12 United States Patent

Abdelsalam et al.

US012164433B2

US 12,164,433 B2
Dec. 10, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

CACHE DATA PROVIDED BASED ON DATA
AVAILABILITY

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Inventors: Ahmed Abdelsalam, Vancouver (CA);
Ezzeldin Hamed, Redmond, WA (US);
Robert Groza, Jr., Redmond, WA (US)

Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

Appl. No.: 17/707,401

Filed: Mar. 29, 2022

Prior Publication Data

US 2023/0315643 Al Oct. 5, 2023

Int. CI.

GO6F 12/08 (2016.01)

GO6F 12/0891 (2016.01)

GO6F 12/12 (2016.01)

GO6F 12/123 (2016.01)

U.S. CL

CPC GO6l 12/0891 (2013.01); GO6F 12/123

(2013.01); GO6F 2212/1021 (2013.01)

Field of Classification Search
CPC GO6F 12/0891; GO6F 12/123; GO6F

2212/1021
See application file for complete search history.

FHA

.

(56) References Cited
U.S. PATENT DOCUMENTS
5,404,483 A 4/1995 Stamm et al.
5,623,628 A 4/1997 Brayton et al.
5,706,467 A * 1/1998 Vishlitzky GO6F 12/123
711/E12.072
5,742,831 A 4/1998 Creta
5,761,506 A 6/1998 Angle et al.
5,778,434 A 7/1998 Nguyen et al.
7,284,096 B2 10/2007 Schreter
7,380,063 B2 5/2008 Horrigan et al.
9,250,908 B2 2/2016 Vorbach et al.
10,157,132 B1 12/2018 Fielding et al.
10,942,853 B2 3/2021 Schumann et al.
2007/0157208 Al 7/2007 Mendelson et al.
2007/0176939 Al* &/2007 Sadowski G09G 5/393
345/557
2012/0198171 Al1* 8/2012 Chachad GO6F 13/1605
711/128
(Continued)

OTHER PUBLICATTIONS

Scargall, Steve, “Persistent Memory Architecture”, In Publication
of Apress, Jan. 10, 2020, 457 Pages.

(Continued)

Primary Examiner — Masud K Khan

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

A computer implemented method includes receiving a first
request at a cache for first data and checking the cache for
the first data. In response to the first data residing 1n the
cache, the first data 1s provided from the cache. In response
to the first data not residing 1n the cache, a first memory
request 1s sent to memory for the first data, a first request
pending bit to 1s set indicate the first request 1s pending, and
the cache proceeds to process a next request for second data.

20 Claims, 8 Drawing Sheets

Mk MAIN
MEMORY

Wy

Vs 300

9

L FROMITO M

AY b R AN bR RRL R WAL R AT M M AW Gl AR R AR ool bR el el D okl MY A WM Mo G bl oM R e b el el G e e o G G W Wl N bl bl el bl WO oGt O A e Lels bbb WA WA WS sk ol MR MO VDY AW Db

MEM_READ OMD 357 MEM_READ DATA
: READ 355 | READ |
| REQUEST | 370~ RESPONSE | |
S o ——— E
| RQST
W05
N I ,2 e 1 REQLEST i E? DATA o0
T SCHEDULER T MANACER “‘“““*’”“J;U"”i SPLITER MANAGER
= : b :
: 13-5:' F ¥ -
’?‘ | s/ 240/
" . TAG DATA |
M%}%ﬁﬁﬁm MEMCRY MEMORY _
Ky Ty

US 12,164,433 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2014/0136784 Al 5/2014 Colglazier

2014/0244920 Al 8/2014 Biswas et al.

2016/0323407 Al* 11/2016 de los Reyes Darias
HO4L 12/1877

2021/0406184 Al* 12/2021 Mathur GOOF 9/383

2022/0229783 Al* 7/2022 Piry .oooooeiiiiiiiinin GOO6F 18/22

OTHER PUBLICATIONS

Aasaraai, et al., “An Efficient Non-blocking Data Cache for Soft
Processors”, In Proceedings of International Conference on Reconfigur-

able Computing and FPGAs, Dec. 13, 2010, pp. 19-24.
“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US2022/052611”, Mailed Date: Apr. 13,
2023, 11 Pages.

PCT/US2022/052611, Dec. 13, 2022.

* cited by examiner

U.S. Patent Dec. 10, 2024 Sheet 1 of 8 US 12,164,433 B2

iii

PROCESSORS
15 122-3

45+
QUEUE

CACHE
155 150~ 135~ 125

- [T PO T PO JLNEQ}32
TP PTILINET

% 5 ® &
. ® R L+ % :
- -] O = :

130- 130

]

DATA O o DATA M-M
DATA 4

, MEMORY : 120
NATA M- DATA M-1

0

& Ol

THE s
i — L o%
ﬁmﬁﬁ AdONEN | v v Wan

L N N N B B O B O B B O B

US 12,164,433 B2

ET A

-
-
-
-
-
-
-
-
]
- .y
2.
- .
F
-)
]
r -
. »
N NN N N N NN N N N N N N N NN N N N NN N N N N N N N N N N N N N N N N NN N NN N NN N N N N N N N N b N I N N N N N N N N N N N NN N N NN N N N N] N N NN N N N N NN N N N N N N N N NN N N N NN N N]
- # -
- -
- -
- -
- -
- . -
- -
- -
]
- -
] -)
. 3 f - ., o ,r -
N N PN]
EN] ENEE N K] o L -
. . oy H I L) oy
- - - - -
- -
f - -
- -
- -
)
- -
- -
- -
- -
- -
N I N I N N NN NN] I O N N N N R EEEEE RN]
-
-])
) -
- F oy
..)
. F P
.. . EYE
ENEE] -] 2
' »
]
]
F
T
EE)
.y
..
.
F
i, I I N N N N N A]
-
e
I I e w Y ME - s s xEnx)
[)

