the art to which the disclosure relates. In
particular, 1t 1s fully contemplated that the features, compo-
nents, and/or steps described with respect to one example
may be combined with the features, components, and/or
steps described with respect to other examples of the present
disclosure.

In some examples, the present description relates to using
in-situ data taken concurrently with an agricultural opera-
tion, 1n combination with prior data, to generate a predictive
map and, more particularly, a predictive speed map. In some
examples, the predictive speed map can be used to control
an agricultural work machine, such as an agricultural har-
vester. As discussed above, it may improve the performance
of the agricultural harvester to control the speed of the
agricultural harvester when the agricultural harvester
engages diflerent conditions 1n the field. For instance, i1 the
crops have reached maturity, the weeds may still be green,
thus increasing the moisture content of the biomass that 1s
encountered by the agricultural harvester. This problem may
be exacerbated when the weed patches are wet (such as
shortly after a rainfall or when weed patches contain dew)
and before the weeds have had a chance to dry. Thus, when
the agricultural harvester encounters an area of increased
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biomass, the operator may slow the speed of the agricultural
harvester to maintain a constant feed rate of material through
the agricultural harvester. Maintaining a constant feed rate
may maintain the performance of the agricultural harvester.

Performance of an agricultural harvester may be delete-
riously aflected based on a number of different criteria. Such
different criteria may include changes 1n biomass, crop state,
topography, soil properties, and seeding characteristics, or
other conditions. Therefore, 1t may also be usetul to control
the speed of the agricultural harvester based on other con-
ditions that may be present 1n the field. For example, the
performance of the agricultural harvester may be maintained
at an acceptable level by controlling the speed of the
agricultural harvester based on the biomass encountered by
the agricultural harvester, the crop state of the crop being
harvested, the topography of the field being harvested, soil
properties ol soil in the field being harvested, seeding
characteristics 1n the field being harvested, yield 1n the field
being harvested, or other conditions that are present 1n the
field.

Some current systems provide vegetative index maps. A
vegetative index map illustratively maps vegetative index
values (which may be indicative of vegetative growth)
across different geographic locations 1n a field of interest.
One example of a vegetative index includes a normalized
difference vegetation imndex (NDVI). There are many other
vegetative indices that are within the scope of the present
disclosure. In some examples, a vegetative index may be
derived from sensor readings of one or more bands of
clectromagnetic radiation reflected by the plants. Without
limitations, these bands may be 1n the microwave, inirared,
visible or ultraviolet portions of the electromagnetic spec-
trum.

A vegetative mndex map can be used to identily the
presence and location of vegetation. In some examples,
these maps enable vegetation to be 1dentified and georefer-
enced 1n the presence of bare soil, crop residue, or other
plants, including crop or other weeds.

In some examples, a biomass map 1s provided. A biomass
map 1illustratively maps a measure of biomass 1n the field
being harvested at diflerent locations 1n the field. A biomass
map may be generated from vegetative index values, from
historically measured or estimated biomass levels, from
images or other sensor readings taken during a previous
operation 1n the field, or in other ways. In some examples,
biomass may be adjusted by a factor representing a portion
of total biomass passing through the agricultural harvester.
For corn, this factor 1s typically around 50%. For moisture
in harvested crop material, this factor 1s typically 10%-30%.
In some examples, the factor may represent a portion of
weed material or weed seeds. In some examples, the factor
may represent a portion of one crop 1n an ntercrop mix.

In some examples, a crop state map 1s provided. Crop
state may define whether the crop 1s down, standing, par-
tially down, the orientation of down or partially down crop
relative to the ground surtface or to a compass direction, and
other things. A crop state map 1illustratively maps the crop
state 1n the field being harvested at diflerent locations 1n the
field. A crop state map may be generated from aerial or other
images of the field, from 1mages or other sensor readings
taken during a prior operation in the field or 1n other ways
prior to harvesting.

In some examples, a seeding map 1s provided. A seeding
map may map seeding characteristics such as seed locations,
seed variety, or seed population to different locations 1n the
field. The seeding map may be generated during a past seed
planting operation in the field. The seeding map may be
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derived from control signals used by a seeder when planting
seeds or from sensors on the seeder that confirm that a seed
was metered or planted. Seeders may also include geo-
graphic position sensors that geolocate the seed character-
istics on the field.

In some examples, a soil property map 1s provided. A soil
property map 1illustratively maps a measure of one or more
so1l properties such as soil type, soil chemical constituents,
so1l structure, residue coverage, tillage history, or soil mois-
ture 1n the field being harvested at diflerent locations in the
field. A soil properties map may be generated from vegeta-
tive index values, from historically measured or estimated
so1l properties, from 1mages or other sensor readings taken
during a previous operation 1n the field, or 1n other ways.

In some examples, other prior information maps are
provided. Such prior information maps can include a topo-
graphic map of the field being harvested, a predictive yield
map for the field being harvested, or other prior information
maps.

In some examples, the present description relates to using
in-situ data taken concurrently with an agricultural opera-
tion, 1n combination with data from a map, to generate a
predictive map, and more particularly, a predictive cut
height characteristic map. In some examples, the predictive
cut height characteristic map can be used to control an
agricultural work machine, such as an agricultural harvester.
The predictive cut height characteristic map can include
georeferenced predicted cut height or cut height vanability
values. In such examples, the present discussion also
includes receiving, in addition to prior information maps,
such as a prior topographic map, predictive maps that predict
a characteristic based on a prior information map and a
relationship to an in-situ sensor output. In one example, the
predictive map 1s a predictive speed map. In one example,
the predictive speed map 1s the functional predictive speed
map described hereimn. In other examples, the predictive
speed map can be created based on other prior information
maps or generated in other ways as well.

The present discussion thus proceeds with respect to
systems that receive one or more maps of a field or a map
generated during a prior operation and also use an 1n-situ
sensor to detect a variable indicative of one or more char-
acteristics. The systems generate a model that models a
relationship between the values on the one or more received
maps and the output values from the in-situ sensor. The
model 1s used to generate a functional predictive map that
predicts, for example, a cut height or a cut height variability
at different locations 1n the field. The functional predictive
map, generated during the harvesting operation, can be
presented to an operator or other user or used 1n automati-
cally controlling an agricultural harvester during the har-
vesting operation or both.

An agricultural harvester 1s often fitted with a header that
1s movable (such as vertically moveable and rotatably move-
able about one or more axis, such as in pitch (e.g., a tilt
fore-to-att) or roll (e.g., a tilt side-to-side across width of
header), relative to the ground or another feature. For
instance, one or more hydraulic actuators (or other actuators)
are coupled between the feeder house and the frame of the
agricultural harvester, though they could be coupled at other
locations. The one or more hydraulic actuators can actuate
movement of the header, such as to raise and lower the
header. In some scenarios, the agricultural harvester is
operated so that the header maintains a desired relationship
relative to a feature, such as the surface of the field or portion
of the agricultural harvester. For example, the one or more
hydraulic actuators may be used to maintain the header at a
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selected distance from, height above, angle relative to, etc.,
the surface of the field. The operator of the agricultural
harvester may set an initial height setting to establish a
height, above the surface of the field, at which the operator
wishes the header to be maintained during operation. The
height of the header above the field, in addition to other
positional settings (e.g., roll, pitch, etc.) determines a cut
height. The cut height 1s the height at which vegetation on
the field will be cut. A control system or, in some examples,
the operator detects variables indicative of a header height or
a cut height and controls the actuators that actuate move-
ment of the header to move the header 1n order to maintain

the desired height. The variables may be detected by sensing,
with the use of one or more sensors.

A field may have changes 1n topographic characteristics,
such as changes 1n elevation, that require adjustment to the
header of the agricultural harvester 1n order to maintain the
desired cut height as the agricultural harvester moves
through the field. These changes 1n topography may come
upon the harvester too quickly, thereby preventing the
cllective movement of the header. For example, the har-
vester may be traveling at a speed that does not allow for
timely adjustment of the header. This inability to timely
adjust the header at a particular speed of the agricultural
harvester may be the result of, for example, machine actua-
tor response capabilities (e.g., response speed), sensor capa-
bilities, or human operator capabilities. As a result, the
header may strike the ground, cut vegetation undesirably, as
well as other deleterious effects.

The present description thus proceeds with respect to
systems that receive a map, such as a topographic map, a
predictive speed map, or both. The system includes in-situ
sensors capable of detecting a height of the header, a cut
height, or both. The system further includes a model gen-
crator that identifies a relationship between the values 1n the
received map (e.g., topographic characteristic values and
speed values) and the characteristics (e.g., cut height, cut
height variability, etc.) detected by the 1n-situ sensors. The
model generator generates a predictive cut height charac-
teristic model. The cut height characteristic model 1s used by
a predictive map generator to generate a functional predic-
tive cut height characteristic map that maps predictive cut
height characteristic values. The functional predictive cut
height characteristic map, generated during the harvesting
operation, can be presented to an operator or other user or
used 1n automatically controlling an agricultural harvester
during the harvesting operation or both.

FIG. 1 1s a partial pictonal, partial schematic, 1llustration
of a self-propelled agricultural harvester 100. In the 1llus-
trated example, agricultural harvester 100 1s a combine
harvester. Further, although combine harvesters are provided
as examples throughout the present disclosure, 1t will be
appreciated that the present description 1s also applicable to
other types of harvesters, such as cotton harvesters, sugar-
cane harvesters, seli-propelled forage harvesters, windrow-
ers, or other agricultural work machines. Consequently, the
present disclosure 1s intended to encompass the various
types of harvesters described and 1s, thus, not limited to
combine harvesters. Moreover, the present disclosure is
directed to other types of work machines, such as agricul-
tural seeders and sprayers, construction equipment, forestry
equipment, and turl management equipment where genera-
tion of a predictive map may be applicable. Consequently,
the present disclosure 1s intended to encompass these vari-
ous types of harvesters and other work machines and 1s, thus,
not limited to combine harvesters.

10

15

20

25

30

35

40

45

50

55

60

65

6

As shown 1n FIG. 1, agricultural harvester 100 illustra-
tively includes an operator compartment 101, which can
have a vanety of different operator interface mechanisms,
for controlling agricultural harvester 100. Agricultural har-
vester 100 1ncludes front-end equipment, such as a header
102, and a cutter generally indicated at 104. Agricultural
harvester 100 also includes a feeder house 106, a feed
accelerator 108, and a thresher generally indicated at 110.
The feeder house 106 and the feed accelerator 108 form part
of a material handling subsystem 1235. Header 102 15 piv-
otally coupled to a frame 103 of agricultural harvester 100
along pivot axis 105. One or more actuators 107 drive
movement of header 102 about axis 105 1n the direction
generally indicated by arrow 109. Thus, a vertical position
of header 102 (the header height) above ground 111 over
which the header 102 travels 1s controllable by actuating
actuator 107. While not shown mn FIG. 1, agricultural
harvester 100 may also include one or more actuators that
operate to apply a tilt angle, a roll angle, or both to the
header 102 or portions of header 102. Tilt refers to an angle
at which the cutter 104 engages the crop. The tilt angle 1s
increased, for example, by controlling header 102 to point a
distal edge 113 of cutter 104 more toward the ground. The
t1lt angle 1s decreased by controlling header 102 to point the
distal edge 113 of cutter 104 more away from the ground.
The roll angle refers to the orientation of header 102 about
the front-to-back longitudinal axis of agricultural harvester
100.

Thresher 110 illustratively includes a threshing rotor 112
and a set of concaves 114. Further, agricultural harvester 100
also 1includes a separator 116. Agricultural harvester 100 also
includes a cleaning subsystem or cleaning shoe (collectively
referred to as cleaming subsystem 118) that includes a
cleaning fan 120, chaffer 122, and sieve 124. The material
handling subsystem 125 also includes discharge beater 126,
tailings elevator 128, clean grain elevator 130, as well as
unloading auger 134 and spout 136. The clean grain elevator
moves clean grain 1mto clean grain tank 132. Agricultural
harvester 100 also includes a residue subsystem 138 that can
include chopper 140 and spreader 142. Agricultural har-
vester 100 also includes a propulsion subsystem that
includes an engine that drives ground engaging components
144, such as wheels or tracks. In some examples, a combine
harvester within the scope of the present disclosure may
have more than one of any of the subsystems mentioned
above. In some examples, agricultural harvester 100 may
have left and right cleaming subsystems, separators, etc.,
which are not shown in FIG. 1.

In operation, and by way of overview, agricultural har-
vester 100 1llustratively moves through a field in the direc-
tion indicated by arrow 147. As agricultural harvester 100
moves, header 102 (and the associated reel 164) engages the
crop to be harvested and gathers the crop toward cutter 104.
An operator of agricultural harvester 100 can be a local
human operator, a remote human operator, or an automated
system. An operator command 1s a command by an operator.
The operator of agricultural harvester 100 may determine
one or more of a height setting, a tilt angle setting, or a roll
angle setting for header 102. For example, the operator
iputs a setting or settings to a control system, described 1n
more detail below, that controls actuator 107. The control
system may also receive a setting from the operator for
establishing the tilt angle and roll angle of the header 102
and 1mplement the mputted settings by controlling associ-
ated actuators, not shown, that operate to change the tilt
angle and roll angle of the header 102. The actuator 107
maintains header 102 at a height above ground 111 based on
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a height setting and, where applicable, at desired tilt and roll
angles. Each of the height, roll, and tilt settings may be
implemented independently of the others. The control sys-
tem responds to header error (e.g., the difference between
the height setting and measured height of header 104 above
ground 111 and, 1n some examples, tilt angle and roll angle
errors) with a responsiveness that 1s determined based on a
selected sensitivity level. If the sensitivity level 1s set at a
greater level of sensitivity, the control system responds to
smaller header position errors, and attempts to reduce the
detected errors more quickly than when the sensitivity 1s at
a lower level of sensitivity.

Returning to the description of the operation of agricul-
tural harvester 100, after crops are cut by cutter 104, the
severed crop material 1s moved through a conveyor 1n feeder
house 106 toward feed accelerator 108, which accelerates
the crop material mto thresher 110. The crop material 1s
threshed by rotor 112 rotating the crop against concaves 114.
The threshed crop maternial 1s moved by a separator rotor 1n
separator 116 where a portion of the residue 1s moved by
discharge beater 126 toward the residue subsystem 138. The
portion of residue transierred to the residue subsystem 138
1s chopped by residue chopper 140 and spread on the field
by spreader 142. In other configurations, the residue 1s
released from the agricultural harvester 100 1n a windrow. In
other examples, the residue subsystem 138 can include weed
seed eliminators (not shown) such as seed baggers or other
seed collectors, or seed crushers or other seed destroyers.

Grain falls to cleaning subsystem 118. Chafler 122 sepa-
rates some larger pieces of material from the grain, and sieve
124 separates some of finer pieces of material from the clean
grain. Clean grain falls to an auger that moves the grain to
an inlet end of clean grain elevator 130, and the clean grain
clevator 130 moves the clean grain upwards, depositing the
clean grain 1n clean grain tank 132. Residue 1s removed from
the cleaning subsystem 118 by airflow generated by cleaning,
fan 120. Cleaning fan 120 directs air along an airtlow path
upwardly through the sieves and chaflers. The airtlow car-
ries residue rearwardly 1n agricultural harvester 100 toward
the residue handling subsystem 138.

Tailings elevator 128 returns tailings to thresher 110
where the tailings are re-threshed. Alternatively, the tailings
also may be passed to a separate re-threshing mechanism by
a tailings elevator or another transport device where the
tailings are re-threshed as well.

FIG. 1 also shows that, in one example, agricultural
harvester 100 includes machine speed sensor 146, one or
more separator loss sensors 148, a clean grain camera 150,
a forward looking image capture mechanism 151, which
may be 1n the form of a stereo or mono camera, and one or
more loss sensors 152 provided in the cleaning subsystem
118.

Machine speed sensor 146 senses the travel speed of
agricultural harvester 100 over the ground. Machine speed
sensor 146 may sense the travel speed of the agricultural
harvester 100 by sensing the speed of rotation of the ground
engaging components (such as wheels or tracks), a drive
shaft, an axel, or other components. In some instances, the
travel speed may be sensed using a positioning system, such
as a global positioning system (GPS), a dead reckoning
system, a long range navigation (LORAN) system, or a wide
variety of other systems or sensors that provide an indication
of travel speed.

Loss sensors 152 illustratively provide an output signal
indicative of the quantity of grain loss occurring 1n both the
right and left sides of the cleaning subsystem 118. In some
examples, sensors 152 are strike sensors which count grain
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strikes per unit of time or per unit of distance traveled to
provide an indication of the grain loss occurring at the
cleaning subsystem 118. The strike sensors for the right and
left sides of the cleaning subsystem 118 may provide indi-
vidual signals or a combined or aggregated signal. In some
examples, sensors 152 may include a single sensor as
opposed to separate sensors provided for each cleaning
subsystem 118.

Separator loss sensor 148 provides a signal indicative of
grain loss 1n the left and rnight separators, not separately
shown 1n FIG. 1. The separator loss sensors 148 may be
associated with the left and right separators and may provide
separate grain loss signals or a combined or aggregate
signal. In some instances, sensing grain loss 1n the separators
may also be performed using a wide variety of different
types of sensors as well.

Agricultural harvester 100 may also include other sensors
and measurement mechamsms. For instance, agricultural
harvester 100 may include one or more of the following
sensors: a header height sensor that senses a height of header
102 above ground 111; a cut height sensor that senses a
height at which vegetation on the field are cut; stability
sensors that sense oscillation or bouncing motion (and
amplitude) of agricultural harvester 100; a residue setting
sensor that 1s configured to sense whether agricultural har-
vester 100 1s configured to chop the residue, produce a
windrow, etc.; a cleaning shoe fan speed sensor to sense the
speed of fan 120; a concave clearance sensor that senses
clearance between the rotor 112 and concaves 114; a thresh-
ing rotor speed sensor that senses a rotor speed of rotor 112;
a chafler clearance sensor that senses the size of openings 1n
chafler 122; a sieve clearance sensor that senses the size of
openings 1n sieve 124; a material other than grain (MOG)
moisture sensor that senses a moisture level of the MOG
passing through agricultural harvester 100; one or more
machine setting sensors configured to sense various config-
urable settings of agricultural harvester 100; a machine
orientation sensor that senses the orientation of agricultural
harvester 100; and crop property sensors that sense a variety
of different types of crop properties, such as crop type, crop
moisture, and other crop properties. Crop property sensors
may also be configured to sense characteristics of the
severed crop material as the crop material 1s being processed
by agricultural harvester 100. For example, in some
instances, the crop property sensors may sense grain quality
such as broken grain, MOG levels; grain constituents such
as starches and protein; and grain feed rate as the grain
travels through the feeder house 106, clean grain elevator
130, or elsewhere 1n the agricultural harvester 100. The crop
property sensors may also sense the feed rate of biomass
through feeder house 106, through the separator 116 or
clsewhere 1n agricultural harvester 100. The crop property
sensors may also sense the feed rate as a mass flow rate of
grain through elevator 130 or through other portions of the
agricultural harvester 100 or provide other output signals
indicative of other sensed variables.

The header height sensor may take a wide variety of
different forms. For instance, the header height sensor can be
a potentiometer or angle encoders that sense the rotation of
header or the angular position of header relative to the frame
of agricultural harvester 100. Knowing the dimensions of
header 102 and agricultural harvester 100, the height of
header 102 above the field (e.g., ground 111) can be deter-
mined using the sensor data. The header height sensors can
also be sensors that directly sense the height of header 102
above the field. Example sensors that can directly sense a

height of the header above the surface of the field include,
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but are not limited to, radar, lidar, ultrasonic sensors, laser
sensors, or mechanical sensors.

In one example, the header height sensor can be a
mechanical sensor assembly that includes a device coupled
to the header and configured to contact the surface of the
field and generate a sensor signal indicative of the height of
the header relative to the surface of the field. Various other
header height sensors are also contemplated herein. The
header height outputs of the header height sensor may be
processed, such as by aggregation or various other process-
ing, such as statistical summary processing, to provide an
indication of header height variability for a given area of the
field. The header height variability can be indicative of a
variation 1n header height for a given area. The header height
variability can be expressed in various ways, such as an
average header height for a particular area, an average
header height deviation for a particular area, or variation for
a particular area, as well as numerous other expressions.

Agricultural harvester 100 can also include cut height
sensors in the form of optical sensors, such as a camera, as
well as various other sensors, such as radar, lidar, ultrasonic,
or laser, sensing devices. The cut height sensors are config-
ured to detect characteristics indicative of a cut height, that
1s, the height at which vegetation 1s cut by the header. For
example, the cut height sensors may detect a height of
remaining crop stubble extending above the surface of the
field (e.g., a height of remaining crop stalks) in an area of the
field around agricultural harvester 100, such as behind the
agricultural harvester or behind components of the agricul-
tural harvester, such as header 102, relative to a direction of
travel of the agricultural harvester, as an indication of cut
height. Additionally, the cut height outputs of the cut height
sensor may be processed, such as by aggregation, or various
other processing, such as statistical summary processing, to
provide an 1indication of cut height variability for a particular
area ol the field, such as an area behind the agricultural
harvester 100. The cut height variability can be indicative of
a variation in cut height for a particular area of the field. The
cut height variability can be expressed in various ways, such
as an average cut height for a particular area, an average cut
height deviation or variation for a particular area, as well as
numerous other expressions.

In some examples, the output of the header height sensor
can be used as an indication of cut height. For example, by
knowing the height of header relative to the surface of the
field, the height at which vegetation 1s cut can also be known
or estimated.

Prior to describing how agricultural harvester 100 gener-
ates a functional predictive speed map, and uses the func-
tional predictive speed map for control, a brief description of
some of the items on agricultural harvester 100, and their
operation, will first be described. The description of FIGS.
2 and 3 describe receiving a general type of prior informa-
tion map and combining information from the prior infor-
mation map with a georeferenced sensor signal generated by
an 1n-situ sensor, where the sensor signal 1s indicative of a
characteristic 1n the field, such as characteristics of the field
itself, crop characteristics of crop or grain present in the
field, or characteristics of the agricultural harvester. Char-
acteristics of the field may include, but are not limited to,
characteristics of a field such as slope, weed intensity, weed
type, so1l moisture, surface quality; characteristics of crop
properties such as crop height, crop moisture, crop density,
crop state; characteristics of grain properties such as grain
moisture, grain size, grain test weight; and characteristics of
machine operation such as machine speed, outputs from
different controllers, machine performance such as loss
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levels, job quality, fuel consumption, and power utilization.
A relationship between the characteristic values obtained
from 1n-situ sensor signals or values derived therefrom and
the prior imnformation map values 1s identified, and that
relationship 1s used to generate a new functional predictive
map. A functional predictive map predicts values at diflerent
geographic locations 1 a field, and one or more of those
values may be used for controlling a machine, such as one
or more subsystems of an agricultural harvester. In some
instances, a functional predictive map can be presented to a
user, such as an operator of an agricultural work machine,
which may be an agricultural harvester. A functional pre-
dictive map may be presented to a user visually, such as via
a display, haptically, or audibly. The user may interact with
the functional predictive map to perform editing operations
and other user interface operations. In some instances, a
functional predictive map can be used for one or more of
controlling an agricultural work machine, such as an agri-
cultural harvester, presentation to an operator or other user,
and presentation to an operator or user for interaction by the
operator or user.

