

US012176915B1

(12) United States Patent

Chen et al.

(10) Patent No.: US 12,176,915 B1

(45) **Date of Patent:** Dec. 24, 2024

(54) TIME SIGNAL PROCESSOR BASED ON MULTIPLYING PHASE INTERPOLATION CIRCUIT

- Applicant: **BEIJING UNIVERSITY OF TECHNOLOGY**, Beijing (CN)
- (72) Inventors: **Zhijie Chen**, Beijing (CN); **Xiaoyu Zhang**, Beijing (CN); **Peiyuan Wan**,

Beijing (CN)

(73) Assignee: BEIJING UNIVERSITY OF

TECHNOLOGY, Beijing (CN)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 18/741,910
- (22) Filed: Jun. 13, 2024

Related U.S. Application Data

(63) Continuation of application No. PCT/CN2023/117651, filed on Sep. 8, 2023.

(30) Foreign Application Priority Data

(51) **Int. Cl.**

 H03M 1/38
 (2006.01)

 G04F 10/00
 (2006.01)

 H03K 5/13
 (2014.01)

 H03K 19/20
 (2006.01)

(52) **U.S. Cl.**

CPC *H03M 1/38* (2013.01); *G04F 10/005* (2013.01); *H03K 5/13* (2013.01); *H03K 19/20* (2013.01)

(58) Field of Classification Search

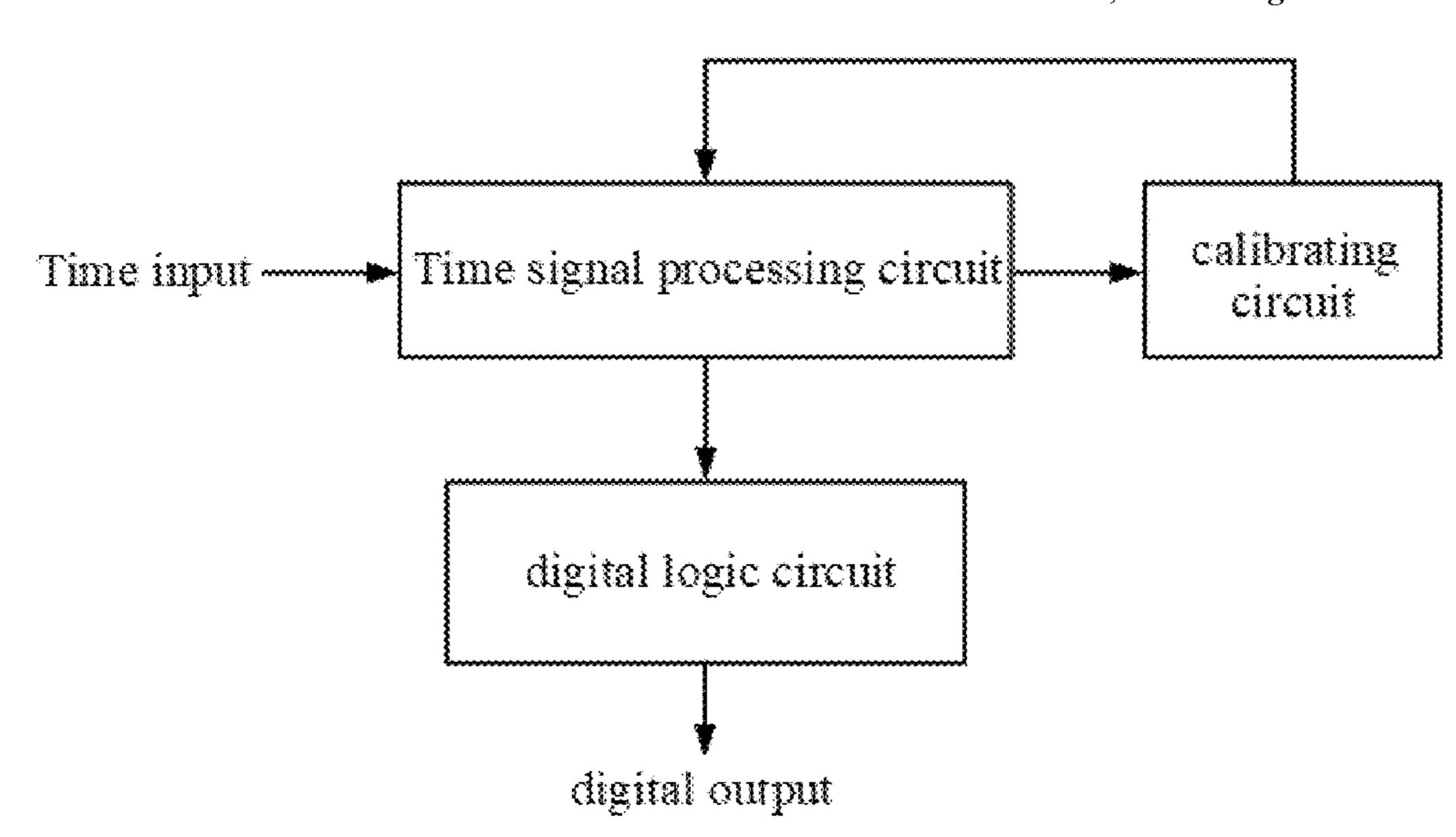
CPC H03M 1/38; G04F 10/005; H03K 5/13; H03K 19/20

(56) References Cited

U.S. PATENT DOCUMENTS

7,928,888 B1*	4/2011	Chiu G04F 10/005
		341/161
7,932,847 B1*	4/2011	Hsieh G04F 10/005
2011/0084863 A1*	4/2011	341/155 Chiu G04F 10/005
2011/0004003 A1	4/2011	341/166
2015/0381192 A1*	12/2015	Yamamoto H03M 1/1038
		341/120
2017/0293265 A1*	10/2017	Salle H03M 1/1009

FOREIGN PATENT DOCUMENTS


CN	103067016 A	4/2013
CN	107872226 A	4/2018
CN	109861691 A	6/2019
CN	112165329 A	1/2021
	(Conti	nued)

