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DETECTING BOXES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of and claims priority

under 35 U.S.C. § 120 from U.S. patent application Ser. No.
18/074,354, filed Dec. 2, 2022, entitled, “DETECTING

BOXES,” which 1s a continuation of, U.S. patent application
Ser. No. 17/246,797, filed May 3, 2021, entitled, “DETECT- 1"

ING BOXES”, now U.S. Pat. No. 11,562,552, which 1s a

continuation of U.S. patent application Ser. No. 16/358,275,
filed on Mar. 19, 2019, entitled, “DETECTING BOXES”,

now U.S. Pat. No. 11,023,763, each of which 1s incorporated
herein by reference 1n 1ts entirety.

15

TECHNICAL FIELD

This disclosure relates to detecting boxes.
20

BACKGROUND

A robot 1s generally defined as a reprogrammable and
multifunctional manipulator designed to move material,
parts, tools, or specialized devices through variable pro- 25
grammed motions for a performance of tasks. Robots may
be manipulators that are physically anchored (e.g., industrial
robotic arms), mobile robots that move throughout an envi-
ronment (e.g., using legs, wheels, or traction based mecha-
nisms), or some combination of a manipulator and a mobile 30
robot. Robots are utilized in a variety of industries including,
for example, manufacturing, transportation, hazardous envi-
ronments, exploration, and healthcare. As such, the ability to
recognize shapes and/or objects 1n an environment about the
robot may enhance a robot’s functionality and provide 35
additional benefits to these industries.

SUMMARY

One aspect of the disclosure provides a method for 40
detecting boxes. The method includes receiving, at data
processing hardware, a plurality of image frame pairs for an
arca ol interest over a period of time where the area of
interest includes at least one target box and each image
frame pair of the plurality of image frame pairs 1s associated 45
with a respective time stamp during the period of time and
includes a monocular 1mage frame and a respective depth
image frame. For each image frame pair, the method also
includes determining, by the data processing hardware,
corners for a rectangle corresponding to the at least one 50
target box within the respective monocular 1image frame.
Based on the determined corners for the rectangle within the
respective monocular image frame, the method additionally
includes the following: performing, by the data processing
hardware, edge detection on the at least one target box 55
within the respective monocular image frame; determining,
by the data processing hardware, faces of the at least one
target box within the respective monocular image frame; and
extracting, by the data processing hardware, planes from the
respective depth image frame where the planes extracted 60
from the respective depth 1mage frame correspond to the at
least one target box. The method further includes matching,
by the data processing hardware, the determined faces of the
at least one target box within the respective monocular
image frame to the planes extracted from the respective 65
depth image frame. The method also includes generating, by
the data processing hardware, a box estimation based on the

2

determined comners, the performed edge detection, and the
matched faces of the at least one target box.

Implementations of the disclosure may include one or
more of the following optional features. In some examples,
the method includes aggregating, by the data processing
hardware, the box estimation generated for each image
frame pair to determine an adjusted box estimation over the
period of time for the at least one target box. Aggregating the
box estimation generated for each image frame pair may
include comparing a first box estimation of the at least one
target box generated for a first image frame pair to a second
box estimation of the at least one target box generated for a
second 1mage frame pair and adjusting the box estimation
over the period of time based on the comparison between the
first box estimation and the second box estimation.

In some implementations, the method further includes, for
cach frame pair, cropping, by the data processing hardware,
the respective monocular image frame and the depth image
frame to 1solate the area of interest corresponding to the at
least one target box. In some examples, the method also
includes, for each frame pair, correcting, by the data pro-
cessing hardware, angular distortion associated with the
respective monocular image frame. In some configurations,
the method includes, displaying, by the data processing
hardware, the box estimation as a homographic projection
within a vision system for a robot. In some examples, the
method may include, displaying, by the data processing
hardware, the box estimation as a projection within a vision
system for a robot. Here, the projection represents the at
least one target box with a color indicating a confidence
interval for the box estimation.

In some implementations, determining the corners for the
rectangle within the respective monocular image Iframe
includes using a machine learning model to determine the
corners for the rectangle within the respective monocular
image Iframe. The machine learning model may be a trained
deep learning neural network. The determined corners for
the rectangle within the respective monocular 1image frame
may be 1nitial seeds into a gradient ascent optimizer where
the gradient ascent optimizer 1s configured to match faces
and perform edge detection. Optionally, each respective
depth 1mage frame may be obtained from a depth sensor
including one or more of a stereo camera, a scanning
light-detection and ranging (LIDAR) sensor, a time-of-flight
sensor, or a scanmng laser-detection and ranging (LADAR)
sensor. The monocular image frame and the depth image
frame may be captured from one or more sensors mounted
on an articulated arm of a robot. In some examples, the data
processing hardware resides on a mobile robot within the
area of interest.

Another aspect of the disclosure provides a robot for
detecting boxes. The robot includes a sensor system, data
processing hardware, and memory hardware 1 communi-
cation with the data processing hardware. The memory
hardware stores instructions that when executed on the data
processing hardware cause the data processing hardware to
perform operations. The operations include receiving, from
the sensor system, a plurality of image frame pairs for an
area ol interest over a period of time where the area of
interest including at least one target box and each image
frame pair of the plurality of image frame pairs 1s associated
with a respective time stamp during the period of time and
includes a monocular 1mage frame and a respective depth
image Irame. For each image frame pair, the operations also
include determining corners for a rectangle corresponding to
the at least one target box within the respective monocular
image frame. Based on the determined corners for the
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rectangle within the respective monocular image frame, the
operations additionally include the following: performing
edge detection on the at least one target box within the
respective monocular image frame; determining faces of the
at least one target box within the respective monocular
image Irame; and extracting planes from the respective
depth 1mage frame where the planes extracted from the
respective depth 1image frame correspond to the at least one
target box. The operations further include matching the
determined faces of the at least one target box within the
respective monocular 1image frame to the planes extracted
from the respective depth image frame. The operations also
include generating a box estimation based on the determined
corners, the performed edge detection, and the matched
faces of the at least one target box.

Implementations of the disclosure may include one or
more of the following optional features. In some examples,
the operations 1nclude aggregating the box estimation gen-
erated for each image frame pair to determine an adjusted
box estimation over the period of time for the at least one
target box. Aggregating the box estimation generated for
cach 1image frame pair may include comparing a first box
estimation of the at least one target box generated for a first
image frame pair to a second box estimation of the at least
one target box generated for a second 1mage frame pair and
adjusting the box estimation over the period of time based on
the comparison between the first box estimation and the
second box estimation.

In some implementations, the operations further include,
for each frame pair, cropping the respective monocular
image Irame and the depth image frame to 1solate the area
ol interest corresponding to the at least one target box. In
some examples, the operations also include, for each frame
pair, correcting angular distortion associated with the
respective monocular image frame. In some configurations,
the operations include, displaying the box estimation as a
homographic projection within a vision system for a robot.
In some examples, the operations may include, displaying
the box estimation as a projection within a vision system for
a robot. Here, the projection represents the at least one target
box with a color indicating a confidence 1nterval for the box
estimation.

In some 1implementations, determining the corners for the
rectangle within the respective monocular image frame
includes using a machine learning model to determine the
corners for the rectangle within the respective monocular
image Iframe. The machine learning model may be a trained
deep learning neural network. The determined corners for
the rectangle within the respective monocular image frame
may be 1nitial seeds into a gradient ascent optimizer where
the gradient ascent optimizer i1s configured to match faces
and perform edge detection. Optionally, each respective
depth 1image frame may be obtained from a depth sensor of
the sensor system where the depth sensor includes one or
more of a stereo camera, a scanning light-detection and
ranging (LIDAR) sensor, a time-oi-flight sensor, or a scan-
ning laser-detection and ranging (LADAR) sensor. The
robot may also include an articulated arm of a robot wherein
at least a portion of the sensor system 1s mounted on the
articulated arm.

The details of one or more implementations of the dis-
closure are set forth 1n the accompanying drawings and the
description below. Other aspects, features, and advantages
will be apparent from the description and drawings, and

from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1A 1s a perspective view ol an example robot within
a work environment.
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FIG. 1B 1s a schematic view of an example arrangement
of systems of the robot of FIG. 1A.

FIG. 2A 1s a schematic view of an example 1mage
processing system for the robot of FIG. 1A.

FIGS. 2B-2F are perspective views of example images for
the 1mage processing of FIG. 2A.

FIG. 3 1s a perspective view ol an example vision system
for the robot of FIG. 1A using the image processing system
of FIG. 2A.

FIG. 4 1s an example arrangement of operations for a
robot to detect a box within a work environment.