After the general approach 1s described with respect to
FIGS. 2 and 3, a more specific approach for generating a
functional predictive that can be presented to an operator or
user, or used to control agricultural harvester 100, or both 1s
described with respect to FIGS. 4 and 5. Again, while the
present discussion proceeds with respect to the agricultural
harvester and, particularly, a combine harvester, the scope of
the present disclosure encompasses other types of agricul-
tural harvesters or other agricultural work machines.

FIG. 2 1s a block diagram showing some portions of an
example agricultural harvester 100. FIG. 2 shows that agri-
cultural harvester 100 illustratively includes one or more
processors or servers 201, data store 202, geographic posi-
tion sensor 204, communication system 206, and one or
more 1n-situ sensors 208 that sense one or more agricultural
characteristics of a field concurrent with a harvesting opera-
tion. An agricultural characteristic can include any charac-
teristic that can have an eflect of the harvesting operation.
Some examples of agricultural characteristics include char-
acteristics of the harvesting machine, the field, the plants on
the field, and the weather. Other types of agricultural char-
acteristics are also included. The 1n-situ sensors 208 gener-
ate values corresponding to the sensed characteristics. The
agricultural harvester 100 also includes a predictive model
or relationship generator (collectively referred to hereinafter
as “predictive model generator 2107°), predictive map gen-
erator 212, control zone generator 213, control system 214,
one or more controllable subsystems 216, and an operator
interface mechanism 218. The agricultural harvester 100 can
also include a wide variety of other agricultural harvester
functionality 220. The in-situ sensors 208 include, for
example, on-board sensors 222, remote sensors 224, and
other sensors 226 that sense characteristics of a field during
the course of an agricultural operation. Predictive model
generator 210 1illustratively includes a prior information
variable-to-1n-situ variable model generator 228, and pre-
dictive model generator 210 can include other items 230.
Control system 214 includes communication system con-
troller 229, operator interface controller 231, a settings
controller 232, path planning controller 234, feed rate con-
troller 236, header and reel controller 238, draper belt
controller 240, deck plate position controller 242, residue
system controller 244, machine cleaning controller 245,
zone controller 247, and system 214 can include other 1tems
246. Controllable subsystems 216 include machine and
header actuators 248, propulsion subsystem 230, steering
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subsystem 232, residue subsystem 138, machine cleaning
subsystem 254, and subsystems 216 can include a wide
variety of other subsystems 256.

FIG. 2 also shows that agricultural harvester 100 can
receive prior information map 2358. As described below, the
prior information map 258 includes, for example, a vegeta-
tive index map, a biomass map, a crop state map, a topo-
graphic map, a soil property map, a seeding map, or a map
from a prior operation. However, prior information map 258
may also encompass other types of data that were obtained
prior to a harvesting operation or a map from a prior
operation. FIG. 2 also shows that an operator 260 may
operate the agricultural harvester 100. The operator 260
interacts with operator interface mechanisms 218. In some
examples, operator interface mechanisms 218 may include
joysticks, levers, a steering wheel, linkages, pedals, buttons,
dials, keypads, user actuatable elements (such as icons,
buttons, etc.) on a user interface display device, a micro-
phone and speaker (where speech recogmition and speech
synthesis are provided), among a wide variety of other types
of control devices. Where a touch sensitive display system
1s provided, operator 260 may interact with operator inter-
face mechanisms 218 using touch gestures. These examples
described above are provided as illustrative examples and
are not itended to limit the scope of the present disclosure.
Consequently, other types of operator interface mechanisms
218 may be used and are within the scope of the present
disclosure.

Prior information map 258 may be downloaded onto
agricultural harvester 100 and stored 1n data store 202, using
communication system 206 or in other ways. In some
examples, communication system 206 may be a cellular
communication system, a system for communicating over a
wide area network or a local area network, a system for
communicating over a near field commumnication network, or
a communication system configured to communicate over
any of a variety of other networks or combinations of
networks. Communication system 206 may also include a
system that facilitates downloads or transfers of information
to and from a secure digital (SD) card or a universal senal
bus (USB) card or both.

Geographic position sensor 204 1illustratively senses or
detects the geographic position or location of agricultural
harvester 100. Geographic position sensor 204 can include,
but 1s not limited to, a global navigation satellite system
(GNSS) recerver that receives signals from a GNSS satellite
transmitter. Geographic position sensor 204 can also include
a real-time kinematic (RTK) component that 1s configured to
enhance the precision ol position data derived from the
GNSS signal. Geographic position sensor 204 can include a
dead reckoning system, a cellular triangulation system, or
any of a variety of other geographic position sensors.

In-situ sensors 208 may be any of the sensors described
above with respect to FIG. 1. In-situ sensors 208 include
on-board sensors 222 that are mounted on-board agricultural
harvester 100. Such sensors may include, for instance, any
of the sensors discussed above with respect to FIG. 1, a
perception sensor (e.g., a forward looking mono or stereo
camera system and 1mage processing system), 1mage sensors
that are internal to agricultural harvester 100 (such as the
clean grain camera or cameras mounted to 1dentily material
that 1s exiting agricultural harvester 100 through the residue
subsystem or from the cleaning subsystem). The in-situ
sensors 208 also include remote 1n-situ sensors 224 that
capture in-situ information. In-situ data include data taken
from a sensor on-board the harvester or taken by any sensor
where the data are detected during the harvesting operation.
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Predictive model generator 210 generates a model that 1s
indicative of a relationship between the values sensed by the
in-situ sensor 208 and a metric mapped to the field by the
prior information map 258. For example, 1 the prior infor-
mation map 258 maps a vegetative index value to diflerent
locations 1n the field, and the 1n-situ sensor 208 1s sensing a
value indicative of machine speed, then prior information
variable-to-in-situ variable model generator 228 generates a
predictive speed model that models the relationship between
the vegetative mndex value and the machine speed value. The
predictive speed model can also be generated based on
vegetative index values from the prior information map 2358
and multiple 1n-situ data values generated by in-situ sensors
208. Then, predictive map generator 212 uses the predictive
speed model generated by predictive model generator 210 to
generate a functional predictive speed map that predicts the
target machine speed sensed by the in-situ sensors 208 at
different locations in the field based upon the prior infor-
mation map 258.

In some examples, the type of values in the functional
predictive map 263 may be the same as the in-situ data type
sensed by the 1n-situ sensors 208. In some 1nstances, the type
of values 1n the functional predictive map 263 may have
different units from the data sensed by the in-situ sensors
208. In some examples, the type of values 1n the functional
predictive map 263 may be diflerent from the data type
sensed by the in-situ sensors 208 but have a relationship to
the type of data type sensed by the in-situ sensors 208. For
example, 1n some examples, the data type sensed by the
in-situ sensors 208 may be indicative of the type of values
in the functional predictive map 263. In some examples, the
type of data in the functional predictive map 263 may be
different than the data type 1n the prior information map 258.
In some 1nstances, the type of data in the functional predic-
tive map 263 may have different umits from the data 1n the
prior information map 258. In some examples, the type of
data 1n the functional predictive map 263 may be different
from the data type in the prior information map 258 but has
a relationship to the data type 1n the prior information map
258. For example, in some examples, the data type in the
prior information map 258 may be indicative of the type of
data in the functional predictive map 263. In some examples,
the type of data in the functional predictive map 263 1s
different than one of, or both of the 1n-situ data type sensed
by the in-situ sensors 208 and the data type in the prior
information map 258. In some examples, the type of data 1n
the functional predictive map 263 1s the same as one of, or
both of, of the in-situ data type sensed by the in-situ sensors
208 and the data type in prior information map 238. In some
examples, the type of data in the functional predictive map
263 1s the same as one of the in-situ data type sensed by the
in-situ sensors 208 or the data type 1n the prior information
map 258, and different than the other.

In an example, in which prior information map 258 1s a
vegetative index map and in-situ sensor 208 senses a value
indicative of machine speed, predictive map generator 212
can use the vegetative index values 1n prior information map
2358, and the model generated by predictive model generator
210, to generate a functional predictive map 263 that pre-
dicts the target machine speed at diflerent locations in the
field. Predictive map generator 212 thus outputs predictive
map 264.

As shown in FIG. 2, predictive map 264 predicts the value
of a sensed characteristic (sensed by 1n-situ sensors 208), or
a characteristic related to the sensed characteristic, at various
locations across the field based upon a prior information
value 1n prior information map 258 at those locations and
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using the predictive model. For example, if predictive model
generator 210 has generated a predictive model indicative of
a relationship between a vegetative index value and machine
speed, then, given the vegetative index value at different
locations across the field, predictive map generator 212
generates a predictive map 264 that predicts the target
machine speed value at different locations across the field.
The vegetative imndex value, obtained from the vegetative
index map, at those locations and the relationship between
vegetative mndex value and machine speed, obtained from
the predictive model, are used to generate the predictive map
264.

Some variations in the data types that are mapped 1n the
prior information map 258, the data types sensed by in-situ
sensors 208, and the data types predicted on the predictive
map 264 will now be described.

In some examples, the data type 1n the prior information
map 258 1s diflerent from the data type sensed by in-situ
sensors 208, yet the data type 1n the predictive map 264 1s
the same as the data type sensed by the mn-situ sensors 208.
For instance, the prior mnformation map 258 may be a
vegetative index map, and the variable sensed by the in-situ
sensors 208 may be yield. The predictive map 264 may then
be a predictive yield map that maps predicted yield values to
different geographic locations 1n the field. In another
example, the prior information map 258 may be a vegetative
index map, and the variable sensed by the 1n-situ sensors 208
may be crop height. The predictive map 264 may then be a
predictive crop height map that maps predicted crop height
values to different geographic locations 1n the field.

Also, 1n some examples, the data type in the prior infor-
mation map 258 1s different from the data type sensed by
in-situ sensors 208, and the data type in the predictive map
264 15 different from both the data type 1n the prior infor-
mation map 258 and the data type sensed by the in-situ
sensors 208. For instance, the prior information map 258
may be a vegetative index map, and the variable sensed by
the 1n-situ sensors 208 may be crop height. The predictive
map 264 may then be a predictive biomass map that maps
predicted biomass values to diflerent geographic locations in
the field. In another example, the prior information map 258
may be a vegetative index map, and the variable sensed by
the 1n-situ sensors 208 may be yield. The predictive map 264
may then be a predictive speed map that maps predicted
harvester speed values to different geographic locations in
the field.

In some examples, the prior information map 238 1s from
a prior pass through the field during a prior operation and the
data type 1s diflerent from the data type sensed by in-situ
sensors 208, yet the data type 1n the predictive map 264 1s
the same as the data type sensed by the in-situ sensors 208.
For instance, the prior information map 258 may be a seed
population map generated during planting, and the variable
sensed by the in-situ sensors 208 may be stalk size. The
predictive map 264 may then be a predictive stalk size map
that maps predicted stalk size values to different geographic
locations 1n the field. In another example, the prior infor-
mation map 258 may be a seeding hybrid map, and the
variable sensed by the 1n-situ sensors 208 may be crop state
such as standing crop or down crop. The predictive map 264
may then be a predictive crop state map that maps predicted
crop state values to different geographic locations in the
field.

In some examples, the prior information map 238 1s from
a prior pass through the field during a prior operation and the
data type 1s the same as the data type sensed by in-situ
sensors 208, and the data type 1n the predictive map 264 1s
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also the same as the data type sensed by the in-situ sensors
208. For instance, the prior information map 258 may be a
yield map generated during a previous year, and the variable
sensed by the 1n-situ sensors 208 may be yield. The predic-
tive map 264 may then be a predictive yield map that maps
predicted yield values to different geographic locations in
the field. In such an example, the relative yield differences
in the georeferenced prior mmformation map 238 from the
prior year can be used by predictive model generator 210 to
generate a predictive model that models a relationship
between the relative yield diferences on the prior informa-
tion map 258 and the yield values sensed by 1n-situ sensors
208 during the current harvesting operation. The predictive
model 1s then used by predictive map generator 210 to
generate a predictive yield map.

In another example, the prior information map 258 may
be a weed intensity map generated during a prior operation,
such as from a sprayer, and the vaniable sensed by the in-situ
sensors 208 may be weed intensity. The predictive map 264
may then be a predictive weed intensity map that maps
predicted weed intensity values to diflerent geographic
locations 1n the field. In such an example, a map of the weed
intensities at time of spraying i1s geo-referenced recorded
and provided to agricultural harvester 100 as a prior infor-
mation map 258 of weed intensity. In-situ sensors 208 can
detect weed intensity at geographic locations in the field and
predictive model generator 210 may then build a predictive
model that models a relationship between weed 1ntensity at
time of harvest and weed intensity at time of spraying. This
1s because the sprayer will have impacted the weed intensity
at time of spraying, but weeds may still crop up in similar
areas again by harvest. However, the weed areas at harvest
are likely to have different intensity based on timing of the
harvest, weather, weed type, among other things.

In some examples, predictive map 264 can be provided to
the control zone generator 213. Control zone generator 213
groups adjacent portions of an area into one or more control
zones based on data values of predictive map 264 that are
associated with those adjacent portions. A control zone may
include two or more contiguous portions of an area, such as
a field, for which a control parameter corresponding to the
control zone for controlling a controllable subsystem 1is
constant. For example, a response time to alter a setting of
controllable subsystems 216 may be inadequate to satisiac-
torily respond to changes 1n values contained in a map, such
as predictive map 264. In that case, control zone generator
213 parses the map and i1dentifies control zones that are of
a defined size to accommodate the response time of the
controllable subsystems 216. In another example, control
zones may be sized to reduce wear from excessive actuator
movement resulting from continuous adjustment. In some
examples, there may be a different set of control zones for
cach controllable subsystem 216 or for groups of control-
lable subsystems 216. The control zones may be added to the
predictive map 264 to obtain predictive control zone map
265. Predictive control zone map 265 can thus be similar to
predictive map 264 except that map 265 includes control
zone mformation defining the control zones. Thus, a func-
tional predictive map 263, as described herein, may or may
not include control zones. Both predictive map 264 and
predictive control zone map 265 are functional predictive
maps 263. In one example, a functional predictive map 263
does not 1include control zones, such as predictive map 264.
In another example, a functional predictive map 263 does
include control zones, such as predictive control zone map
265. In some examples, multiple crops may be simultane-
ously present 1n a field 11 an intercrop production system 1s
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implemented. In that case, predictive map generator 212 and
control zone generator 213 are able to 1dentify the location
and characteristics of the two or more crops and then
generate predictive map 264 and predictive control zone
map 265 accordingly.

It will also be appreciated that control zone generator 213
can cluster values to generate control zones and the control
zones can be added to predictive control zone map 265, or
a separate map, showing only the control zones that are
generated. In some examples, the control zones may be used
for controlling or calibrating agricultural harvester 100 or
both. In other examples, the control zones may be presented
to the operator 260 and used to control or calibrate agricul-
tural harvester 100, and, i other examples, the control zones
may be presented to the operator 260 or another user or
stored for later use.

Predictive map 264 or predictive control zone map 263 or
both are provided to control system 214, which generates
control signals based upon the predictive map 264 or pre-
dictive control zone map 2635 or both. In some examples,
communication system controller 229 controls communica-
tion system 206 to communicate the predictive map 264 or
predictive control zone map 265 or control signals based on
the predictive map 264 or predictive control zone map 265
to other agricultural harvesters that are harvesting in the
same field. In some examples, communication system con-
troller 229 controls the communication system 206 to send
the predictive map 264, predictive control zone map 265, or
both to other remote systems.

Operator mterface controller 231 1s operable to generate
control signals to control operator interface mechanisms
218. The operator interface controller 231 1s also operable to
present the predictive map 264 or predictive control zone
map 265 or other information derived from or based on the
predictive map 264, predictive control zone map 265, or
both to operator 260. Operator 260 may be a local operator
or a remote operator. As an example, controller 231 gener-
ates control signals to control a display mechanism to
display one or both of predictive map 264 and predictive
control zone map 265 for the operator 260. Controller 231
may generate operator actuatable mechanisms that are dis-
played and can be actuated by the operator to interact with
the displayed map. The operator can edit the map by, for
example, correcting a weed type displayed on the map,
based on the operator’s observation. Settings controller 232
can generate control signals to control various settings on
the agricultural harvester 100 based upon predictive map
264, the predictive control zone map 265, or both. For
instance, settings controller 232 can generate control signals
to control machine and header actuators 248. In response to
the generated control signals, the machine and header actua-
tors 248 operate to control, for example, one or more of the
sieve and chafler settings, concave clearance, rotor settings,
cleaning fan speed settings, header height, header function-
ality, reel speed, reel position, draper functionality (where
agricultural harvester 100 1s coupled to a draper header),
corn header functionality, mternal distribution control and
other actuators 248 that aflect the other functions of the
agricultural harvester 100. Path planning controller 234
illustratively generates control signals to control steering
subsystem 232 to steer agricultural harvester 100 according
to a desired path. Path planning controller 234 can control a
path planning system to generate a route for agricultural
harvester 100 and can control propulsion subsystem 2350 and
steering subsystem 252 to steer agricultural harvester 100
along that route. Feed rate controller 236 may receive a
variety of different inputs indicative of a feed rate of material
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through agricultural harvester 100 and can control various
subsystems, such as propulsion subsystem 250 and machine
actuators 248, to control the feed rate based upon the
predictive map 264 or predictive control zone map 265 or
both. For mstance, as agricultural harvester 100 approaches
a weed patch having an intensity value above a selected
threshold, feed rate controller 236 may generate a control
signal to control propulsion subsystem 252 to reduce the
speed of agricultural harvester 100 to maintain constant feed
rate of biomass through the agricultural harvester 100.
Header and reel controller 238 can generate control signals
to control a header or a reel or other header functionality.
Draper belt controller 240 can generate control signals to
control a draper belt or other draper functionality based upon
the predictive map 264, predictive control zone map 265, or
both. Deck plate position controller 242 can generate control
signals to control a position of a deck plate included on a
header based on predictive map 264 or predictive control
zone map 265 or both, and residue system controller 244 can
generate control signals to control a residue subsystem 138
based upon predictive map 264 or predictive control zone
map 265, or both. Machine cleaning controller 245 can
generate control signals to control machine cleaning sub-
system 2354. For instance, based upon the different types of
seeds or weeds passed through agricultural harvester 100, a
particular type of machine cleaning operation or a frequency
with which a cleaning operation 1s performed may be
controlled. Other controllers included on the agricultural
harvester 100 can control other subsystems based on the
predictive map 264 or predictive control zone map 265 or
both as well.

FIGS. 3A and 3B (collectively referred to herein as FIG.
3) show a flow diagram illustrating one example of the
operation of agricultural harvester 100 1n generating a
predictive map 264 and predictive control zone map 263
based upon prior mnformation map 238.

At 280, agricultural harvester 100 receives prior informa-
tion map 258. Examples of prior information map 258 or
receiving prior information map 258 are discussed with
respect to blocks 281, 282, 284 and 286. As discussed above,
prior information map 258 maps values of a vanable,
corresponding to a first characteristic, to different locations
in the field, as indicated at block 282. As indicated at block
281, receiving the prior information map 258 may mvolve
selecting one or more of a plurality of possible prior infor-
mation maps that are available. For instance, one prior
information map may be a vegetative index map generated
from aerial imagery. Another prior information map may be
a map generated during a prior pass through the field which
may have been performed by a different machine performing
a previous operation in the field, such as a sprayer or a
planting machine or seeding machine or unmanned aerial
vehicle (UAV) or other machine. The process by which one
or more prior information maps are selected can be manual,
semi-automated, or automated. The prior information map
2358 1s based on data collected prior to a current harvesting
operation. This 1s indicated by block 284. For instance, the
data may be collected based on aenal 1images taken during
a previous year, or earlier 1n the current growing season, or
at other times. The data may be based on data detected 1n
ways other than using aerial 1mages. For instance, agricul-
tural harvester 100 may be fitted with a sensor, such as an
internal optical sensor, that identifies weed seeds or other
types of maternial exiting agricultural harvester 100. The
weed seed or other data detected by the sensor during a
previous year’s harvest may be used as data used to generate
the prior information map 258. The sensed weed data or
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other data may be combined with other data to generate the
prior information map 258. For example, based upon a
magnitude of the weed seeds exiting agricultural harvester
100 at different locations and based upon other factors, such
as whether the seeds are being spread by a spreader or
dropped 1n a windrow; the weather conditions, such as wind,
when the seeds are being dropped or spread; drainage
conditions which may move seeds around 1n the field; or
other information, the location of those weed seeds can be
predicted so that the prior information map 258 maps the
predicted seed locations 1n the field. The data for the prior
information map 258 can be transmitted to agricultural
harvester 100 using communication system 206 and stored
in data store 202. The data for the prior information map 258
can be provided to agricultural harvester 100 using commu-
nication system 206 in other ways as well, and this 1s
indicated by block 286 in the flow diagram of FIG. 3. In
some examples, the prior mmformation map 258 can be
received by communication system 206.

Upon commencement of a harvesting operation, in-situ
sensors 208 generate sensor signals indicative of one or
more 1n-situ data values indicative of a characteristic, such
as a speed characteristic, as indicated by block 288.
Examples of in-situ sensors 288 are discussed with respect
to blocks 222, 290, and 226. As explained above, the in-situ
sensors 208 include on-board sensors 222; remote 1n-situ
sensors 224, such as UAV-based sensors flown at a time to
gather in-situ data, shown 1n block 290; or other types of
in-situ sensors, designated by in-situ sensors 226. In some
examples, data from on-board sensors 1s georelerenced
using position, heading, or speed data from geographic
position sensor 204.

Predictive model generator 210 controls the prior infor-
mation variable-to-in-situ variable model generator 228 to
generate a model that models a relationship between the
mapped values contained in the prior information map 238
and the in-situ values sensed by the in-situ sensors 208 as
indicated by block 292. The characteristics or data types
represented by the mapped values 1n the prior information
map 258 and the 1n-situ values sensed by the in-situ sensors
208 may be the same characteristics or data type or different
characteristics or data types.