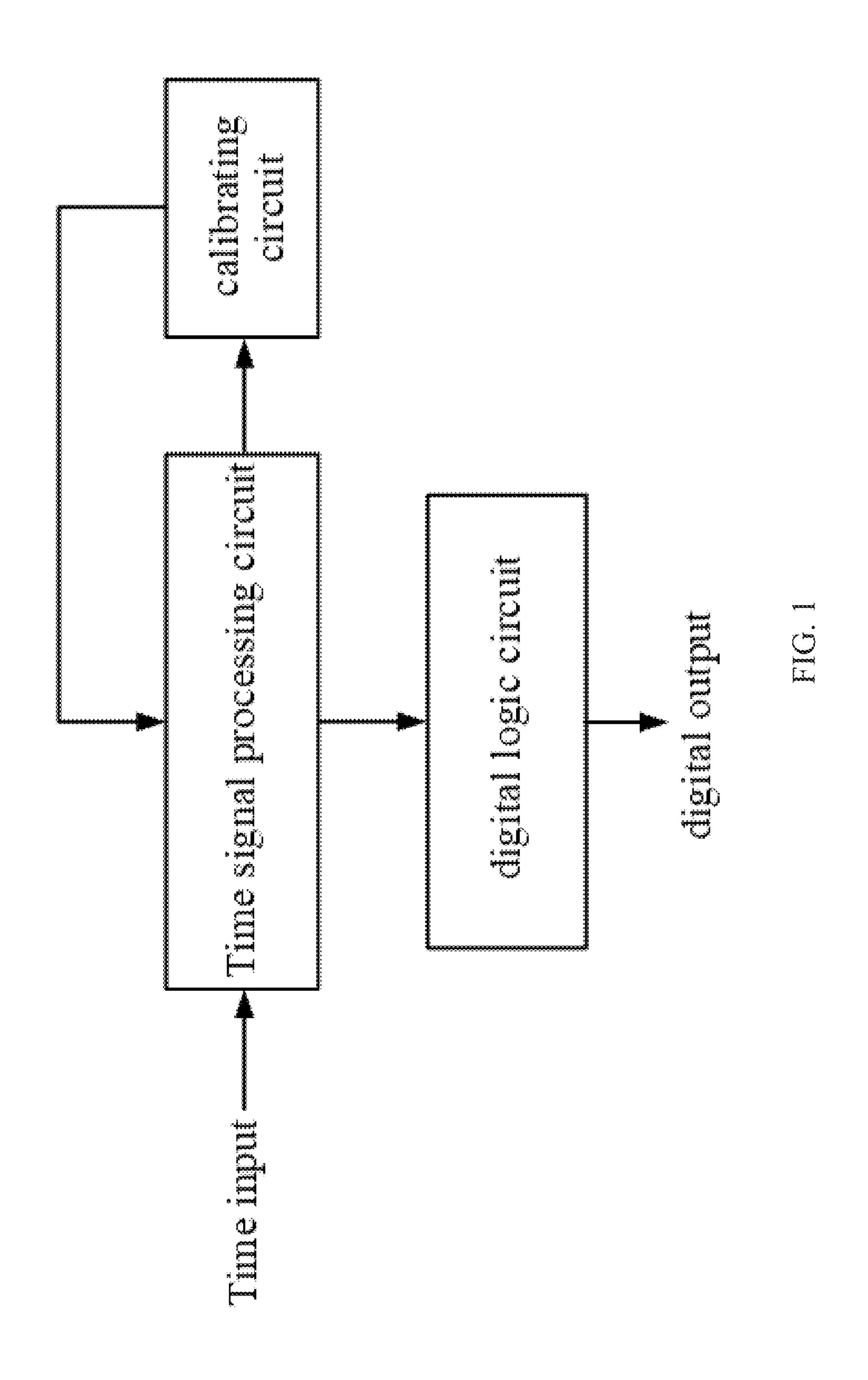
Primary Examiner — Jean B Jeanglaude (74) Attorney, Agent, or Firm — Bayramoglu Law Offices LLC