FIG. 5 1s a schematic view of an example computing
device that may be used to implement the systems and
methods described herein.

Like reference symbols 1n the various drawings indicate
like elements.

DETAILED DESCRIPTION

Logistics has evolved to package and/or to ship goods of
all shapes and sizes. With this evolution, more and more
packaged goods, such as boxes, move about various logistic
channels. In particular, 1n recent decades, consumer demand
for packaged goods has significantly increased due to,
among other things, an increase in online shopping. Today,
large shipping companies estimate shipping several millions
of packages every day. As part of shipping logistics, 1t 1s
often necessary to perform certain tasks related to boxes,
such as counting, sorting, transporting, palletizing, eftc.
These tasks may be needed at both 1ncoming and/or outgo-
ing facilities for various businesses, warchouses, fulfillment
centers, etc. Currently, the tasks related to boxes of packaged
goods use countless amounts of human labor and time.
Furthermore, while speed and accuracy may be critical,
these tasks are often monotonous, tedious, time-consuming,
and/or strenuous.

Due to the inherent nature of human fatigue and its
detrimental impact on human accuracy, these tasks are
generally better suited for a robot. A robot may perform
box-related tasks 1n a repeatable and/or reliable manner
without suffering from fatigue. Advantageously, some
aspects ol shipping logistics already involve machinery
and/or machine processing. For instance, shipping environ-
ments typically include equipment such as computers, scan-
ners, scales, conveyors, or forklifts. By using a robot to
perform tasks for boxes, the robot may function to consoli-
date the roles of this equipment. In some cases, a robot may
more casily integrate with this equipment and/or related
logistic systems. Based on these and other advantages, a
robot that may accurately and efliciently detect boxes within
a work environment may greatly benefit the evolving field of
logistics.

FIG. 1A 1s an example of a robot 100 operating within a
work environment 10 that includes at least one box 20. Here,
the work environment 10 includes a plurality of boxes 20,
20a-n stacked on a pallet 30 lying on a ground surface 12.
Generally, boxes 20 are used to package goods for protec-
tion, ease of transport, stackability, etc. A box 20 typically
has a structure that resembles a rectangular prism or cuboid.
A box 20 includes corners 22 where two edges 24 of a face
26 1ntersect. As a rectangular prism, a box 20 includes six
faces 26 where each face 26 i1s a rectangle formed by a
boundary of four edges 24. Each face 26 corresponds to a
spatial plane where the intersection of two planes forms an
edge 24. A comer 22 refers to a point or vertex where two
edges 24 generally intersect at a mnety degree angle (1.e., a
right angle). A box 20 has eight corners 22 (1.e., vertices) and
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twelve edges 24. In logistics, a box 20 often includes a stock
keeping unit (SKU) (e.g., 1n the form of a bar code) for a
good contained within the box 20. When palletized (i.e.,
stacked on a pallet 30), it 1s common for the SKU or bar code
to be located on a face 26 of the box 20 that 1s exposed.

The work environment 10 may include, for example, a
storage facility, distribution center, or fulfillment center. The
robot 100 may move (e.g., drive) across the ground surface
12 to detect and/or to mampulate boxes 20 within the work
environment 10. For example, the pallet 30 may correspond
to a delivery truck that the robot 100 loads or unloads. The
robot 100 may be associated with a shipping and/or receiv-
ing stage of logistics where the robot 100 palletizes boxes 20
or detects boxes 20 for logistics fulfillment or inventory
management. For instance, the robot 100 detects a box 20
and, based on this detection, scan or process the box 20 for
incoming or outgoing inventory. In some implementations,
the robot 100 may manipulate one or more boxes 20 about
the work environment 10.

The robot 100 has a vertical gravitational axis V, along a
direction of gravity, and a center of mass CM, which 1s a
point where the robot 100 has a zero sum distribution of
mass. The robot 100 further has a pose P based on the CM
relative to the vertical gravitational axis V, to define a
particular attitude or stance assumed by the robot 100. The
attitude of the robot 100 can be defined by an orientation or
an angular position of an object in space.

The robot 100 generally includes a body 110 and one or
more legs 120. The body 110 of the robot 100 may be a
unitary structure or a more complex design depending on the
tasks to be performed 1n the work environment 10. The body
110 may allow the robot 100 to balance, to sense about the
work environment 10, to power the robot 100, to assist with
tasks within the work environment 10, or to support other
components of the robot 100. In some examples, the robot
100 includes a two-part body 110. For example, the robot
100 includes an mverted pendulum body (IPB) 110, 1104
(1.e., referred to as a torso 110a of the robot 100) and a
counter-balance body (CBB) 110, 1105 (1.e., referred to as a
tail 1105 of the robot 100) disposed on the IPB 110a.

The body 110 (e.g., the IPB 110a or the CBB 11056) has
first end portion 112 and a second end portion 114. For
instance the IPB 110aq has a first end portion 112¢ and a
second end portion 1144 while the CBB 11054 has a first end
portion 1126 and a second end portion 114H. In some
implementations, the CBB 11056 1s disposed on the second
end portion 114a of the IPB 110a and configured to move
relative to the IPB 110q. In some examples, the counter-
balance body 1105 includes a battery that serves to power
the robot 100. A back joint J; may rotatably couple the CBB
1105 to the second end portion 114q of the IPB 110qa to allow
the CBB 1105 to rotate relative to the IPB 110a. The back
joint J; may be referred to as a pitch joint. In the example
shown, the back joint J, supports the CBB 11054 to allow the
CBB 11056 to move/pitch around a lateral axis (y-axis) that
extends perpendicular to the gravitational vertical axis V,
and a fore-ait axis (x-axis) of the robot 100. The fore-aft axis
(x-axis) may denote a present direction of travel by the robot
100. Movement by the CBB 1105 relative to the IPB 1104
alters the pose P of the robot 100 by moving the CM of the
robot 100 relative to the vertical gravitational axis V_. A
rotational actuator or back joint actuator A, A, (e.g., a tail
actuator or counter-balance body actuator) may be posi-
tioned at or near the back joint J; for controlling movement
by the CBB 1105 (e.g., tail) about the lateral axis (y-axis).
The rotational actuator A, may include an electric motor,
clectro-hydraulic servo, piezo-electric actuator, solenoid
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6

actuator, pneumatic actuator, or other actuator technology
suitable for accurately effecting movement of the CBB 1105
relative to the IPB 110a.

The rotational movement by the CBB 1105 relative to the
IPB 110q alters the pose P of the robot 100 for balancing and
maintaining the robot 100 in an upright position. For
instance, similar to rotation by a tlywheel 1n a conventional
iverted pendulum flywheel, rotation by the CBB 1105
relative to the gravitational vertical axis V_ generates/im-
parts the moment M at the back joint J; to alter the pose
P of the robot 100. By moving the CBB 1105 relative to the
IPB 110a to alter the pose P of the robot 100, the CM of the
robot 100 moves relative to the gravitational vertical axis Vg
to balance and maintain the robot 100 1n the upright position
in scenarios when the robot 100 1s moving and/or carrying
a load. However, by contrast to the flywheel portion 1n the
conventional inverted pendulum flywheel that has a mass
centered at the moment point, the CBB 1106 includes a
corresponding mass that 1s oflset from moment imparted at
the back joint J, some configurations, a gyroscope disposed
at the back joint J, could be used 1n lieu of the CBB 1105
to spin and impart the moment (rotational force) for balanc-
ing and maintaining the robot 100 1n the upright position.

The CBB 1105 may rotate (e.g., pitch) about the back
joint J; 1n both the clockwise and counter-clockwise direc-
tions (e.g., about the y-axis in the “pitch direction”) to create
an oscillating (e.g., wagging) movement. Movement by the
CBB 1105 relative to IPB 110a between positions causes the
CM of the robot 100 to shift (e.g., lower toward the ground
surface 12 or higher away from the ground surface 12). The
CBB 1105 may oscillate between movements to create the
wagging movement. The rotational velocity of the CBB
1105 when moving relative to the IPB 110a may be constant
or changing (accelerating or decelerating) depending upon
how quickly the pose P of the robot 100 needs to be altered
for dynamically balancing the robot 100.

The legs 120 are locomotion-based structures (e.g., legs
and/or wheels) that are configured to move the robot 100
about the work environment 10. The robot 100 may have any
number of legs 120 (e.g., a quadruped with four legs, a biped
with two legs, a hexapod with six legs, an arachmid-like
robot with eight legs, etc.). Here, for sumplicity, the robot
100 1s generally shown and described with two legs 120,
120a-b.