The relationship or model generated by predictive model
generator 210 1s provided to predictive map generator 212.
Predictive map generator 212 generates a predictive map
264 that predicts a value of the characteristic sensed by the
in-situ sensors 208 at diflerent geographic locations 1n a field
being harvested, or a different characteristic that 1s related to
the characteristic sensed by the 1n-situ sensors 208, using the
predictive model and the prior information map 258, as
indicated by block 294.

It should be noted that, in some examples, the prior
information map 258 may include two or more different
maps or two or more different map layers of a single map.
Each map layer may represent a different data type from the
data type of another map layer or the map layers may have
the same data type that were obtained at diflerent times.
Each map in the two or more different maps or each layer 1in
the two or more different map layers of a map maps a
different type of variable to the geographic locations 1n the
field. In such an example, predictive model generator 210
generates a predictive model that models the relationship
between the in-situ data and each of the different variables
mapped by the two or more different maps or the two or
more different map layers. Similarly, the in-situ sensors 208
can include two or more sensors each sensing a different
type of varniable. Thus, the predictive model generator 210
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generates a predictive model that models the relationships
between each type of variable mapped by the prior infor-
mation map 258 and each type of variable sensed by the
in-situ sensors 208. Predictive map generator 212 can gen-
erate a functional predictive map 263 that predicts a value
for each sensed characteristic sensed by the 1n-situ sensors
208 (or a characteristic related to the sensed characteristic)
at different locations in the field being harvested using the
predictive model and each of the maps or map layers 1n the
prior information map 258.

Predictive map generator 212 configures the predictive
map 264 so that the predictive map 264 1s actionable (or
consumable) by control system 214. Predictive map genera-
tor 212 can provide the predictive map 264 to the control
system 214 or to control zone generator 213 or both. Some
examples of different ways 1 which the predictive map 264
can be configured or output are described with respect to
blocks 296, 295, 299 and 297. For instance, predictive map
generator 212 configures predictive map 264 so that predic-
tive map 264 includes values that can be read by control
system 214 and used as the basis for generating control
signals for one or more of the different controllable subsys-
tems of the agricultural harvester 100, as indicated by block
296.

Control zone generator 213 can divide the predictive map
264 mto control zones based on the values on the predictive
map 264. Contiguously-geolocated values that are within a
threshold value of one another can be grouped into a control
zone. The threshold value can be a default threshold value,
or the threshold value can be set based on an operator input,
based on an mput from an automated system, or based on
other criteria. A size of the zones may be based on a
responsiveness of the control system 214, the controllable
subsystems 216, based on wear considerations, or on other
criteria as indicated by block 295. Predictive map generator
212 configures predictive map 264 for presentation to an
operator or other user. Control zone generator 213 can
configure predictive control zone map 265 for presentation
to an operator or other user. This 1s indicated by block 299.
When presented to an operator or other user, the presentation
of the predictive map 264 or predictive control zone map
2635 or both may contain one or more of the predictive values
on the predictive map 264 correlated to geographic location,
the control zones on predictive control zone map 2635
correlated to geographic location, and settings values or
control parameters that are used based on the predicted
values on map 264 or zones on predictive control zone map
265. The presentation can, 1n another example, include more
abstracted information or more detailed information. The
presentation can also include a confidence level that indi-
cates an accuracy with which the predictive values on
predictive map 264 or the zones on predictive control zone
map 2635 conform to measured values that may be measured
by sensors on agricultural harvester 100 as agricultural
harvester 100 moves through the field. Further where infor-
mation 1s presented to more than one location, an authenti-
cation and authorization system can be provided to imple-
ment authentication and authorization processes. For
instance, there may be a hierarchy of individuals that are
authorized to view and change maps and other presented
information. By way of example, an on-board display device
may show the maps in near real time locally on the machine,
or the maps may also be generated at one or more remote
locations, or both. In some examples, each physical display
device at each location may be associated with a person or
a user permission level. The user permission level may be
used to determine which display markers are visible on the
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physical display device and which values the corresponding,
person may change. As an example, a local operator of
machine 100 may be unable to see the information corre-
sponding to the predictive map 264 or make any changes to
machine operation. A supervisor, such as a supervisor at a
remote location, however, may be able to see the predictive
map 264 on the display but be prevented from making any
changes. A manager, who may be at a separate remote
location, may be able to see all of the elements on predictive
map 264 and also be able to change the predictive map 264.
In some 1nstances, the predictive map 264 accessible and
changeable by a manager located remotely may be used 1n
machine control. This 1s one example of an authorization
hierarchy that may be implemented. The predictive map 264
or predictive control zone map 265 or both can be configured
in other ways as well, as indicated by block 297.

At block 298, mput from geographic position sensor 204
and other in-situ sensors 208 are received by the control
system. Particularly, at block 300, control system 214
detects an input from the geographic position sensor 204
identifying a geographic location of agricultural harvester
100. Block 302 represents receipt by the control system 214
of sensor inputs indicative ol trajectory or heading of
agricultural harvester 100, and block 304 represents receipt
by the control system 214 of a speed of agricultural harvester
100. Block 306 represents receipt by the control system 214
ol other mmformation from various in-situ sensors 208.

At block 308, control system 214 generates control sig-
nals to control the controllable subsystems 216 based on the
predictive map 264 or predictive control zone map 265 or
both and the mput from the geographic position sensor 204
and any other in-situ sensors 208. At block 310, control
system 214 applies the control signals to the controllable
subsystems. It will be appreciated that the particular control
signals that are generated, and the particular controllable
subsystems 216 that are controlled, may vary based upon
one or more different things. For example, the control
signals that are generated and the controllable subsystems
216 that are controlled may be based on the type of predic-
tive map 264 or predictive control zone map 265 or both that
1s being used. Similarly, the control signals that are gener-
ated and the controllable subsystems 216 that are controlled
and the timing of the control signals can be based on various
latencies of crop tlow through the agricultural harvester 100
and the responsiveness of the controllable subsystems 216.

By way of example, a generated predictive map 264 in the
form of a predictive speed map can be used to control one
or more subsystems 216. For instance, the predictive speed
map can include speed values georeferenced to locations
within the field being harvested. The speed values from the
predictive speed map can be extracted and used to control
the propulsion subsystem 2350. By controlling the propulsion
subsystem 250, a feed rate of material moving through the
agricultural harvester 100 can be controlled. Similarly, the
header height can be controlled to take 1n more or less
matenal, and, thus, the header height can also be controlled
to control feed rate of material through the agricultural
harvester 100. In other examples, 1t the predictive map 264
maps weed height relative to positions 1n the field, control of
the header height can be implemented. For example, 1f the
values present 1n the predictive weed map 1ndicate one or

more areas having weed height with a first height amount,
then header and reel controller 238 can control the header
height so that the header 1s positioned above the first height
amount of the weeds within the one or more areas having
weeds at the first height amount when performing the
harvesting operation. Thus, the header and reel controller
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238 can be controlled using georeferenced values present 1n
the predictive weed map to position the header to a height
that 1s above the predicted height values of weeds obtained
from the predictive weed map. Further, the header height can
be changed automatically by the header and reel controller
238 as the agricultural harvester 100 proceeds through the
field using georeferenced values obtained from the predic-
tive weed map. The preceding example involving weed
height and intensity using a predictive weed map 1s provided
merely as an example. Consequently, a wide variety of other
control signals can be generated using values obtained from
a predictive weed map or other type of predictive map to
control one or more of the controllable subsystems 216.

At block 312, a determination 1s made as to whether the
harvesting operation has been completed. If harvesting 1s not
completed, the processing advances to block 314 where
in-situ sensor data from geographic position sensor 204 and
in-situ sensors 208 (and perhaps other sensors) continue to
be read.

In some examples, at block 316, agricultural harvester
100 can also detect learning trigger criteria to perform
machine learning on one or more of the predictive map 264,
predictive control zone map 265, the model generated by
predictive model generator 210, the zones generated by
control zone generator 213, one or more control algorithms
implemented by the controllers 1n the control system 214,
and other triggered learning.

The learning trigger criteria can include any of a wide
variety ol different criteria. Some examples of detecting
trigger criteria are discussed with respect to blocks 318, 320,
321, 322 and 324. For instance, 1in some examples, triggered
learning can 1mvolve recreation of a relationship used to
generate a predictive model when a threshold amount of
in-situ sensor data are obtained from 1n-situ sensors 208. In
such examples, receipt of an amount of in-situ sensor data
from the in-situ sensors 208 that exceeds a threshold trigger
or causes the predictive model generator 210 to generate a
new predictive model that 1s used by predictive map gen-
erator 212. Thus, as agricultural harvester 100 continues a
harvesting operation, receipt of the threshold amount of
in-situ sensor data from the in-situ sensors 208 triggers the
creation ol a new relationship represented by a predictive
model generated by predictive model generator 210. Further,
new predictive map 264, predictive control zone map 265, or
both can be regenerated using the new predictive model.
Block 318 represents detecting a threshold amount of 1n-situ
sensor data used to trigger creation ol a new predictive
model.

In other examples, the learning trigger criteria may be
based on how much the 1n-situ sensor data from the 1n-situ
sensors 208 are changing, such as over time or compared to
previous values. For example, 1f variations within the in-situ
sensor data (or the relationship between the in-situ sensor
data and the information in prior information map 238) are
within a selected range or 1s less than a defined amount, or
below a threshold value, then a new predictive model 1s not
generated by the predictive model generator 210. As a result,
the predictive map generator 212 does not generate a new
predictive map 264, predictive control zone map 2635, or
both. However, if variations within the in-situ sensor data
are outside of the selected range, are greater than the defined
amount, or are above the threshold value, for example, then
the predictive model generator 210 generates a new predic-
tive model using all or a portion of the newly recerved 1n-situ
sensor data that the predictive map generator 212 uses to
generate a new predictive map 264. At block 320, variations
in the 1n-situ sensor data, such as a magnitude of an amount
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by which the data exceeds the selected range or a magnitude
ol the vanation of the relationship between the 1n-situ sensor
data and the information in the prior information map 258,
can be used as a trigger to cause generation of a new
predictive model and predictive map. Keeping with the
examples described above, the threshold, the range, and the
defined amount can be set to default values; set by an
operator or user interaction through a user interface; set by
an automated system; or set in other ways.

Other learning trigger criteria can also be used. For
instance, 1i predictive model generator 210 switches to a
different prior information map (ditferent from the originally
selected prior information map 258), then switching to the
different prior information map may trigger re-learning by
predictive model generator 210, predictive map generator
212, control zone generator 213, control system 214, or
other 1tems. In another example, transitioning of agricultural
harvester 100 to a different topography or to a diflerent
control zone may be used as learning trigger criteria as well.

In some 1nstances, operator 260 can also edit the predic-
tive map 264 or predictive control zone map 265 or both.
The edits can change a value on the predictive map 264,
change a size, shape, position, or existence of a control zone
on predictive control zone map 263, or both. Block 321
shows that edited information can be used as learning trigger
criteria.

In some 1instances, 1t may also be that operator 260
observes that automated control of a controllable subsystem,
1s not what the operator desires. In such instances, the
operator 260 may provide a manual adjustment to the
controllable subsystem reflecting that the operator 26
desires the controllable subsystem to operate 1n a different
way than 1s being commanded by control system 214. Thus,
manual alteration of a setting by the operator 260 can cause
one or more of predictive model generator 210 to relearn a
model, predictive map generator 212 to regenerate map 264,
control zone generator 213 to regenerate one or more control
zones on predictive control zone map 2635, and control
system 214 to relearn a control algorithm or to perform
machine learning on one or more of the controller compo-
nents 232 through 246 1n control system 214 based upon the
adjustment by the operator 260, as shown in block 322.
Block 324 represents the use of other triggered learning
criteria.

In other examples, relearning may be performed periodi-
cally or mtermittently based, for example, upon a selected
time 1nterval such as a discrete time 1nterval or a variable
time 1nterval, as indicated by block 326.

If relearning 1s triggered, whether based upon learming
trigger criteria or based upon passage of a time interval, as
indicated by block 326, then one or more of the predictive
model generator 210, predictive map generator 212, control
zone generator 213, and control system 214 performs
machine learning to generate a new predictive model, a new
predictive map, a new control zone, and a new control
algorithm, respectively, based upon the learming trigger
criteria. The new predictive model, the new predictive map,
and the new control algorithm are generated using any
additional data that has been collected since the last learning
operation was performed. Performing relearning 1s indicated
by block 328.

If the harvesting operation has been completed, operation
moves from block 312 to block 330 where one or more of
the predictive map 264, predictive control zone map 263,
and predictive model generated by predictive model gen-
erator 210 are stored. The predictive map 264, predictive
control zone map 263, and predictive model may be stored
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locally on data store 202 or sent to a remote system using
communication system 206 for later use.

It will be noted that, while some examples herein describe
predictive model generator 210 and predictive map genera-
tor 212 receiving a prior information map in generating a
predictive model and a functional predictive map, respec-
tively, 1n other examples, the predictive model generator 210
and predictive map generator 212 can recerve, 1n generating
a predictive model and a functional predictive map, respec-
tively other types of maps, including predictive maps, such
as a functional predictive map generated during the harvest-
ing operation.

FIG. 4A 1s a block diagram of a portion of the agricultural
harvester 100 shown in FIG. 1. Particularly, FIG. 4 A shows,
among other things, examples of the predictive model gen-
erator 210 and the predictive map generator 212 1n more
detail. FIG. 4A also 1illustrates information flow among the
various components shown. The predictive model generator
210 recerves prior information map 258, which may be a
vegetative index map 332, a predictive yield map 333, a
biomass map 335, a crop state map 337, a topographic map
339, a soil property map 341 or a seeding map 343 as a prior
information map. In other example, predictive model gen-
erator 210 can receive various other maps 401, such as other
prior information maps or other predictive maps. Predictive
model generator 210 also receives a geographic location
334, or an indication of a geographic location, from geo-
graphic position sensor 204. In-situ sensors 208 illustra-
tively mclude machine speed sensor 146, or a sensor 336
that senses an output from feed rate controller 236, as well
as a processing system 338. The processing system 338
processes sensor data generated from machine speed sensor
146 or from sensor 336, or both, to generate processed data,
some examples of which are described below.

In some examples, sensor 336 may be a sensor, that
generates a signal indicative of the control outputs from feed
rate controller 236. The control signals may be speed control
signals or other control signals that are applied to control-
lable subsystems 216 to control feed rate of material through
agricultural harvester 100. Processing system 338 processes
the signals obtained via the sensor 336 to generate processed
data 340 identitying the speed of agricultural harvester 100.

In some examples, raw or processed data from in-situ
sensor(s) 208 may be presented to operator 260 via operator
interface mechanism 218. Operator 260 may be onboard the
agricultural harvester 100 or at a remote location.

The present discussion proceeds with respect to an
example 1 which n-situ sensor 208 1s machine speed sensor
146. It will be appreciated that this 1s just one example, and
the sensors mentioned above, as other examples of 1n-situ
sensor 208 from which machine speed can be derived, are
contemplated herein as well. As shown i FIG. 4A, the
example predictive model generator 210 includes one or
more of a vegetative index (VI) value-to-speed model gen-
crator 342, a biomass-to-speed model generator 344, topog-
raphy-to-speed model generator 345, yield-to-speed model
generator 347, crop state-to-speed model generator 349, soil
property-to-speed model generator 351 and a seeding char-
acteristic-to-speed model generator 346. In other examples,
the predictive model generator 210 may include additional,
tewer, or different components than those shown in the
example of FIG. 4A. Consequently, 1n some examples, the
predictive model generator 210 may include other items 348
as well, which may include other types of predictive model
generators to generate other types of models.

Model generator 342 identifies a relationship between
machine speed detected in processed data 340, at a geo-
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graphic location corresponding to where the processed data
340 were obtained, and one or more vegetative index values
from the vegetative index map 332 corresponding to the
same location 1n the field where the speed characteristic was
detected. Based on this relationship established by model
generator 342, model generator 342 generates a predictive
speed model. The predictive speed model 1s used by speed
map generator 352 to predict target or expected machine
speed values at different locations 1n the field based upon the
georelerenced vegetative index value contained 1n the veg-
ctative 1ndex map 332 at the same locations 1n the field.

Model generator 344 i1dentifies a relationship between
machine speed represented 1n the processed data 340, at a
geographic location corresponding to the processed data
340, and the biomass value at the same geographic location.
Again, the biomass value 1s the georeferenced value con-
tained 1n the biomass map 335. Model generator 344 then
generates a predictive speed model that 1s used by speed map
generator 352 to predict the target machine speed at a
location 1n the field based upon the biomass value for that
location 1n the field.

Model generator 3435 i1dentifies a relationship between
machine speed represented 1n the processed data 340, at a
geographic location corresponding to the processed data
340, and the topographic characteristic value at the same
geographic location. Again, the topographic characteristic
value 1s the georeferenced value contained in the topo-
graphic map 339. Model generator 345 then generates a
predictive speed model that 1s used by speed map generator
352 to predict the target or expected machine speed at a
location 1n the field based upon the topographic character-
istic value for that location in the field.

Model generator 346 1dentifies a relationship between the
machine speed identified by processed data 340 at a par-
ticular location in the field and the seeding characteristic
value from the seeding characteristic map 343 at that same
location. Model generator 346 generates a predictive speed
model that 1s used by speed map generator 352 to predict
target or expected machine speed values at a particular
location 1n the field based upon the seeding characteristic
value at that location 1n the field.

Model generator 347 identifies a relationship between
machine speed represented 1n the processed data 340, at a
geographic location corresponding to the processed data
340, and the yield value at the same geographic location.
Again, the yield value 1s the georeferenced value contained
in the predictive yield map 333. Model generator 347 then
generates a predictive speed model that 1s used by speed map
generator 352 to predict the target or expected machine
speed at a location 1n the field based upon the yield value for
that location 1n the field.

Model generator 348 i1dentifies a relationship between
machine speed represented 1n the processed data 340, at a
geographic location corresponding to the processed data
340, and the crop state value at the same geographic
location. Again, the crop state value 1s the georeferenced
value contained 1n the crop state map 337. Model generator
348 then generates a predictive speed model that 1s used by
speed map generator 352 to predict the target or expected
machine speed at a location in the field based upon the
topographic characteristic value for that location 1n the field.

Model generator 351 1dentifies a relationship between
machine speed represented 1n the processed data 340, at a
geographic location corresponding to the processed data
340, and the soil property value at the same geographic
location. Again, the soil property value 1s the georeferenced
value contained in the soil property map 341. Model gen-
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crator 351 then generates a predictive speed model that 1s
used by speed map generator 352 to predict the target or
expected machine speed at a location 1n the field based upon

the topographic characteristic value for that location 1n the
field.

In light of the above, the predictive model generator 210
1s operable to produce a plurality of predictive speed models,
such as one or more of the predictive speed models gener-

ated by model generators 342, 344, 345, 346, 347, 348 and

351. In another example, two or more of the predictive speed
models described above may be combined into a single
predictive speed model that predicts target machine speed
based on two or more of the vegetative index value, the
biomass value, the topography, the yield, the seeding char-
acteristic, the crop state, or the soil property, at difierent
locations 1n the field. Any of these speed models, or com-
binations thereot, are represented collectively by predictive

model 350 1n FIG. 4A.

The predictive model 350 1s provided to predictive map
generator 212. In the example of FIG. 4A, predictive map
generator 212 1ncludes a speed map generator 352. In other
examples, the predictive map generator 212 may include
additional, fewer, or diflerent map generators. Thus, 1n some
examples, the predictive map generator 212 may include
other items 358 which may include other types of map
generators to generate speed maps. Speed map generator 352
receives the predictive model 350, which predicts target
machine speed based upon a value from one or more prior
information maps 238, along with the one or more prior
information maps 2358, and generates a predictive map that
predicts the target machine speed at different locations in the
field.

Predictive map generator 212 outputs one or more func-
tional predictive speed maps 360 that are predictive of one
or more of target machine speed. The functional predictive
speed map 360 predicts the target machine speed at different
locations 1n a field. The functional predictive speed maps
360 may be provided to control zone generator 213, control
system 214, or both. Control zone generator 213 generates
control zones and incorporates those control zones 1nto the
functional predictive map, 1.e., predictive map 360, to pro-
duce predictive control zone map 265. One or both of
predictive map 264 and predictive control zone map 2635
may be provided to control system 214, which generates
control signals to control one or more of the controllable
subsystems 216, such as propulsion subsystem 250 based
upon the predictive map 264, predictive control zone map
265, or both.

FIG. 4B 1s a block diagram of a portion of the agricultural
harvester 100 shown 1n FIG. 1. Particularly, FIG. 4B shows,
among other things, examples of the predictive model gen-
erator 210 and the predictive map generator 212 in more
detail. FIG. 4B also illustrates information flow among the
various components shown. The predictive model generator
210 receirves a topographic map 339, as a prior information
map. Topographic map 332 includes georeferenced topo-
graphic characteristic values. The predictive model genera-
tor 210 also receives a predictive speed map, such as
functional predictive speed map 360. The functional predic-
tive speed map 360 includes georeferenced predictive speed
values. In other examples, predictive model generator 210
can receive other maps 401, such as other prior information
maps or other predictive maps, such as other predictive
speed maps generated in ways other than the way in which
functional predictive speed map 360 was generated, for
example.
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Generator 210 1s also receiving a geographic location
indicator 334 from geographic position sensor 204. In-situ
sensors 208 1llustratively include a cut height sensor, such as
cut height sensor 1336, a header height sensor, such as
header height sensor 1337, as well as a processing system
1338. Cut height sensor 1336 detects characteristics 1indica-
tive of a height at which vegetation on the field 1s cut. In
some examples, cut height sensor 1336 1s an optical sensor
that detects cut vegetation material and generates sensor data
indicative a height at which the vegetation material was cut.
Header height sensor 1337 can sense a variety ol charac-
teristics, such as a variety of characteristics indicative of
header height or header position (such as pitch or roll) and
generates a sensor signal indicative of header height. In
some examples, the output of header height sensor 1337 can
also be indicative of a cut height. In some instances, cut
height sensor 1336 or header height sensor 1337, or both,
may be located on board the agricultural harvester 100. The
processing system 1338 processes sensor data generated
from cut height sensor 1336 or header height sensor 1337,
or both, to generate processed sensor data 1340, such as
processed sensor data indicative of cut height, cut height
variability, header height, or header height variability, some
examples of which are described below.