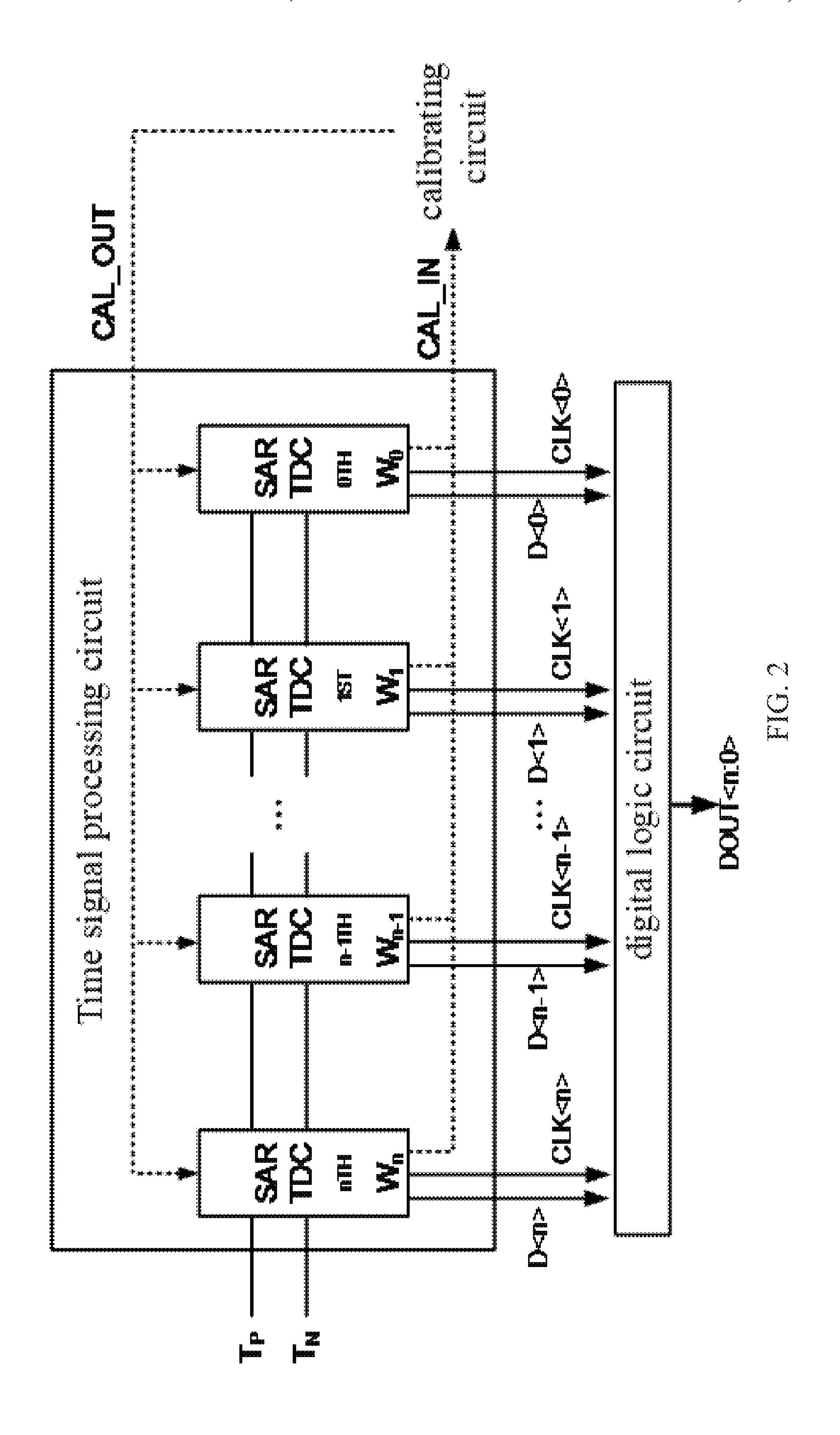
(57) ABSTRACT

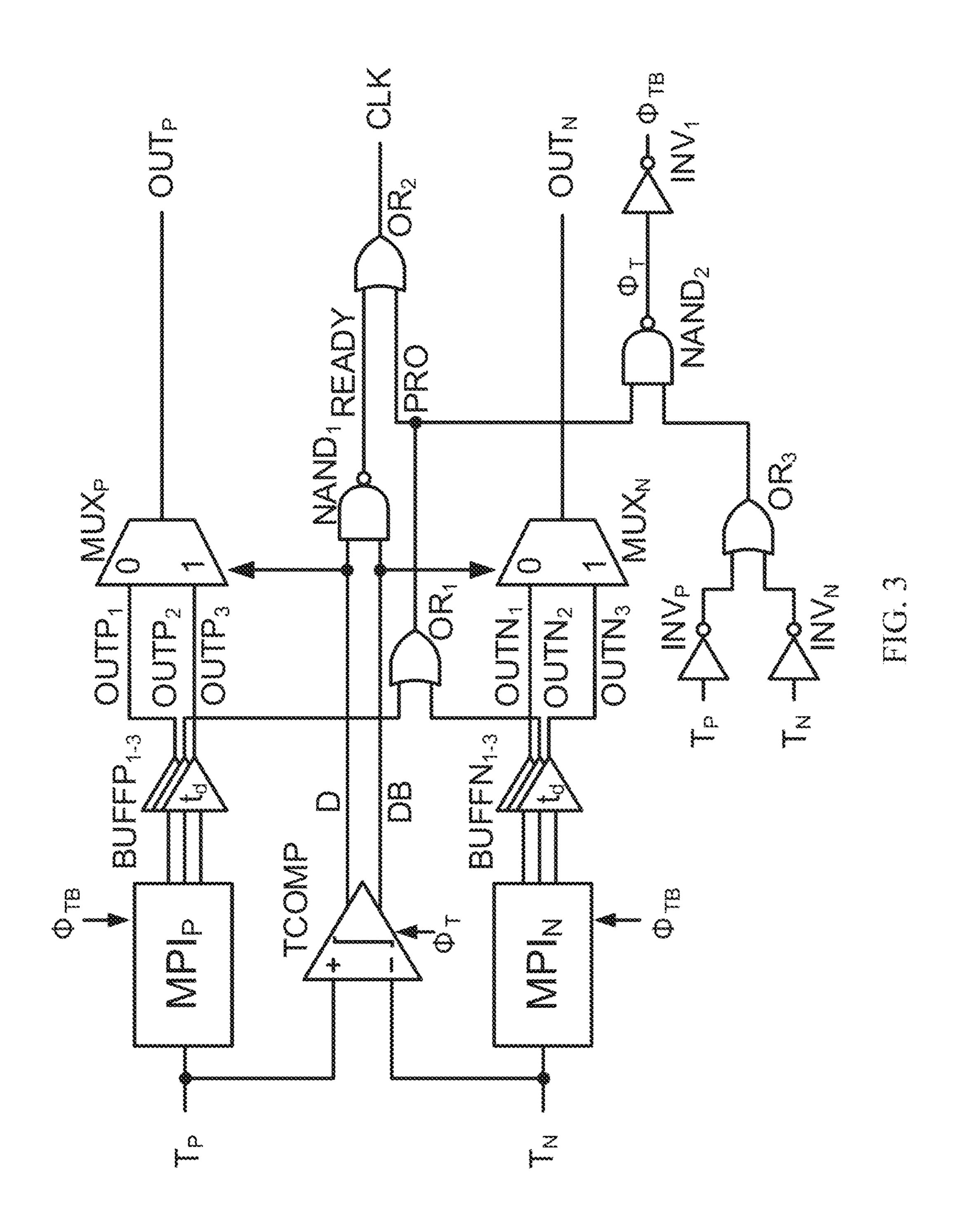
A time signal processor based on multiplying phase interpolation circuit is provided. The time signal processor includes a time signal processing circuit, a calibration circuit and a digital logic circuit, and realizes a time input signal-digital output signal conversion process. The time signal processing circuit quantizes an input time signal to obtain a series of digital code output; feedback compensation is carried out on the time signal processing circuit through the calibration circuit; and finally, the digital logic circuit completes final digital output.