As a two-legged robot 100, the robot includes a first leg
120, 120a and a second leg 120, 12054. In some examples,
cach leg 120 includes a first end 122 and a second end 124.
The second end 124 corresponds to an end of the leg 120 that
contacts or 1s adjacent to a member of the robot 100
contacting a surface (e.g., a ground surface) such that the
robot 100 may traverse the work environment 10. For
example, the second end 124 corresponds to a foot of the
robot 100 that moves according to a gait pattern. In some
implementations, the robot 100 moves according to rolling
motion such that the robot 100 includes a drive wheel 130.
The drnive wheel 130 may be 1n addition to or instead of a
foot-like member of the robot 100. For example, the robot
100 1s capable of moving according to ambulatory motion
and/or rolling motion. Here, the robot 100 depicted 1n FIG.
1 A illustrates the first end 122 coupled to the body 110 (e.g.,
at the IPB 110a) while the second end 124 1s coupled to the
drive wheel 130. By coupling the drive wheel 130 to the
second end 124 of the leg 120, the drive wheel 130 may
rotate about an axis of the coupling to move the robot 100
about the work environment 10.

Hip joints J,, on each side of body 110 (e.g., a first hip
jomt J.,, I, and a second hip joint I, J.,, symmetrical about
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a sagittal plane P of the robot 100) may rotatably couple the
first end 122 of a leg 120 to the second end portion 114 of
the body 110 to allow at least a portion of the leg 120 to
move/pitch around the lateral axis (y-axis) relative to the
body 110. For 1nstance, the first end 122 of the leg 120 (e.g.,
of the first leg 120a or the second leg 12056) couples to the
second end portion 114a of the IPB 110q at the hip joint I,
to allow at least a portion of the leg 120 to move/pitch
around the lateral axis (y-axis) relative to the IPB 110aq.

A leg actuator A, A; may be associated with each hip joint
I..(e.g., afirst leg actuator A;, A, and a second leg actuator
A;, A;,). The leg actuator A, associated with the hip joint
I, may cause an upper portion 126 of the leg 120 (e.g., the
first leg 120a or the second leg 1205) to move/pitch around
the lateral axis (y-axis) relative to the body 110 (e.g., the IPB
110a). In some configurations, each leg 120 includes the
corresponding upper portion 126 and a corresponding lower
portion 128. The upper portion 126 may extend from the hip
joint J,; at the first end 122 to a corresponding knee joint J,-
and the lower portion 128 may extend from the knee joint J.-
to the second end 124. A knee actuator A, A .- associated with
the knee joint J,- may cause the lower portion 128 of the leg
120 to move/pitch about the lateral axis (y-axis) relative to
the upper portion 126 of the leg 120.

Each leg 120 may include a corresponding ankle joint J
configured to rotatably couple the drive wheel 130 to the
second end 124 of the leg 120. For example, the first leg
120a includes a first ankle joint J ,, J, and the second leg
12056 includes a second ankle joint J,, I ,,. Here, the ankle
joint J, may be associated with a wheel axle coupled for
common rotation with the drive wheel 130 and extending
substantially parallel to the lateral axis (y-axis). The drive
wheel 130 may include a corresponding torque actuator
(drive motor) A, A-configured to apply a corresponding axle
torque for rotating the drive wheel 130 about the ankle joint
I , to move the drive wheel 130 across the ground surface 12
(which may be interchangeably referred to as a work surface
12) along the fore-aft axis (x-axis). For instance, the axle
torque may cause the drive wheel 130 to rotate in a first
direction for moving the robot 100 1n a forward direction
along the fore-aft axis (x-axis) and/or cause the drive wheel
130 to rotate 1n an opposite second direction for moving the
robot 100 in a rearward direction along the fore-aft axis
(x-axis).

In some implementations, the legs 120 are prismatically
coupled to the body 110 (e.g., the IPB 110a) such that a
length of each leg 120 may expand and retract via a
corresponding actuator (e.g., leg actuators A, ) proximate the
hip joint J,,, a pair of pulleys (not shown) disposed proxi-
mate the hip joint J,, and the knee joint J., and a timing belt
(not shown) synchronizing rotation of the pulleys. Each leg
actuators A; may include a linear actuator or a rotational
actuator. Here, a control system 140 with a controller 142
(e.g., shown 1 FIG. 1B) may actuate the actuator associated
with each leg 120 to rotate the corresponding upper portion
126 relative to the body 110 (e.g., the IPB 1104a) 1n one of
a clockwise direction or a counter-clockwise direction to
prismatically extend/expand the length of the leg 120 by
causing the corresponding lower portion 128 to rotate about
the corresponding knee joint J.- relative to the upper portion
126 1n the other one of the clockwise direction or the
counter-clockwise direction. Optionally, 1mstead of a two-
link leg, the at least one leg 120 may include a single link
that prismatically extends/retracts linearly such that the
second end 124 of the leg 120 prismatically moves away/
toward the body 110 (e.g., the IPB 110a) along a linear rail.
In other configurations, the knee joint J,- may employ a
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corresponding a rotational actuator as the knee actuator A .-
for rotating the lower portion 128 relative to the upper
portion 126 1n licu of the pair of synchromized pulleys.

The corresponding axle torques applied to each of the
drive wheels 130 (e.g., a first drive wheel 130, 130a asso-
ciated with the first leg 120a and a second drive wheel 130,
1306 associated with the second leg 1205) may vary to
maneuver the robot 100 across the ground surface 12. For
instance, an axle torque applied to the first drive wheel 130q
that 1s greater than an axle torque applied to the second drive
wheel 1305 may cause the robot 100 to turn to the leit, while
applying a greater axle torque to the second drive wheel
1305 than to the first drive wheel 130 may cause the robot
100 to turn to the right. Stmilarly, applying substantially the
same magnitude of axle torque to each of the drive wheels
130 may cause the robot 100 to move substantially straight
across the ground surface 12 1n either the forward or reverse
directions. The magnitude of axle torque applied to each of
the drive wheels 130 also controls velocity of the robot 100
along the fore-aft axis (x-axis). Optionally, the drive wheels
130 may rotate 1n opposite directions to allow the robot 100
to change orientation by swiveling on the ground surface 12.
Thus, each axle torque may be applied to the corresponding
drive wheel 130 independent of the axle torque (if any)
applied to the other drive wheel 130.

In some examples, the body 110 (e.g., at the CBB 1105)
also 1includes at least one non-drive wheel (not shown). The
non-drive wheel 1s generally passive (e.g., a passive caster
wheel) and does not contact the ground surface 12 unless the
body 110 moves to a pose P where the body 110 (e.g., the
CBB 1105) 1s supported by the ground surface 12.

In some implementations, the robot 100 further includes
one or more appendages, such as an articulated arm 150
(also referred to as an arm or a manipulator arm) disposed
on the body 110 (e.g., on the IPB 110a) and configured to
move relative to the body 110. The articulated arm 150 may
have one or more degrees of freedom (e.g., ranging from
relatively fixed to capable of performing a wide array of

tasks 1n the work environment 10). Here, the articulated arm
150 1llustrated 1n FIG. 1A has five-degrees of freedom.

While FIG. 1A shows the articulated arm 150 disposed on
the first end portion 112 of the body 110 (e.g., at the IPB
110a), the articulated arm 150 may be disposed on any part
of the body 110 in other configurations. For instance, the
articulated arm 150 1s disposed on the CBB 1106 or on the
second end portion 114a of the IPB 110a.
The articulated arm 150 extends between a proximal first
end 152 and a distal second end 154. The arm 150 may
include one or more arm joints J , between the first end 152
and the second end 154 where each arm joint J , 1s config-
ured to enable the arm 150 to articulate in the work envi-
ronment 10. These arm joints J, may either couple an arm
member 156 of the arm 150 to the body 110 or couple two
or more arm members 156 together. For example, the first
end 152 connects to the body 110 (e.g., the IPB 110q) at a
first articulated arm joint J,, (e.g., resembling a shoulder
joint). In some configurations, the first articulated arm joint
I ,; 1s disposed between the hip jomts I, (e.g., aligned along
the sagittal plane P of the robot 100 at the center of the body
110). In some examples, the first articulated arm joint I
rotatably couples the proximal first end 152 of the arm 1350
to the body 110 (e.g., the IPB 1104a) to enable the arm 1350
to rotate relative to the body 110 (e.g., the IPB 110a). For
instance, the arm 150 may move/pitch about the lateral axis
(y-axis) relative to the body 110.