The present discussion proceeds with respect to an
example 1n which cut height sensor 1336 senses cut height
characteristics and header height sensor 1337 senses a height
ol a header on agricultural harvester 100 above a surface of
the field. As shown 1n FIG. 4B, the example predictive
model generator 210 includes one or more of a speed and
topographic characteristic-to-cut height model generator
1342, a speed-to-cut height model generator 1343, a speed-
to-cut height variability model generator 1345, a speed and
topographic characteristic-to-cut height variability model
generator 1344, a topographic characteristic-to-cut height
model generator, and a topographic characteristic-to-cut
height variability model generator 1347. In other examples,
the predictive model generator 210 may include additional,
tewer, or different components than those shown in the
example of FIG. 4B. Consequently, 1n some examples, the
predictive model generator 210 may include other items 348
as well, which may include other types of predictive model
generators to generate other types of cut height characteristic
models. For example, predictive model generator 210 may
include specific topographic characteristic model genera-
tors, for instance, a slope-to-cut height model generator or a
slope-to-cut height varnability model generator. Slope can
also include a vanability of slope.

Speed and topographic characteristic-to-cut height model
generator 1342 1dentifies a relationship between cut height,
at a geographic location corresponding to where cut height
sensor 1336 sensed the cut height characteristic indicative of
the height at which vegetation on the field was cut or where
header height sensor 1337 sensed the header height, or both,
and speed values from the predictive speed map 360 and
topographic characteristic values, such as one or more slope
values, from the topographic map 339 corresponding to the
same location 1n the field where the detected cut height
corresponds. Based on this relationship established by speed
and topographic characteristic-to-cut height model generator
1342, speed and topographic characteristic-to-cut height
model generator 1342 generates a predictive cut height
characteristic model. The predictive cut height characteristic
model 1s used by predictive map generator 212 to predict cut
height at different locations i1n the field based upon the
georeferenced speed values and georeferenced topographic
characteristic values, such as slope values, contained 1n the
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predictive speed map 360 and topographic map 339, respec-
tively, at the same locations 1n the field. In some examples,
the speed values can be derived from another map other than
predictive speed map 360, such as other map 401, which
may include other predictive speed maps or other prior
information maps.

Speed and topographic characteristic-to-cut height vari-
ability model generator 1344 identifies a relationship
between variation in cut height, at a geographic location
corresponding to where cut height sensor 1336 sensed the
variable cut heights or where header height sensor 1337
sensed the variable header heights, and speed values from
the predictive speed map 360 and topographic characteristic
values, such as one or more slope values, from the topo-
graphic map 339 corresponding to the same location(s) 1n
the field where the detected variable header height or
detected variable cut height corresponds, or both. Based on
this relationship established by speed and topographic char-
acteristic-to-cut height variability model generator 1344,
speed and topographic characteristic-to-cut height variabil-
ity height model generator 1344 generates a predictive cut
height characteristic model. The predictive cut height char-
acteristic model 1350 1s used by predictive map generator
212 to predict cut height variability at different locations 1n
the field based upon the georeferenced speed values con-
tained in the predictive speed map and the georeferenced
topographic characteristic values, such as slope values,
contained 1n the topographic map 339 at the same locations
in the field. In some examples, the speed values can be
derived from another map other than predictive speed map
360, such as other map 401, which may include other
predictive speed maps or other prior information maps.

Speed-to-cut height model generator 1343 identifies a
relationship between cut height represented 1n the processed
data 1340, at a geographic location corresponding to the
processed data 1340, and the speed value at the same
geographic location. The speed value 1s the georeferenced
value contained in the predictive speed map 360. Model
generator 1343 then generates a predictive cut height char-
acteristic model that 1s used by predictive cut height map
generator 1352 to predict the cut height at a location 1n the
field based upon the speed value for that location 1n the field.

Speed-to-cut height variability model generator 1345
identifies a relationship between cut height variability rep-
resented 1n the processed data 1340, at a geographic location
corresponding to the processed data 1340, and the speed
value at the same geographic location. The speed value 1s the
georelerenced value contained 1n the predictive speed map
360. Model generator 1345 then generates a predictive cut
height characteristic model that 1s used by predictive cut
height variability map generator 1354 to predict the cut
height variability at a location 1n the field based upon the
speed value for that location 1n the field.

Topographic characteristic-to-cut height model generator
1346 1dentifies a relationship between cut height represented
in the processed data 1340, at a geographic location corre-
sponding to the processed data 1340, and the topographic
characteristic value at the same geographic location. The
topographic characteristic value 1s the georeferenced value
contained 1n the topographic map 339. Model generator
1346 then generates a predictive cut height characteristic
model that 1s used by predictive cut height map generator
1352 to predict the cut height at a location 1n the field based
upon the topographic characteristic value for that location in
the field.

Topographic characteristic-to-cut height variability model
generator 1347 1dentifies a relationship between cut height
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variability represented in the processed data 1340, at a
geographic location corresponding to the processed data
1340, and the topographic characteristic value at the same
geographic location. The topographic characteristic value 1s
the georeferenced value contained in the topographic map
339. Model generator 1347 then generates a predictive cut
height characteristic model that 1s used by predictive cut
height variability map generator 1354 to predict the cut
height variability at a location 1n the field based upon the
topographic characteristic value for that location 1n the field.

In light of the above, the predictive model generator 210
1s operable to produce a plurality of predictive cut height
characteristic models, such as one or more of the predictive
cut height characteristic models generated by model gen-
crators 1342, 1343 1344, 1345, 1346, 1347 and 1348. In
another example, two or more of the predictive cut height
characteristic models described above may be combined into
a single predictive cut height characteristic model that
predicts cut height and cut height variability at diflerent
locations 1n the field based upon the different values, such as
detected cut height, detected cut height variability, detected
header height, and detected header height variability. Any of
these cut height characteristic models, or combinations
thereot, are represented collectively by cut height charac-
teristic model 1350 in FIG. 4B.

The predictive cut height characteristic model 1350 1s
provided to predictive map generator 212. In the example of
FIG. 4B, predictive map generator 212 includes a cut height
map generator 1352 and a cut height vaniability map gen-
crator 1354. In other examples, the predictive map generator
212 may include additional, fewer, or diflerent map genera-
tors. Thus, 1n some examples, the predictive map generator
212 may include other 1tems 1338, such as other types of
map generators to generate cut height maps. For example,
predictive map generator 212 may include a header height
map generator or a header height variability map generator,
or both.

Cut height map generator 1352 receives the predictive cut
height characteristic model 1350 that predicts cut height
based upon speed values or topographic characteristic val-
ues, or both, and based upon 1n-situ sensor data indicative of
cut height, such as sensor data from cut height sensor 1336
or header height sensor 1337, or both. Using the predictive
cut height characteristic model 1350 and one or more of the
received maps, the cut height map generator 1352 generates
a predictive map that maps the predicted cut height at
different locations in the field.

Cut height variability map generator 1354 receives the
predictive cut height characteristic model 1350 that predicts
cut height variability based upon speed values or topo-
graphic characteristic values, or both, and based upon 1n-situ
sensor data indicative of cut height vanability, such as
sensor data from cut height sensor 1336 or header height
sensor 1337, or both. Using the predictive cut height char-
acteristic model 1350 and one or more of the recetved maps,
the cut height variability map generator 1354 generates a
predictive map that maps the predicted cut height vanability
at different locations 1n the field.

Predictive map generator 212 outputs one or more func-
tional predictive cut height characteristic maps 1360 that are
predictive ol one or more ol cut height or cut height
variability. Each of the predictive cut height characteristic
maps 1360 predicts the cut height or cut height variability at
different locations 1n a field. Each of the generated predictive
cut height characteristic maps 1360 may be provided to
control zone generator 213, control system 214, or both.
Control zone generator 213 generates control zones and
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incorporates those control zones into the functional predic-
tive map, 1.e., functional predictive map 1360, to provide
functional predictive map 1360 with control zones. Func-
tional predictive map 1360 (with or without control zones)
may be provided to control system 214, which generates
control signals to control one or more of the controllable
subsystems 216 based upon the functional predictive map
1360 (with or without control zones).

FIG. 5 15 a flow diagram of an example of operation of
predictive model generator 210 and predictive map genera-
tor 212 1n generating the predictive cut height characteristic
model 1350 and the functional predictive cut height char-
acteristic map 1360. At block 362, predictive model gen-
erator 210 and predictive map generator 212 receives one or
more of a predictive speed map, such as functional predic-
tive speed map 360; a topographic map, such as topographic
map 339; or some other map 401. At block 364, processing
system 1338 receives one or more sensor signals from
in-situ sensors 208, such as cut height sensor 1336 or header
height sensor 1337, or both. In other examples, 1n-situ sensor
208 may be another type of sensor, as indicated by block
370. For example, 1n-situ sensor 208 may be another type of
sensor that provides an indication of cut height, cut height
variability, header height, or header height variability.

At block 372, processing system 1338 processes the one
or more received sensor signals to generate data indicative
of cut height characteristics. As indicated by block 374, the
cut height characteristics may be cut height. As indicated by
block 376, the cut height characteristic may be cut height
variability. As indicated by block 380, the sensor data can be
indicative of other characteristics, such as header height or
header height vanability. As discussed previously herein,
header height and header height variability can be indicative
of cut height and cut height vaniabaility.

At block 382, predictive model generator 210 also obtains
the geographic location corresponding to the sensor data.
For 1nstance, the predictive model generator 210 can obtain
the geographic position from geographic position sensor 204
and determine, based upon machine delays, machine speed.,
etc., a precise geographic location or area where the sensor
data 340 was captured or derived.

At block 384, predictive model generator 210 generates
one or more predictive models, such as one or more of the
cut height characteristic models generated by model gen-
crators 1342, 1343, 1344, 1345, 1346, 1347 or 1348, which

are represented collectively by cut height characteristic
model 1350.

At block 386, the predictive model, such as predictive cut
height characteristic model 1350, 1s provided to predictive
map generator 212. The predictive map generator 212 gen-
erates a predictive cut height characteristic map 1360 that
maps a predicted cut height characteristic based on a pre-
dictive speed map, such as predictive speed map 360 or a
topographic map 339, or both, and predictive cut height
characteristic model 1350. For instance, in some examples,
the predictive cut height characteristic map 1360 maps
predicted cut height or predicted cut height vanability at
various locations across the field. Further, the predictive cut
height characteristic map 1360 can be generated during the
course of an agricultural operation. Thus, as an agricultural
harvester 1s moving through a field performing an agricul-
tural operation, the predictive cut height characteristic map
1360 1s generated as the agricultural operation 1s being
performed.

At block 394, predictive map generator 212 outputs the
predictive cut height characteristic map 1360. At block 391,
predictive map generator 212 outputs the predictive cut
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height characteristic map 1360 for presentation to and
possible interaction by operator 260. At block 393, predic-
tive map generator 212 may configure the predictive cut
height characteristic map 1360 for consumption by control
system 214. At block 395, predictive map generator 212 can
also provide the predictive cut height characteristic map
1360 to control zone generator 213 for generation and
incorporation of control zones. At block 397, predictive map
generator 212 configures the predictive cut height charac-
teristic map 1360 1n other ways as well. The predictive cut
height characteristic map 1360 (with or without the control
zones) 1s provided to control system 214. At block 396,
control system 214 generates control signals to control the
controllable subsystems 216 based upon the functional pre-
dictive cut height characteristic map 1360.

In an example 1n which control system 214 receives a
functional predictive map or a functional predictive map
with control zones added, the path planning controller 234
controls steering subsystem 2352 to steer agricultural har-
vester 100. In another example in which control system 214
receives atunctional predictive map or a functional predic-
tive map with control zones added, the residue system
controller 244 controls residue subsystem 138. In another
example 1n which control system 214 receives a functional
predictive map or a functional predictive map with control
zones added, the settings controller 232 controls thresher
settings of thresher 110. In another example 1n which control
system 214 receives a functional predictive map or a func-
tional predictive map with control zones added, the settings
controller 232 or another controller 246 controls material
handling subsystem 125. In another example in which
control system 214 receives a functional predictive map or
a functional predictive map with control zones added, the
settings controller 232 controls crop cleaning subsystem
118. In another example i which control system 214
receives a functional predictive map or a functional predic-
tive map with control zones added, the machine cleanming
controller 245 controls machine cleaning subsystem 254 on
agricultural harvester 100. In another example in which
control system 214 receives a functional predictive map or
a Tunctional predictive map with control zones added, the
communication system controller 229 controls communica-
tion system 206. In another example 1n which control system
214 receives a functional predictive map or a functional
predictive map with control zones added, the operator inter-
tace controller 231 controls operator interface mechanisms
218 on agricultural harvester 100. In another example 1n
which control system 214 receives the functional predictive
map or the functional predictive map with control zones
added, the deck plate position controller 242 controls
machine/header actuators 248 to control a deck plate on
agricultural harvester 100. In another example in which
control system 214 receives the functional predictive map or
the functional predictive map with control zones added, the
draper belt controller 240 controls machine/header actuators
248 to control a draper belt on agricultural harvester 100. In
another example 1n which control system 214 receives the
functional predictive map or the functional predictive map
with control zones added, the other controllers 246 control
other controllable subsystems 256 on agricultural harvester
100.

In one example, control system 214 may receive a func-
tional predictive map or a functional predictive map with
control zones added, and header/reel controller 238 can
control header or other machine actuators 248 to control a
height, tilt, or roll of header 102 based upon the functional
predictive map (with or without control zones). For instance,
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header/reel controller 238 can control header or other
machine actuators 248 to adjust a height of header 102 above
the surface of the field. In another example, header/reel
controller 238 can control header or other machine actuators
248 to adjust a t1lt of header, such as a tilt of header 102 from
fore-to-aft (t1lt can also referred to as a pitch). In another
example, header/reel controller 238 can control header other

machine actuators 238 to adjust a roll of header, such as a
roll of header 102 from side-to-side, that 1s, across the width
ol header.

In one example, control system 214, or an operator of the
agricultural harvester may receive a functional predictive
map or a functional predictive map with control zones added
and based thereupon adjust one or more header settings,
such as header position settings (such as a header height
setting, a header pitch setting, or a header roll setting), a
header sensitivity setting which controls the responsiveness
of the agricultural harvester 1n responding to header height
errors, or a ground pressure setting that controls the amount
of float force exerted on the header by one or more actuators,
such as hydraulic cylinders.

It can thus be seen that the present system receives a map
that maps a characteristic value such as a topographic
characteristic value or a predictive speed value to different
locations 1n a field. The present system also uses one or more
in-situ sensors that sense in-situ sensor data that 1s indicative
ol a cut height characteristic, such as cut height or cut height
variability, and generates a model that models a relationship
between the characteristic sensed using the 1n-situ sensor, or
a related characteristic, and the characteristics mapped 1n the
received map. Thus, the present system generates a func-
tional predictive map using a model, in-situ data, and a map,
and may configure the generated functional predictive map
for consumption by a control system, for presentation to a
local or remote operator or other user, or both. For example,
the control system may use the map to control one or more
systems ol a combine harvester.

FIG. 6 A 15 a block diagram of an example portion of the
agricultural harvester 100 shown in FIG. 1. Particularly,
FIG. 6A shows, among other things, examples of predictive
model generator 210 and predictive map generator 212. In
the 1llustrated example, the prior information map 258 1s a
prior operation map 400. Prior operation map 400 may
include cut height characteristic values at various locations
in the field from a prior operation on the field. For example,
prior operation map 400 may be a historical cut height
characteristic map, generated during a harvesting operation
in a previous harvesting seasons, that includes cut height
characteristic values at various locations, and may include
contextual information such as header settings, speed of
operation, as well as various other machine settings utilized
during the previous operation. FIG. 6A also shows that
predictive model generator 210 and predictive map genera-
tor 212 can receive, alternatively or in addition to prior
information map 258, functional predictive cut height char-
acteristic map, such as functional predictive cut height
characteristic map 1360. Functional predictive cut height
characteristic map 1360 can be used similarly as prior
information map 258 in that model generator 210 models a
relationship between information provided by functional
predictive cut height characteristic map 1360 and charac-
teristics sensed by in-situ sensors 208. Map generator 212
can, thus, use the model to generate a functional predictive
map that predicts the characteristics sensed by the in-situ
sensors 208, or a characteristic related to the sensed char-
acteristic, at different locations 1n the field based upon one
or more of the values 1n the functional predictive cut height
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characteristic map 1360 at those locations i the field and
based on the predictive model. As illustrated imn FIG. 6A,
predictive model generator 210 and predictive map genera-
tor 212 can also recerve other maps 401, for instance other
prior information maps or other predictive maps, such as
other predictive cut height characteristic maps generated 1n
other ways than functional predictive cut height character-
1stic map 1360.

Also, 1n the example shown in FIG. 6 A, 1n-situ sensor 208
can include one or more of an agricultural characteristic
sensor 402, operator input sensor 404, and a processing
system 406. In-situ sensors 208 can include other sensors
408 as well.

Agricultural characteristic sensor 402 senses values
indicative of agricultural characteristics. Operator input sen-
sor 404 senses various operator mputs. The nputs can be
setting inputs for controlling the settings on agricultural
harvester 100 or other control inputs, such as steering inputs
and other mputs. Thus, when operator 260 changes a setting
or provides a commanded 1nput through an operator inter-
face mechanism 218, such an input 1s detected by operator
input sensor 404, which provides a sensor signal indicative
of that sensed operator input. In one example, the input can
be header setting inputs (or other setting inputs related to
control of the header), such as header sensitivity setting
inputs, header position inputs (such as header height setting
inputs, header pitch setting inputs, or header roll setting
inputs), header ground pressure setting inputs, as well as
various other header setting inputs.

Processing system 406 may receive the sensor signals
from one or more of agricultural characteristic sensor 402
and operator mput sensor 404 and generate an output
indicative of the sensed variable. For instance, processing
system 406 may receive a sensor output from agricultural
characteristic sensor 402 and generate an output indicative
of an agricultural characteristic. Processing system 406 may
also receive an input from operator input sensor 404 and
generate an output indicative of the sensed operator 1nput.

Predictive model generator 210 may include cut height
characteristic-to-agricultural characteristic model generator
410 and cut height characteristic-to-command model gen-
crator 414. In other examples, predictive model generator
210 can include additional, fewer, or other model generators
415. For example, predictive model generator 210 may
include specific cut height characteristic model generators,
such as a cut height-to-agricultural characteristic model
generator, a cut height vanability-to-agricultural character-
1stic model generator, a cut height-to-command model gen-
erator, or a cut height variability-to-command model gen-
crator. Predictive model generator 210 may receive a
geographic location indicator 334 from geographic position
sensor 204 and generate a predictive model 426 that models
a relationship between the information in one or more of the
prior information maps 258 or the mnformation in functional
predictive cut height characteristic map 1360 and one or
more of: the agricultural characteristic sensed by agricultural
characteristic sensor 402 and operator imput commands
sensed by operator input sensor 404.

Cut height characteristic-to-agricultural characteristic
model generator 410 generates a relationship between cut
height characteristic values (such as cut height characteris-
tics provided on predictive cut height characteristic map
1360, prior operation map 400, or other map 401) and the
agricultural characteristic sensed by agricultural character-
istic sensor 402. Cut height characteristic-to-agricultural
characteristic model generator 410 generates a predictive
model 426 that corresponds to this relationship.
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Cut height characteristic-to-operator command model
generator 414 generates a model that models the relationship
between a cut height characteristic as reflected on predictive
cut height characteristic map 1360, prior operation map 400,
or other map 401 and operator input commands that are
sensed by operator mput sensor 404. Cut height character-
1stic-to-operator command model generator 414 generates a
predictive model 426 that corresponds to this relationship.

Other model generators 415 may include, for example,
specific cut height characteristic model generators, such as
a cut height-to-agricultural characteristic model generator, a
cut height variability-to-agricultural characteristic model
generator, a cut height-to-command model generator, or a
cut height variability-to-command model generator.

Predictive model 426 generated by the predictive model
generator 210 can include one or more of the predictive
models that may be generated by cut height characteristic-
to-agricultural characteristic model generator 410 and cut
height characteristic-to-operator command model generator
414, and other model generators that may be included as part
of other items 415.

In the example of FIG. 6A, predictive map generator 212
includes predictive agricultural characteristic map generator
416 and a predictive operator command map generator 422.
In other examples, predictive map generator 212 can include
additional, fewer, or other map generators 424.

Predictive agricultural characteristic map generator 416
receives a predictive model 426 that models the relationship
between a cut height characteristic and an agricultural
characteristic sensed by agricultural characteristic 402 (such
as a predictive model generated by cut height characteristic-
to-agricultural characteristic model generator 410), and one
or more of the prior information maps 258 or functional
predictive cut height characteristic map 1360, or other maps
401. Predictive agricultural characteristic map generator 416
generates a functional predictive agricultural characteristic
map 427 that predicts agricultural characteristic values (or
the agricultural characteristics of which the values are
indicative) at different locations 1n the field based upon one
or more of the cut height characteristic values 1n one or more
of the prior information maps 258 or the functional predic-
tive cut height characteristic map 1360, or other map 401 at
those locations 1n the field and based on predictive model
426.

Predictive operator command map generator 422 receives
a predictive model 426 that models the relationship between
the cut height characteristic and operator command 1nputs
detected by operator input sensor 404 (such as a predictive
model generated by cut height characteristic-to-command
model generator 414), and one or more of the prior infor-
mation maps 238 or the functional predictive cut height
characteristic map 1360, or other maps 401. Predictive
operator command map generator 422 generates a functional
predictive operator command map 440 that predicts operator
command inputs at different locations in the field based upon
one or more of the cut height characteristic values from the
prior information map 258 or the functional predictive cut
height characteristic map 1360, or other map 401 at those
locations 1n the field and based on predictive model 426.

Predictive map generator 212 outputs one or more of the
functional predictive maps 427 and 440. Each of the func-
tional predictive maps 427 and 440 may be provided to
control zone generator 213, control system 214, or both.
Control zone generator 213 generates and incorporates con-
trol zones to provide a functional predictive map 427 with
control zones and a functional predictive map 440 with
control zones. Any or all of functional predictive maps 427
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and 440 (with or without control zones) may be provided to
control system 214, which generates control signals to
control one or more of the controllable subsystems 216
based upon one or all of the functional predictive maps 427
and 440 (with or without control zones). Any or all of the
maps 427 and 440 (with or without control zones) may be
presented to operator 260 or another user.

FIG. 6B 1s a block diagram showing some examples of
real-time (1n-situ) sensors 208. Some of the sensors shown
in FIG. 6B, or different combinations of them, may have
both a sensor 402 and a processing system 406, while others
may act as sensor 402 described with respect to FIGS. 6A
and 7 where the processing system 406 1s separate. Some of
the possible 1n-situ sensors 208 shown 1n FIG. 6B are shown
and described above with respect to previous FIGS. and are
similarly numbered. FIG. 6B shows that in-situ sensors 208
can include operator input sensors 980, machine sensors
982, harvested material property sensors 984, field and soil
property sensors 985, environmental characteristic sensors
987, and they may include a wide variety of other sensors
226. Operator mput sensors 980 may be sensors that sense
operator inputs through operator interface mechanisms 218.
Therefore, operator input sensors 980 may sense user move-
ment of linkages, joysticks, a steering wheel, buttons, dials,
or pedals. Operator mput sensors 980 can also sense user
interactions with other operator input mechanisms, such as
with a touch sensitive screen, with a microphone where
speech recognition 1s utilized, or any of a wide variety of
other operator input mechanisms.