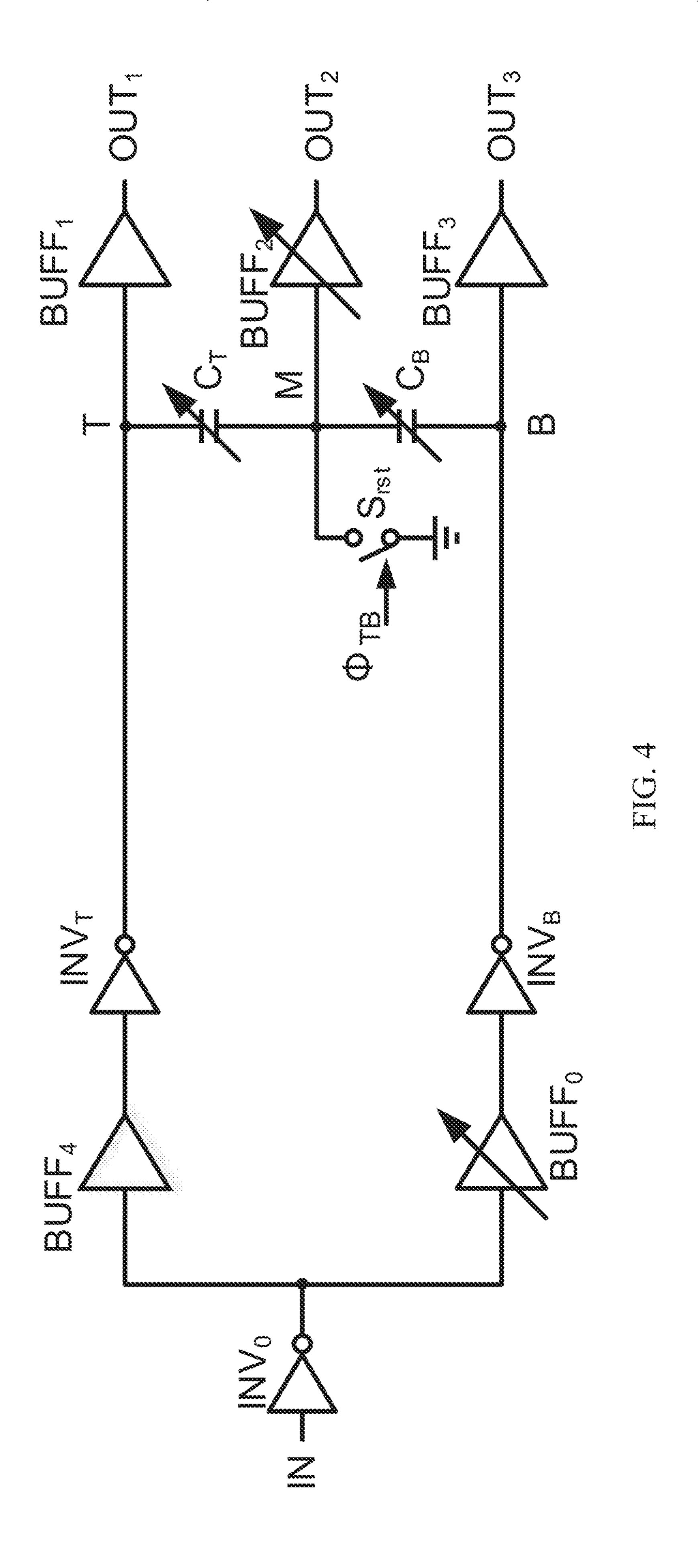
6 Claims, 6 Drawing Sheets

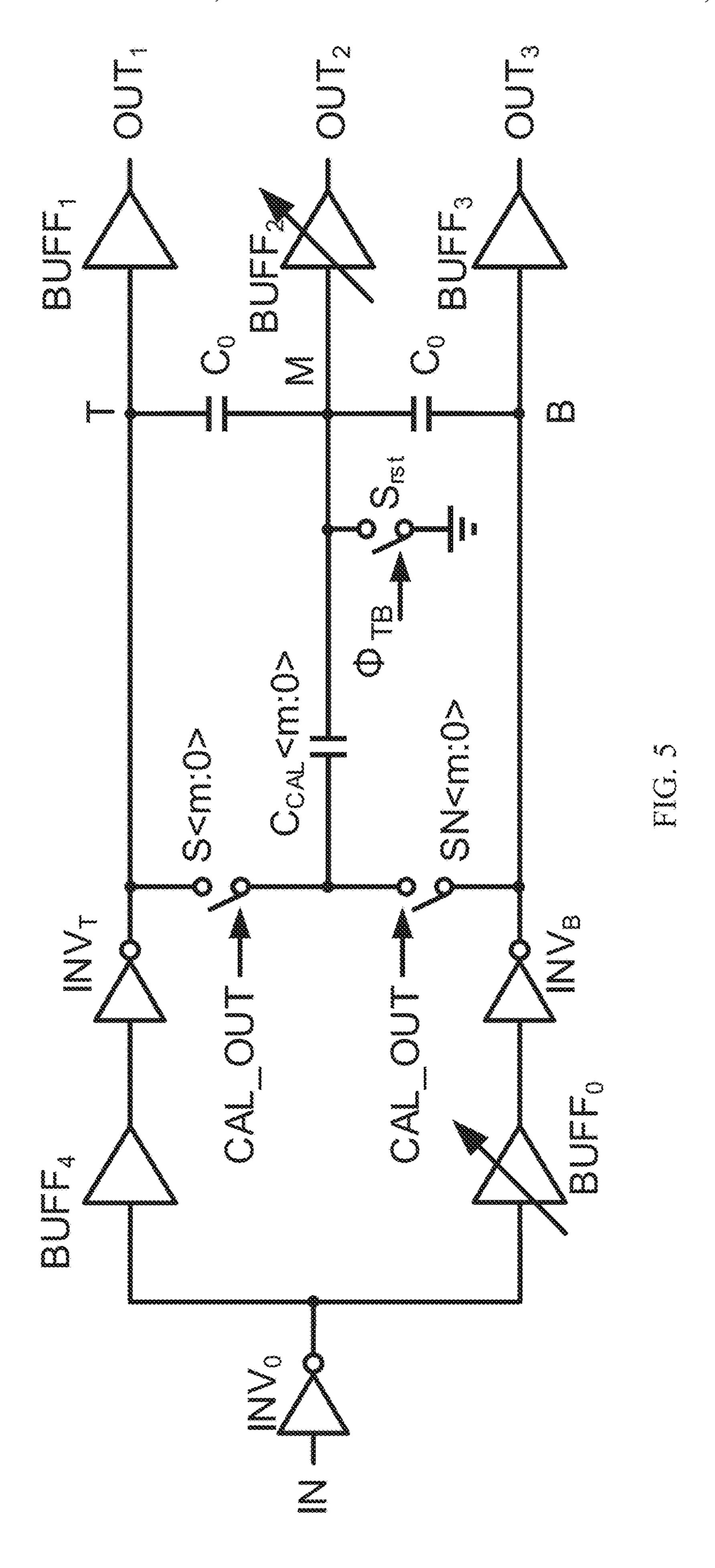
US 12,176,915 B1

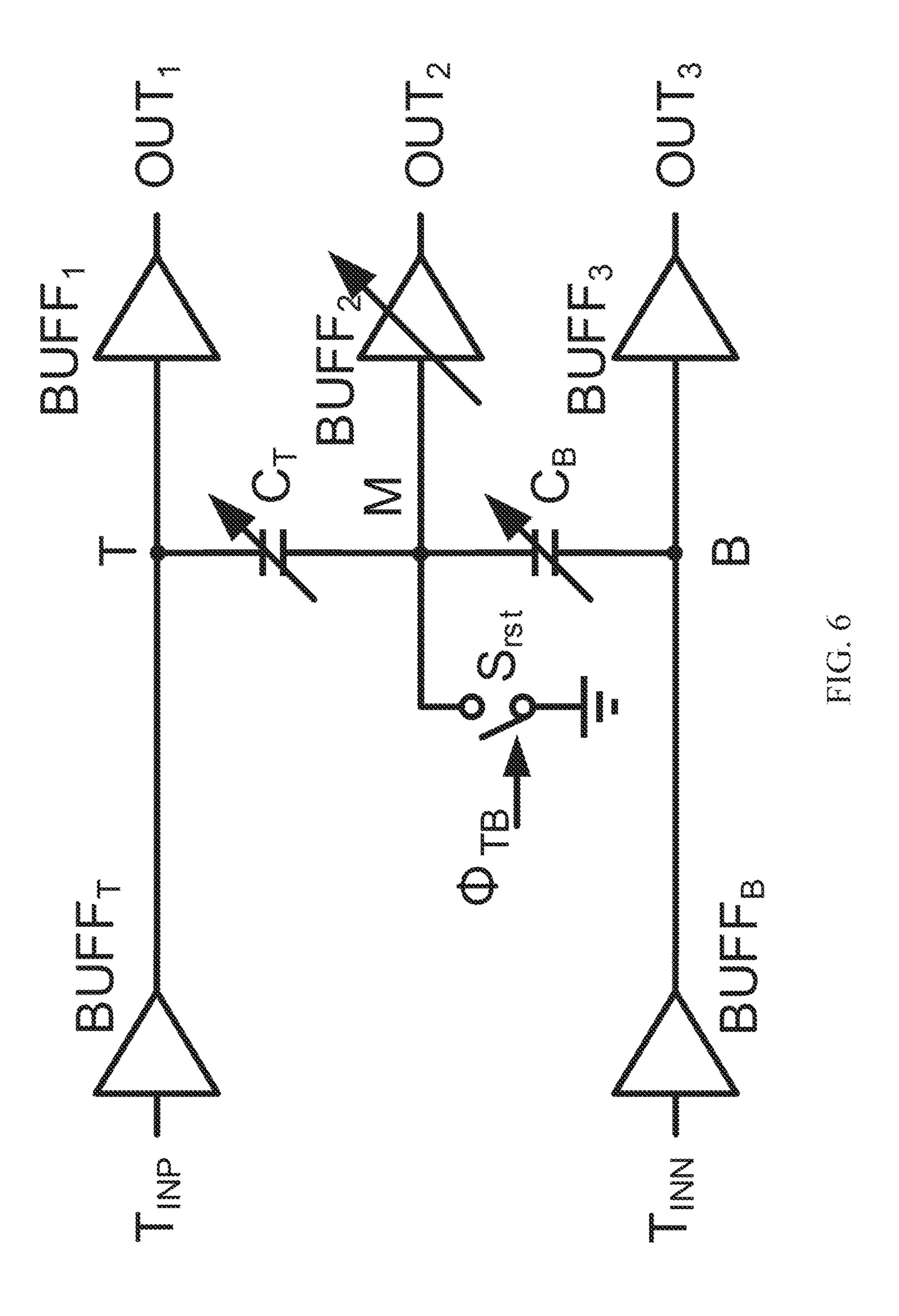

Page 2


(56) References Cited


FOREIGN PATENT DOCUMENTS


CN	112994453 A	6/2021
CN	113055006 A	6/2021
CN	115102548 A	9/2022
CN	115882861 A	3/2023


^{*} cited by examiner



TIME SIGNAL PROCESSOR BASED ON MULTIPLYING PHASE INTERPOLATION CIRCUIT

CROSS-REFERENCE TO THE RELATED APPLICATIONS

This application is a continuation application of International Application No. PCT/CN2023/117651, filed on Sep. 8, 2023, which is based upon and claims priority to Chinese Patent Application No. 202310903661.4, filed on Jul. 23, 2023, the entire contents of which are incorporated herein by reference.

TECHNICAL FIELD

The invention relates to a time signal processor based on multiplying phase interpolation circuit, and belongs to the technical field of signal processing.

BACKGROUND

Time signal processing circuits realize the conversion function of time signals and different types of signals, and 25 play a vital role in communication systems, aerospace, medical equipment and other fields. High-performance time signal processing circuits can be applied to higher-end and more sophisticated scenarios, such as military industry and radar systems. Conversion rate, conversion accuracy, and 30 power consumption are important indicators for measuring the performance of time signal processing circuits, but there are usually constraints on speed, accuracy, and power consumption. The improvement of time signal quantification accuracy will help accelerate the resolution of existing technical barriers and realize time signal processing circuits with high speed, high precision, and low power consumption.