In some implementations, such as FIG. 1, the arm 150
includes a second arm joint I ,, (e.g., resembling an elbow




US 12,175,742 B2

9

joint) and a third arm joint J,; (e.g., resembling a wrist
joint). The second arm joint J ,, couples a first arm member
1564 to a second arm member 1565 such that these members
156a-b are rotatable relative to one another and also to the
body 110 (e.g., the IPB 110). Depending on a length of the
arm 150, the second end 154 of the arm 150 coincides with
an end of an arm member 156. For instance, although the
arm 150 may have any number of arm members 156, FIG.
1A depicts the arm 150 with two arm members 156a-b such
that the end of the second arm member 1565 coincides with
the second end 154 of the arm 150. Here, at the second end
154 of the arm 150, the arm 150 includes an end eflector 160
that 1s configured to perform tasks within the work envi-
ronment 10. The end effector 160 may be disposed on the
second end 154 of the arm 150 at an arm joint J , (e.g., at the
third arm joint J ;) to allow the end effector 160 to have
multiple degrees of freedom during operation. The end
cllector 160 may include one or more end effector actuators
A, A, Tor gripping/grasping objects. For instance, the end
cllector 160 includes one or more suction cups as end
eflector actuators A ... to grasp or to grip objects by provid-
ing a vacuum seal between the end eflector 160 and a target
object, e.g., a target box 202.

The articulated arm 150 may move/pitch about the lateral
axis (y-axis) relative to the body 110 (e.g., the IPB 110q).
For instance, the articulated arm 150 may rotate about the
lateral axis (y-axis) relative to the body 110 1n the direction
of gravity to lower the CM of the robot 100 while executing
turning maneuvers. The CBB 12056 may also simultaneously
rotate about the lateral axis (y-axis) relative to the IPB 110
in the direction of gravity to assist in lowering the CM of the
robot 100. Here, the articulated arm 150 and the CBB 11054
may cancel out any shifting 1n the CM of the robot 100 in
the forward or rearward direction along the fore-aft axis
(x-axis), while still effectuating the CM of the robot 100 to
shift downward closer to the ground surface 12.

With reference to FIG. 1B, the robot 100 includes a
control system 140 configured to monitor and to control
operation of the robot 100. In some implementations, the
robot 100 1s configured to operate autonomously and/or
semi-autonomously. However, a user may also operate the
robot by providing commands/directions to the robot 100. In
the example shown, the control system 140 includes a
controller 142 (e.g., data processing hardware) and memory
hardware 144. The controller 142 may include 1ts own
memory hardware or utilize the memory hardware 144 of
the control system 140. In some examples, the control
system 140 (e.g., with the controller 142) 1s configured to
communicate (e.g., command motion) with the actuators A
(e.g., back actuator(s) A, leg actuator(s) A, knee actuator
(s) Ay, drive belt actuator(s), rotational actuator(s), end
ellector actuator(s) A.., etc.) to enable the robot 100 to
move about the work environment 10. The control system
140 1s not limited to the components shown, and may
include additional (e.g., a power source) or less components
without departing from the scope of the present disclosure.
The components may communicate by wireless or wired
connections and may be distributed across multiple locations
of the robot 100. In some configurations, the control system
140 interfaces with a remote computing device and/or a user.
For instance, the control system 140 may include various
components for communicating with the robot 100, such as
a joystick, buttons, transmitters/receivers, wired communi-
cation ports, and/or wireless communication ports for
receiving inputs from the remote computing device and/or
user, and providing feedback to the remote computing
device and/or user.
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The controller 142 corresponds to data processing hard-
ware that may include one or more general purpose proces-
sors, digital signal processors, and/or application specific
integrated circuits (ASICs). In some implementations, the
controller 142 1s a purpose-built embedded device config-
ured to perform specific operations with one or more sub-
systems of the robot 100. The memory hardware 144 1s 1n
communication with the controller 142 and may 1nclude one
or more non-transitory computer-readable storage media
such as volatile and/or non-volatile storage components. For
instance, the memory hardware 144 may be associated with
one or more physical devices 1n communication with one
another and may include optical, magnetic, organic, or other
types of memory or storage. The memory hardware 144 1s
configured to, inter alia, to store 1nstructions (e.g., computer-
readable program 1instructions), that when executed by the
controller 142, cause the controller 142 to perform numer-
ous operations, such as, without limitation, altering the pose
P of the robot 100 for maintaining balance, maneuvering the
robot 100, detecting objects, transporting objects, and/or
performing other tasks within the work environment 10. The
controller 142 may perform the operations based on direct or
indirect interactions with a sensor system 170.

The sensor system 170 includes one or more sensors 172,
172a-n. The sensors 172 may include vision/image sensors,
inertial sensors (e.g., an inertial measurement unit (IMU)),
and/or kinematic sensors. Some examples of 1mage/vision
sensors 172 include a camera such as a monocular camera or
a stereo camera, a time of flight (TOF) depth sensor, a
scanning light-detection and ranging (LIDAR) sensor, or a
scanning laser-detection and ranging (LADAR) sensor.
More generically, the sensors 172 may include one or more
ol force sensors, torque sensors, velocity sensors, accelera-
tion sensors, position sensors (linear and/or rotational posi-
tion sensors), motion sensors, location sensors, load sensors,
temperature sensors, touch sensors, depth sensors, ultrasonic
range sensors, inirared sensors, and/or object sensors. In
some examples, the sensor 172 has a corresponding field(s)
of view defining a sensing range or region corresponding to
the sensor 172. Each sensor 172 may be pivotable and/or
rotatable such that the sensor 172 may, for example, change
the field of view about one or more axis (e.g., an X-axis, a
y-axis, or a z-axis in relation to a ground surface 12). In
some i1mplementations, the body 110 of the robot 100
includes a sensor system 170 with multiple sensors 172
about the body to gather sensor data 174 in all directions
around the robot 100. Additionally or alternatively, sensors
172 of the sensor system 170 may be mounted on the arm
160 of the robot 100 (e.g., in conjunction with one or more
sensors 172 mounted on the body 110). The robot 100 may
include any number of sensors 172 as part of the sensor
system 170 1n order to generate sensor data 172 for the work
environment 10 about the robot 100. For instance, when the
robot 100 1s maneuvering about the work environment 10,
the sensor system 170 gathers pose data for the robot 100
that includes 1nertial measurement data (e.g., measured by
an IMU). In some examples, the pose data includes Kkine-
matic data and/or orientation data about the robot 100.

When surveying a field of view with a sensor 172, the
sensor system 170 generates sensor data 174 (also referred
to as 1image data 174) corresponding to the field of view. For
image/vision sensors 172, the sensors 172 may capture
images 176 as sensor data 174 at a particular frequency such
that the sensor data 174 includes frames F corresponding to
the field of view at a time interval. In configurations where
the sensor system 170 includes multiple vision sensors 172,
the sensor system 170 may be configured to control a
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direction (e.g., field of view) of each sensor 172 such that
more than one field of view corresponding to an 1mage
sensor 172 overlap to allow for different types of image data
174 to be used 1n i1mage processing together. In some
examples, the sensor system 170 includes at least one
monocular camera as a first sensor 172, 172a and at least one
depth sensor (e.g., stereo camera, LIDAR, TOF, etc.) as a
second sensor 172, 1725b. The sensors 172a-b may overlap
their fields of view. With overlapping fields of view, the
sensors 172a-b capture a monocular 1image 176, 176a (1.¢.,
two-dimensional) and a depth 1image 176, 1765 (1.¢., three-
dimensional) at the same instance in time for the same field
of view (or nearly the same field of view depending on
sensor mounting placement) of the work environment 10.
This results in 1dentical or nearly i1dentical frames F with
different sensor data 174 for each matching frame F (1.e., at
the same 1nstance 1n time). Each matching frame F may be
associated with a respective time stamp corresponding to the
instance in time. For example, a monocular camera such as
the first sensor 172a captures/generates sensor data 174 for
a frame F of a monocular image 176a, and a depth sensor
such as the second sensor 1726 captures/generates sensor
data 174 for a frame F of a depth image 1765 that corre-
sponds to a three-dimensional volumetric point cloud. Each
frame F of a monocular image 176a may be referred to as a
“monocular image frame” and each frame F of a depth
image 1765 may be referred to as a “depth 1mage frame”.

Sensor data 174 gathered by the sensor system 170, such
as the image data, pose data, inertial data, kinematic data,
etc., relating to the robotic environment 10 may be commu-
nicated to the control system 140 (e.g., the controller 142
and/or memory hardware 144) of the robot 100. In some
examples, the sensor system 170 gathers and stores the
sensor data 174 (e.g., in the memory hardware 144 or
memory hardware related to remote resources communicat-
ing with the robot 100). In other examples, the sensor system
170 gathers the sensor data 174 in real-time and processes
the sensor data 174 without storing raw (1.e., unprocessed)
sensor data 174. In yet other examples, the controller system
140 and/or remote resources store both the processed sensor

data 174 and raw sensor data 174. The sensor data 174 from

the sensors 172 may allow systems of the robot 100 to detect
and/or to analyze conditions about the robot 100. For
instance, the sensor data 174 may allow the control system
140 to maneuver the robot 100, alter a pose P of the robot
100, and/or actuate various actuators A for moving/rotating
mechanical components of the robot 100.