§
$
5
3
3
3
3
3
3
3
:
:
:
:
:
3

LU N N N N K N N B B B

+ + + + + F+FFPFPFFPFPFPPFPSSSRSSRS SRR

154004

f+ + + 4+ 4+ +FFFFFPFLFFPFLPLFFPSFSFESEFSESSESSSFFSEEErT

Dec. 10, 2024

Y OLNOe D

AHOWAN
NIV TS

-
-
-
-
,
-+
-
-
-
-
-
-
-
,
-+
-
-
-
-
-
-+

U.S. Patent
\

LB B B]

U.S. Patent Dec. 10, 2024 Sheet 3 of 8 US 12,164,433 B2

L)
iii
-
L]
-
-
-
L]
-
L]
-
-
-
L]
-
-
L]
-
L]
-
-
-

420~

CHECK CACHE |
430
YES, | PROVIDE FIRST
> DATA FROM CACHE

SEND REQUESTTO |
MEMORY |

iii

-
-
-
-
- L)
] -
L]
o -
-
-
-
L]
- H L]
-
. £
- [
-
-
-
&
-
-
&
-
-
-
L)

-
-
-
L)
L]
L
LI IR
- 4 &
LR
LI}
-
-
L]

44()

&

LI I |
LB I)
L]
.]
o
-
L]
-

SETFIRST |
REQUEST PENDING |

450

-

SROCESS NEXT
REQUEST |

ii

*
[N
* F &
* o
* b
&
&

455

-

SENTPENDING
NVALDATE BIT |

[N J
* &
* o+ F F
[
*
*

FG. 4

U.S. Patent Dec. 10, 2024 Sheet 4 of 8 US 12,164,433 B2

210

. 500
| STORE REQUEST
- INQUEUE ’~

T PROCESS
. REQUEST FROM
L QUEUE

-
ii

520

030

. FIRSTDATA
| ADDED TO CACHE

= [
*
-
L
BN B B
+
L

540

. PROVIDE FIRST
| DATA FROM CACHE

G5

U.S. Patent Dec. 10, 2024 Sheet 5 of 8 US 12,164,433 B2

PROCESS
REQUESTS IN
 O0P QUEUE

-
ii

REACHFIRST |
REQUEST |
SS_YES. | PROVIDE DATA
etz B8 FROMCACHE

L]
L] -
L]
&
-
E]

L

ch
LI I

o

-

040

650,

D EReT
REQUEST BACK TO |
"O0P QUELE |

660

FIG. 6

U.S. Patent

Dec. 10, 2024

iii

STORE FIRST |
REQUESTIN |
QUEUE g

DENTIFY FIRST |
CACHELINE |

L
[?
[3
[+
-
*
[
* o+ o F
+ F F F &
+ o F
-
& *

ii

RECEIVE SECOND |
REQUEST . |

| IDENTIFY CACHE
| LINE FOR SECOND
- REQUEST DATA

760~ " T
= CACHE LINES™

/80
ADD TO

QUEUE AND SET |
PENDINGRIT |

FG. 7

L)
. r
L]
&
- -
- -
h
]
-
.
%
- -
4 L |
&
]
-
)
&
-
&
&
-
L]
.

Sheet 6 of 8

iiiii
L I B)

WITHOUT SETTING
PENDING BIT

ADD TO QUEUE

US 12,164,433 B2

US 12,164,433 B2

AMONEW WELSAS OL

She
= m IHOVD 2T
S 048
I
2 XA LN 77
” 2

078
~ 1 _ _ | .
S ppg YT Lo
. IINNONISSI00N LINN ONISS 00N NN ONISSHOONC
) A 13 AL oo

“ HOSSIN0Hd U2

GLo-
p09—

U.S. Patent

U.S. Patent Dec. 10, 2024 Sheet 8 of 8 US 12,164,433 B2

400
502 903
01 BROGRAM
B —
PROLEING VOLATILE
908 -
970 NON-VOLATILE
ReMovasLe 810 97671 COMMUNICATION
STORAGE | INTERFACE
NON-REMOVABLE | | NPUT
STORAGE | INTERFACE || __
917 906 904

US 12,164,433 B2

1

CACHE DATA PROVIDED BASED ON DATA
AVAILABILITY

BACKGROUND

Computers make use of memory to store information,
such as data that may include 1nstructions for processors. If
processors have to wait for data, operation of the computer
may be slower than desired. Memory that 1s fast enough to
provide data to the processors as needed can be very
expensive. Many computer systems ufilize one or more
cache memories.

A cache memory 1s faster memory that cannot hold all the
information that might be needed by the processors. All the
data needed may be stored 1n a cheaper and slower main
memory or even secondary storage devices that can be even
slower than main memory. As data 1s needed by the proces-
sors, data 1s moved into the cache memory from main
memory. IT information 1s needed that 1s not 1n the cache
memory, a cache miss may be encountered 1n response to a
request for the data. A cache miss causes a read request to
be sent to main memory, resulting in the data being even-
tually provided to the cache.

Expensive cache memories are generally smaller and
faster memories than main memory. Cache memories are
widely used in computing systems. The main purpose of
utilizing cache memories 1s to bring data from the main
memory closer to the processing unit to enhance the speed
at which the data 1s provided to the processors.

Since processing units access the whole main memory
through the cache, this mapping causes the cache misses to
occur. Therefore, cache allocation and de-allocation
schemes are used to allocate an entry in the cache for the
new data coming from the main memory, fetch the required
data from main memory, and replace data that 1s no longer

needed 1n the cache, 1n which instances the cache memory
1s de-allocated.