Time signal processing circuits are used in key modules, such as time-to-digital conversion circuits, phase-locked loop circuits, time domain analog-to-digital conversion circuits, etc., which use fixed time delays to divide the input time into multiple quantization intervals. Compare the phase information to obtain a series of digital codes and output 45 them. The fixed time delay, that is, the quantization accuracy of the time signal processing circuit, is an important parameter to measure the accuracy of the time signal processing circuit. In the delay chain structure, the fixed time delay is composed of buffers, and the quantization accuracy is the 50 delay of one buffer. Due to process limitations, the quantization accuracy is at a low level. In order to improve the quantification accuracy of the time signal, the vernier structure uses two transmission paths with different time delays to realize the conversion of the time signal. The time signal 55 quantification accuracy is the delay difference of two different delay units, but it is affected by the process and the accuracy is at a medium level despite the influence of power supply voltage and temperature changes. Therefore, improving the time signal quantization accuracy of time signal 60 processing circuits is an urgent technical difficulty that needs to be solved. It is also the focus of the design of highperformance time signal processing circuits and has a crucial impact on the performance improvement of related applications in the field of signal processing.

The invention can overcome the shortcomings of the existing technology and further improve and enhance the

2

speed, quantization accuracy and other performance levels of the time signal processing circuit.

SUMMARY

The invention proposes a time signal processor based on multiplying phase interpolation circuit, which realizes the quantization function of the time input signal and outputs it as a digital signal. First, the time signal processing circuit quantifies the input time signal to obtain a series of digital code outputs; secondly, the time signal processing circuit is fed back and compensated through the calibration circuit; finally, the digital logic circuit completes the final digital output.

Compared with the existing technology, the present invention can improve the conversion speed and efficiency, obtain higher time quantification accuracy, and realize more efficient time signal processing functions.

The above objectives are achieved through the following technical solutions:

A time signal processor based on multiplying phase interpolation circuit is consists of three parts: a time signal processing circuit, a calibration circuit, and a digital logic circuit, which realizes the conversion process of time input signal to digital output signal.

The time signal processing circuit includes (n+1)-level successive approximation time signal processing sub-circuits $SARTDC_{nTH}$, $SARTDC_{n-1TH}$, $SARTDC_{1ST}$, and $SARTDC_{0TH}$. Each sub-SARTDC module is cascaded. Each level of digital code quantifies the amount of time with weights W_n , W_{n-1} , W_1 , and W_0 , and completes time-to-digital signal conversion in a pipeline manner. The input terminals of $SARTDC_{nTH}$ are time input signals T_P and T_N , and their phase difference can be expressed as the time amount T_{res} . The sub-SARTDC of each stage outputs the digital code D<n:0> and the corresponding clock signal CLK<n:0> to the digital logic circuit, and outputs the calibration signal CAL_IN to the calibration circuit.

The sub-SARTDC circuit has a differential structure and 40 is divided into two paths, P and N. Each path contains multiplication interpolation modules MPI_{P} and MPI_{N} , delay modules BUFFP₁₋₃ and BUFFN₁₋₃, and selectors MUX_P and MUX_N . The sub-SARTDC circuit includes time comparator TCOMP, NAND gate, OR gate, inverter and other digital logic units. The input end of the MPI_P is connected to the input signal T_P of the sub-SARTDC, and the output end is connected to the delay modules BUFFP₁₋₃ respectively. The input end of the MPI_N is connected to the input signal T_N of the sub-SARTDC, and the output end is connected to the delay modules $BUFFN_{1-3}$ respectively. The outputs of the delay module BUFFP₁₋₃ are OUTP₁, OUTP₂, and OUTP₃; the outputs of the delay module $BUFFN_{1-3}$ are $OUTN_1$, $OUTN_2$, and $OUTN_3$. Among them, MPI_P and MPI_N modules are reset by Φ_{TB} . The two input terminals of the time comparator TCOMP are respectively connected to the input signals T_P and T_N of the sub-SARTDC, and the output signals are D and DB. The reset operation of the time comparator TCOMP is controlled by Φ_T . The inputs of the selector MUX_P are $OUTP_1$ and $OUTP_3$, the control terminal is D, and the output is OUT_P ; the inputs of the selector MUX_N are $OUTN_1$ and $OUTN_3$, the control terminal is DB, and the output is OUT_N . OUT_P and OUT_N are connected to the input terminal of the subsequent sub-SARTDC. The OUTP₂ and OUTN₂ are connected to the input terminal of 65 the OR gate OR₁, and the output terminal of the OR gate OR₁ is PRO. The output terminals D and DB of the comparator TCOMP are connected to the NAND gate NAND₁.

The output terminal of the NAND gate NAND₁ is READY, and READY and PRO are jointly connected to the OR gate OR₂. The output terminal of the OR gate OR₂ is the CLK signal, and is passed to the digital logic circuit as the output signal CLK of the sub-SARTDC. The input signals T_P and 5 T_N are respectively connected to the input terminals of the inverters INV_P and INV_N , and the output terminals of the inverters INV_P and INV_N are connected to the input terminal of the OR gate OR₃. The output terminal of the OR gate OR₃ and the PRO signal are connected to the input terminal of the 10 NAND gate NAND₂, the output terminal Φ_{τ} of the NAND gate NAND₂ is connected to the input terminal of the inverter INV₁, and the output terminal of the inverter INV₁ is Φ_{TR} . The sub-SARTDC circuit outputs the comparison signal D and the clock signal CLK to the digital logic circuit 15 and controls it to convert the digital code.

The multiplicative interpolation module (MPI) includes inverters INV_0 , INV_T , INV_B , variable delay modules BUFF₀, BUFF₂, buffers BUFF₁, BUFF₃, BUFF₄, variable capacitors C_T , C_B , and reset switch S_{rst} . The input terminal 20 of the inverter INV_o is connected to the input signal IN of the multiplication interpolation module, and the output terminal is connected to the input terminal of the buffer BUFF4 and the input terminal of the variable delay module BUFF₀. The output terminal of the buffer BUFF₄ is connected to the input 25 terminal of the inverter INV_T . The output terminal of the variable delay module BUFF₀ is connected to the input terminal of the inverter INV_B . The output terminal of the inverter INV_{τ} and the upper plate of the variable capacitor C_T are jointly connected to the node T. The output terminal 30 of the inverter INV_B and the lower plate of the variable capacitor C_R are jointly connected to the node B. The lower plate of the variable capacitor C_T , the upper plate of C_R and one end of the reset switch S_{rst} are jointly connected to the node M. The other end of the reset switch S_{rst} is connected 35 to the ground VSS, and is controlled to close and turn off by Φ_{TB} . The input terminal of the buffer BUFF₁ is connected to the node T, and the output terminal is OUT₁ signal; the input terminal of the buffer BUFF₃ is connected to the node B, and the output terminal is OUT₃ signal; the input terminal of the 40 variable delay module BUFF₂ is connected to the node M, and the output terminal is OUT₂ signal. The OUT₁ signal, OUT₂ signal, and OUT₃ signal are the output signals of the multiplying interpolation module. The circuit structure of the variable delay modules BUFF₀ and BUFF₂ includes but 45 is not limited to variable power supply voltage, variable bias voltage buffer, changing the number of delay unit cascades, changing the size or number of transistors to change the delay. The variable capacitor C_T and C_B structures include but are not limited to unit capacitors with different numbers 50 of series/parallel connections or different capacitance values between nodes T, M, and B to change the capacitance between nodes T, M, and B.

The modified structure of the doubling type interpolation module, that is, the doubling type time amplification circuit, 55 includes buffers BUFF_T , BUFF_B , BUFF_1 , BUFF_3 , variable delay module BUFF_2 , variable capacitors C_T , C_B , and reset switch S_{rst} . The input terminals of the buffers BUFF_T and BUFF_B are connected to the input signals TIN_P and TIN_N respectively, and the output terminals of the buffers BUFF_1 60 and BUFF_3 are connected to the nodes T and B respectively. The upper plate of the variable capacitor C_T is connected to node T, and the lower plate is connected to node M. The upper plate of the variable capacitor C_B is connected to node M, and the lower plate is connected to node B. One end of 65 the reset switch S_{rst} is connected to the node M, and the other end is connected to the ground VSS, and is controlled to

4

close and turn off by Φ_{TB} . The input terminal of the variable delay module BUFF₂ is connected to the node M, and the output terminal is connected to the output signal OUT₂. The output terminals of the buffers BUFF₁ and BUFF₃ are respectively connected to the output signals OUT₁ and OUT₃.