As shown 1n FIG. 2A, the robot 100 includes an 1mage
processing system 200 that 1s configured to process sensor
data 174 corresponding to 1images 176 captured by sensor(s)
172 of the sensor system 170. Based on the sensor data 174,
the 1mage processing system 200 1s configured to detect
shapes corresponding to one or more boxes within the work
environment 10 about the robot 100. By detecting one or
more boxes 20, the robot 100 may mamipulate the boxes 20
or Tacilitate other processing for each target box 20. In some
examples, the robot 100 detects one or more box 20 and
communicates a location of the box 20 to another enfity
(e.g., a worker, another robot, an owner of the box 20, etc.).
For example, when the robot 100 detects a box 20 (e.g., a
pallet 30 of boxes 20), the robot 100 may communicate the
location of the box 20 to a forklift operator. In some
configurations, with the image processing system 200, the
robot 100 may recognize when the robot 100 may need
assistance with tasks related to the boxes 20. In other words,
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the robot 100 may be aware of constraints such as a strength
ol the robot 100 or a size of a box 20 that the robot 100 1s
able to manipulate.

The 1mage processing system 200 receives sensor data
174 corresponding to a plurality of frames F of images 176
for an area of 1nterest. When the sensor system 170 captures
the frames F of images 176, the sensor system 170 aligns the
field of view for one or more sensors 172 that correspond to
the area of interest including one or more target boxes 202.
More specifically, the image processing system 200 receives
sensor data 174 corresponding to a plurality of image frame
pairs 176a, 176b, F_, for the area of interest over a period of
time, whereby each image frame pair F_, 1s associated with
a respective time stamp (denoted as an image frame F)
during the period of time and includes a respective mon-
ocular image frame 176a, F_ and a respective depth image
frame 176b, F, for the area of interest. For simplicity, FIGS.
2A-2F depict a single image frame pair F_,, associated with
a respective time stamp. To process the frames F, the image
processing system 200 generally includes a modeler 210 and
an estimator 220. FIGS. 2B-2F illustrate examples of the
image processing functions performed by the components of
the 1mage processing system 200 (e.g., the detector 210, the
modeler 210, and the estimator 220).

In some examples, the robot 100 indicates to the image
processing system 200 that the work environment 10 may
include a box 20 due to sensor data 174 from the sensor
system 170 (1.e., indicates a possibility of a target box 202).
For instance, the sensor data 174 generally indicates (i.e.,
senses) an object within the area about the robot 100 (e.g.,
without knowing that the object may correspond to a box
20). In some implementations, the robot 100 receives an
input from a remote computing device and/or user that an
area ol interest may have a box 20 (1.e., an mput indicating
a target box 202). In either case, the sensor system 170
communicates with the image processing system 200 to
capture 1image data 174 for the area of interest. Based on an
input indicating a target box 202, the image processing
system 200 may be initialized to begin box detection.

In some examples, when the image processing system 200
receives the image frame pairs F_, (e.g., the monocular
image frames 176a and the depth image frames 1765) for an
area of interest, each image 176a-b includes 1image data 174
for objects or features 1n the work environment 10 other than
a box 20. For instance, when the work environment 10 1s a
warchouse, the 1mages 176a-b may include features such as
flooring, ceiling, walls, etc. The 1image processing system
200 15 configured to recognize these non-box features and to
remove 1mage data 174 corresponding to these non-box
teatures. In other words, the images 176a-b may be cropped
to 1solate the area of interest that includes the target box 202.
For example, FIG. 2C shows a monocular image frame
176a, I after cropping out image data 174 corresponding to
non-box teatures from the monocular image frame 176a, F_
of FIG. 2B, thereby isolating the area of interest and
revealing less of the work environment 10 when compared
to FIG. 2B. Although the image processing system 200 1s
capable of processing an entirety of images 176 captured by
a sensor 172, the removal of non-box features may stream-
line (e.g., reduce) an amount of 1mage data 174 that needs
to be processed by the image processing system 200.

In some implementations, the 1image processing system
200 recerves an 1mage 176 (e.g., the monocular image 176qa
or the depth image 1765) that 1s distorted. A distorted image
generally refers to an 1mage 176 that attempts to capture a
subject with straight line segments (1.e., a rectilinear sub-
ject), but the captured image results 1n curved line segments
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(1.e., a non-rectilinear subject). Some examples of distortion
are barrel distortion (i.e., distortion with concave lines
towards a center of the image 176), pin cushion distortion
(1.e., distortion with convex lines towards a center of the
image 176), or angular distortion (1.e., distortion with angu-
lar lines rather than rectilinear lines). In some configura-
tions, the distortion of the image 176 1s due to the sensor 172
that captures the 1mage 176. The sensor 172 may have some
degree of tilt based on how the sensor 172 mounts on the
robot 100. For instance, the sensor 172 may be mounted on
a curved surface of the robot 100. When the image process-
ing system 200 receives the image 176 with distortion, the
image processing system 200 performs 1image correction to
transform the distorted image 176 into a rectilinear projec-
tion. The corrected 1image may allow the image processing
system 200 to more efliciently process images 176 to detect
boxes 20 since boxes 20 (e.g., sides and faces of boxes) are
generally formed from straight line segments.

The modeler 210 1s configured to receive the monocular
image frames 176a, F_ (e.g., image data 174 related to a
monocular image 176a as shown in FIG. 2B) that include at
least one target box 202. Additionally or alternatively, the
modeler 210 may detect that the image data 174 for a frame
F _ of the monocular image 176qa includes at least one box 20
as a target box 202. For each image frame pair F_ b, the
modeler 210 1s configured to determine corners 214 for a
rectangle associated with the at least one target box 202
based on the recerved monocular image trames 176a, I _. For
simplicity, FIG. 2A shows the modeler 210 receiving one
monocular 1mage 176a associated with a respective frame
F .. The modeler 210 includes a model 222 that determines
the corners 214 (1.e., a digital representation of a corner 22
of a box 20) for the rectangle associated with the at least one
target box 202 from the monocular image 176a. For
instance, FIG. 2C illustrates monocular image 176a where
the modeler 210 has identified twenty-five corners 214,
214a-y 1n the monocular image 176a. In some examples, the
model 222 1s a machine learning model trained on mput data
sets and output result sets to predict an output 216 during
inference based on mput data similar to the training data
sets. During training, the model 222 receives training data
sets that include frames F with one or more boxes 20. Here,
cach frame F of a traiming data set has labels that 1dentify
corners 214 for each tramning box within the frame F.
Typically for training purposes, data 1s segregated into
training data sets and evaluation data sets (e.g., 90% training,
and 10% evaluation) and the model 222 1s trained until a
performance of the model 222 on the evaluation set stops
decreasing. Once the performance stops decreasing on the
evaluation set, the model 222 may be ready for inference to
determine corners 214 for a rectangle associated with at least
one target box 202 within the monocular image 176a. In
some 1mplementations, the model 222 1s a neural network
such as a deep learning neural network. In some examples,
the neural network 1s a recurrent neural network. Once
trained, the model 222 receives the monocular image 1764
and generates corners 214 for the target box 202 as an output
216. Here, because the monocular image 176a 1s two-
dimensional, the output 216 from the model 222 1s only

two-dimensional (e.g., a two-dimensional coordinate loca-
tion for the corners 214 of the target boxes 202). The

modeler 210 1s configured to communicate the corners 214
of the target boxes 202 to the estimator 220.

Since the robot 100 1s operating 1n a three-dimensional
work environment 10, the corners 214 from the output 216
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of the modeler 210 require further processing by the image
processing system 200 to translate into three-dimensional
box detection.

Moreover, directly translating the two-dimensional infor-
mation (1.e., 1identified corners 214 from the modeler 210)
into three-dimensional may sufler from inaccuracies. For
example, the corners 214 of the target boxes 202 correspond
to a single point 1n a two-dimensional space where 1mage
data 174 for edges 24 of a box 20 intersect.