Cache memories usually respond 1n the same order of the
incoming requests. For example, assume the cache has data
A and data B stored. Assume further that the imcoming
requests are in the following order data A, data C and data
B. The cache responds with data A since 1t 1s a cache “hit”,
then the cache tries to serve the request for data C. It 1s a
cache “miss™, so 1t fetches data C from main memory by
sending a request and 1t keeps waiting until 1t gets data C
back. Although the following request 1s for data B, which 1s
a cache “hit”, the cache waits until data C 1s provided belore
proceeding to provide data B, resulting in a delay even
though data B was already in the cache.

SUMMARY

A computer implemented method includes receiving a
first request at a cache for first data and checking the cache
for the first data. In response to the first data residing in the
cache, the first data 1s provided from the cache. In response
to the first data not residing 1n the cache, a first memory
request 1s sent to memory for the first data, a first request
pending bit 1s set to indicate the first request 1s pending, and
the cache proceeds to process a next request for second data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a simplified system for
providing data from a cache as the data becomes available
according to an example embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 1s a block representation of the loop queue for
queueing read requests according to an example embodi-

ment.

FIG. 3 15 a function flow diagram of an example cache for
providing data as data becomes according to an example
embodiment.

FIG. 4 1s a flowchart 1llustrating a computer implemented
method of continuously processing cache requests as a
function of data becoming available 1n the 1n cache accord-
ing to an example embodiment.

FIG. 5 1s a flowchart 1llustrating a computer implemented
method of processing a cache miss according to an example
embodiment.

FIG. 6 1s a flowchart illustrating a computer implemented
method for processing data not residing the 1n cache accord-
ing to an example embodiment.

FIG. 7 1s a flowchart illustrating a computer implemented
method 1n response to the first data not residing in the cache
according to an example embodiment.

FIG. 8 1s a block diagram of a system that makes use of
an L.2 (Level 2) cache according to an example embodiment.

FIG. 9 1s a block schematic diagram of a computer system
to 1mplement one or more example embodiments.

DETAILED DESCRIPTION

In the following description, reference 1s made to the
accompanying drawings that form a part hereof, and 1n
which 1s shown by way of illustration specific embodiments
which may be practiced. These embodiments are described
in suflicient detail to enable those skilled i the art to
practice the imvention, and 1t 1s to be understood that other
embodiments may be utilized and that structural, logical and
clectrical changes may be made without departing from the
scope of the present invention. The following description of
example embodiments 1s, therefore, not to be taken 1n a
limited sense, and the scope of the present mvention 1is
defined by the appended claims.

The functions or algorithms described herein may be
implemented 1in software in one embodiment. The software
may consist of computer executable instructions stored on
computer readable media or computer readable storage
device such as one or more non-transitory memories or other
type ol hardware-based storage devices, either local or
networked. Further, such functions correspond to modules,
which may be software, hardware, firmware or any combi-
nation thereof. Multiple functions may be performed 1n one
or more modules as desired, and the embodiments described
are merely examples. The software may be executed on a
digital signal processor, ASIC, microprocessor, or other type
of processor operating on a computer system, such as a
personal computer, server or other computer system, turning
such computer system into a specifically programmed
machine.

The functionality can be configured to perform an opera-
tion using, for mstance, software, hardware, firmware, or the
like. For example, the phrase “configured to” can refer to a
logic circuit structure of a hardware element that 1s to
implement the associated functionality. The phrase “config-
ured to” can also refer to a logic circuit structure of a
hardware element that 1s to implement the coding design of
associated functionality of firmware or soitware. The term
“module” refers to a structural element that can be 1mple-
mented using any suitable hardware (e.g., a processor,
among others), software (e.g., an application, among others),
firmware, or any combination of hardware, software, and
firmware. The term, “logic” encompasses any functionality

US 12,164,433 B2

3

for performing a task. For instance, each operation 1llus-
trated 1n the tlowcharts corresponds to logic for performing,
that operation. An operation can be performed using, soit-
ware, hardware, firmware, or the like. The terms, “compo-
nent,” “system,” and the like may refer to computer-related
entities, hardware, and software in execution, firmware, or
combination thereof. A component may be a process running
Oon a processor, an object, an executable, a program, a
function, a subroutine, a computer, or a combination of
software and hardware. The term, “processor,” may refer to
a hardware component, such as a processing unit of a
computer system.

Furthermore, the claimed subject matter may be imple-
mented as a method, apparatus, or article of manufacture
using standard programming and engineering techniques to
produce software, firmware, hardware, or any combination
thereol to control a computing device to implement the
disclosed subject matter. The term, “article of manufacture,”

as used herein 1s intended to encompass a computer program
accessible from any computer-readable storage device or
media. Computer-readable storage media can include, but
are not limited to, magnetic storage devices, e.g., hard disk,
floppy disk, magnetic strips, optical disk, compact disk
(CD), digital versatile disk (DVD), smart cards, flash
memory devices, among others. In contrast, computer-read-
able media, 1.e., not storage media, may additionally include
communication media such as transmission media for wire-
less signals and the like.

An 1mproved cache responds to incoming requests for
data out-of-order to provide data as the data becomes
available while not delaying other requests for data. In one
example, the cache may respond to a first incoming request
betfore responding to a next incoming request.

FIG. 1 1s a block diagram of a simplified system 100 that
includes one or more processors 110 that are coupled to a
cache 115. The cache 115 may be coupled to a main memory
120.

The processors may request data from the cache 115 as
indicated at 122. I the data 1s 1n the cache 115, a cache hit
will be detected, and the cache will supply the data directly
from the cache. If the requested data 1s not in the cache 115,
a cache miss will be detected. The cache 115 will need to
request the data from the main memory 120.