The calibration circuit can change the voltage through analog modules such as low dropout regulator (LDO), delay-locked loop (DLL), and charge pump, and can also use digital logic modules such as switched capacitors to control circuit devices through digital codes. The input end of the calibration circuit is connected to the CAL_IN output signal of the time signal processing circuit, and the output signal CAL_OUT is fed back to the time signal processing circuit to complete the calibration work in the time domain.

The digital logic circuit realizes digital signal integration of time input signals in different cycles, and its operation is controlled by the output signals D<n:0> and CLK<n:0> of the time signal processing circuit to obtain synchronization output digital code DOUT<n:0> within the same conversion cycle.

A time signal processor based on multiplying phase interpolation circuit of the present invention realizes quantization of time input signals and outputs them as digital signals. The time signal processing circuit of the present invention adopts a pipeline operation system, which significantly improves the conversion speed and alleviates the limiting relationship between conversion speed and resolution; at the same time, the multiplicative interpolation module has a simple structure and has the characteristics of reducing the amount of time, thereby achieving a faster high time quantization accuracy; thanks to the assistance of the calibration circuit, the conversion accuracy of the time domain circuit is improved; finally, the digital logic circuit integrates the digital codes of different periods into synchronous digital output to achieve a high-performance time signal processing circuit.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by means of practical examples and are not limited by the drawings. Similar reference numbers in the figures may identify similar elements or modules. The components and circuit modules in the figures are illustrated for simplicity and clarity and may not necessarily be drawn to scale.

FIG. 1 is a structural diagram of the time signal processing system of the present invention.

FIG. 2 is a schematic structural diagram of the time signal processing circuit of the present invention.

FIG. 3 is a schematic structural diagram of the sub-SARTDC circuit of the present invention.

FIG. 4 is a schematic structural diagram of the multiplication interpolation circuit of the present invention.

FIG. 5 is a structural diagram of the calibration principle of the multiplication interpolation circuit of the present invention.

FIG. 6 is a schematic structural diagram of the doubling time amplification circuit of the present invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS

The present invention proposes a time signal processor based on multiplying phase interpolation circuit, showing its system structure and the circuit structure of each main module, including a time signal processing circuit, a multi-

plicative interpolation circuit (MPI), a calibration circuit, and digital logic Circuit; an embodiment showing the calibration of the multiplicative interpolation circuit; and an embodiment of the multiplicative time amplification circuit based on a modified structure of the multiplicative interpolation circuit.

FIG. 1 is a structural diagram of the time signal processing system of the present invention, including a time signal processing circuit, a calibration circuit, and a digital logic circuit. The time signal processing circuit quantifies the time input signal and transmits the output signal to the calibration circuit and digital logic circuit; the calibration circuit uses a negative feedback mechanism to implement the calibration algorithm of the time signal, improving the accuracy of the time signal processing circuit and achieving robust design; 15 The digital logic circuit outputs digital code from the output signal of the time signal processing circuit; through the cooperation of the above modules, the processing of the time signal is finally completed.

FIG. 2 is a schematic structural diagram of the time signal 20 processing circuit of the present invention. The time signal processing circuit is a successive approximation structure, consisting of multiple sub-SARTDCs cascaded, and completes the conversion of time signals to digital signals in a pipeline manner. The phase difference of the differential 25 time signals T_P and T_N is the time margin T_{res} . The time margin T_{res} is reduced and quantized in each sub-SARTDC. The output signal CAL_IN of the time signal processing circuit is passed to the calibration circuit, and is fed back by the output signal CAL_OUT of the calibration circuit. The 30 time signal processing circuit converts in a pipeline manner. The output digital signal D<n:0> is the comparison result of different periods. CLK<n:0> is passed to the digital logic circuit, which is integrated into digital code output DOUT<n:0> of the same period through the digital logic 35 circuit.

The working principle of the time signal processing circuit is as follows: the differential time signals T_P and T_N are input into the sub-SARTDC and compared through the time comparator. According to the comparison results, the 40 time signals are transmitted in the T_P and T_N transmission paths with weights W_n , W_{n-1} , W_1 and W_0 increase/decrease by the same amount of time, that is, change the time margin T_{res} . After successively passing through each sub-SARTDC, the successive approximation quantization process in the 45 time domain can be realized. The weights W_n , W_{n-1} , W_1 , and W_0 of SARTDC $_{nTH}$, SARTDC $_{n-1TH}$, SARTDC $_{1ST}$, and SARTDC $_{0TH}$ are also represented as the weights of the comparison results in each level of sub-SARTDC.

In order to improve the time domain conversion accuracy 50 and achieve PVT robustness design, combined with the calibration scheme, the CAL_IN signal of the time signal processing circuit is transmitted to the calibration circuit to provide feedback to the sub-SARTDC. Each sub-SARTDC outputs the comparison result D generated during the quantization process and the trigger clock CLK. The digital code of the successive approximation time signal processing circuit is integrated into a synchronous digital output through the digital logic circuit.

FIG. 3 is a schematic structural diagram of the sub- 60 SARTDC circuit of the present invention. The conversion principle of sub-SARTDC is: the differential time input signals T_P and T_N are transmitted along two independent paths respectively. The two transmission paths are symmetrical to each other, and the time margin T_{res} is the phase 65 difference between T_P and T_N . This circuit obtains time signals OUTP₁, OUTP₂, and OUTP₃ through the multipli-

6

cation interpolation circuit MPI_P , and the MPI_P reset process is controlled by Φ_{TB} . This circuit obtains time signals OUTN₁, OUTN₂, and OUTN₃ through the multiplication interpolation circuit MPI_N , and the MPI_N reset process is controlled by Φ_{TB} . T_P and T_N are input to the time comparator TCOMP, which is a dynamic comparator structure, and its reset process is controlled by Φ_T . D and DB are the comparison results of the time comparator TCOMP, which are output to the selection terminals of the selectors MUX_{P} and MUX_N . D controls MUX_P to select the input signals OUTP₁ and OUTP₃ and outputs OUTP; DB controls MUX_N to select the input signals OUTN₁ and OUTN₃ and outputs OUT_N , finally realizing the addition and subtraction operations in the time domain. The time quantification process is explained in detail by taking the P end as an example: T_P passes through the multiplication interpolation circuit MPI_P to obtain three time output signals. The connected delay modules BUFFP₁₋₃ compensate for the comparison delay of TCOMP, so that OUTP₁ and OUTP₃ are compared in time. After TCOMP completes the comparison, it is passed to the selector MUX_P. The time signals OUTP₁, OUTP₂, and OUTP₃ are three square wave signals, and the OUTP₂ phase is located in the middle of the OUTP₁ and OUTP₃ phases. The time interval between OUTP₁ and OUTP₃ is the time quantization accuracy T_w of this level SARTDC, which can be expressed as weight W_n . At this time, the time input T_P can be represented by OUTP₂. Compared with OUTP₂, OUTP₁ can be regarded as subtracting the $T_w/2$ delay, and OUTP₃ can be regarded as adding the $T_w/2$ delay, realizing addition and subtraction operations in the time domain. If T_p is input before T_N , D is high level and DB is low level. The selector MUX_P selects OUTP₃ among the input signals OUTP₁ and OUTP₃ and outputs it as OUT_P. Similarly, the selector MUX_N selects $OUTN_1$ and outputs it as OUT_N . Addition is made to T_{P} , subtraction is made to T_{N} , and the time margin T_{res} changes to T_w . This process fully demonstrates the addition and subtraction operation process of the differential time signal, that is, the principle of successive approximation quantization in the time domain.