Machine sensors 982 may sense different characteristics
of agricultural harvester 100. For instance, as discussed
above, machine sensors 982 may include machine speed
sensors 146, separator loss sensor 148, clean grain camera
150, forward looking image capture mechanism 151, loss
sensors 152 or geographic position sensor 204, examples of
which are described above. Machine sensors 982 can also
include machine setting sensors 991 that sense machine
settings. Some examples of machine settings were described
above with respect to FIG. 1. Front-end equipment (e.g.,
header) position sensor 993 can sense the position of the
header 102, reel 164, cutter 104, or other front-end equip-
ment relative to the frame of agricultural harvester 100. For
instance, sensors 993 may sense the height of header 102
above the ground. Machine sensors 982 can also include
front-end equipment (e.g., header) orientation sensors 995.
Sensors 995 may sense the orientation of header 102 relative
to agricultural harvester 100, or relative to the ground.
Machine sensors 982 may include stability sensors 997.
Stability sensors 997 sense oscillation or bouncing motion
(and amplitude) of agricultural harvester 100. Machine
sensors 982 may also include residue setting sensors 999
that are configured to sense whether agricultural harvester
100 1s configured to chop the residue, produce a windrow, or
deal with the residue in another way. Machine sensors 982
may include cleaning shoe fan speed sensor 951 that senses
the speed of cleaning fan 120. Machine sensors 982 may
include concave clearance sensors 953 that sense the clear-
ance between the rotor 112 and concaves 114 on agricultural
harvester 100. Machine sensors 982 may include chafler
clearance sensors 935 that sense the size of openings 1n
chafler 122. The machine sensors 982 may include threshing
rotor speed sensor 957 that senses a rotor speed of rotor 112.
Machine sensors 982 may include rotor drive force sensor
9359 that senses the force used to drive rotor 112. Machine
sensors 982 may include sieve clearance sensor 961 that
senses the size of openings in sieve 124. The machine
sensors 982 may include MOG moisture sensor 963 that

10

15

20

25

30

35

40

45

50

55

60

65

34

senses a moisture level of the MOG passing through agri-
cultural harvester 100. Machine sensors 982 may include
machine orientation sensor 9635 that senses the orientation of
agricultural harvester 100. Machine sensors 982 may
include material feed rate sensors 967 that sense the feed rate
of material as the material travels through feeder house 106,
clean grain elevator 130, or elsewhere 1n agricultural har-
vester 100. Machine sensors 982 can include biomass sen-
sors 969 that sense the biomass traveling through feeder
house 106, through separator 116, or elsewhere in agricul-
tural harvester 100. The machine sensors 982 may include
fuel consumption sensor 971 that senses a rate of fuel
consumption over time of agricultural harvester 100.
Machine sensors 982 may include power utilization sensor
973 that senses power utilization 1n agricultural harvester
100, such as which subsystems are utilizing power, or the
rate at which subsystems are utilizing power, or the distri-
bution of power among the subsystems 1n agricultural har-
vester 100. Machine sensors 982 may include tire pressure
sensors 977 that sense the inflation pressure in tires 144 of
agricultural harvester 100. Machine sensor 982 may include
a wide variety of other machine performance sensors, or
machine characteristic sensors, indicated by block 975. The
machine performance sensors and machine characteristic
sensors 9735 may sense machine performance or character-
1stics of agricultural harvester 100.

Harvested material property sensors 984 may sense char-
acteristics of the severed crop material as the crop material
1s being processed by agricultural harvester 100. The crop
properties may include such things as crop type, crop
moisture, grain quality (such as broken grain), MOG levels,
grain constituents such as starches and protein, MOG mois-
ture, and other crop material properties. Other sensors could
sense straw “toughness™, adhesion of corn to ears, and other
characteristics that might be beneficially used to control
processing for better grain capture, reduced grain damage,
reduced power consumption, reduced grain loss, eftc.

Field and soi1l property sensors 985 may sense character-
istics of the field and soil. The field and soil properties may
include soil moisture, soil compactness, the presence and
location of standing water, soil type, and other soi1l and field
characteristics.

Environmental characteristic sensors 987 may sense one
or more environmental characteristics. The environmental
characteristics may include such things as wind direction
and wind speed, precipitation, fog, dust level or other
obscurants, or other environmental characteristics.

FIG. 7 shows a flow diagram illustrating one example of
the operation of predictive model generator 210 and predic-
tive map generator 212 1n generating one or more predictive
models 426 and one or more functional predictive maps 427
and 440. At block 442, predictive model generator 210 and
predictive map generator 212 receive a map. The map
received by predictive model generator 210 or predictive
map generator 212 1n generating one or more predictive
models 426 and one or more functional predictive maps 427
and 440 may be prior information map 258, such as a prior
operation map 400 created using data obtained during a prior
operation 1n a field. The map received by predictive model
generator 210 or predictive map generator 212 in generating
one or more predictive models 426 and one or more func-
tional predictive maps 427 and 440 may be functional
predictive cut height characteristic map 1360. Other maps
can be received as well as indicated by block 401, such as
other prior information maps or other predictive maps, for
instance, other predictive cut height characteristic maps.
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At block 444, predictive model generator 210 receives a
sensor signal containing sensor data from an in-situ sensor
208. The 1n-s1tu sensor can be one or more of an agricultural
characteristic sensor 402 and an operator input sensor 404.
Agricultural characteristic sensor 402 senses an agricultural
characteristic. Operator input sensor 404 senses an operator
input command. Predictive model generator 210 can receive
other 1n-situ sensor mputs as well, as indicated by block 408.

At block 434, processing system 406 processes the data
contained 1n the sensor signal or signals received from the
in-situ sensor or sensors 208 to obtain processed data 409,
shown 1n FIG. 6A. The data contained 1n the sensor signal
or signals can be 1n a raw format that 1s processed to receive
processed data 409. For example, a temperature sensor
signal includes electrical resistance data, this electrical resis-
tance data can be processed into temperature data. In other
examples, processing may comprise digitizing, encoding,
formatting, scaling, filtering, or classilying data. The pro-
cessed data 409 may be indicative of one or more of an
agricultural characteristic or an operator iput command.
The processed data 409 i1s provided to predictive model
generator 210.

Returming to FIG. 7, at block 4356, predictive model
generator 210 also receives a geographic location 334 from
geographic position sensor 204, as shown 1n FIG. 6A. The
geographic location 334 may be correlated to the geographic
location from which the sensed variable or variables, sensed
by 1n-situ sensors 208, were taken. For instance, the predic-
tive model generator 210 can obtain the geographic location
334 from geographic position sensor 204 and determine,
based upon machine delays, machine speed, etc., a precise
geographic location from which the processed data 409 was
derived.

At block 438, predictive model generator 210 generates
one or more predictive models 426 that model a relationship
between a mapped value 1n a received map and a charac-
teristic represented in the processed data 409. For example,
in some 1nstances, the mapped value 1n a recerved map may
be a cut height characteristic, such as cut height or cut height
variability, and the predictive model generator 210 generates
a predictive model using the mapped value of a received
map and a characteristic sensed by in-situ sensors 208, as
represented 1n the processed data 409, or a related charac-
teristic, such as a characteristic that correlates to the char-
acteristic sensed by in-situ sensors 208.

The one or more predictive models 426 are provided to
predictive map generator 212. At block 466, predictive map
generator 212 generates one or more functional predictive
maps. The functional predictive maps may be functional
predictive agricultural characteristic map 427 and a func-
tional predictive operator command map 440, or any com-
bination of these maps. Functional predictive agricultural
characteristic map 427 predicts agricultural characteristic
values (or agricultural characteristics indicated by the val-
ues) at diflerent locations 1n the field. Functional predictive
operator command map 440 predicts desired or likely opera-
tor command nputs at different locations in the field.
Further, one or more of the functional predictive maps 427
and 440 can be generated during the course of an agricultural
operation. Thus, as agricultural harvester 100 1s moving
through a field performing an agricultural operation, the one
or more predictive maps 427 and 440 are generated as the
agricultural operation i1s being performed.

At block 468, predictive map generator 212 outputs the
one or more functional predictive maps 427 and 440. At
block 470, predictive map generator 212 may configure the
map for presentation to and possible interaction by an
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operator 260 or another user. At block 472, predictive map
generator 212 may configure the map for consumption by
control system 214. At block 474, predictive map generator
212 can provide the one or more predictive maps 427 and
440 to control zone generator 213 for generation of control
zones. At block 476, predictive map generator 212 config-
ures the one or predictive maps 427 and 440 1n other ways.
In an example 1n which the one or more functional predictive
maps 427 and 440 are provided to control zone generator
213, the one or more functional predictive maps 427 and
440, with the control zones included therewith, represented
by corresponding maps 265, described above, may be pre-
sented to operator 260 or another user or provided to control
system 214 as well.

At block 478, control system 214 then generates control
signals to control the controllable subsystems based upon
the one or more functional predictive maps 427 and 440 (or
the functional predictive maps 427 and 440 having control
zones) as well as an input from the geographic position
sensor 204.

In an example 1 which control system 214 receives a
functional predictive map or a functional predictive map
with control zones added, the path planning controller 234
controls steering subsystem 2352 to steer agricultural har-
vester 100. In another example in which control system 214
receives afunctional predictive map or a functional predic-
tive map with control zones added, the residue system
controller 244 controls residue subsystem 138. In another
example 1n which control system 214 receives a functional
predictive map or a functional predictive map with control
zones added, the settings controller 232 controls thresher
settings of thresher 110. In another example 1n which control
system 214 receives a functional predictive map or a func-
tional predictive map with control zones added, the settings
controller 232 or another controller 246 controls material
handling subsystem 1235. In another example in which
control system 214 receives a functional predictive map or
a Tunctional predictive map with control zones added, the
settings controller 232 controls crop cleaning subsystem
118. In another example in which control system 214
receives a functional predictive map or a functional predic-
tive map with control zones added, the machine cleaning
controller 245 controls machine cleaning subsystem 254 on
agricultural harvester 100. In another example in which
control system 214 receives a functional predictive map or
a Tunctional predictive map with control zones added, the
communication system controller 229 controls communica-
tion system 206. In another example 1n which control system
214 recerves a functional predictive map or a functional
predictive map with control zones added, the operator inter-
face controller 231 controls operator interface mechanisms
218 on agricultural harvester 100. In another example 1n
which control system 214 receives the functional predictive
map or the functional predictive map with control zones
added, the deck plate position controller 242 controls
machine/header actuators to control a deck plate on agricul-
tural harvester 100. In another example 1n which control
system 214 receives the functional predictive map or the

functional predictive map with control zones added, the
draper belt controller 240 controls machine/header actuators
to control a draper belt on agricultural harvester 100. In
another example 1n which control system 214 receives the
functional predictive map or the functional predictive map
with control zones added, the other controllers 246 control
other controllable subsystems 256 on agricultural harvester

100.
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In one example, control system 214 may receive a func-
tional predictive map or a functional predictive map with
control zones added, and header/reel controller 238 can
control header or other machine actuators 248, to control a
height, tilt, or roll of header 102 based upon the functional
predictive map (with or without control zones). For instance,
header/reel controller 238 can control header or other
machine actuators 248 to adjust a height of header 102 above
the surface of the field. In another example, header/reel
controller 238 can control header or other machine actuators
248 to adjust a t1lt of header, such as a tilt of header 102 from
fore-to-aft (talt can also referred to as a pitch). In another
example, header/reel controller 238 can control header other
machine actuators 238 to adjust a roll of header, such as a
roll of header 102 from side-to-side, that 1s, across the width

ol header.

FIG. 8 shows a block diagram illustrating one example of
control zone generator 213. Control zone generator 213
includes work machine actuator (WMA) selector 486, con-
trol zone generation system 488, and regime zone generation
system 490. Control zone generator 213 may also include
other items 492. Control zone generation system 488
includes control zone criteria identifier component 494,
control zone boundary definition component 496, target
setting 1dentifier component 498, and other items 520.
Regime zone generation system 490 includes regime zone
criteria identification component 522, regime zone boundary
definition component 524, settings resolver identifier com-
ponent 526, and other i1tems 528. Before describing the
overall operation of control zone generator 213 1n more
detail, a brief description of some of the items 1n control
zone generator 213 and the respective operations thereof
will first be provided.

Agricultural harvester 100, or other work machines, may
have a wide variety of diflerent types of controllable actua-
tors that perform different functions. The controllable actua-
tors on agricultural harvester 100 or other work machines
are collectively referred to as work machine actuators
(WMAs). Each WMA may be independently controllable
based upon values on a functional predictive map, or the
WMASs may be controlled as sets based upon one or more
values on a functional predictive map. Therefore, control
zone generator 213 may generate control zones correspond-
ing to each individually controllable WMA or corresponding
to the sets of WMA s that are controlled 1n coordination with
one another.

WMA selector 486 selects a WMA or a set of WMAS for
which corresponding control zones are to be generated.
Control zone generation system 488 then generates the
control zones for the selected WMA or set of WMAs. For
cach WMA or set of WMAs, diflerent criteria may be used
in 1identitying control zones. For example, for one WMA, the
WMA response time may be used as the criteria for defining
the boundaries of the control zones. In another example,
wear characteristics (e.g., how much a particular actuator or
mechanism wears as a result of movement thereof) may be
used as the criteria for 1dentitying the boundaries of control
zones. Control zone criteria 1dentifier component 494 1den-
tifies particular criteria that are to be used 1n defining control
zones for the selected WMA or set of WMAs. Control zone
boundary definition component 496 processes the values on
a functional predictive map under analysis to define the
boundaries of the control zones on that functional predictive
map based upon the values 1n the functional predictive map
under analysis and based upon the control zone criteria for

the selected WMA or set of WMASs.
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Target setting identifier component 498 sets a value of the
target setting that will be used to control the WMA or set of
WMAs 1n different control zones. For instance, if the
selected WMA 1s header or other machine actuators 248 and
the functional predictive map under analysis 1s a functional
predictive cut height characteristic map 1360, then the target
setting 1n each control zone may be a target header height,
pitch, or roll setting based on cut height characteristic values
contained 1n the functional predictive cut height character-
1stic map 1360.

In some examples, where agricultural harvester 100 1s to
be controlled based on a current or future location of the
agricultural harvester 100, multiple target settings may be
possible for a WMA at a given position. In that case, the
target settings may have different values and may be com-
peting. Thus, the target settings need to be resolved so that
only a single target setting 1s used to control the WMA. For
example, where the WMA 1s an actuator in propulsion
system 250 that 1s being controlled in order to control the
speed of agricultural harvester 100, multiple different com-
peting sets of criteria may exist that are considered by
control zone generation system 488 1n identifying the con-
trol zones and the target settings for the selected WMA 1n the
control zones. For instance, different target settings for
controlling header height, tilt, or roll may be generated
based upon, for example, a detected or predicted cut height
characteristic value (such as cut height or cut height vari-
ability), a detected or predicted agricultural characteristic
value, a detected or predicted speed value, a detected or
predicted topographic characteristic value (such as a slope
value), a detected or predicted feed rate value, a detected or
predictive fuel efliciency value, a detected or predicted grain
loss value, or a combination of these. It will be noted that
these are merely example, and target settings for various
WMASs can be based on various other values or combina-
tions of values. However, at any given time, the agricultural
harvester 100 cannot travel over the ground with multiple
header heights, multiple header tilts, or multiple header rolls
simultaneously. Rather, at any given time, the agricultural
harvester 100 has a single header height, a single header tilt,
and a single header roll. Thus, one of the competing target
settings 1s selected to control the height, tilt, or roll of the
header of agricultural harvester 100.

Therefore, 1In some examples, regime zone generation
system 490 generates regime zones to resolve multiple
different competing target settings. Regime zone criteria
identification component 522 identifies the criteria that are
used to establish regime zones for the selected WMA or set
of WMASs on the functional predictive map under analysis.
Some criteria that can be used to i1dentity or define regime
zones include, for example, cut height characteristics (such
as cut height or cut height vaniability), agricultural charac-
teristics, topographic characteristics (such as slope), speed
characteristics (such as predictive speed values), operator
command inputs, crop type or crop variety (for example
based on an as-planted map or another source of the crop
type or crop variety), weed type, weed intensity, or crop state
(such as whether the crop i1s down, partially down or
standing). These are merely some examples of the criteria
that can be used to 1dentily or define regime zones. Just as
cach WMA or set of WMAs may have a corresponding
control zone, different WMASs or sets of WMAs may have a
corresponding regime zone. Regime zone boundary defini-
tion component 524 identifies the boundaries of regime
zones on the functional predictive map under analysis based
on the regime zone criteria identified by regime zone criteria
identification component 522.
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In some examples, regime zones may overlap with one
another. For instance, a crop variety regime zone may
overlap with a portion of or an entirety of a crop state regime
zone. In such an example, the different regime zones may be
assigned to a precedence hierarchy so that, where two or
more regime zones overlap, the regime zone assigned with
a greater hierarchical position or importance in the prece-
dence hierarchy has precedence over the regime zones that
have lesser hierarchical positions or importance in the
precedence hierarchy. The precedence hierarchy of the
regime zones may be manually set or may be automatically
set using a rules-based system, a model-based system, or
another system. As one example, where a downed crop
regime zone overlaps with a crop variety regime zone, the
downed crop regime zone may be assigned a greater 1mpor-
tance in the precedence hierarchy than the crop variety
regime zone so that the downed crop regime zone takes
precedence.

In addition, each regime zone may have a unique settings
resolver for a given WMA or set of WMASs. Settings resolver
identifier component 526 1dentifies a particular settings
resolver for each regime zone identified on the functional
predictive map under analysis and a particular settings
resolver for the selected WMA or set of WMAs.

Once the settings resolver for a particular regime zone 1s
identified, that settings resolver may be used to resolve
competing target settings, where more than one target setting
1s 1dentified based upon the control zones. The different
types of settings resolvers can have different forms. For
instance, the settings resolvers that are identified for each
regime zone may include a human choice resolver 1n which
the competing target settings are presented to an operator or
other user for resolution. In another example, the settings
resolver may include a neural network or other artificial
intelligence or machine learning system. In such instances,
the settings resolvers may resolve the competing target
settings based upon a predicted or historic quality metric
corresponding to each of the different target settings. As an
example, an increased vehicle speed setting may reduce the
time to harvest a field and reduce corresponding time-based
labor and equipment costs but may increase grain losses. A
reduced vehicle speed setting may increase the time to
harvest a field and increase corresponding time-based labor
and equipment costs but may decrease grain losses. When
grain loss or time to harvest 1s selected as a quality metric,
the predicted or historic value for the selected quality metric,
given the two competing vehicle speed settings values, may
be used to resolve the speed setting. In some instances, the
settings resolvers may be a set of threshold rules that may be
used instead of, or in addition to, the regime zones. An
example of a threshold rule may be expressed as follows:

If predicted biomass values within 20 feet of the header of

the agricultural harvester 100 are greater that x kilo-
grams (where X 1s a selected or predetermined value),
then use the target setting value that 1s chosen based on
feed rate over other competing target settings, other-
wise use the target setting value based on grain loss
over other competing target setting values.

The settings resolvers may be logical components that
execute logical rules 1n i1dentifying a target setting. For
instance, the settings resolver may resolve target settings
while attempting to minimize harvest time or minimize the
total harvest cost or maximize harvested grain or based on
other variables that are computed as a function of the
different candidate target settings. A harvest time may be
mimmized when an amount to complete a harvest 1s reduced
to at or below a selected threshold. A total harvest cost may
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be minimized where the total harvest cost 1s reduced to at or
below a selected threshold. Harvested grain may be maxi-
mized where the amount of harvested grain 1s 1increased to
at or above a selected threshold.

FIG. 9 1s a flow diagram illustrating one example of the
operation of control zone generator 213 1n generating con-
trol zones and regime zones for a map that the control zone
generator 213 recerves for zone processing (e.g., for a map
under analysis).

At block 530, control zone generator 213 receives a map
under analysis for processing. In one example, as shown at
block 532, the map under analysis 1s a functional predictive
map. For example, the map under analysis may be one of the
functional predictive maps 1360, 427, or 440. Block 534

indicates that the map under analysis can be other maps as
well.

At block 536, WMA selector 486 selects a WMA or a set
of WMAs for which control zones are to be generated on the
map under analysis. At block 538, control zone critena
identification component 494 obtains control zone definition
criteria for the selected WMASs or set of WMAs. Block 540
indicates an example 1n which the control zone criteria are
or mnclude wear characteristics of the selected WMA or set
of WMAs. Block 342 indicates an example in which the
control zone definition criteria are or mnclude a magnitude
and variation of input source data, such as the magnitude and
variation of the values on the map under analysis or the
magnitude and varnation of mputs from wvarious in-situ
sensors 208. Block 544 indicates an example 1n which the
control zone defimition criteria are or include physical
machine characteristics, such as the physical dimensions of
the machine, a speed at which different subsystems operate,
or other physical machine characteristics. Block 546 indi-
cates an example 1n which the control zone definition criteria
are or iclude a responsiveness of the selected WMA or set
of WMAs 1n reaching newly commanded setting values.
Block 548 indicates an example in which the control zone
definition criteria are or include machine performance met-
rics. Block 550 indicates an example 1in which the control
zone definition criteria are or includes operator preferences.
Block 552 indicates an example in which the control zone
definition criteria are or include other 1tems as well. Block
549 indicates an example 1n which the control zone defini-
tion criteria are time based, meaning that agricultural har-
vester 100 will not cross the boundary of a control zone until
a selected amount of time has elapsed since agricultural
harvester 100 entered a particular control zone. In some
instances, the selected amount of time may be a minimum
amount of time. Thus, 1n some nstances, the control zone
definition criteria may prevent the agricultural harvester 100
from crossing a boundary of a control zone until at least the
selected amount of time has elapsed. Block 5351 indicates an
example 1 which the control zone definition criteria are
based on a selected size value. For example, control zone
definition criteria that are based on a selected size value may
preclude definition of a control zone that 1s smaller than the
selected size. In some 1nstances, the selected size may be a
minimum Size.