In one example, the cache 115 may be an associative
cache containing “m” cache lines as indicated at 125. Fach
cache line 125 1s associated with a corresponding line of data
in each block of “M” blocks of data 130 1n memory 120. For
example, each block of data 130 contains m lines of data,
cach of which are the size of a cache line. The first line of
data 1n each memory block comprising a set, “M” lines total,
may be mapped to the cache line 132. Succeeding lines
(sets) 1n main memory 120 blocks 130 may mapped to
succeeding lines 125. The cache 115 has a size which 1s M
times smaller than main memory and may hold only 1/Mth
the data held 1n main memory 120. In further examples, the
association of data in memory 120 may be associated with
cache lines 1n a different manner.

In various examples, a respective request pending tag bit
135 may be associated with each cache line 132 1n response
to a cache maiss for a first request for first data. A scheduling
controller 140 may be used to control the operation of cache
115. The cache miss results in a main memory read request
for the first data being sent to a main memory 120 from
cache 115. A reservation or loop queue 143 1s used to store
read requests waiting for data to become available 1n the
cache. The first read request 1s added to the loop queue 145.

10

15

20

25

30

35

40

45

50

55

60

65

4

In response to the data becoming available, the data 1is
provided in response the first read request.

Other requests 1n the loop queue 1435 are processed, either
resulting 1n a cache hit and the data being provided, or
resulting 1n a cache miss, a read request being sent, and a
corresponding pending bit being associated with the corre-
sponding cache line.

The loop queue 145 may be a first-in-first-out queue. The
first request may be encountered again while processing
requests 1n the loop queue and taken from the loop queue.
The corresponding request pending bit 135 may again be
checked. If still set, the first request 1s added back to the
queue 145 without generating a new main memory read
request, as one 1s still pending. If the first data has become
available, the data 1s provided from the cache responsive to
the first request. A pending request may result 1n another
memory read request that when scheduled results in the
pending bit being set again.

In some examples, flushing the cache and/or invalidating
parts of the cache 1s supported 1n away that maintains the
out-of-order service of the cache. An allocation and de-
allocation algorithm determines where to allocate each data
coming from main memory, which data to replace and the
validity of each data in the cache. The cache takes care of
incoming tlush and/or invalidate requests while maintaining
the out of order responses by a setting pending invalidate tag
bit 150 for cache lines that have pending read requests, the
Pending invalidate bits may result in requests being resched-
uled 1n the loop queue 145, as the data currently residing in
the corresponding cache line no longer includes the
requested data. Once the line does contain the correct data,
the invalidate bit for that line will be reset along with the
pending bit 135. The pending bit 135 and 1nvalidate bit 150
may be stored 1n a tag memory in one example along with
tags T, at 155. Each tag 1535 associates a line 1n the cache to
a part of a set of data 1n main memory that maps to the cache
line.

FIG. 2 1s a block representation of the loop queue 145.
The cache may also set a main memory (MM) request bit
200 associated with each request 200 1n the loop queue 145
to determine when to re-schedule a cache “miss” request. IT
a new request mnvolves the same cache line as an existing
request 1n the loop queue 145, the MM request pending bit
200 for the existing request will be detected, and the new
request will be added to the loop queue without adding a
main memory request or setting the request pending bit 200
for the corresponding cache line.

A request for data will include an input request address,
which includes a tag field, a set field 1n the case of an
associative cache, and a word field. All the information
needed to locate the data in the cache data memory 1s given
in the mput request address. Parts of the input request
address are used for locating data in the cache tag and data
memories. The least significant bits (WORD) are used by the
data manager to determine the word to start reading data
from the corresponding cache line. It W 1s the number of
words per cache line, then the word index has WORD=log,
W bits. The (SET) bits are used to determine the cache set.
It S 1s the number of sets in the cache, then the set index has
SE'T=log, S bits. The remaining bits (TAG) are used for the
tag. If L 1s the length of the address in bits, then the number
of tag bits 1s TAG=L-SET-WORD.

The tags are stored 1n a tag memory 327, also represented
at 125 in FI1G. 1, that 1s organized 1n a way that optimizes the
process of searching for a given request. The tag memory
has S number of lines, where each line has the most recent
corresponding K tags, where K 1s the number of associativ-

US 12,164,433 B2

S

ity ways of the cache 115. Moreover, each set has a pending
bit that indicates whether there 1s an ongoing main memory
read request related to this set or not. Given an address, a tag
manager (shown i FIG. 3) determines whether the
requested data exists 1n the cache 115 or not. The read size
1s not used 1n the tag manager since the read size represents
the number of requested words which does not affect the
operation of the tag manager.

FIG. 3 1s a function flow diagram of an example cache
indicated generally at 300 coupled to a main memory 310.
Components of a scheduling controller are broken out to
better 1llustrate functions performed. A cache input request
315 1s received at a re-scheduler 320. The re-scheduler
accepts new requests from a processor or user. Re-scheduler
320 sends received requests to a tag manager 3235, which
determines whether or not data requested 1s present 1n the
cache, a cache hit, or 1s not present, a cache muss.

The re-scheduler 320 writes the cache miss requests from
the tag manager to a queue 330. In addition, the re-scheduler
320 may check i1 the tag manager 325 1s ready to accept a
read request. Since the main memory latency of a given
main memory read request 1s random, the re-scheduler 320
makes sure that the number of outstanding requests 1 the
cache 300 does not exceed a specific limit (IMAX_OUT-
STANDING_REQUESTS). The re-scheduler 320 selects
either a new 1nput request or reads a re-scheduled request
that had a prior cache miss from a queue 330 and passes the
re-scheduled request to the tag manager 325. The queue 330
may be a loop first-in-first-out (FIFO) queue 1n one example.

The re-scheduler 320 1s also responsible for syncing
between the queue 330 and a response (RSPN FIFO) queue
335 to determine when to re-schedule a cache miss request
once 1ts corresponding data i1s ready in the RSPN FIFO
queue 335.