Furthermore, determining a single point accurately may
prove diflicult because of image 176 and/or sensor 172
quality. For instance, a corner 214 for a target box 202 may
be best detected with sub-pixel quality for the image 176,
but limitations, such as sensor quality or lighting within the
work environment 10, result in sub-optimal corner determi-
nation by the modeler 210. Therefore, the corners 214
determined by the modeler 210 may be used 1n conjunction
with the depth 1image 1765 to increase the accuracy of box
detection and to translate the two-dimensional corner infor-
mation into three-dimensional information about one or
more target boxes 202 for the robot 100.

The estimator 220 receives the output 216 that includes
corners 214 for target boxes 202 within the frame F  of the
monocular 1image 176a (1.e., the monocular 1image frame
176a, F). The corners 214 may be i1dentified within the
monocular 1mage 176a or provided separately from the
monocular image 176a as data (e.g., coordinate data). The
estimator 220 also receirves the respective depth image frame
1766, F, for the corresponding image frame pair F_, that
includes the monocular image frame 176a, F_ from which
the corners 214 were determined from. Using both the
respective monocular image frame 176qa, F_ and the respec-
tive depth image frame 1765, F, for the corresponding image
frame pair F_ b, the estimator 220 may perform two stages
of box detection based on the corners 214 from the modeler
210. These stages capitalize on a geometry corresponding to
a box 20 to ensure that the estimator 220 generates an
accurate box estimation 222 when performing box detection
by the 1mage processing system 200.

In the first stage, the estimator 220 1s configured to match
similar geometry of the at least one target box 202 within the
monocular 1mage 176a to the depth image 176b. In some
examples, based on the corners 214, the estimator 220
matches faces of the at least one target box 202 within the
monocular 1image 176a to planes of the at least one target
box 202 within the depth 1mage 1765. In other words, the
estimator 220 matches a two-dimension feature of a target
box 202 (1.e., a face 214) to a similar three-dimension
feature of the target box 202 (1.e., a plane 216), where 1n
each dimension, these features are based on the corners 214
determined by the modeler 210. In some implementations,
the estimator 220 1s configured to identify an estimated face
224 of a target box 202 based on the corners 214 for a target
box 202. The estimated face 224 refers to an estimated
representation of an actual face 26 of a box 20 in the work
environment 10 that the estimator 220 estimates as a face
from the monocular image 176q (e.g., from 1mage data 174).
The estimator 220 may identily the estimated face 224 by
bounding four corners 214 for a target box 202 to form a
rectangle or square representing an estimated face 224 for
the target box 202. FIG. 2D depicts an example of the
monocular image frame 176q, F_ with nine estimated faces
224, 224q-i.

The estimator 220 may perform a similar process with the
depth 1mage frame 1765b, F,. Here, the estimator 220 con-
structs a plane 226 from 1mage data 174 of the depth image
1766 by bounding the same four corners 214 for the target




US 12,175,742 B2

15

box 202. The estimator 220 may extract the plane 226 by
extracting depth image data 174 (e.g., a cluster of points)
within the boundary. In some examples, the estimator 220
determines a detected face 224,, from 1image data 174 that
matches between the estimated face 224 of the at least one
target box 202 within the monocular 1mage 176a and the
plane 226 of the at least one target box 202 within the depth
image 1765. FIG. 2EF 1s an example of a depth image 1765
with 1mage data 174. In FIG. 2E, the estimator 220 has
determined two planes 226, 226a-b ifrom the depth image
1765 based on the corners 214 from the modeler 210. These
planes 226a-b are shown as dotted white lines near the edges
ol the point cloud forming the image data 174 for the depth
image 176b.

In the second stage, the estimator 220 1s configured to
perform edge detection on the at least one target box 202
within the monocular image frame 176a, F_. To perform
edge detection, the estimator 220 may use traditional edge
detection algorithms based on the corners 214 from the
modeler 210. Edge detection algorithms are configured to
detect changes 1n an 1mage 176 (e.g., significant changes 1n
an 1mage 1intensity). Some examples of edge detection
algorithms are Canny edge detection, Sobel edge detection,
Prewitt edge detection, Laplacian edge detection, Roberts
edge detection, Kirsch edge detection, Robinson edge detec-
tion, Marr-Hildreth edge detection, etc. As a result of the
edge detection process by the estimator 220, the estimator
220 1dentifies detected edges 228 for the target box 202. For
instance, FIG. 2D also depicts detected edges 228, 228a-aa
forming the boundaries of the estimated faces 224.

In some examples, the estimator 220 1s configured to
generate a box estimation 222 for the image processing
system 200 to define the geometry of the target box 202. In
these examples, the estimator 220 generates the box esti-
mation 222 for a target box 202 based on the corners 214, the
detected faces 224, and the detected edges 228. As an
example, based on the respective monocular image 1764 and
the respective depth 1image 1765 for a corresponding image
frame pair F_,, FIG. 2F shows the estimator 220 generating
a third box estimate 222, 222c¢ that 1s setback towards a
background of the image frame pair 176, 176a-b, F_, such

the stack of boxes 20 on the pallet 30 (1.e., a missing box in
the top right of the box stack). The estimator 220 1s able to
make this determination for the third box estimation 222,
222¢ 1 FIG. 2F even the monocular image frame 1764, F
of FIGS. 2C and 2D indicates that a box 20 may be present
at a first row and a first column of the stack of boxes 20 (i.¢.,
the estimator 220 determines a face 224, 224¢ and edges 228

that a box 20 1s missing at a first row and a first column of
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for a target box 202 1n the upper right corner of the stack of 50

boxes 20). In some configurations, the estimator 220 gen-
crates the box estimation 222 using a gradient ascent opti-
mizer. Here, the gradient ascent optimizer may receive the
corners 214 determined by the modeler 210 as an 1mitial seed
(1.e., mput) to generate the box estimation 222. In these
configurations, the gradient ascent optimizer fits the depth
image 1765 to the respective monocular image 176a using
the comers 214 determined from the respective monocular
image 176a. During optimization, the gradient ascent opti-
mizer may determine the detected edges 224 and the
detected faces 224,, to generate a box estimation 222 for
cach image frame pair F_,.

In some 1implementations, a sensor 172 that captures the
images 176 captures images 176 at a frame rate (1.e., frames
per second (Ips)) where multiple frames F are captured in a
short period of time such that each frame F denotes a
respective time stamp. Since the sensor 172 captures mul-
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tiple frames F 1n a short period of time (e.g., a frame rate of
15 tps, 30 ips, or 60 ips), these frames F from a similar
period of time may have minimal variation (1.e., mnsignifi-
cant variation for the purposes of box detection) between
frames F. The estimator 220 may utilize these frame simi-
larities obtained from the additional image data to refine/
adjust the box estimation 222 over the period of time. More
specifically, the estimator 220 determines an adjusted box
estimation 222 for each target box 202 by aggregating the
box estimations 222, 222A-N generated for each image
frame pair F_,. Here, each image frame pair F_, 1s associated
with 1ts respective time stamp corresponding to a respective
one of the multiple frames F, F, _, . For instance, the estimator
220 generates a first box estimation 222, 222 A for a target
box 202 for a first image frame pair F_,, associated with the
respective time stamp and a second box estimation 222,
2228 for a second 1image frame pair F_, , associated with the
respective time stamp. Here, frames F of the first image
frame pair F_,, and frames F of the second image frame pair
F ., may be adjacent frames (i.e., neighboring frames) or
relatively adjacent frames with minimal subject matter
variation. A location of the first box estimation 222q within
the first image frame pair F_, , and a location ot the second
box estimation 2226 within the second image frame pair
F .. correspond to similar locations within each frame F. In
these examples, the estimator 220 compares these estima-
tions 222a-b from the frames F and 1s configured to adjust
its box estimation 222 over the period of time based on the
comparison. For instance, the adjustment may be based on
statistical analysis between box estimations 222 (e.g., a
mean, a median, a mode, etc.). Although this example
compares two frame pairs F_,, ,, the estimator 220 is
configured to refine/determine its adjusted box estimation
222 based on aggregating any number of box estimations
222,

By using a monocular image 176a and a depth image
1765, the image processing system 200 may avoid 1ssues
with other machine wvision techmiques. For example, a
machine vision technique using only a monocular 1mage
176a sullers from 1naccuracies such as a depth for a box 20
or an orientation of a box 20. In other words, for stack of
boxes 20 (e.g., on a pallet 30), a technique using only
monocular images 176a may not accurately identify boxes
20 set back or removed from the stack of boxes 20. As an
example, a machine vision techmique using only a monocu-
lar image 176a would have difliculty accurately detecting
the box 20 in the top right corner of the stack of boxes 20
in FIG. 2A. Occlusions or partial occlusions of a monocular
image 176a are often problematic for these machine vision
techniques. In other words, the third box estimation 222,
222¢ of FIG. 2F would likely be 1naccurate.