At block 554, regime zone criteria 1dentification compo-
nent 522 obtains regime zone definition criteria for the
selected WMA or set of WMAs. Block 556 indicates an
example 1 which the regime zone definition criteria are
based on a manual 1input from operator 260 or another user.
Block 558 illustrates an example 1n which the regime zone
definition criteria are based on topographic characteristics
(such as slope). Block 539 illustrates an example 1n which
the regime zone definition criteria are based on speed
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characteristics (such as speed values provided by functional
predictive speed map 360). Block 560 illustrates an example
in which the regime zone definition criteria are based on cut
height characteristics (such as cut height or cut height
variability). Block 564 indicates an example 1n which the
regime zone definition criteria are or include other critena as
well.

At block 566, control zone boundary definition compo-
nent 496 generates the boundaries of control zones on the
map under analysis based upon the control zone criteria.
Regime zone boundary definition component 524 generates
the boundaries of regime zones on the map under analysis
based upon the regime zone criteria. Block 568 indicates an
example 1n which the zone boundaries are identified for the
control zones and the regime zones. Block 570 shows that
target setting 1dentifier component 498 1dentifies the target
settings for each of the control zones. The control zones and
regime zones can be generated 1n other ways as well, and
this 1s indicated by block 572.

At block 574, settings resolver identifier component 526
identifies the settings resolver for the selected WMASs 1n
cach regime zone defined by regimes zone boundary defi-
nition component 324. As discussed above, the regime zone
resolver can be a human resolver 576, an artificial intelli-
gence or machine learning system resolver 378, a resolver
580 based on predicted or historic quality for each compet-
ing target setting, a rules-based resolver 582, a performance
criteria-based resolver 584, or other resolvers 586.

At block 588, WMA selector 486 determines whether
there are more WMASs or sets of WMAs to process. IT
additional WMAs or sets of WMASs are remaining to be
processed, processing reverts to block 436 where the next
WMA or set of WMASs for which control zones and regime
zones are to be defined i1s selected. When no additional
WMASs or sets of WMASs for which control zones or regime
zones are to be generated are remaining, processing moves
to block 590 where control zone generator 213 outputs a
map with control zones, target settings, regime zones, and
settings resolvers for each of the WMASs or sets of WMAs.
As discussed above, the outputted map can be presented to
operator 260 or another user; the outputted map can be
provided to control system 214; or the outputted map can be
output in other ways.

FIG. 10 illustrates one example of the operation of control
system 214 in controlling agricultural harvester 100 based
upon a map that 1s output by control zone generator 213.
Thus, at block 592, control system 214 receives a map of the
worksite. In some instances, the map can be a functional
predictive map that may include control zones and regime
zones, as represented by block 594. In some instances, the
received map may be a functional predictive map that
excludes control zones and regime zones. Block 596 indi-
cates an example 1n which the received map of the worksite
can be a prior mformation map having control zones and
regime zones 1dentified on 1t. Block 598 indicates an
example 1 which the received map can include multiple
different maps or multiple different map layers. Block 610
indicates an example 1n which the received map can take
other forms as well.

At block 612, control system 214 receives a sensor signal
from geographic position sensor 204. The sensor signal from
geographic position sensor 204 can include data that indi-
cates the geographic location 614 of agricultural harvester
100, the speed 616 of agricultural harvester 100, the heading
618 or agricultural harvester 100, or other information 620.
At block 622, zone controller 247 selects a regime zone, and,
at block 624, zone controller 247 selects a control zone on
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the map based on the geographic position sensor signal. At
block 626, zone controller 247 selects a WMA or a set of
WMASs to be controlled. At block 628, zone controller 247
obtains one or more target settings for the selected WMA or
set of WMAs. The target settings that are obtained for the
selected WMA or set of WMAs may come {from a variety of
different sources. For instance, block 630 shows an example
in which one or more of the target settings for the selected
WMA or set of WMASs 1s based on an input from the control
zones on the map of the worksite. Block 632 shows an
example 1 which one or more of the target settings is
obtained from human inputs from operator 260 or another
user. Block 634 shows an example 1 which the target
settings are obtained from an in-situ sensor 208. Block 636
shows an example in which the one or more target settings
1s obtained from one or more sensors on other machines
working 1n the same field either concurrently with agricul-
tural harvester 100 or from one or more sensors on machines
that worked 1n the same field in the past. Block 638 shows
an example 1n which the target settings are obtained from
other sources as well.

At block 640, zone controller 247 accesses the settings
resolver for the selected regime zone and controls the
settings resolver to resolve competing target settings into a
resolved target setting. As discussed above, 1 some
instances, the settings resolver may be a human resolver 1n
which case zone controller 247 controls operator intertace
mechanisms 218 to present the competing target settings to
operator 260 or another user for resolution. In some
instances, the settings resolver may be a neural network or
other artificial intelligence or machine learning system, and
zone controller 247 submits the competing target settings to
the neural network, artificial imtelligence, or machine learn-
ing system for selection. In some instances, the settings
resolver may be based on a predicted or historic quality
metric, on threshold rules, or on logical components. In any
of these latter examples, zone controller 247 executes the
settings resolver to obtain a resolved target setting based on
the predicted or historic quality metric, based on the thresh-
old rules, or with the use of the logical components.

At block 642, with zone controller 247 having identified
the resolved target setting, zone controller 247 provides the
resolved target setting to other controllers 1n control system
214, which generate and apply control signals to the selected
WMA or set of WMASs based upon the resolved target
setting. For 1nstance, where the selected WMA 1s a machine
or header actuator 248, zone controller 247 provides the
resolved target setting to settings controller 232 or header/
real controller 238 or both to generate control signals based
upon the resolved target setting, and those generated control
signals are applied to the machine or header actuators 248.
At block 644, 1t additional WMAs or additional sets of
WMASs are to be controlled at the current geographic loca-
tion of the agricultural harvester 100 (as detected at block
612), then processing reverts to block 626 where the next
WMA or set of WMAs 1s selected. The processes repre-
sented by blocks 626 through 644 continue until all of the
WMASs or sets of WMASs to be controlled at the current
geographical location of the agricultural harvester 100 have
been addressed. If no additional WMAS or sets of WMAS are
to be controlled at the current geographic location of the
agricultural harvester 100 remain, processing proceeds to
block 646 where zone controller 247 determines whether
additional control zones to be considered exist in the
selected regime zone. I additional control zones to be
considered exist, processing reverts to block 624 where a
next control zone 1s selected. If no additional control zones
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are remaining to be considered, processing proceeds to
block 648 where a determination as to whether additional
regime zones are remaining to be consider. Zone controller
247 determines whether additional regime zones are remain-
ing to be considered. If additional regimes zone are remain-
ing to be considered, processing reverts to block 622 where
a next regime zone 1s selected.

At block 650, zone controller 247 determines whether the
operation that agricultural harvester 100 1s performing is
complete. If not, the zone controller 247 determines whether
a control zone criterion has been satisfied to continue
processing, as indicated by block 652. For instance, as
mentioned above, control zone definition criteria may
include criteria defining when a control zone boundary may
be crossed by the agricultural harvester 100. For example,
whether a control zone boundary may be crossed by the
agricultural harvester 100 may be defined by a selected time
period, meaning that agricultural harvester 100 1s prevented
from crossing a zone boundary until a selected amount of
time has transpired. In that case, at block 652, zone con-
troller 247 determines whether the selected time period has
clapsed. Additionally, zone controller 247 can perform pro-
cessing continually. Thus, zone controller 247 does not wait
for any particular time period before continuing to determine
whether an operation of the agricultural harvester 100 1s
completed. At block 652, zone controller 247 determines
that 1t 1s time to continue processing, then processing
continues at block 612 where zone controller 247 again
receives an input from geographic position sensor 204. It
will also be appreciated that zone controller 247 can control
the WMAs and sets of WMAs simultaneously using a
multiple-input, multiple-output controller instead of control-
ling the WMASs and sets of WMASs sequentially.

FIG. 11 1s a block diagram showing one example of an
operator interface controller 231. In an 1llustrated example,
operator interface controller 231 includes operator nput
command processing system 654, other controller interac-
tion system 656, speech processing system 658, and action
signal generator 660. Operator mput command processing
system 654 1ncludes speech handling system 662, touch
gesture handling system 664, and other items 666. Other
controller interaction system 656 includes controller input
processing system 668 and controller output generator 670.
Speech processing system 658 1includes trigger detector 672,
recognition component 674, synthesis component 676, natu-
ral language understanding system 678, dialog management
system 680, and other items 682. Action signal generator
660 includes wvisual control signal generator 684, audio
control signal generator 686, haptic control signal generator
688, and other items 690. Belore describing operation of the
example operator 1nterface controller 231 shown 1n FIG. 11
in handling various operator interface actions, a brief
description of some of the items 1n operator interface
controller 231 and the associated operation thereof 1s first
provided.

Operator mput command processing system 654 detects
operator 1nputs on operator interface mechanisms 218 and
processes those mnputs for commands. Speech handling
system 662 detects speech inputs and handles the interac-
tions with speech processing system 638 to process the
speech mputs for commands. Touch gesture handling system
664 detects touch gestures on touch sensitive elements 1n
operator interface mechanisms 218 and processes those
inputs for commands.

Other controller 1nteraction system 656 handles 1nterac-
tions with other controllers 1n control system 214. Controller
input processing system 668 detects and processes inputs
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from other controllers 1n control system 214, and controller
output generator 670 generates outputs and provides those
outputs to other controllers 1n control system 214. Speech
processing system 658 recognizes speech iputs, determines
the meaning of those mputs, and provides an output indica-
tive ol the meaning of the spoken imputs. For instance,
speech processing system 658 may recognize a speech input
from operator 260 as a settings change command in which
operator 260 1s commanding control system 214 to change
a setting for a controllable subsystem 216. In such an
example, speech processing system 638 recognizes the con-
tent of the spoken command, i1dentifies the meaning of that
command as a settings change command, and provides the
meaning of that input back to speech handling system 662.
Speech handling system 662, in turn, interacts with control-
ler output generator 670 to provide the commanded output
to the appropriate controller 1n control system 214 to accom-
plish the spoken settings change command.

Speech processing system 658 may be invoked in a
variety ol different ways. For instance, in one example,
speech handling system 662 continuously provides an 1nput
from a microphone (being one of the operator interface
mechanisms 218) to speech processing system 658. The
microphone detects speech from operator 260, and the
speech handling system 662 provides the detected speech to
speech processing system 6358. Trigger detector 672 detects
a trigger indicating that speech processing system 658 1is
invoked. In some instances, when speech processing system
658 1s recerving continuous speech inputs from speech
handling system 662, speech recognition component 674
performs continuous speech recognition on all speech spo-
ken by operator 260. In some instances, speech processing
system 638 1s configured for invocation using a wakeup
word. That 1s, 1n some instances, operation of speech pro-
cessing system 658 may be 1nitiated based on recognition of
a selected spoken word, referred to as the wakeup word. In
such an example, where recognition component 674 recog-
nizes the wakeup word, the recognition component 674
provides an indication that the wakeup word has been
recognized to trigger detector 672. Trigger detector 672
detects that speech processing system 638 has been invoked
or triggered by the wakeup word. In another example,
speech processing system 658 may be invoked by an opera-
tor 260 actuating an actuator on a user interface mechanism,
such as by touching an actuator on a touch sensitive display
screen, by pressing a button, or by providing another trig-
gering mput. In such an example, trigger detector 672 can
detect that speech processing system 638 has been imnvoked
when a triggering input via a user interface mechanism 1s
detected. Trigger detector 672 can detect that speech pro-
cessing system 638 has been invoked 1n other ways as well.

Once speech processing system 658 i1s invoked, the
speech input from operator 260 1s provided to speech
recognition component 674. Speech recognition component
674 recognizes linguistic elements 1n the speech nput, such
as words, phrases, or other linguistic units. Natural language
understanding system 678 i1dentifies a meaning of the rec-
ognized speech. The meaning may be a natural language
output, a command output identifying a command reflected
in the recogmzed speech, a value output 1dentifying a value
in the recogmized speech, or any of a wide varniety of other
outputs that retlect the understanding of the recognized
speech. For example, the natural language understanding
system 678 and speech processing system 368, more gen-
erally, may understand of the meaming of the recognized
speech 1n the context of agricultural harvester 100.
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In some examples, speech processing system 658 can also
generate outputs that navigate operator 260 through a user
experience based on the speech input. For instance, dialog
management system 680 may generate and manage a dialog
with the user in order to identify what the user wishes to do.
The dialog may disambiguate a user’s command; 1dentily
one or more specific values that are needed to carry out the
user’s command; or obtain other information from the user
or provide other information to the user or both. Synthesis
component 676 may generate speech synthesis which can be
presented to the user through an audio operator interface
mechanism, such as a speaker. Thus, the dialog managed by
dialog management system 680 may be exclusively a spoken
dialog or a combination of both a visual dialog and a spoken
dialog.

Action signal generator 660 generates action signals to
control operator interface mechanisms 218 based upon out-
puts from one or more of operator mput command process-
ing system 654, other controller interaction system 656, and
speech processing system 658. Visual control signal genera-
tor 684 generates control signals to control visual 1tems in
operator interface mechanisms 218. The visual 1items may be
lights, a display screen, warning indicators, or other visual
items. Audio control signal generator 686 generates outputs
that control audio elements of operator interface mecha-
nisms 218. The audio elements include a speaker, audible
alert mechanisms, horns, or other audible elements. Haptic
control signal generator 688 generates control signals that
are output to control haptic elements of operator interface
mechanisms 218. The haptic elements include vibration
clements that may be used to vibrate, for example, the
operator’s seat, the steering wheel, pedals, or joysticks used
by the operator. The haptic elements may include tactile
teedback or force feedback elements that provide tactile
teedback or force feedback to the operator through operator
interface mechanisms. The haptic elements may include a
wide variety of other haptic elements as well.

FI1G. 12 1s a flow diagram illustrating one example of the
operation of operator interface controller 231 1n generating
an operator intertace display on an operator iterface mecha-
nism 218, which can include a touch sensitive display
screen. FIG. 12 also illustrates one example of how operator
interface controller 231 can detect and process operator
interactions with the touch sensitive display screen.

At block 692, operator interface controller 231 recerves a
map. Block 694 indicates an example in which the map 1s a
functional predictive map, and block 696 indicates an
example 1 which the map 1s another type of map. At block
698, operator 1nterface controller 231 receives an input from
geographic position sensor 204 1dentifying the geographic
location of the agricultural harvester 100. As indicated 1n
block 700, the mput from geographic position sensor 204
can 1nclude the heading, along with the location, of agricul-
tural harvester 100. Block 702 indicates an example in
which the mput from geographic position sensor 204
includes the speed of agricultural harvester 100, and block
704 indicates an example in which the mput from geo-
graphic position sensor 204 includes other items.

At block 706, visual control signal generator 684 1n
operator interface controller 231 controls the touch sensitive
display screen in operator interface mechanisms 218 to
generate a display showing all or a portion of a field
represented by the received map. Block 708 indicates that
the displayed field can include a current position marker
showing a current position of the agricultural harvester 100
relative to the field. Block 710 indicates an example in
which the displayed field includes a next work unit marker
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that 1dentifies a next work unit (or area on the field) 1n which
agricultural harvester 100 will be operating. Block 712
indicates an example in which the displayed field includes
an upcoming area display portion that displays areas that are
yet to be processed by agricultural harvester 100, and block
714 1ndicates an example i which the displayed field
includes previously visited display portions that represent
areas ol the field that agricultural harvester 100 has already
processed. Block 716 indicates an example in which the
displayed field displays various characteristics of the field
having georeferenced locations on the map. For instance, 1
the received map 1s a cut height characteristic map, such as
predictive cut height characteristic map 1360, the displayed
field may show the different cut height characteristics exist-
ing in the field georeferenced within the displayed field. The
mapped characteristics can be shown in the previously
visited areas (as shown in block 714), 1n the upcoming areas
(as shown 1n block 712), and 1n the next work unit (as shown
in block 710). Block 718 indicates an example 1n which the
displayed field includes other 1items as well.

FIG. 13 15 a pictorial illustration showing one example of
a user interface display 720 that can be generated on a touch
sensitive display screen. In other implementations, the user
interface display 720 may be generated on other types of
displays. The touch sensitive display screen may be mounted
in the operator compartment of agricultural harvester 100 or
on the mobile device or elsewhere. User interface display
720 will be described prior to continuing with the descrip-
tion of the flow diagram shown in FIG. 12.

In the example shown 1n FIG. 13, user interface display
720 1llustrates that the touch sensitive display screen
includes a display feature for operating a microphone 722
and a speaker 724. Thus, the touch sensitive display may be
communicably coupled to the microphone 722 and the
speaker 724. Block 726 indicates that the touch sensitive
display screen can include a wide variety of user interface
control actuators, such as buttons, keypads, soit keypads,
links, 1cons, switches, etc. The operator 260 can actuator the
user interface control actuators to perform various functions.

In the example shown i FIG. 13, user interface display
720 1includes a field display portion 728 that displays at least
a portion of the field 1n which the agricultural harvester 100
1s operating. The field display portion 728 1s shown with a
current position marker 708 that corresponds to a current
position of agricultural harvester 100 1n the portion of the
field shown 1n field display portion 728. In one example, the
operator may control the touch sensitive display 1n order to
zoom 1nto portions of field display portion 728 or to pan or
scroll the field display portion 728 to show different portions
of the field. A next work unit 730 1s shown as an area of the
field directly in front of the current position marker 708 of
agricultural harvester 100. The current position marker 708
may also be configured to 1dentity the direction of travel of
agricultural harvester 100, a speed of travel of agricultural
harvester 100 or both. In FIG. 13, the shape of the current
position marker 708 provides an indication as to the orien-
tation of the agricultural harvester 100 within the field which
may be used as an 1ndication of a direction of travel of the
agricultural harvester 100.

The size of the next work unit 730 marked on field display
portion 728 may vary based upon a wide variety of diflerent
criteria. For instance, the size of next work unit 730 may
vary based on the speed of travel of agricultural harvester
100. Thus, when the agricultural harvester 100 1s traveling
taster, then the area of the next work umit 730 may be larger
than the area of next work unit 730 1f agricultural harvester
100 1s traveling more slowly. In another example, the size of
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the next work unit 730 may vary based on the dimensions of
the agricultural harvester 100, including equipment on agri-
cultural harvester 100 (such as header 102). For example,
the width of the next work unit 730 may vary based on a
width of header 102. Field display portion 728 1s also shown
displaying previously visited area 714 and upcoming areas
712. Previously visited areas 714 represent areas that are
already harvested while upcoming areas 712 represent areas
that still need to be harvested. The field display portion 728
1s also shown displaying different characteristics of the field.
In the example illustrated in FIG. 13, the map that 1s being
displayed 1s a predictive cut height characteristic map, such
as functional predictive cut height characteristic map 1360.
Therefore, a plurality of cut characteristic markers are
displayed on field display portion 728. There are a set of cut
height characteristic display markers 732 shown in the
already visited areas 714. There are also a set of cut height
characteristic display markers 732 shown in the upcoming
areas 712, and there are a set of cut height characteristic
display markers 732 shown 1n the next work unit 730. FIG.
13 shows that the cut characteristic display markers 732 are
made up of different symbols that indicate an area of similar
header characteristic values. In the example shown 1 FIG.
13, the ! symbol represents areas of high cut height; the *
symbol represents areas of 1deal cut height; and the #symbol
represents an area of low cut height.

Thus, the field display portion 728 shows diflerent mea-
sured or predicted values (or characteristics indicated by the
values) that are located at different areas within the field and
represents those measured or predicted values (or charac-
teristics indicated by or derived from the values) with a
variety of display markers 732. As shown, the field display
portion 728 includes display markers, particularly cut height
characteristic display markers 732 1n the illustrated example
of FIG. 13, at particular locations associated with particular
locations on the field being displayed. In some instances,
cach location of the field may have a display marker
associated therewith. Thus, in some 1instances, a display
marker may be provided at each location of the field display
portion 728 to identily the nature of the characteristic being,
mapped for each particular location of the field. Conse-
quently, the present disclosure encompasses providing a
display marker, such as the cut height characteristic display
marker 732 (as in the context of the present example of FIG.
13), at one or more locations on the field display portion 728
to 1dentify the nature, degree, etc., of the characteristic being
displayed, thereby identifying the characteristic at the cor-
responding location 1 the field bemng displayed. As
described earlier, the display markers 732 may be made up
of different symbols, and, as described below, the symbols
may be any display feature such as diflerent colors, shapes,
patterns, intensities, text, icons, or other display features.

In other examples, the map being displayed may be one
or more of the maps described herein, including information
maps, prior information maps, the functional predictive
maps, such as predictive maps or predictive control zone
maps, other predictive maps, or a combination thereof. Thus,
the markers and characteristics being displayed will corre-
late to the information, data, characteristics, and values
provided by the one or more maps being displayed.

In the example of FIG. 13, user interface display 720 also
has a control display portion 738. Control display portion
738 allows the operator to view mformation and to interact
with user interface display 720 1n various ways.

The actuators and display markers 1n portion 738 may be
displayed as, for example, individual items, fixed lists,
scrollable lists, drop down menus, or drop down lists. In the
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example shown i FIG. 13, display portion 738 shows
information for the three diflerent cut height categories that
correspond to the three symbols mentioned above. Display
portion 738 also includes a set of touch sensitive actuators
with which the operator 260 can interact by touch. For
example, the operator 260 may touch the touch sensitive
actuators with a finger to activate the respective touch
sensitive actuator. As shown, display portion 738 also
includes a number of 1nteractive tabs, such as cut height tab
762, cut height variability tab 764, and other tab 770.
Activating one of the tabs can modily which values are
displayed 1n portions 728 and 738. For instance, as shown,
cut height tab 762 1s activated, and, thus, the values mapped
on portion 728 and shown in portion 738 correspond to cut
height values of agricultural harvester 100. When the opera-
tor 260 touches the tab 764, touch gesture handling system
664 updates portion 728 and 738 to display characteristics
relating to cut height variability values of agricultural har-
vester 100. When the operator 260 touches the tab 770,
touch gesture handling system 664 updates portion 728 and
738 to display other cut height characteristics relating to
agricultural harvester 100, such as header height or header
height variability.

As shown 1n FIG. 13, display portion 738 includes an
interactive flag display portion, indicated generally at 741.
Interactive flag display portion 741 includes a flag column
739 that shows flags that have been automatically or manu-
ally set. Flag actuator 740 allows operator 260 to mark a
location, such as the current location of the agricultural
harvester, or another location on the field designated by the
operator and add information indicating the characteristic,
such as cut height characteristics (e.g., cut height, cut height
variability, etc.), found at the current location. For instance,
when the operator 260 actuates the flag actuator 740 by
touching the tlag actuator 740, touch gesture handling sys-
tem 664 1n operator interface controller 231 identifies the
current location as one where agricultural harvester 100 had
high cut height. When the operator 260 touches the button
742, touch gesture handling system 664 identifies the current
location as a location where agricultural harvester 100 had
ideal cut height. When the operator 260 touches the button
744, touch gesture handling system 664 1dentifies the current
location as a location where agricultural harvester 100 had
low cut height. Upon actuation of one of the tlag actuators
740, 742, or 744, touch gesture handling system 664 can
control visual control signal generator 684 to add a symbol
corresponding to the identified characteristic on field display
portion 728 at a location the user 1dentifies. In this way, areas
of the field where the predicted value did not accurately
represent an actual value can be marked for later analysis,
and can also be used 1n machine learning. In other examples,
the operator may designate areas ahead of or around the
agricultural harvester 100 by actuating one of the flag
actuators 740, 742, or 744 such that control of the agricul-
tural harvester 100 can be undertaken based on the value
designated by the operator 260.