The tag manager 325 accepts incoming requests from the
re-scheduler 320 one by one and checks whether an 1ncom-
ing request 1s a cache hit/miss by comparing an address 1n
cach request to the corresponding addresses in the tag
memory 125. Once a cache hit/miss decision i1s taken
regarding an incoming request, the tag manager 325 passes
the request to one of several different blocks.

When a cache hit 1s encountered, meaning that requested
data 1s available in a cache line, the tag manager 3235
generates the required signals for a data manager 340 to
locate the corresponding data of the request in a data
memory 342. The tag manager 325 may first pass informa-
tion alongside with the request to a request splitter 343 to
split the request into multi-requests according to the read
s1ze value. A split FIFO queue 350 may queue the requests
and information for the request splitter 345. In some
examples, requests are limited to a size corresponding to a
single cache line, obviating the need for splitting requests.

When a cache miss 1s encountered and the pending bit 135
of the corresponding set mapped to a cache line 1s 0, 1t means
that there 1s no pending main memory read request regarding,
this set. Therefore, the tag manager 3235 passes the request
for generation of a read request 357 (MEM_READ_ CMD)
to bring the data from the main memory 310. A RQST queue
360 may buller the request for a read request to ensure read
request 1s sent when main memory 310 1s available to
receive such requests. The tag manager 323 also passes the
same request to the re-scheduler 320 to store 1t 1n the queue
330 to re-schedule the request once the corresponding data
1s ready Irom the mamm memory as indicated by a
MEM_READ_DATA signal 360.

When a cache miss 1s encountered and the pending bit 135
of the corresponding set 1s 1, 1t means that there 1s an

10

15

20

25

30

35

40

45

50

55

60

65

6

ongoing read request to the main memory 310 regarding the
same location. Therefore, the tag manager 325 passes the
request to the re-scheduler 360 to store 1t 1n the queue 330
but does not request the data from the main memory 310
since the request to main memory 1s already pending. Once
the data of the corresponding request 1s ready as indicated by
MEM_READ DATA 360, the re-scheduler 320 re-sched-
ules that request again to the tag manager 3235 to check
whether it 1s a cache hit/miss. The request can still result in
a cache miss aiter re-scheduling the same request since 1t 1s
a set-associative cache, as many memory locations go to the
same cache line.

The tag manager 325 1s responsible for updating the tag
memory 125 whether the request 1s a cache hit/miss using
least recently used (LRU) techniques.

The request splitter 345 accepts the requests from the tag
manager and writes them to the split FIFO queue 350.
Hence, the request splitter 345 reads the requests from the
split FIFO queue 350 one by one and splits each read request
to multi-word read requests, 11 needed, according to the
corresponding read size signal and whether the request 1s a
cache hit/miss (response). In case of a cache hit, this implied
that the corresponding data 1s available from the cache lines
125. Therefore, the request splitter 345 splits the incoming
request to N requests, where N 1s equal to (READ SIZE+1)
of the corresponding request. In case of a cache miss, this
implies that the corresponding data 1s available in the RSPN
FIFO 335. Therefore and no matter the value of READ SIZE
1s, the request splitter 345 splits the imncoming request to N
request, where N is equal to (270 & %% &/ (READ SIZE)N Thjs is
mainly because in case ol a cache miss, the main memory
310 provides all the words per a cache line which need
(2770~ o b1t of (READ SIZE) cnck cycles to be written in the data
memory 310. Moreover, the request splitter 345 sets a signal
to the data manager that controls whether the split request 1s
read/write/read and write.

The data manager 340 accepts the split requests one by
one from the request splitter 345 and does one of the
following processes to each split request.

For reads, 1n case of a cache hit, the data manager 340
reads the corresponding data from the cache line of the
incoming split request and passes the read data to an output
port 365 of the cache 300, which may be a read only cache
in one example.

For writes, 1n case of a cache miss and 1t 1s not a requested
word, the data manager 340 writes the corresponding data
from the RSPN FIFO queue 335 to the corresponding
location 1n the data memory.

In case of a cache miss and a read/write 1s a requested, the
data manager 340 writes the corresponding data from the
RSPN FIFO que 335 to the corresponding location 1n the
cache line 125. Moreover, the data manager 340 latches the
same data to the output port 365 of the cache 300.

Once the data manager 340 completes a given request
cache hit/miss (which might be a single or several split
requests), 1t sets an OPERATION COMPLETE signal to the
re-scheduler 320 to synchronize the maximum outstanding
requests 1n the read-only cache 300.

The read request block 355 handles the read requests of
the cache misses to the main memory 310 to retrieve their
corresponding data to the cache line. The read request block
355 reads the cache misses requests from the tag manager
325 and stores them 1n the RQST FIFO queue 360. Once the
main memory 310 1s ready to serve the cache 300, the read
request block 355 reads one request from the RQST FIFO
queue 360 and passes it to the main memory 310. The
request to the main memory has the following information:

US 12,164,433 B2

7

TAG and SET of the cache miss read request. The read
request block 355 does not pass the required WORD since
the main memory retrieves all the words per TAG and SET
address data block to the data memory.

A read response block 370 connects a main memory
response 375 (MEM_READ_ DATA) to the data manager

340 since the main memory 310 feeds the data as a full word
per clock cycle. In one example, the read response block 370
may also include function to perform data organization and
concatenation 1f the main memory 310 requires more than
one clock cycle to retrieve a single word.

FI1G. 4 1s a flowchart illustrating a computer implemented
method 400 of continuously processing cache requests as a
function of data becoming available 1n the in cache regard-
less of whether a cache hit or miss 1s encountered. Method
400 begins at operation 410 by receiving a first request at a
cache for first data. The cache 1s checked at operation 420
for the first data. In response to the first data residing (YES)
in the cache at decision operation 425, operation 430 pro-
vides the first data from the cache.