The reset process and clock generation process are completed by a series of logic units in the sub-SARTDC circuit. The first is the trigger clock CLK of the comparison result. CLK is generated by the READY and PRO signals through the OR gate OR₂. The READY signal is generated by the comparison results D and DB of TCOMP through the NAND gate NAND₁. It indicates the end of the comparison process and can trigger the output of the comparison result. In order to avoid comparison failure due to too long comparison time of TCOMP, the present invention designs a clock PRO that plays a protective role. The PRO clock is generated by OUTP₂ and OUTN₂ through the OR gate OR₁. Followed by the reset clock Φ_T of the time comparator TCOMP. The input signals T_P and T_N are input to the OR gate OR_3 through the inverters INV_P and INV_N , and the output signal and the PRO signal are input to the NAND gate NAND₂ to obtain Φ_T . After the signal conversion of the sub-SARTDC is completed, the PRO signal becomes high level, and Φ_T resets TCOMP. Finally, there is the reset clock Φ_{TB} of the multiplication-type interpolation circuit. Φ_{TB} is obtained from the output of Φ_T through inverter INV₁. In summary, the modules of the sub-SARTDC cooperate with each other to complete the conversion of time signals.

FIG. 4 is a schematic structural diagram of the multiplicative interpolation circuit of the present invention. The multiplicative interpolation circuit of the present invention is a key module of the overall time signal processing circuit and plays a decisive role in time domain resolution and

conversion accuracy. The multiplicative interpolation module has a time signal reduction function, which can subdivide the input time signal into multiple output time signals with smaller intervals. Different from the traditional inverter-based interpolation circuit, the multiplication type interpolation circuit of the present invention adds a variable capacitor, which can further improve the time accuracy.

The working principle of the multiplication interpolation circuit of the present invention is: first, the reset switch S_{rst} is turned off, the input signal IN is transferred to the inverter 10 INV_o and then its phase is reversed, and the output signal of INV₀ is transferred to the input terminal of the buffer BUFF₄ and the variable delay module BUFF₀. The flipped time signal is passed to the inverter INV_T after passing through the buffer BUFF₄, and is passed to the inverter INV_R after 15 passing through the variable delay module BUFF₀. At this time, the phase difference between the signals at nodes T and B is the delay difference to between the variable delay module BUFF₀ and the buffer BUFF₄. Secondly, the output signals of the inverters INV_T and INV_B charge and discharge 20 the variable capacitors C_T and C_B . According to the principle of capacitor series connection, the voltage value at point M is in the middle of the voltage values at point T and point B. Then, the signals of nodes T, M, and B are output through buffers BUFF₁, BUFF₃ and variable delay module BUFF₂, 25 and the output signals are OUT₁, OUT₂, and OUT₃. Finally, the reset switch S_{rst} is closed, clearing the charge of the M node.

The time reduction function of the multiplication interpolation circuit of the present invention is realized based on 30 the state response characteristics of the capacitor during charging and discharging. After the level of node T changes, the variable capacitors C_T and C_B can be regarded as a whole and charged by the signal of node T, and the voltage of node B changes with the signal of node T. After the delay t_0 , the 35 voltage of the inverter INV_B driving node B accelerates. In this process, the signal at point M is always in the middle phase of the T and B signals, realizing the interpolation function. The phase difference between the T and B signals realizes the time reduction characteristic of this multiplication interpolation circuit. The multiplicative interpolation circuit of the present invention can achieve calibration by changing the delays of variable delay modules BUFF₀ and BUFF₂ and changing the sizes of variable capacitors C_T and C_B , improve time domain accuracy, and achieve PVT robust 45 design.

FIG. 5 is a possible structural diagram of the calibration principle of the multiplication interpolation circuit. In order to realize that OUT₂ is in the intermediate phase of OUT and OUT₃, the delay of BUFF₂ and the value of the variable 50 capacitor can be changed; change the delay of BUFF₀ in order to achieve high-precision time resolution. The present invention can change the phase of OUT₂ so that it is in the middle position by changing the power supply voltage VDD and bias voltage of BUFF₂, or its module cascade number, 55 transistor size, etc. The calibration of the present invention is achieved by changing the capacitance between nodes T and M and the capacitance between nodes B and M. C_o can be regarded as a fixed capacitor, CCAL<m: 0> is an m+1-bit calibration capacitor, and its access mode is controlled by 60 switches S<m: 0> and SN<m: 0>. The switches S<m: 0> and SN<m: 0> are controlled to close and turn off by the CAL_OUT output signal of the calibration circuit. To illustrate with an example: when S<m: 0> are both closed and SN<m: 0> are both turned off, the capacitance value 65 between nodes T and M is C0+ (m+1)×CCAL, and the capacitance value between nodes B and M is C0+ $(m+1)\times$

8

CCAL. The capacitance value is C_0 . At this time, more charges are stored between nodes T and M than between nodes B and M, and the phase of OUT_2 moves forward. The above solution can realize the phase adjustment of the multiplication interpolation circuit, so that OUT_2 is in the middle of the phases of OUT_1 and OUT_3 .

The present invention can increase or decrease T, The phase difference of the B signal. The delay of BUFF₀ is reduced, which reduces the phase difference between OUT₁ and OUT₃ and improves the time quantization accuracy. The calibration scheme of the present invention includes but is not limited to the above circuit design scheme. Other circuit structures that change the delay belong to the calibration scheme of the present invention.

The calibration circuit of the present invention includes but is not limited to analog calibration circuits represented by changing voltages, such as LDO, DLL, charge pump and other modules; it may also include digital calibration circuits represented by changing digital codes, such as digital logic modules such as switched capacitors.

The output signal CAL_OUT of the calibration circuit is fed back to the time signal processing circuit to complete the calibration work in the time domain.

FIG. **6** is a modified structure of the doubling type interpolation circuit of the present invention and a schematic structural diagram of the doubling type time amplification circuit. The two input signals T_{INP} and T_{INN} are independently transmitted as input signals of the buffers $BUFF_T$ and $BUFF_B$. The $BUFF_0$ delay of the multiplicative interpolation circuit is included in the phase difference of the two input signals T_{INP} and T_{INN} . The output signals of the buffers $BUFF_T$ and $BUFF_B$ charge and discharge the variable capacitors C_T and C_B . The reset switch S_{rst} controls the reset process of the node M by the clock Φ_{TB} . The working principle of the doubling time amplification circuit is similar to that of the doubling interpolation circuit, and the reduction function of the time signal is achieved with the help of variable capacitors C_T and C_B .

The above description is not a limitation of the present invention, and the present invention is not limited to the above examples. Changes, modifications, additions or substitutions made by those skilled in the art within the essential scope of the present invention should also fall within the protection scope of the present invention.