The 1mage processing system 200 may also more efli-
ciently generate a box estimate 222 compared to other image
processing techniques. For instance, the image processing
system 200 1s configured to be conscientious about process-
ing time for generating the box estimate 222. By strategi-
cally detecting some geometric feature(s) from a monocular
image 176a and some feature(s) from a depth image 1765,
the 1mage processing system 200 may reduce processing
times. More particularly, the image processing system 200
utilizes the monocular 1image 176a for several processing
steps to generate geometric features of the target box 202
(e.g., determining corners 214, detecting edges 228, esti-
mating faces 224, etc.) because the monocular 1mage 176a
may include less image data 174 than an associated depth
image 1765. With less image data 174, the image processing
system 200 may make eflicient use of the monocular 1mage
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176a while still utilizing 1image data 174 from the depth
image 1765 to ensure box detection accuracy. Accordingly,
this hybrid image approach, by comparison to other tech-
niques (e.g., only using a single type of image 176 or
determining all geometric features for each image 176), may
reduce processing time while providing accuracy.
Referring back to FIG. 1B, in some implementations, the
control system 140 of the robot 100 includes a vision system
146. The vision system 146 1s configured to provide guid-
ance for the robot 100 and/or an operator of the robot 100.
Here, the guidance may enable the robot 100 to perform
tasks 1n the work environment 10 relating to boxes 20 that
the 1mage processing system 200 identifies with box esti-
mation 222. For instance, the vision system 146 generates a
visual representation (1.e., a projection) of the box estima-
tion 222. In some examples, the visual representation may
allow 1mage registration (e.g., automatic recognition)
between a box 20 within the vision (i.e., within a field of
view for a sensor 172) of the robot 100 and a box estimation
222 corresponding to the box 20. In some configurations, the
vision system 146 displays the box estimation 222 as a
homographic projection for the robot 100. For example,
FIG. 3 shows the homographic projection as an outline of a

box 20 (e.g., a solid outline for the first box estimation 2224
or a segmented cross outline for the second box estimation
222b).

Additionally or alternatively, the visual representation
may be color-coded to indicate a confidence interval or
confidence level for the box estimation 222 of the image
processing system 200. The confidence interval refers to a
probability (1.e., likelihood) that the box estimation 222 1s
accurate (e.g., as to a location and/or a geometry of an actual
box 20 within the work environment 10). As the robot 100
moves about the work environment 10, the vision system
146 may change a color of the visual representation for the
box estimation 222. In other words, 1n real-time the robot
100, at the vision processing system 200, may receive image
data 174 that updates or modifies the box estimation 222
causing the vision system 146 to change the confidence level
associated with the box estimation 222 and thus the color. In
some examples, the robot 100 or operator of the robot 100
performs tasks relating to a box 20 (e.g., manipulating the
box or processing the box 20) when the confidence level for
the box estimation 222 of the box 20 reaches a threshold. As
an example, the vision system 146 represents the box
estimation 222 in three colors, red, yellow, and green. Here,
the red, yellow, and green colors rank 1n increasing order of
confldence for the box estimation 222: the red color indi-
cates that there 1s a box estimation 222 for a given box 20,
but a low confidence for the box estimation 222; the yellow
color indicates a medium confidence for the box estimation
222; and the green color indicates a highest level of confi-
dence for the box estimation 222. As just an example, the
number of colors may vary such that the confidence level
may include more or less than three colors.

To 1llustrate the confidence interval and/or projection for
a target box 202, FIG. 3 depicts a non-color example of the
vision system 146 (e.g., a display of the vision system 146).
Here, a box 20 detected by the image processing system 200
has either a bolded solid outline (e.g., the first estimated box
222a) or segmented cross outline (e.g., the second estimated
box 2225b). The bolded solid outline visually represents a
first box with a first box estimation 222aq that has a low
confidence level while the segmented cross outline visually
represents a second box 206 with a second box estimation

222b that has a high confidence level.
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FIG. 4 1s a method 400 for detecting boxes. At operation
402, the method 400 receives a plurality of image frame
pairs F_, ., for an area of interest over a period of time
where the area of interest including the at least one target
box 202. Here, each image frame pair F_, of the plurality of
image frame pairs F_,,_ 1s associated with a respective time
stamp during the period of time and includes a monocular
image Irame 176q, F_ and a respective depth 1image frame
176b, F,. The method 400 performs operations 404-410 for
cach 1mage frame pair F_ b. At operation 404, the method
400 determines corners 214 for a rectangle associated with
the at least one target box 202 within the monocular image
frame 176a, F . Based on the determined corners 214, the
method 400 performs operations 406, 406a-b. At operation
4064, the method 400 performs edge detection on the at least
one target box 202 within the respective monocular 1image
frame 176a, F_ and determines faces 224 of the at least one
target box 202 within the respective monocular image frame
176a, F . At operation 4065, the method 400 extracts planes
226 from the respective depth image frame 1765, F, where
the planes 226 extracted from the respective depth image
frame 176b, F, correspond to the at least one target box 202.
At operation 410, the method 400 matches the determined
faces 224 of the at least one target box 202 within the
monocular 1image frame 176a, F_ to planes 226 extracted
from the depth image 1765, F,. At operation 410, the method
400 generates a box estimation 222 based on the determined
corners 214, the performed edge detection 228, and the
matched faces 224, of the at least one target box 202.

Optionally, the method 400 further operations. For
instance, the method 400 aggregates the box estimation 222
generated for each 1image frame pair F_, to determine an
adjusted box estimation 222 over the period of time for the
at least one target box 202. Aggregating the box estimation
222 generated for each image frame pair F_, may include
comparing a first box estimation 222a of the at least one
target box 202 generated for a first image frame pair F_, , to
a second box estimation 22256 of the at least one target box
202 generated for a second image frame pair F_,, and
adjusting the box estimation 222 over the period of time
based on the comparison between the first box estimation
222a and the second box estimation 2225b.

FIG. § 1s schematic view of an example computing device
500 that may be used to implement the systems (e.g., the
control system 140, the sensor system 170, the vision system
146, the 1image processing system 200, etc.) and methods
(e.g., method 400) described 1n this document. The com-
puting device 500 1s intended to represent various forms of
digital computers, such as laptops, desktops, workstations,
personal digital assistants, servers, blade servers, main-
frames, and other appropriate computers. The components
shown here, their connections and relationships, and their
functions, are meant to be exemplary only, and are not meant
to limit implementations of the inventions described and/or
claimed 1n this document.

The computing device 500 includes a processor 510,
memory 520, a storage device 330, a high-speed interface/
controller 540 connecting to the memory 520 and high-
speed expansion ports 550, and a low speed interface/
controller 560 connecting to a low speed bus 570 and a
storage device 5330. Each of the components 510, 520, 330,
540, 550, and 560, are interconnected using various busses,
and may be mounted on a common motherboard or 1n other
manners as appropriate. The processor 510 can process
instructions for execution within the computing device 500,
including instructions stored in the memory 520 or on the
storage device 330 to display graphical information for a




US 12,175,742 B2

19

graphical user mterface (GUI) on an external input/output
device, such as display 580 coupled to high speed interface
540. In other implementations, multiple processors and/or
multiple buses may be used, as appropriate, along with
multiple memories and types of memory. Also, multiple
computing devices 500 may be connected, with each device
providing portions ol the necessary operations (e.g., as a
server bank, a group of blade servers, or a multi-processor
system).

The memory 3520 stores information non-transitorily
within the computing device 500. The memory 520 may be
a computer-readable medium, a volatile memory unit(s), or
non-volatile memory unit(s). The non-transitory memory
520 may be physical devices used to store programs (e.g.,
sequences of nstructions) or data (e.g., program state infor-
mation) on a temporary or permanent basis for use by the
computing device 500. Examples of non-volatile memory
include, but are not limited to, flash memory and read-only
memory  (ROM)/programmable read-only memory
(PROM)/erasable  programmable read-only memory
(EPROM)/electronically erasable programmable read-only
memory (EEPROM) (e.g., typically used for firmware, such
as boot programs). Examples of volatile memory include,
but are not limited to, random access memory (RAM),
dynamic random access memory (DRAM), static random
access memory (SRAM), phase change memory (PCM) as
well as disks or tapes.