In response to the first data not residing (NO) 1n the cache
at operation 425, operation 435 sends a first memory request
to memory for the first data. A first request pending bit 1s set
at operation 440 to indicate the first request 1s pending. The
first request pending bit may be added to a tag memory. At
operation 450, method 400 proceeds to process a next
request for second data.

The use of request pending bits allows incoming read
requests to be served in an order corresponding to the
availability of requested data 1n the cache. Read requests are
satisfled 1n an order according to the availability of data 1n
the cache, without having to wait for a previous request to
be satisfied before processing subsequent read requests.

In one example, a read response may be received indi-
cating that the first data has been provided to the cache and
1s now available. In response to receipt of the read response,
the first data from the cache may be provided.

In one example, at operation 435, a request pending
invalidate bit associated with the first request pending bit
may be set to indicate that the first data 1s invalid to preclude
the first data from being provided. This may occur due to a
cache flush occurring, or it the data in the cache 1s over-
written with other data. The invalidate bit ensures that the
pending bit does not result in reading of data 1n the cache
that may not be correct.

FIG. 5 1s a flowchart 1llustrating a computer implemented
method 500 of processing a cache miss. Method 500 begins
in response to the first data being found to not reside in the
cache. At operation 510 the first request 1s stored in a loop
queue that may include previously received requests. The
requests 1n the loop queue are processed at operation 520. At
block 530, the first data has been added to the cache. Method
500 then determines that the first data has been added to the
cache and provides the first data from the cache at operation
540.

FIG. 6 1s a flowchart illustrating a computer implemented
method 600 for processing data not residing in the cache.
Method 600 starts with the loop queue already including the
first request that had encountered a cache miss. In one
example, the loop queue comprises a first-in-first-out queue.

The requests 1n the loop queue are processed i a FIFO
manner at operation 610. At operation 620, the first request
in the loop queue 1s reached. In response to the first data
residing (YES) 1n the cache determined at decision operation

630, the first data 1s provided from the cache at operation
640.

10

15

20

25

30

35

40

45

50

55

60

65

8

In response to the first data not residing (NO) 1n the cache
at decision operation 630, the first requested 1s added back
to the loop queue at operation 650 and the method proceeds
at 660 back to operation 610.

In one example, a read response may be recerved 1ndi-
cating that the first data has been provided to the cache and
1s now available. In response to receipt of the read response,
the first data from the cache may be provided prior to the first
request being reached 1n normal processing of the queue at
610.

FIG. 7 1s a flowchart illustrating a computer implemented
method 700 1n response to the first data not residing 1n the
cache at operation 425. At operation 710, the first request 1s
stored 1 a loop queue. A first cache line 1s identified at
operation 720 as a location 1n the cache where the first data
will be stored. At operation 730, a request pending bit for the
first request that 1s associated with the first cache line 1s set.

At operation 740, a second request for further data result-
ing 1n cache miss 1s recerved. A corresponding cache line 1s
identified for the further data at operation 750. In response
to the corresponding cache line matching (YES) the first
cache line at decision operation 760, the further request 1s
stored 1n the loop queue at operation 770 for read requests
without setting the request pending bit for the second
request. The second request will then rotate through the
queue for processing, and 1 the pending bit 1s no longer set
for the first request, the second request will then be pro-
cessed, or 1f still set, added back to the loop queue. I at
decision operation 760, the cache lines do not match, the
second request will be added to the loop queue and a
corresponding pending bit will be set at operation 780.

FIG. 8 1s a block diagram of a system 800 that makes use
of an L2 (Level 2) cache 810 that can provide data respon-
sive to requests received from a processor 815 In one
example, the processor 8135 includes multiple cores 820 that
cach 1nclude a processing 825 running multiple threads 830.
Each core 820 may also include an L1 cache 830. In one
example, the L1 caches are smaller than the L2 cache 810
and hold even less data.

The core processing units 825 may generate the data
requests to the L2 cache 810 that are handled in the manner
described above. Since multiple processing core units 825
are 1ssuing requests, an L2 mput multiplexor 840 may be
used to coordinate requests to and data returned from the L2
cache 810. Also shown 1s the main memory 845 that receives
[.2 read requests and returns corresponding data to the L2
cache 810.

In one example, system 800 1s a processor mstruction
cache system that 1s used to fetch mstructions from memory
8435 (shared system memory) to a cache system that includes
the L2 cache 810. L1 cache 830, and multiplexor 840. The
[.2 cache 810 1s connected to the main memory 8435 via
memory interface i one example and 1s shared among
different L1 caches. The L2 cache mput multiplexor (MUX)
840 serves as an arbiter that handles all the requests that are
coming from different L1 caches to L2 cache. The L1 cache
830 1s the core processor 820 instruction cache. The rule
offload processor 1s a multi-core multi-threading processor.
Therefore, each core 8235 has 1ts own corresponding L1
cache 830. Morecover, each L1 cache 1s shared among
different threads within the same core.

In one example, L2 cache 810 i1s a read-only (RO)
out-of-order L2 cache (ROCache) cache memory that is
used for storage of data that does not require modification by
users. The ROCache 1s shared among different users where
it allows them to perform their read operations indepen-
dently. The ROCache handles all the incoming read requests

US 12,164,433 B2

9

and serves them 1n an order governed by the availability of
the requested data 1n the cache rather than by their original
order. By doing so, the ROCache can avoid being idle while
waiting for the requested data of a cache miss request to
come from the main memory. In the meantime, the ROCache
tries to serve other read requests in which their data 1s
available 1n the cache (cache hits) and can be served
immediately and independently.

FI1G. 9 1s a block schematic diagram of a computer system

900 to perform computer implemented methods of providing
data from a cache as the data becomes available and for

performing methods and algorithms according to example

embodiments. All components need not be used in various
embodiments.