The invention claimed is:

1. A time signal processor based on a multiplying phase interpolation circuit, comprising a time signal processing circuit, a calibration circuit, and a digital logic circuit, wherein the time signal processing circuit, the calibration circuit, and the digital logic circuit realizes a conversion process of a time input signal to a digital output signal;

the time signal processing circuit comprises (n+1)-level successive approximation time signal processing subcircuits SARTDC_{nTH}, SARTDC_{n-1TH}, SARTDC_{1ST}, and SARTDC_{0TH}; each sub-SARTDC module is cascaded; each level of digital code quantifies an amount of time with weights W_n , W_{n-1} , W_1 , and W_0 , and completes a time-to-digital signal conversion in a pipeline manner; input terminals of the SARTDC_{nTH} are time input signals T_P and T_N , and a phase difference of the time input signals T_P and T_N is allowed to be expressed as a time amount T_{res} ; the sub-SARTDC of each stage outputs a digital code D<n:0> and a clock signal CLK<n:0> corresponding to the digital code D<n:0> to the digital logic circuit, and outputs a calibration signal CAL_IN to the calibration circuit;

- the calibration circuit is allowed to change the voltage through analog modules comprising low dropout regulator (LDO), delay-locked loop (DLL), and a charge pump, and is further allowed to configure digital logic modules comprising switched capacitors to control 5 circuit devices through the digital codes; an input end of the calibration circuit is connected to an output signal CAL_IN of the time signal processing circuit, and an output signal CAL_OUT is fed back to the time signal processing circuit to complete a calibration work 10 in a time domain;
- the digital logic circuit realizes a digital signal integration of time input signals in different cycles, and an operation of the digital logic circuit is controlled by the signal processing circuit to obtain a synchronization output digital code DOUT<n:0> within the same conversion cycle.
- 2. The time signal processor based on the multiplying phase interpolation circuit according to claim 1, wherein the 20 sub-SARTDC has a differential structure and is divided into two paths, P and N;
 - each of the two paths comprises multiplication interpolation modules MPI_{P} and MPI_{N} , delay modules BUFFP₁₋₃ and BUFFN₁₋₃, and selectors MUX_P and 25 MUX_N ;
 - the sub-SARTDC comprises a time comparator TCOMP, a NAND gate, an OR gate, an inverter and other digital logic units;
 - an input end of the MPI_P is connected to the input signal 30 T_P of the sub-SARTDC, and an output end of the MPI_P is connected to the delay modules BUFFP₁₋₃, respectively;
 - an input end of the MPI_N is connected to the input signal T_N of the sub-SARTDC, and an output end of the MPI_N 35 is connected to the delay modules BUFFN₁₋₃, respectively;
 - outputs of the delay module $BUFFP_{1-3}$ are $OUTP_1$, OUTP₂, and OUTP₃;
 - outputs of the delay module $BUFFN_{1-3}$ are $OUTN_1$, 40 $OUTN_2$, and $OUTN_3$;
 - wherein the MPI_P and the MPI_N are reset by Φ_{TB} ;
 - two input terminals of the time comparator TCOMP are respectively connected to the input signals T_P and T_N of the sub-SARTDC, and output signals of the time com- 45 parator TCOMP are D and DB;
 - a reset operation of the time comparator TCOMP is controlled by Φ_{τ} ;
 - inputs of the selector MUX_P are the $OUTP_1$ and the OUTP₃, a control terminal of the selector MUX_P is D, 50 and an output of the selector MUX_P is OUT_P ;
 - inputs of the selector MUX_N are the $OUTN_1$ and the OUTN₃, a control terminal of the selector MUX_N is DB, and an output of the selector MUX_N is OUT_N ;
 - the OUT_P and the OUT_N are connected to the input 55 terminal of the subsequent sub-SARTDC;
 - the OUTP₂ and the OUTN₂ are connected to an input terminal of an OR gate OR₁, and an output terminal of the OR gate OR₁ is PRO;
 - the output terminals D and DB of the time comparator 60 TCOMP are connected to a NAND gate NAND₁;
 - an output terminal of the NAND gate NAND₁ is READY, and READY and PRO are jointly connected to an OR gate OR₂;
 - an output terminal of the OR gate OR₂ is a CLK signal, 65 and is passed to the digital logic circuit as an output signal CLK of the sub-SARTDC;

- the input signals T_P and T_N are respectively connected to input terminals of the inverters INV_P and INV_N , and output terminals of the inverters INV_P and INV_N are connected to an input terminal of an OR gate OR₃;
- an output terminal of the OR gate OR₃ and the PRO signal are connected to an input terminal of a NAND gate NAND₂, an output terminal Φ_T of the NAND gate NAND₂ is connected to an input terminal of an inverter INV₁, and an output terminal of the inverter INV₁ is Φ_{TB} ; and
- the sub-SARTDC outputs a comparison signal D and the clock signal CLK to the digital logic circuit and controls the digital logic circuit to convert the digital code.
- 3. The time signal processor based on the multiplying output signals D<n:0> and CLK<n:0> of the time 15 phase interpolation circuit according to claim 1, wherein the MPI comprises inverters INV₀, INV_T, INV_B, variable delay modules BUFF₀, BUFF₂, buffers BUFF₁, BUFF₃, BUFF₄, variable capacitors C_T , C_B , and reset switch S_{rst} ,
 - an input terminal of the inverter INV_o is connected to an input signal IN of the MPI, and an output terminal of the inverter INV_o is connected to an input terminal of the buffer BUFF₄ and an input terminal of the variable delay module BUFF₀;
 - an output terminal of the buffer BUFF₄ is connected to an input terminal of the inverter INV $_T$;
 - an output terminal of the variable delay module BUFF₀ is connected to an input terminal of the inverter INV_B ;
 - an output terminal of the inverter INV $_T$ and an upper plate of the variable capacitor C_T are jointly connected to a node T;
 - an output terminal of the inverter INV_B and a lower plate of the variable capacitor C_R are jointly connected to a node B;
 - a lower plate of the variable capacitor C_T , an upper plate of the C_R and a first end of the reset switch S_{rst} are jointly connected to a node M;
 - a second end of the reset switch S_{rst} is connected to a ground VSS, and is controlled to close and turn off by $\Phi TB;$
 - an input terminal of the buffer BUFF₁ is connected to the node T, and an output terminal of the buffer BUFF₁ is an OUT₁ signal;
 - an input terminal of the buffer BUFF₃ is connected to the node B, and an output terminal of the buffer BUFF₃ is an OUT₃ signal;
 - an input terminal of the variable delay module BUFF₂ is connected to the node M, and an output terminal of the variable delay module BUFF₂ is an OUT₂ signal; and
 - the OUT₁ signal, the OUT₂ signal, and the OUT₃ signal are the output signals of the MPI.
 - 4. The time signal processor based on the multiplying phase interpolation circuit according to claim 3, wherein a circuit structure of the variable delay modules BUFF₀ and BUFF₂ comprises a variable power supply voltage, a variable bias voltage buffer, changing a number of delay unit cascades, changing a size or number of transistors to change a delay.
 - 5. The time signal processor based on the multiplying phase interpolation circuit according to claim 3, wherein structures of the variable capacitor C_T and C_B comprise unit capacitors with different numbers of series/parallel connections or different capacitance values between the nodes T, M, and B to change a capacitance between nodes T, M, and B.
 - 6. The time signal processor based on the multiplying phase interpolation circuit according to claim 1, wherein a modified structure of the MPI, that is, a doubling type time amplification circuit, comprises buffers BUFF_T, BUFF_B,

BUFF₁, BUFF₃, variable delay module BUFF₂, variable capacitors C_T , C_B , and reset switch S_{rst} ;

input terminals of the buffers $BUFF_T$ and $BUFF_B$ are connected to input signals TIN_P and TIN_N , respectively, and output terminals of the buffers $BUFF_1$ and 5 $BUFF_3$ are connected to nodes T and B respectively;

- an upper plate of the variable capacitor C_T is connected to the node T, and a lower plate of the variable capacitor C_T is connected to a node M;
- an upper plate of the variable capacitor C_B is connected to the node M, and a lower plate of the variable capacitor C_B is connected to the node B;
- a first end of the reset switch S_{rst} is connected to the node M, and a second end of the reset switch S_{rst} is connected to a ground VSS, and the second end of the reset 15 switch S_{rst} is controlled to close and turn off by Φ_{TB} ,
- an input terminal of the variable delay module BUFF₂ is connected to the node M, and an output terminal of the variable delay module BUFF₂ is connected to an output signal OUT₂; and
- the output terminals of the buffers BUFF₁ and BUFF₃ are respectively connected to output signals OUT₁ and OUT₃.

* * * * *