The storage device 330 1s capable of providing mass
storage for the computing device 500. In some 1mplemen-
tations, the storage device 530 1s a computer-readable
medium. In various different implementations, the storage
device 530 may be a floppy disk device, a hard disk device,
an optical disk device, or a tape device, a flash memory or
other similar solid state memory device, or an array of
devices, including devices 1n a storage area network or other
configurations. In additional implementations, a computer
program product 1s tangibly embodied in an information
carrier. The computer program product contains instructions
that, when executed, perform one or more methods, such as
those described above. The information carrier 1s a com-
puter- or machine-readable medium, such as the memory
520, the storage device 530, or memory on processor 510.

The high speed controller 540 manages bandwidth-inten-
s1ve operations for the computing device 500, while the low
speed controller 560 manages lower bandwidth-intensive
operations. Such allocation of duties 1s exemplary only. In
some 1mplementations, the high-speed controller 340 1s
coupled to the memory 520, the display 380 (e.g., through a
graphics processor or accelerator), and to the high-speed
expansion ports 350, which may accept various expansion
cards (not shown). In some implementations, the low-speed
controller 560 1s coupled to the storage device 330 and a
low-speed expansion port 390. The low-speed expansion
port 590, which may include various communication ports
(e.g., USB, Bluetooth, Ethernet, wireless Ethernet), may be
coupled to one or more mput/output devices, such as a
keyboard, a pointing device, a scanner, or a networking
device such as a switch or router, e.g., through a network
adapter.

The computing device 500 may be implemented 1n a
number of different forms, as shown in the figure. For
example, 1t may be implemented as a standard server 500a
or multiple times 1n a group of such servers 5300q, as a laptop
computer 3005, or as part of a rack server system 300c.

Various implementations of the systems and techmiques
described herein can be realized in digital electronic and/or
optical circuitry, integrated circuitry, specially designed
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ASICs (application specific integrated circuits), computer
hardware, firmware, software, and/or combinations thereof.
These various implementations can include implementation
In one or more computer programs that are executable
and/or interpretable on a programmable system including at
least one programmable processor, which may be special or
general purpose, coupled to receive data and instructions
from, and to transmit data and instructions to, a storage
system, at least one mput device, and at least one output
device.

These computer programs (also known as programs,
software, software applications or code) include machine
instructions for a programmable processor, and can be
implemented 1n a high-level procedural and/or object-ori-
ented programming language, and/or 1n assembly/machine
language. As used herein, the terms “machine-readable
medium”™ and “computer-readable medium” refer to any
computer program product, non-transitory computer read-
able medium, apparatus and/or device (e.g., magnetic discs,
optical disks, memory, Programmable Logic Devices
(PLDs)) used to provide machine instructions and/or data to
a programmable processor, imncluding a machine-readable
medium that receives machine instructions as a machine-
readable signal. The term “machine-readable signal” refers
to any signal used to provide machine instructions and/or
data to a programmable processor.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
processors executing one or more computer programs to
perform functions by operating on 1nput data and generating
output. The processes and logic flows can also be performed
by special purpose logic circuitry, e.g., an FPGA (field
programmable gate array) or an ASIC (application specific
integrated circuit). Processors suitable for the execution of a
computer program include, by way of example, both general
and special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a
processor will receive instructions and data from a read only
memory or a random access memory or both. The essential
clements of a computer are a processor for performing
instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transier data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such
devices. Computer readable media suitable for storing com-
puter program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated 1n, special purpose logic circuitry.

To provide for interaction with a user, one or more aspects
of the disclosure can be implemented on a computer having
a display device, e.g., a CRT (cathode ray tube), LCD (liquid
crystal display) monitor, or touch screen for displaying
information to the user and optionally a keyboard and a
pointing device, €.g., a mouse or a trackball, by which the
user can provide mput to the computer. Other kinds of
devices can be used to provide interaction with a user as
well; for example, teedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
teedback, or tactile feedback; and mput from the user can be
received 1n any form, including acoustic, speech, or tactile
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input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that 1s used by the user; for example, by sending web
pages to a web browser on a user’s client device in response
to requests received from the web browser.

A number of implementations have been described. Nev-
ertheless, 1t will be understood that various modifications
may be made without departing from the spirit and scope of
the disclosure. Accordingly, other implementations are
within the scope of the following claims.

What 1s claimed 1s:

1. A robot comprising:

a mobile base;

an arm coupled to the mobile base, the arm comprising an

end eflector;

a plurality of sensors comprising a first sensor and a

second sensor; and

a computing system 1n commumnication with the plurality

of sensors, wherein the computing system 1s configured

to:

determine, using two-dimensional sensor data obtained
from the first sensor, one or more two-dimensional
coordinate locations of one or more corners of a
package;

determine, using the two-dimensional sensor data and/
or three-dimensional sensor data obtained from the
second sensor, a face corresponding to the package
based on the one or more two-dimensional coordi-
nate locations of the one or more corners of the
package;

determine a plane corresponding to the package based
on the three-dimensional sensor data; and

instruct the end eflector to mteract with the face cor-
responding to the package based, at least 1n part, on
the determined plane corresponding to the package.

2. The robot of claim 1, wherein the two-dimensional
sensor data comprises a monocular image and the three-
dimensional sensor data comprises a depth 1mage.

3. The robot of claim 1, wherein the two-dimensional
sensor data and the three-dimensional sensor data are asso-
ciated with a same time stamp.

4. The robot of claim 1, wherein the computing system 1s
turther configured to detect a location of the package using
the two-dimensional sensor data and/or the three-dimen-
sional sensor data.

5. The robot of claim 1, wherein the first sensor and/or the
second sensor 1s mounted on the arm.

6. The robot of claim 1, wherein the computing system 1s
turther configured to:

determine the face corresponding to the package based on

the two-dimensional sensor data.

7. The robot of claim 6, wherein the computing system 1s
turther configured to:

match the face to the plane corresponding to the package

determined based on the three-dimensional sensor data;
generate an estimation for the package using the face and
the plane; and

derive a location of the package from the estimation.

8. The robot of claim 1, wherein the computing system 1s
turther configured to:

determine one or more two-dimensional coordinate loca-

tions of one or more corners of a package by providing
the two-dimensional sensor data as input to a machine
learning model, wherein the machine learning model 1s
trained to output the one or more two-dimensional
coordinate locations of one or more corners of the
package.
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9. The robot of claim 1, wherein the computing system
comprises a machine learning model configured to receive a
respective pair of 1mages as mput and to predict a location
of the package as output.

10. The robot of claim 1, further comprising a body of the
robot.

11. The robot of claim 1, wherein the package comprises
a box.

12. The robot of claim 1, wherein arm comprises an
articulated arm.

13. The robot of claim 1, wherein the computing system
comprises an image processing system.

14. The robot of claim 1, wherein

the end eflector comprises a plurality of suction cups, and

instructing the end eflector to interact with the face

corresponding to the package comprises instructing the
end effector to position the plurality of suction cups on
or near the face corresponding to the package.

15. The robot of claim 1, wherein

the mobile base comprises at least one wheel, and

the computing system 1s further configured to drive the

robot across a surface to deliver the package to a
destination.

16. A computer-implemented method comprising:

obtaining from a first sensor of a plurality of sensors of a

robot, two-dimensional sensor data;
obtaining from a second sensor of the plurality of sensors
of the robot, three-dimensional sensor data;

determinming, by data processing hardware, using the two-
dimensional sensor data, one or more two-dimensional
coordinate locations of one or more corners of a
package;
determining, by the data processing hardware, using the
two-dimensional sensor data and/or the three-dimen-
stonal sensor data, a face corresponding to the package
based on the one or more two-dimensional coordinate
locations of the one or more corners of the package;

determining a plane corresponding to the package based
on the three-dimensional sensor data; and

instructing an end eflector of the robot to interact with the

face corresponding to the package based, at least 1n
part, on the determined plane corresponding to the
package.

17. The computer-implemented method of claim 16, fur-
ther comprising:

matching the face corresponding to the package to the

plane corresponding to the package determined based
on the three-dimensional sensor data;

generating an estimation for the package using the face

and the plane; and

deriving a location of the package from the estimation.

18. The computer-implemented method of claim 16,
wherein the two-dimensional sensor data comprises a mon-
ocular 1mage and the three-dimensional sensor data com-
prises a depth 1mage.

19. The computer-implemented method of claim 16,
wherein

the end eflector includes a plurality of suction cups, and

instructing the end eflector to interact with the face

corresponding to the package comprises controlling the
robot to provide a vacuum seal between one or more of
the plurality of suction cups and the face corresponding
to the package.

20. The computer-implemented method of claim 16,
wherein determining one or more two-dimensional coordi-
nate locations of one or more corners of a package comprises
providing the two-dimensional sensor data as input to a
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machine learning model, wherein the machine learning
model 1s trained to output the one or more two-dimensional
coordinate locations of one or more corners of the package.
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