One example computing device 1n the form of a computer
900 may include a processing unit 902, memory 903,
removable storage 910, and non-removable storage 912.
Although the example computing device 1s illustrated and
described as computer 900, the computing device may be 1n
different forms 1n different embodiments. For example, the
computing device may instead be a smartphone, a tablet,
smartwatch, smart storage device (SSD), or other computing
device mncluding the same or similar elements as 1llustrated
and described with regard to FIG. 9. Devices, such as
smartphones, tablets, and smartwatches, are generally col-
lectively referred to as mobile devices or user equipment.

Although the various data storage elements are illustrated
as part of the computer 900, the storage may also or
alternatively include cloud-based storage accessible via a
network, such as the Internet or server-based storage. Note
also that an SSD may include a processor on which the
parser may be run, allowing transfer of parsed, filtered data
through 1I/O channels between the SSD and main memory.

Memory 903 may include volatile memory 914 and
non-volatile memory 908. Computer 900 may include—or
have access to a computing environment that includes—a
variety ol computer-readable media, such as volatile
memory 914 and non-volatile memory 908, removable
storage 910 and non-removable storage 912. Computer
storage includes random access memory (RAM), read only
memory (ROM), erasable programmable read-only memory
(EPROM) or electrically erasable programmable read-only
memory (EEPROM), flash memory or other memory tech-
nologies, compact disc read-only memory (CD ROM), Digi-
tal Versatile Disks (DVD) or other optical disk storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium
capable of storing computer-readable instructions.

Computer 900 may include or have access to a computing,
environment that includes mput interface 906, output inter-
tace 904, and a communication 1nterface 916. Output inter-
tace 904 may include a display device, such as a touch-
screen, that also may serve as an input device. The input
interface 906 may include one or more of a touchscreen,
touchpad, mouse, keyboard, camera, one or more device-
specific buttons, one or more sensors mntegrated within or
coupled via wired or wireless data connections to the
computer 900, and other input devices. The computer may
operate 1n a networked environment using a communication
connection to connect to one or more remote computers,
such as database servers. The remote computer may include
a personal computer (PC), server, router, network PC, a peer
device or other common data flow network switch, or the
like. The communication connection may include a Local
Area Network (LAN), a Wide Area Network (WAN), cel-

lular. W1-F1, Bluetooth, or other networks. According to one

10

15

20

25

30

35

40

45

50

55

60

65

10

embodiment, the various components of computer 900 are
connected with a system bus 920.

Computer-readable 1nstructions stored on a computer-
readable medium are executable by the processing unit 902
of the computer 900, such as a program 918. The program
918 1n some embodiments comprises soltware to implement
one or more methods described herein. A hard drive, CD-
ROM, and RAM are some examples of articles including a
non-transitory computer-readable medium such as a storage
device. The terms computer-readable medium, machine
readable medium, and storage device do not include carrier
waves or signals to the extent carrier waves and signals are
deemed too transitory. Storage can also include networked
storage, such as a storage area network (SAN). Computer
program 918 along with the workspace manager 922 may be
used to cause processing unit 902 to perform one or more
methods or algorithms described herein.

Examples

1. A computer implemented method includes receiving a
first request at a cache for first data and checking the
cache for the first data. In response to the first data
residing 1n the cache the method includes providing the
first data from the cache. In response to the first data not
residing in the cache the method 1includes sending a first
memory request to memory for the first data, setting a
first request pending bit to indicate the first request 1s
pending, and proceeding to process a next request for
second data.

2. The method of example 1 wherein the first request
pending bit 1s added to a tag memory.

3. The method of any of examples 1-2 and further
including 1n response to the first data not residing 1n the
cache, storing the first request 1n a loop queue with
other requests, and processing requests in the loop
queue. In response to the first data being added to the
cache, determining that the first data has been added to
the cache, and providing the first data from the cache.

4. The method of any of examples 1-3 and further
including in response to the first data not residing in the
cache, storing the first request 1n a loop queue with
other requests, processing requests 1n the loop queue,
and reaching the first request 1n the loop queue. In
response to the first data residing 1n the cache, provid-
ing the first data from the cache. In response to the first
data not residing in the cache, adding the first request
back to the loop queue.

5. The method of example 4 wherein the loop queue
comprises a first-in-first-out queue.

6. The method of any of examples 1-5 and further
including setting a request pending 1nvalidate bit asso-
ciated with the first request pending bit to indicate the
first data 1s 1nvalid to preclude the first data from being,
provided.

7. The method of any of examples 1-6 and further
including receiving a read response indicating that the
first data has been provided to the cache and providing
the first data from the cache 1n response to the request.

8. The method of any of examples 1-7 and further
including receiving additional requests at the cache,
and wherein the additional and first requests are served
in an order corresponding to the availability of
requested data in the cache.

9. The method of any of examples 1-8 and further
including 1n response to the first data not residing 1n the
cache, storing the first request 1n a loop queue, 1dent-

US 12,164,433 B2

11

tying a first cache line as a location 1n the cache where
the first data will be stored, and setting read request bit
for the first request that 1s associated with the first cache
line.

10. The method of example 9 and further including
receiving a request for further data resulting in cache
miss and 1dentitying a corresponding cache line for the
further data. In response to the corresponding cache
line matching the first cache line, storing the further
request 1n a loop queue for read requests.

11. The method of example 10 wherein read requests are
satisfied 1n an order according to the availability of data
in the cache.

12. A machine-readable storage device having instruc-
tions for execution by a processor of a machine to cause
the processor to perform operations to perform any of
the methods of examples 1-11.

13. A device includes a processor and a memory device
coupled to the processor and having a program stored
thereon for execution by the processor to perform
operations to perform any of the methods of examples
1-11.

Although a few embodiments have been described 1n
detail above, other modifications are possible. For example,
the logic flows depicted 1n the figures do not require the
particular order shown, or sequential order, to achieve
desirable results. Other steps may be provided, or steps may
be eliminated, from the described flows, and other compo-
nents may be added to, or removed from, the described
systems. Other embodiments may be within the scope of the
following claims.