Display portion 738 also includes an interactive marker
display portion, indicated generally at 743. Interactive
marker display portion 743 includes a symbol column 746
that displays the symbols corresponding to each category of
values or characteristics (in the case of FIG. 13, cut height
characteristic) that 1s being tracked on the field display
portion 728. Display portion 738 also includes an interactive
designator display portion, indicated generally at 745. Inter-
active designator display portion 745 includes a designator
column 748 that shows the designator (which may be a
textual designator or other designator) identifying the cat-
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egory ol values or characteristics (in the case of FIG. 13,
header characteristic). Without limitation, the symbols in
symbol column 746 and the designators in designator col-
umn 748 can include any display feature such as different
colors, shapes, patterns, intensities, text, icons, or other
display features, and can be customizable by interaction of
an operator of agricultural harvester 100.

Display portion 738 also includes an interactive value
display portion, indicated generally at 747. Interactive value
display portion 747 includes a value display column 750 that
C

1splays selected values. The selected values correspond to
the characteristics or values being tracked or displayed, or
both, on field display portion 728. The selected values can
be selected by an operator of the agricultural harvester 100.
The selected values 1n value display column 750 define a
range of values or a value by which other values, such as
predicted values, are to be classified. Thus, 1n the example
in FIG. 13, a predicted or measured cut height meeting or
greater than 18 inches 1s classified as “high cut height”, a
predicted or measured cut height meeting 12 inches 1s
classified as “ideal cut height”, and a predicted or measured
cut height meeting or less than 6 inches 1s classified as “low
cut height.” In some examples, the selected values may
include a range, such that a predicted or measured value that
1s within the range of the selected value will be classified
under the corresponding designator. For example, “i1deal cut
height”, for instance, could include a range, such as 11-12
inches such that a measured or predicted cut height value
talling within the range of 11-12 inches 1s classified as “ideal
cut height”. The selected values 1n value display column 750
are adjustable by an operator of agricultural harvester 100.
In one example, the operator 260 can select the particular
part of field display portion 728 for which the values in
column 750 are to be displayed. Thus, the values in column
750 can correspond to values 1n display portions 712, 714 or
730.

Display portion 738 also includes an interactive threshold
display portion, indicated generally at 749. Interactive
threshold display portion 749 includes a threshold value
display column 752 that displays action threshold values.
Action threshold values i column 752 may be threshold
values corresponding to the selected values 1n value display
column 750. I the predicted or measured values of charac-
teristics being tracked or displayed, or both, satisty the
corresponding action threshold values in threshold value
display column 752, then control system 214 takes one or
more actions identified 1n column 754. In some 1nstances, a
measured or predicted value may satisty a corresponding,
action threshold value by meeting or exceeding the corre-
sponding action threshold value. In one example, operator
260 can select a threshold value, for example, 1 order to
change the threshold value by touching the threshold value
in threshold value display column 7352. Once selected, the
operator 260 may change the threshold value. The threshold
values 1n column 752 can be configured such that the
designated action 1s performed when the measured or pre-
dicted value of the characteristic exceeds the threshold
value, equals the threshold value, or 1s less than the threshold
value. In some 1nstances, the threshold value may represent
a range of values, or range of deviation from the selected
values 1n value display column 7350, such that a predicted or
measured characteristic value that meets or falls within the
range satisfies the threshold value. For instance, in the
example of header characteristics, a predicted cut height
value that falls within 2 inches of 18 inches will satisty the
corresponding action threshold value (of within 2 inches of
18 1inches) and an action, such as adjusting the header
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position setting, adjusting the sensitivity setting, or adjusting
the header ground pressure setting of the agricultural har-
vester will be taken by control system 214. In other
examples, the threshold values 1n column threshold value
display column 752 are separate from the selected values 1n
value display column 750, such that the values 1n value
display column 750 define the classification and display of
predicted or measured values, while the action threshold
values define when an action 1s to be taken based on the
measured or predicted values. For example, while a pre-
dicted or measured cut height of 6 inches may be designated
as “low cut height” for purposes of classification and dis-
play, the action threshold value may be 8 inches such that no
action will be taken until the predicted or measured cut
height satisfies the threshold value. In other examples, the
threshold values 1n threshold value display column 752 may
include distances or times. For instance, 1n the example of a
distance, the threshold value may be a threshold distance
from the area of the field where the measured or predicted
value 1s georeferenced that the agricultural harvester 100
must be before an action 1s taken. For example, a threshold
distance value of 5 feet would mean that an action will be
taken when the agricultural harvester 1s at or within 5 feet of
the area of the field where the measured or predicted value
1s georeferenced. In an example where the threshold value 1s
time, the threshold value may be a threshold time for the
agricultural harvester 100 to reach the area of the field where
the measured or predictive value 1s georeferenced. For
instance, a threshold value of 5 seconds would mean that an
action will be taken when the agricultural harvester 100 1s 5
seconds away from the area of the field where the measured
or predicted value 1s georeferenced. In such an example, the
current location and travel speed of the agricultural harvester
can be accounted for.

Display portion 738 also includes an interactive action
display portion, indicated generally at 751. Interactive action
display portion 751 includes an action display column 754
that displays action identifiers that indicate actions to be
taken when a predicted or measured value satisfies an action
threshold value in threshold value display column 752.
Operator 260 can touch the action 1dentifiers 1n column 754
to change the action that 1s to be taken. When a threshold 1s
satisfied, an action may be taken. For instance, at the bottom
of column 754, an adjust header position setting (such as a
height setting, a pitch setting, or a roll setting), an adjust
sensitivity setting, and an adjust ground pressure setting are
identified as actions that will be taken 11 the measured or
predicted value meets the threshold value 1n column 752. In
some examples, when a threshold 1s met, multiple actions
may be taken. For mstance, a header sensitivity setting may
be adjusted (such as increased or decreased) and the ground
pressure setting may be adjusted (such as increased or
decreased). These are merely some examples.

The actions that can be set in column 754 can be any of
a wide variety of different types of actions. For example, the
actions can include a keep out action which, when executed,
inhibits agricultural harvester 100 from further harvesting 1n
an area. The actions can include a speed change action
which, when executed, changes the travel speed of agricul-
tural harvester 100 through the field. The actions can include
a setting change action for changing a setting of an internal
actuator or another WMA or set of WMAs or for imple-
menting a settings change action that changes a setting, such
as one or more header settings, such as a header position
setting, a header sensitivity setting, and a header ground
pressure setting. These are examples only, and a wide variety
of other actions are contemplated herein.
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The 1tems shown on user interface display 720 can be
visually controlled. Visually controlling the interface display
720 may be performed to capture the attention of operator
260. For instance, the 1tems can be controlled to modify the
intensity, color, or pattern with which the items are dis-
played. Additionally, the items may be controlled to flash.
The described alterations to the visual appearance of the
items are provided as examples. Consequently, other aspects
of the wvisual appearance of the 1tems may be altered.
Theretore, the items can be modified under various circum-
stances 1n a desired manner 1n order, for example, to capture
the attention of operator 260. Additionally, while a particular
number of i1tems are shown on user interface display 720,
this need not be the case. In other examples, more or less
items, including more or less of a particular item can be
included on user interface display 720.

Returming now to the flow diagram of FIG. 12, the
description of the operation of operator interface controller
231 continues. At block 760, operator interface controller
231 detects an input setting a flag and controls the touch
sensitive user interface display 720 to display the flag on
field display portion 728. The detected input may be an
operator input, as indicated at 762, or an iput from another
controller, as indicated at 764. At block 766, operator
interface controller 231 detects an in-situ sensor 1nput
indicative of a measured characteristic of the field from one
of the 1n-situ sensors 208. At block 768, visual control signal
generator 684 generates control signals to control user
interface display 720 to display actuators for moditying user
interface display 720 and for modifying machine control.
For instance, block 770 represents that one or more of the
actuators for setting or modifying the values 1n columns 739,
746, and 748 can be displayed. Thus, the user can set flags
and modily characteristics of those flags. Block 772 repre-
sents that action threshold values 1 column 7352 are dis-
played. Block 776 represents that the actions 1n column 754
are displayed, and block 778 represents that the selected
values 1n column 750 are displayed. Block 780 indicates that
a wide variety of other information and actuators can be
displayed on user interface display 720 as well.

At block 782, operator input command processing system
654 detects and processes operator inputs corresponding to

10

15

20

25

30

35

40

52

generator 660 can, 1n response to recerving an alert condi-
tion, alert the operator 260 by using visual control signal
generator 684 to generate visual alerts, by using audio
control signal generator 686 to generate audio alerts, by
using haptic control signal generator 688 to generate haptic
alerts, or by using any combination of these. Similarly, as
indicated by block 796, controller output generator 670 can
generate outputs to other controllers 1n control system 214
so that those controllers perform the corresponding action
identified 1 column 754. Block 798 shows that operator
interface controller 231 can detect and process alert condi-
tions 1n other ways as well.

Block 900 shows that speech handling system 662 may
detect and process mputs invoking speech processing system
658. Block 902 shows that performing speech processing
may include the use of dialog management system 680 to
conduct a dialog with the operator 260. Block 904 shows
that the speech processing may include providing signals to
controller output generator 670 so that control operations are
automatically performed based upon the speech inputs.

Table 1, below, shows an example of a dialog between
operator interface controller 231 and operator 260. In Table
1, operator 260 uses a trigger word or a wakeup word that
1s detected by trigger detector 672 to invoke speech pro-

cessing system 638. In the example shown 1n Table 1, the
wakeup word 1s “Johnny™.

TABLE 1

Operator: “Johnny, tell me about current cut height characteristics”
Operator Interface Controller: “Cut height 1s currently high.”
Operator: “Johnny, what should I do because of the cut height?”

Operator Interface Controller: “Adjust header sensitivity setting.”

Table 2 shows an example in which speech synthesis
component 676 provides an output to audio control signal
generator 686 to provide audible updates on an intermittent
or periodic basis. The interval between updates may be
time-based, such as every five minutes, or coverage or
distance-based, such as every five acres, or exception-based,
such as when a measured value 1s greater than a threshold
value.

TABL.

L1l

2

Operator Interface Controller: “Over last 10 seconds, cut height has varied beyond
ideal cut height.”

Operator Interface Controller: “Next 1 acre predicted cut height 1s low.”

Operator Interface Controller: “Caution: upcoming change in slope, header height
increased.”

interactions with the user interface display 720 performed by
the operator 260. Where the user interface mechanism on
which user interface display 720 1s displayed 1s a touch
sensitive display screen, interaction inputs with the touch
sensitive display screen by the operator 260 can be touch
gestures 784. In some instances, the operator interaction
inputs can be mputs using a point and click device 786 or
other operator interaction inputs 788.

At block 790, operator interface controller 231 receives
signals indicative of an alert condition. For instance, block
792 1ndicates that signals may be received by controller
input processing system 668 indicating that detected or
predicted values satisly threshold conditions present in
column 752. As explained earlier, the threshold conditions
may include values being below a threshold, at a threshold,
or above a threshold. Block 794 shows that action signal
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The example shown in Table 3 illustrates that some
actuators or user input mechanisms on the touch sensitive
display 720 can be supplemented with speech dialog. The
example 1n Table 3 illustrates that action signal generator
660 can generate action signals to automatically mark a cut
height characteristic area in the field being harvested.

TABLE 3

Human: “Johnny, mark high cut height varability area.”
Operator Interface Controller: “High cut height varability area marked.”

The example shown 1n Table 4 illustrates that action
signal generator 660 can conduct a dialog with operator 260
to begin and end marking of a cut height characteristic area.
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TABLE 4

Human: “Johnny, start marking high cut height area.”
Operator Interface Controller: “Marking high cut height area.”
Human: “Johnny, stop marking high cut height area.”

Operator Interface Controller: “High cut height area marking stopped.”

The example shown in Table 5 illustrates that action
signal generator 160 can generate signals to mark a cut
height characteristic area in a different way than those shown

in Tables 3 and 4.

TABLE 5

Human: “Johnny, mark the last 100 feet as a low cut height area.”
Operator Interface Controller:

Returming again to FIG. 12, block 906 illustrates that
operator interface controller 231 can detect and process
conditions for outputting a message or other information 1n
other ways as well. For instance, other controller interaction
system 656 can detect inputs from other controllers indicat-
ing that alerts or output messages should be presented to
operator 260. Block 908 shows that the outputs can be audio
messages. Block 910 shows that the outputs can be visual
messages, and block 912 shows that the outputs can be
haptic messages. Until operator interface controller 231
determines that the current harvesting operation 1s com-
pleted, as indicated by block 914, processing reverts to block
698 where the geographic location of harvester 100 1s
updated and processing proceeds as described above to
update user interface display 720.

Once the operation 1s complete, then any desired values
that are displayed, or have been displayed on user interface
display 720, can be saved. Those values can also be used 1n
machine learning to improve different portions of predictive
model generator 210, predictive map generator 212, control
zone generator 213, control algorithms, or other items.
Saving the desired values 1s indicated by block 916. The
values can be saved locally on agricultural harvester 100, or
the values can be saved at a remote server location or sent
to another remote system.

It can thus be seen that one or more maps are obtained by
an agricultural harvester that show agricultural characteristic
values at different geographic locations of a field being
harvested. An in-situ sensor on the harvester senses a
characteristic that has values indicative of a cut height
characteristic as the agricultural harvester moves through the
field. A predictive map generator generates a predictive map
that predicts control values for different locations in the field
based on the values of the agricultural characteristic 1n the
map and the agricultural characteristic sensed by the in-situ
sensor. A control system controls controllable subsystem
based on the control values 1n the predictive map.

A control value 1s a value upon which an action can be
based. A control value, as described herein, can include any
value (or characteristics indicated by or derived from the
value) that may be used in the control of agricultural
harvester 100. A control value can be any value indicative of
an agricultural characteristic. A control value can be a
predicted value, a measured value, or a detected value. A
control value may include any of the values provided by a
map, such as any of the maps described herein, for instance,
a control value can be a value provided by an information
map, a value provided by prior information map, or a value
provided predictive map, such as a functional predictive
map. A control value can also 1include any of the character-
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istics 1ndicated by or derived from the values detected by
any of the sensors described herein. In other examples, a
control value can be provided by an operator of the agri-
cultural machine, such as a command input by an operator
of the agricultural machine.

The present discussion has mentioned processors and
servers. In some examples, the processors and servers
include computer processors with associated memory and
timing circuitry, not separately shown. The processors and
servers are functional parts of the systems or devices to

which the processors and servers belong and are activated by
and facilitate the functionality of the other components or

items 1n those systems.
Also, a number of user interface displays have been

L ] e

discussed. The displays can take a wide varniety of different
forms and can have a wide variety of diflerent user actu-
atable operator interface mechanisms disposed thereon. For
instance, user actuatable operator interface mechanisms may
include text boxes, check boxes, icons, links, drop-down
menus, search boxes, etc. The user actuatable operator
interface mechanisms can also be actuated in a wide variety
of different ways. For instance, the user actuatable operator
interface mechanisms can be actuated using operator inter-
face mechanisms such as a point and click device, such as
a track ball or mouse, hardware buttons, switches, a joystick
or keyboard, thumb switches or thumb pads, etc., a virtual
keyboard or other virtual actuators. In addition, where the
screen on which the user actuatable operator interface
mechanisms are displayed 1s a touch sensitive screen, the
user actuatable operator interface mechanisms can be actu-
ated using touch gestures. Also, user actuatable operator
interface mechanisms can be actuated using speech com-
mands using speech recognition functionality. Speech rec-
ognition may be implemented using a speech detection
device, such as a microphone, and software that functions to
recognize detected speech and execute commands based on
the received speech.

A number of data stores have also been discussed. It will
be noted the data stores can each be broken into multiple
data stores. In some examples, one or more of the data stores
may be local to the systems accessing the data stores, one or
more of the data stores may all be located remote form a
system utilizing the data store, or one or more data stores
may be local while others are remote. All of these configu-
rations are contemplated by the present disclosure.

Also, the figures show a number of blocks with function-
ality ascribed to each block. It will be noted that fewer
blocks can be used to illustrate that the functionality
ascribed to multiple different blocks 1s performed by fewer
components. Also, more blocks can be used 1illustrating that
the functionality may be distributed among more compo-
nents. In different examples, some functionality may be
added, and some may be removed.

It will be noted that the above discussion has described a
variety of different systems, components, logic, and inter-
actions. It will be appreciated that any or all of such systems,
components, logic and interactions may be implemented by
hardware items, such as processors, memory, or other pro-
cessing components, mcluding but not limited to artificial
intelligence components, such as neural networks, some of
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which are described below, that perform the functions asso-
ciated with those systems, components, logic, or interac-
tions. In addition, any or all of the systems, components,
logic and 1nteractions may be implemented by software that
1s loaded into a memory and 1s subsequently executed by a
processor or server or other computing component, as
described below. Any or all of the systems, components,
logic and interactions may also be implemented by different
combinations of hardware, software, firmware, etc., some
examples of which are described below. These are some
examples of different structures that may be used to 1mple-
ment any or all of the systems, components, logic and
interactions described above. Other structures may be used
as well.

FIG. 14 15 a block diagram of agricultural harvester 600,
which may be similar to agricultural harvester 100 shown 1n
FIG. 2. The agricultural harvester 600 communicates with
clements 1 a remote server architecture 500. In some
examples, remote server architecture 300 provides compu-
tation, soltware, data access, and storage services that do not
require end-user knowledge of the physical location or
configuration of the system that delivers the services. In
various examples, remote servers may deliver the services
over a wide area network, such as the internet, using
appropriate protocols. For instance, remote servers may
deliver applications over a wide area network and may be
accessible through a web browser or any other computing
component. Software or components shown in FIG. 2 as
well as data associated therewith, may be stored on servers
at a remote location. The computing resources 1n a remote
server environment may be consolidated at a remote data
center location, or the computing resources may be dis-
persed to a plurality of remote data centers. Remote server
infrastructures may deliver services through shared data
centers, even though the services appear as a single point of
access for the user. Thus, the components and functions
described herein may be provided from a remote server at a
remote location using a remote server architecture. Alterna-
tively, the components and functions may be provided from
a server, or the components and functions can be 1nstalled on
client devices directly, or 1n other ways.

In the example shown i FIG. 14, some 1tems are similar
to those shown in FIG. 2 and those items are similarly
numbered. FIG. 14 specifically shows that predictive model
generator 210 or predictive map generator 212, or both, may
be located at a server location 502 that 1s remote from the
agricultural harvester 600. Therefore, in the example shown
in FIG. 14, agricultural harvester 600 accesses systems
through remote server location 502.

FIG. 14 also depicts another example of a remote server
architecture. FIG. 14 shows that some elements of FIG. 2
may be disposed at a remote server location 502 while others
may be located elsewhere. By way of example, data store
202 may be disposed at a location separate from location 502
and accessed via the remote server at location 502. Regard-
less of where the elements are located, the elements can be
accessed directly by agricultural harvester 600 through a
network such as a wide area network or a local area network;
the elements can be hosted at a remote site by a service; or
the elements can be provided as a service or accessed by a
connection service that resides 1n a remote location. Also,
data may be stored 1n any location, and the stored data may
be accessed by, or forwarded to, operators, users, or systems.
For instance, physical carriers may be used instead of, or in
addition to, electromagnetic wave carriers. In some
examples, where wireless telecommunication service cov-
erage 1s poor or nonexistent, another machine, such as a fuel
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truck or other mobile machine or vehicle, may have an
automated, semi-automated, or manual information collec-
tion system. As the combine harvester 600 comes close to
the machine containing the information collection system,
such as a fuel truck prior to fueling, the information collec-
tion system collects the information from the combine
harvester 600 using any type of ad-hoc wireless connection.
The collected information may then be forwarded to another
network when the machine contaiming the received infor-
mation reaches a location where wireless telecommunica-
tion service coverage or other wireless coverage—is avail-
able. For instance, a fuel truck may enter an area having
wireless communication coverage when traveling to a loca-
tion to tuel other machines or when at a main fuel storage
location. All of these architectures are contemplated herein.
Further, the information may be stored on the agricultural
harvester 600 until the agricultural harvester 600 enters an
area having wireless communication coverage. The agricul-
tural harvester 600, itself, may send the information to
another network.

It will also be noted that the elements of FIG. 2, or
portions thereol, may be disposed on a wide variety of
different devices. One or more of those devices may include
an on-board computer, an electronic control unit, a display
unit, a server, a desktop computer, a laptop computer, a
tablet computer, or other mobile device, such as a palm top
computer, a cell phone, a smart phone, a multimedia player,
a personal digital assistant, etc.

In some examples, remote server architecture 500 may
include cybersecurity measures. Without limitation, these
measures may include encryption of data on storage devices,
encryption of data sent between network nodes, authentica-
tion of people or processes accessing data, as well as the use
of ledgers for recording metadata, data, data transiers, data
accesses, and data transformations. In some examples, the
ledgers may be distributed and immutable (e.g., 1mple-
mented as blockchain).

FIG. 15 1s a simplified block diagram of one 1illustrative
example of a handheld or mobile computing device that can
be used as a user’s or client’s hand held device 16, 1n which
the present system (or parts of 1t) can be deployed. For
instance, a mobile device can be deployed in the operator
compartment of agricultural harvester 100 for use 1n gener-
ating, processing, or displaying the maps discussed above.
FIGS. 16-17 are examples of handheld or mobile devices.

FIG. 15 provides a general block diagram of the compo-
nents of a client device 16 that can run some components
shown in FIG. 2, that interacts with them, or both. In the
device 16, a communications link 13 1s provided that allows
the handheld device to communicate with other computing
devices and under some examples provides a channel for
receiving information automatically, such as by scanning.
Examples of commumnications link 13 include allowing com-
munication though one or more communication protocols,
such as wireless services used to provide cellular access to
a network, as well as protocols that provide local wireless
connections to networks.

In other examples, applications can be received on a
removable Secure Diagital (SD) card that 1s connected to an
interface 15. Interface 15 and communication links 13
communicate with a processor 17 (which can also embody
processors or servers from other FIGS.) along a bus 19 that
1s also connected to memory 21 and input/output (I/0)
components 23, as well as clock 235 and location system 27.

I/O components 23, in one example, are provided to
tacilitate mnput and output operations. I/O components 23 for
various examples of the device 16 can include input com-
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ponents such as buttons, touch sensors, optical sensors,
microphones, touch screens, proximity sensors, accelerom-
eters, orientation sensors and output components such as a
display device, a speaker, and or a printer port. Other 1/0
components 23 can be used as well.

Clock 25 illustratively comprises a real time clock com-
ponent that outputs a time and date. It can also, 1llustratively,
provide timing functions for processor 17.

Location system 27 illustratively includes a component
that outputs a current geographical location of device 16.
This can include, for instance, a global positioning system
(GPS) recerver, a LORAN system, a dead reckoning system,
a cellular triangulation system, or other positioning system.
Location system 27 can also include, for example, mapping
soltware or navigation soitware that generates desired maps,
navigation routes and other geographic functions.

Memory 21 stores operating system 29, network settings
31, applications 33, application configuration settings 35,
data store 37, communication drivers 39, and communica-
tion configuration settings 41. Memory 21 can include all
types of tangible volatile and non-volatile computer-read-
able memory devices. Memory 21 may also include com-
puter storage media (described below). Memory 21 stores
computer readable mstructions that, when executed by pro-
cessor 17, cause the processor to perform computer-imple-
mented steps or functions according to the instructions.
Processor 17 may be activated by other components to
facilitate their functionality as well.

FIG. 16 shows one example in which device 16 1s a tablet
computer 600. In FIG. 16, computer 601 1s shown with user
interface display screen 602. Screen 602 can be a touch
screen or a pen-enabled interface that receives mputs from
a pen or stylus. Tablet computer 600 may also use an
on-screen virtual keyboard. Of course, computer 601 might
also be attached to a keyboard or other user mput device
through a suitable attachment mechanism, such as a wireless
link or USB port, for instance. Computer 601 may also
illustratively receive voice mputs as well.

FIG. 17 1s stmilar to FIG. 16 except that the device 1s a
smart phone 71. Smart phone 71 has a touch sensitive
display 73 that displays icons or tiles or other user input
mechanisms 75. Mechanisms 75 can be used by a user to run
applications, make calls, perform data transfer operations,
etc. In general, smart phone 71 1s built on a mobile operating
system and offers more advanced computing capability and
connectivity than a feature phone.

Note that other forms of the devices 16 are possible.

FIG. 18 1s one example of a computing environment in
which elements of FIG. 2 can be deployed. With reference
to FIG. 18, an example system for implementing some
embodiments includes a computing device in the form of a
computer 810 programmed to operate as discussed above.
Components of computer 810 may include, but are not
limited to, a processing unit 820 (which can comprise
processors or servers from previous FIGS.), a system
memory 830, and a system bus 821 that couples various
system components including the system memory to the
processing unit 820. The system bus 821 may be any of
several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. Memory and programs
described with respect to FIG. 2 can be deployed in corre-
sponding portions of FIG. 18.

Computer 810 typically includes a variety of computer
readable media. Computer readable media may be any
available media that can be accessed by computer 810 and
includes both volatile and nonvolatile media, removable and
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non-removable media. By way of example, and not limita-
tion, computer readable media may comprise computer
storage media and communication media. Computer storage
media 1s different from, and does not include, a modulated
data signal or carrier wave. Computer readable media
includes hardware storage media including both volatile and
nonvolatile, removable and non-removable media 1mple-
mented 1 any method or technology for storage of infor-
mation such as computer readable instructions, data struc-
tures, program modules or other data. Computer storage
media 1ncludes, but 1s not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computer 810. Communica-
tion media may embody computer readable instructions,
data structures, program modules or other data in a transport
mechanism and includes any information delivery media.
The term “modulated data signal” means a signal that has
one or more of its characteristics set or changed 1n such a
manner as to encode mformation 1n the signal.

The system memory 830 includes computer storage media
in the form of volatile and/or nonvolatile memory or both
such as read only memory (ROM) 831 and random access
memory (RAM) 832. A basic mput/output system 833
(BIOS), containing the basic routines that help to transfer
information between elements within computer 810, such as
during start-up, 1s typically stored in ROM 831. RAM 832
typically contains data or program modules or both that are
immediately accessible to and/or presently being operated
on by processing unit 820. By way of example, and not
limitation, FIG. 18 1illustrates operating system 834, appli-
cation programs 835, other program modules 836, and
program data 837.

The computer 810 may also include other removable/non-
removable volatile/nonvolatile computer storage media. By
way ol example only, FIG. 18 1llustrates a hard disk drive
841 that reads from or writes to non-removable, nonvolatile
magnetic media, an optical disk drive 8355, and nonvolatile
optical disk 856. The hard disk drive 841 1s typically
connected to the system bus 821 through a non-removable
memory interface such as interface 840, and optical disk
drive 855 are typically connected to the system bus 821 by
a removable memory interface, such as interface 850.

Alternatively, or 1n addition, the functionality described
herein can be performed, at least 1n part, by one or more
hardware logic components. For example, and without limi-
tation, 1llustrative types ol hardware logic components that
can be used include Field-programmable Gate Arrays (FP-
(GAs), Application-specific Integrated Circuits (e.g., ASICs),
Application-specific Standard Products (e.g., ASSPs), Sys-
tem-on-a-chip systems (SOCs), Complex Programmable
Logic Devices (CPLDs), etc.

The drives and their associated computer storage media
discussed above and illustrated in FIG. 18, provide storage
of computer readable instructions, data structures, program
modules and other data for the computer 810. In FIG. 18, for
example, hard disk drive 841 1s illustrated as storing oper-
ating system 844, application programs 845, other program
modules 846, and program data 847. Note that these com-
ponents can either be the same as or diflerent from operating
system 834, application programs 835, other program mod-
ules 836, and program data 837.

A user may enter commands and information into the
computer 810 through input devices such as a keyboard 862,
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a microphone 863, and a pointing device 861, such as a
mouse, trackball or touch pad. Other mput devices (not
shown) may include a joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often
connected to the processing unit 820 through a user input
interface 860 that 1s coupled to the system bus, but may be
connected by other interface and bus structures. A visual
display 891 or other type of display device 1s also connected
to the system bus 821 via an interface, such as a video
interface 890. In addition to the monitor, computers may
also 1include other peripheral output devices such as speakers
897 and printer 896, which may be connected through an
output peripheral interface 895.

The computer 810 1s operated 1n a networked environ-
ment using logical connections (such as a controller area
network—CAN, local area network—IL AN, or wide area
network WAN) to one or more remote computers, such as a
remote computer 880.

When used 1n a LAN networking environment, the com-
puter 810 1s connected to the LAN 871 through a network
interface or adapter 870. When used 1n a WAN networking
environment, the computer 810 typically includes a modem
872 or other means for establishing communications over
the WAN 873, such as the Internet. In a networked envi-
ronment, program modules may be stored in a remote
memory storage device. FIG. 18 illustrates, for example, that
remote application programs 885 can reside on remote
computer 880.

It should also be noted that the diflerent examples
described herein can be combined 1n different ways. That 1s,
parts of one or more examples can be combined with parts
ol one or more other examples. All of this 1s contemplated
herein.

Example 1 1s an agricultural work machine comprising:

a communication system that recerves a map that includes
values of a cut height characteristic corresponding to
different locations 1n a field;

a geographic position sensor that detects a geographic
location of the agricultural work machine;

an 1n-situ sensor that detects a value of an agricultural
characteristic corresponding to the geographic location;

a predictive map generator that generates a functional
predictive agricultural map of the field that maps pre-
dictive control values to the diflerent geographic loca-
tions 1n the field based on the values of the cut height
characteristic in the map and based on the value of the
agricultural characteristic;

a controllable subsystem; and

a control system that generates a control signal to control
the controllable subsystem based on the geographic
location of the agricultural work machine and based on
the control values 1n the functional predictive agricul-
tural map.

Example 2 1s the agricultural work machine of any or all
previous examples, wherein the map comprises a pre-
dictive cut height characteristic map that includes, as
values of the cut height characteristic, predictive values
of the cut height characteristic corresponding to the
different locations 1n the field.

Example 3 1s the agricultural work machine of any or all
previous examples, wherein the predictive map gen-
erator comprises:

a predictive agricultural characteristic map generator that
generates, as the functional predictive agricultural map,
a functional predictive agricultural characteristic map
that maps, as the predictive control values, predictive
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values of the agricultural characteristic to the di
geographic locations 1n the field.

Example 4 1s the agricultural work machine of any or all
previous examples, wherein the in-situ sensor detects,
as the value of the agricultural characteristic, a value of
an operator command indicative of a commanded
action of the agricultural work machine.

Example 5 1s the agricultural work machine of any or all
previous examples, wherein the predictive map gen-
erator comprises:

a predictive operator command map that generates, as the
functional predictive agricultural map, a functional
predictive operator command map that maps, as the
predictive control values, predictive operator command
values to the different geographic locations 1n the field.

Example 6 1s the agricultural work machine of any or all
previous examples, wherein the control system com-
Prises:

a settings controller that generates an operator command
control signal indicative of an operator command based
on the detected geographic location and the functional
predictive operator command map and controls the
controllable subsystem based on the operator command
control signal to execute the operator command.

Example 7 1s the agricultural work machine of any or all
previous examples, wherein the control system gener-
ates the control signal to control the controllable sub-
system to adjust a setting of a header on the agricultural
work machine.

Example 8 1s the agricultural work machine of any or all
previous examples and further comprising:

a predictive model generator that generates a predictive
agricultural model that models a relationship between
the cut height characteristic and the agricultural char-
acteristic based on a value of the cut height character-
1stic 1n the map at the geographic location and the value
of the agricultural characteristic detected by the n-situ
sensor corresponding to the geographic location,
wherein the predictive map generator generates the
functional predictive agricultural map based on the
values of the cut height characteristic in the map and
based on the predictive agricultural model.

Example 9 1s the agricultural work machine of any or all
previous examples, wherein the control system further
COMPrises:

an operator interface controller that generates a user
interface map representation of the functional predic-
tive agricultural map, the user interface map represen-
tation comprising a field portion with one or more
markers indicating the predictive control values at one
or more geographic locations on the field portion.

Example 10 1s the agricultural work machine of any or all
previous examples, wherein the operator interface con-
troller generates the user interface map representation
to include an 1nteractive display portion that displays a
value display portion indicative of a selected value, an
interactive threshold display portion indicative of an

action threshold, and an interactive action display por-
tion 1ndicative of a control action to be taken when one
of the predictive control values satisfies the action
threshold 1n relation to the selected value, the control
system generating the control signal to control the
controllable subsystem based on the control action.
Example 11 1s a computer implemented method of con-
trolling an agricultural work machine comprising:

‘erent
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obtaining a map that includes values of a cut height
characteristic corresponding to different geographic
locations 1n a field;

detecting a geographic location of the agricultural work
machine;

detecting, with an in-situ sensor, a value of an agricultural
characteristic corresponding to the geographic location;

generating a functional predictive agricultural map of the
field that maps predictive control values to the different
geographic locations 1n the field based on the values of
the cut height characteristic 1n the map and based on the
value of the agricultural characteristic; and

controlling a controllable subsystem based on the geo-
graphic location of the agricultural work machine and
based on the control values in the functional predictive
agricultural map.

Example 12 1s the computer implemented method of any
or all previous examples, wherein obtaining the map
COmMprises:

obtaining a predictive cut height characteristic map that
includes, as values of the cut height characteristic,
predictive values of the cut height characteristic corre-
sponding to the different geographic locations in the
field.

Example 13 1s the computer implemented method of any
or all previous examples, wherein generating the func-
tional predictive agricultural map comprises:

generating a functional predictive agricultural character-
istic map that maps, as the predictive control values,
predictive values of the agricultural characteristic to the
different geographic locations 1n the field.

Example 14 1s the computer implemented method of any
or all previous examples, wherein detecting, with an
in-situ sensor, the value of an agricultural characteristic
COmprises:

detecting, with the in-situ sensor, as the value of the
agricultural characteristic, an operator command
indicative of a commanded action of the agricultural
work machine.

Example 15 1s the computer implemented method of any
or all previous examples, wherein generating the func-
tional predictive agricultural map comprises:

generating a functional predictive operator command map
that maps, as the predictive control values, predictive
operator command values to the different geographic
locations 1n the field.

Example 16 1s the computer implemented method of any
or all previous examples, wherein controlling the con-
trollable subsystem comprises:

generating an operator command control signal indicative
of an operator command based on the detected geo-
graphic location and the functional predictive operator
command map; and

controlling the controllable subsystem based on the opera-
tor command control signal to execute the operator
command.

Example 17 1s the computer implemented method of any
or all previous examples, wherein controlling the con-
trollable subsystem comprises:

controlling the controllable subsystem to adjust a setting
of a header on the agricultural work machine.

Example 18 1s the computer implemented method of any
or all previous examples and further comprising:

generating a predictive agricultural model that models a
relationship between the cut height characteristic and
the agricultural characteristic based on a value of the
cut height characteristic 1n the map at the geographic
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location and the value of the agricultural characteristic
detected by the in-situ sensor corresponding to the
geographic location, wherein generating the functional
predictive agricultural map comprises generating the
functional predictive agricultural map based on the
values of the cut height characteristic in the map and
based on the predictive agricultural model.

Example 19 1s an agricultural work machine comprising:

a communication system that receives a map that includes
values of a cut height characteristic corresponding to
different geographic locations 1n a field;

a geographic position sensor that detects a geographic
location of the agricultural work machine

an 1n-situ sensor that detects a value of an agricultural
characteristic corresponding to the geographic location;

a predictive model generator that generates a predictive
agricultural model that models a relationship between
the cut height characteristic and the agricultural char-
acteristic based on a value of the cut height character-
1stic 1n the map at the geographic location and the value
of the agricultural characteristic detected by the 1n-situ
sensor corresponding to the geographic location;

a predictive map generator that generates a functional
predictive agricultural map of the field that maps pre-
dictive control values to the different geographic loca-
tions 1n the field based on the values of the cut height
characteristic 1n the map and based on the predictive
agricultural model;

a controllable subsystem; and

a control system that generates a control signal to control
the controllable subsystem based on the geographic
position of the agricultural work machine and based on
the control values 1n the functional predictive agricul-
tural map.

Example 20 i1s the agricultural work machine of any or all
previous examples wherein the control signal control
the controllable subsystem to adjust a setting of a
header on the agricultural work machine based on the
detected geographic location and the functional predic-
tive agricultural map.

Although the subject matter has been described in lan-
guage specific to structural features or methodological acts,
it 1s to be understood that the subject matter defined in the
appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
the claims.

What 1s claimed 1s:

1. An agricultural work machine comprising:

a communication system that recerves an information map
that includes values of a first agricultural characteristic
corresponding to a set of locations 1n a field, wherein
the first agricultural characteristic comprises cut height
or cut height vanability;

an 1n-situ sensor that detects a value of a second agricul-
tural characteristic, different than the first agricultural
characteristic, corresponding to a first location of the
set of locations 1n the field;

a predictive model generator that generates a predictive
model that models a relationship between values of the
first characteristic and values of the second character-
1stic based, at least, on a value of the first agricultural
characteristic, in the information map, corresponding to
the first location and the detected value of the second
agricultural characteristic corresponding to the first
location:
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a predictive map generator that maps a predictive value of
the second agricultural characteristic at a second loca-
tion of the set of locations 1n the field based on a value
of the first agricultural characteristic, in the map, cor-
responding to the second location and the model;

a controllable subsystem; and

a control system that generates, as the agricultural work
machine performs the operation at the field, a control
signal to control the controllable subsystem based on
the mapped predictive value of the second agricultural
characteristic corresponding to the second location.

2. The agricultural work machine of claim 1, wherein the
in-situ sensor detects, as the value of the second agricultural
characteristic, a value of an operator command indicative of
a commanded action of the agricultural work machine at the
first location.

3. The agricultural work machine of claim 2, wherein the
predictive map generator comprises;

a predictive operator command map generator that gen-
crates, as a functional predictive agricultural map, a
functional predictive operator command map that
maps, as the predictive value of the second agricultural
characteristic, a predictive operator command value to
the second location 1n the field.

4. The agricultural work machine of claim 3, wherein the

control system comprises:

a settings controller that generates, as the control signal,
an operator command control signal indicative of an
operator command based on the functional predictive
operator command map and controls the controllable
subsystem based on the operator command control
signal to execute the operator command.

5. The agricultural work machine of claim 1, wherein the
control system generates the control signal to control the
controllable subsystem to adjust a setting of a header on the
agricultural work machine.

6. The agricultural work machine of claim 1, wherein the
predictive model 1s configured to receive the value of the
first agricultural characteristic in the map corresponding the
second geographic location as a model input and provide the
predictive value of the agricultural characteristic at the
second geographic location as a model output.

7. The agricultural work machine of claim 1, wherein the
control system further comprises:

an operator interface controller that generates a user
interface map representation based on the mapped
predictive value, the user interface map representation
comprising a field portion with a marker indicating the
mapped predictive value of the second agricultural
characteristic at the second location on the field por-
tion.

8. The agricultural work machine of claim 7, wherein the
operator interface controller generates the user interface map
representation to include an interactive display portion that
displays a value display portion indicative of a selected
value, an interactive threshold display portion indicative of
an action threshold, and an 1nteractive action display portion
indicative of a control action to be taken when the predictive
value of the second agricultural characteristic satisfies the
action threshold in relation to the selected value, the control
system generating the control signal to control the control-
lable subsystem based on the control action.

9. The agricultural work machine of claim 1, wherein the
communication system receives the mformation map that
includes values of a thurd agricultural characteristic corre-
sponding to the set of locations 1n the field, the work
machine further comprising;
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an in-situ cut height characteristic sensor that detects a
value of the cut height characteristic corresponding to
a third geographic location;

a predictive cut height characteristic map generator pre-
dictive values of the cut height characteristic corre-
sponding to the set of locations 1n the field based on the
detected value of the cut height characteristic corre-
sponding to the third geographic location and based on
a value of the third agricultural characteristic in the
information map at the third geographic location.

10. The agricultural work machine of claim 9, wherein the

information map comprises:

a speed map that maps, as the values of the third agri-
cultural characteristic, values of a speed characteristic
of the agricultural work machine to the set of locations
in the field.

11. The agricultural work machine of claim 1, wherein the
controllable subsystem comprises a first controllable sub-
system and wherein the computer executable instructions,
when executed by the one or more processors, further
configure the one or more processors to:

generate, during a current operation at the field, a func-
tional predictive control zone map of the field that maps
a first plurality of control zones corresponding to the
first controllable subsystem and a second plurality of
control zones corresponding to a second controllable
subsystem;

generate, as the control signal, a first control signal to
control the first controllable subsystem based on a first
a control zone, of the first plurality of control zones, 1n
the functional predictive control zone map and based
on a geographic position ol the agricultural work
machine; and

generate a second control signal to control the second
controllable subsystem based on a second control zone,
of the second plurality of control zones, 1n the func-
tional predictive control zone map and based on the
geographic position of the agricultural work machine.

12. A computer implemented method of controlling an
agricultural work machine comprising;

obtaining an information map that includes values of a
first agricultural characteristic; corresponding to a set
of geographic locations in a field, wherein the first
agricultural characteristic comprises cut height or cut
height variability;

detecting, with an in-situ sensor, a value of a second
agricultural characteristic, diflerent than the first agri-

cultural characteristic, corresponding to a first geo-
graphic location of the set of geographic locations 1n
the field;

generating a predictive model that models a relationship
between values of the first characteristic and values of
the second characteristic based, at least, on a value of
the first agricultural characteristic, in the information
map, corresponding to the {first location and the
detected value of the second agricultural characteristic
corresponding to the first location;

mapping a predictive value of the second agricultural
characteristic at a second location of the set of locations
in the field based on a value of the first agricultural
characteristic, in the map, corresponding to the second
location and the model; and

controlling a controllable subsystem based on the mapped
predictive value of the second agricultural characteris-
tic corresponding to the second geographic location.
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13. The computer implemented method of claim 12,
wherein detecting, with the in-situ sensor, the value of the
second agricultural characteristic comprises:

detecting, with the in-situ sensor, as the value of the
second agricultural characteristic, an operator com-
mand indicative of a commanded action of the agricul-
tural work machine corresponding to the first geo-
graphic location.

14. The computer implemented method of claim 13,

turther comprising:

generating a functional predictive operator command map
that maps, as the predictive value of the second agri-
cultural characteristic, a predictive operator command
value to the second geographic location 1n the field.

15. The computer implemented method of claim 14,
wherein controlling the controllable subsystem comprises:

generating an operator command control signal indicative
of an operator command based on the functional pre-
dictive operator command map; and

controlling the controllable subsystem based on the opera-
tor command control signal to execute the operator
command.

16. The computer implemented method of claim 12,

wherein controlling the controllable subsystem comprises:
controlling the controllable subsystem to adjust a setting,
of a header on the agricultural work machine.

17. An agricultural system comprising:

a communication system that receives an information map
that includes, as values of a first agricultural charac-
teristic corresponding to a set of geographic locations
in a field, wherein the map 1s generated as an agricul-
tural work machine performs a current operation 1n the
field wherein first agricultural characteristic comprises
one of cut height and cut height variability;

an 1n-situ sensor that detects a value of a second agricul-
tural characteristic, different than the first agricultural
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characteristic, corresponding to a first geographic loca-
tion of the set of geographic locations in the field;
a controllable subsystem:;
one or more processors; and
memory storing 1instructions, executable by the one or
more processors that, when executed by the one or
more processors, cause the one or more processors 1o:

model, during the current operation, a relationship
between the values of the first agricultural characteris-
tic and values of the second agricultural characteristic
based, at least, on a value of the first agricultural
characteristic in the mnformation map corresponding to
the first geographic location and the detected value of
the second agricultural characteristic corresponding to
the first geographic location;

predict, during the current operation and prior to the

agricultural work machine operating at a second geo-
graphic location during the current operation, a value of
the second agricultural characteristic at a second geo-
graphic location of the set of geographic locations 1n
the field based on a value of the first agricultural
characteristic 1n the information map, corresponding to
the second geographic location, and the modeled rela-
tionship; and

control the controllable subsystem, as the agricultural

work machine performs the current operation in the
field, based on the predicted value.

18. The agricultural system of claam 17, wherein the
memory storing instructions, when executed by the one or
more processors, further cause the one or more processors to
control the controllable subsystem to adjust a setting of a
header on the agricultural work machine based on the
predictive value of the second agricultural characteristic in
the functional predictive agricultural map.
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