The invention claimed 1s:

1. A computer implemented method comprising:

receiving a first request at a cache for first data;

checking memory of the cache for the first data;

in response to the first data not residing 1n the memory of

the cache:

sending a first memory request from the cache to a main

memory for the first data;

storing the first memory request in a cache memory

request queue of the cache;

setting a first request pending bit in the cache memory

request queue to indicate the first request 1s pending;
and

proceeding to process a next request for second data

received at the cache while the first request 1s still
pending.

2. The method of claim 1 wherein the first request pending,
bit 1s added to a tag memory.

3. The method of claim 1 wherein the cache memory
request queue 1s a loop queue that includes other memory
requests, and further comprising in response to the first data
not residing in the cache:

processing requests 1 the loop queue; and

in response to the first data being added to the cache:

determining that the first data has been added to the cache;

and

providing the first data from the cache.

4. The method of claim 1 wherein the cache memory
request queue 1s a loop queue that includes other memory
requests, and further comprising in response to the first data
not residing 1n the cache:

processing requests 1n the loop queue;

reaching the first request 1n the loop queue;

in response to the first data residing 1n the cache:

providing the first data from the cache; and

10

15

20

25

30

35

40

45

50

55

60

65

12

in response to the first data not residing in the cache,

adding the first request back to the loop queue.

5. The method of claim 4 wherein the loop queue com-
prises a first-in-first-out queue.

6. The method of claim 1 and further comprising setting
a request pending invalidate bit associated with the first
request pending bit to indicate the first data 1s invalid to
preclude the first data from being provided.

7. The method of claim 1 and further comprising:

recerving a read response indicating that the first data has

been provided to the cache; and

providing the first data from the cache in response to the

request.

8. The method of claim 1 and further comprising receiv-
ing additional requests at the cache, and wherein the addi-
tional and first requests are served in an order corresponding
to the availability of requested data in the cache.

9. The method of claim 1 wherein the cache memory
request queue 1s a loop queue that includes other memory
requests, and further comprising in response to the first data
not residing 1n the cache:

identifying a first cache line as a location 1n the cache

where the first data will be stored; and

setting read request bit for the first request that 1s asso-

ciated with the first cache line.

10. The method of claim 9 and further comprising:

receiving a request for further data resulting in cache

miss;

identifying a corresponding cache line for the turther data;

in response to the corresponding cache line matching the

first cache line:

storing the further request in a loop queue for read

requests.

11. The method of claim 10 wherein read requests are
satisfied 1n an order according to the availability of data in
the cache.

12. A machine-readable storage device having instruc-
tions for execution by a processor of a machine to cause the
processor to perform operations to perform a method, the
operations comprising:

recetving a first request at a cache for first data;

checking memory of the cache for the first data;

in response to the first data not residing 1n the memory of

the cache:

sending a first memory request from the cache to a main

memory for the first data;

storing the first memory request in a cache memory

request queue of the cache;

setting a first request pending bit in the cache memory

request queue to indicate the first request 1s pending;
and

proceeding to process a next request for second data

received at the cache while the first request 1s still
pending.

13. The device of claim 12 wherein the cache memory
request queue 1s a loop queue that includes other memory
requests, and wherein the operations further comprise in
response to the first data not residing in the cache:

processing requests in the loop queue; and

in response to the first data being added to the cache:

determining that the first data has been added to the cache;

and

providing the first data from the cache.

14. The device of claim 12 wherein the cache memory
request queue 1s a loop queue that includes other memory
requests, and wherein the operations further comprise in
response to the first data not residing in the cache:

US 12,164,433 B2

13

processing requests 1n the loop queue;

reaching the first request 1n the loop queue;

in response to the first data residing 1n the cache:

providing the first data from the cache; and

in response to the first data not residing in the cache,
adding the first request back to the loop queue 1n
response to the first request pending bit being set.

15. The device of claim 14 wherein the operations further

comprise setting a request pending nvalidate bit associated
with the first request pending bit to indicate the first data 1s
invalid to preclude the first data from being provided.

16. The device of claim 12 wherein the operations further
comprise:

receiving a read response indicating that the first data has

been provided to the cache; and

providing the first data from the cache 1n response to the

request.

17. The device of claim 12 wherein the cache memory
request queue 1s a loop queue that includes other memory
requests, and wherein the operations further comprise in
response to the first data not residing in the cache:

identifying a first cache line as a location in the cache

where the first data will be stored; and

setting read request bit for the first request that 1s asso-

ciated with the first cache line.

18. The device of claim 17 wherein the operations further
comprise:

receiving a request for further data resulting in cache

miss;

identifying a corresponding cache line for the further data;

in response to the corresponding cache line matching the

first cache line:

5

10

15

20

25

30

14

storing the further request in a loop queue for read
requests, wherein read requests are satisfied 1n an order
according to the availability of data in the cache.

19. A device comprising:

a processor; and

a memory device coupled to the processor and having a

program stored thereon for execution by the processor
to perform operations comprising:

recerving a first request at a cache for first data;

checking memory of the cache for the first data;

in response to the first data not residing 1n the memory of

the cache:

sending a first memory request from the cache to a main

memory for the first data;

storing the first memory request in a cache memory

request queue of the cache;

setting a first request pending bit in the cache memory

request queue to indicate the first request 1s pending;
and

proceeding to process a next request for second data

received at the cache while the first request 1s still
pending.

20. The device of claiam 19 wherein the cache memory
request queue 1s a loop queue that includes other memory
requests, and wherein the operations further comprise in
response to the first data not residing in the cache:

processing requests 1n the loop queue; and

in response to the first data being added to the cache:

determiming that the first data has been added to the cache;

and

providing the first data from the cache.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

