12 United States Patent
Cui

US012147588B2

US 12,147,588 B2
Nov. 19, 2024

(10) Patent No.:
45) Date of Patent:

(54) CONTROLLED ACCESS TO DATA STORED
IN A SECURE PARTITION
(71) Applicant: Alibaba Group Holding Limited,
George Town (KY)
(72) Inventor: Xiaoxia Cui, Hangzhou (CN)
(73) Assignee: Alibaba Group Holding Limited (KY)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 240 days.
(21) Appl. No.: 17/020,572
(22) Filed: Sep. 14, 2020
(65) Prior Publication Data
US 2021/0089684 Al Mar. 25, 2021
(30) Foreign Application Priority Data
Sep. 20, 2019 (CN) oo, 201910890559.9
(51) Int. CL
Go6l’ 21/78 (2013.01)
GO6F 9/38 (2018.01)
(Continued)
(52) U.S.
CPC Go6rl’ 21/78 (2013.01); GO6F 9/3861
(2013.01); GO6F 9/4812 (2013.01); GO6F
21/31 (2013.01);
(Continued)
(58) Field of Classification Search

CPC GO6F 21/78; GO6F 9/3861; GO6F 9/4812;

GO6F 21/31; GO6F 21/5775; GO6F
21/6218; GO6F 2221/2113

(Continued)

102\

(56) References Cited
U.S. PATENT DOCUMENTS
5,651,139 A 7/1997 Cripe
6,769,076 B1* 7/2004 Moyer GO6F 11/3656
714/37
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1021843773 9/2011
CN 102486758 6/2012
(Continued)

OTHER PUBLICATTIONS

Ren, “Security Challenges for the Public Cloud”, Feb. 2012, IEEE,
pp. 69-73 (Year: 2012).*

(Continued)

Primary Examiner — Piotr Poltorak
Assistant Examiner — Gregory A Lane

(74) Attorney, Agent, or Firm — Van Pelt, Y1 & James
LLP

(57) ABSTRACT

Performing controlled access to data stored imn a secure
partition 1s described herein, including: associating a prede-
termined exception with an exception handling program in
an operating system; restricting a user program to execution
by a normal privilege user; and designating a secure parti-
tion and restricting the secure partition to be accessible by a
highest privilege user; wherein, when executed 1n user space
corresponding to the normal privilege user, the user program
generates the predetermined exception, and wherein the
predetermined exception triggers execution of the exception
handling program i1n kernel space, and the exception han-
dling program 1s configured to read data from the secure
partition and deliver the data after processing to the user
program.

26 Claims, 5 Drawing Sheets

Processing

Subsystem
300

Storage
Controller
2301

Storage Device 201

Application
2311

Data 2012

]

-

Secure Partition |

1021 i
-

JTAG
Module 304

opler mimbmbyen ik

Memory
Protection
Unit 306

Processor
Coras 3051

FIoOcCeESSOr
Assembly
305

1/
Condroller
303

Bus Unit 320

iii

User Spaces 331

Data Buffers
3331

Application
Routines 3311

--

HHH

=l ol A H Wi - A H B e i - Y B e e i =H H e Y e b e b B ek cdee ol el el SR Yol] e ol ol b Y bl ded e ol G bk A b B kb gy

Kernet Space 332

Mode
Controller
3401

User :
Fermission] ;
Table 33271 !

‘ Translation
:« { Table 3324

Operating
System 340

Storage
Device
Driver 3402

/O Driver
343

Secure Partition |
1021 | i

1

interrupt
Tahle
3323

LELERL LT T E LD RE LR LTREL e LR L PRy L g Ly

US 12,147,588 B2

Page 2
51 Int. Cl. 2008/0301402 Al1* 12/2008 Alapatioovvvvnn.. GO6F 9/4812
(p
GO6F 9/48 (2006.01) 712/7
GO6F 21/31 (2013 0) 2008/0320333 Al* 12/2008 Watson GO6F 11/3636
P 714/38.11
GOOL 21757 (2013'02“) 2009/0106517 Al 4/2009 Wang
GOol 21/62 (2013.01) 2009/0172713 Al 7/2009 Kim
(52) U.S. CL 2010/0031360 Al1* 2/2010 Seshadri GO6F 21/74
CPC GoolF 21/575 (2013.01); GooF 21/6218 N 726/28
(2013.01); GO6F 2221/2113 (2013.01) 2012/0079458 Al* 3/2012 Willilams GO6F 11/3648
.] . ' 717/124
(58) Field of Classification Search 2014/0068704 A1l* 3/2014 Grewal ..o, GOGF 21/85
UUSPC e 726/26 796/4
See application file for complete search history. 2016/0092678 Al 3/2016 Probert
2017/0249178 Al 8/2017 Tsirkin
(56) References Cited 2018/0121665 A1* 5/2018 Anderson GO6F 21/6209
2021/0089684 Al1* 3/2021 Cul ...ooovivviiiininnnn, GO6F 21/575
U.S. PATENT DOCUMENTS 2021/0342092 Al1* 1172021 Wu ..., GOG6F 3/0673
7.165.135 B1* 1/2007 Christiec....... GO6F 21/74 FOREIGN PATENT DOCUMENTS
726/26
7,665,143 B2* 2/2010 Havenscc...... GO6F 21/57 CN 102592083 7/2012
726/2 CN 109840410 6/2019
2004/0139346 Al 7/2004 Watt IP 2009009232 1/2009
2004/0210764 Al* 10/2004 McGrath ..oovvvvii.. GO6F 9/4403 WO 2019148948 8/2019
713/190
2005/0044319 Al1* 2/2005 Olukotun GO6F 9/30032 OTHER PURIICATIONS
712/E9.034
2006/0294341 Al* 12/2006 Plondke GOGF 12/1027 (ocan “Intel SGX Explained”, 2016, MIT, pp. 1-118 (Year:

711/207

2007/0266374 Al* 11/2007 Grisenthwaite GO6F 9/4812 2016).7 | | |
717/127 Scarfone et al., Guide to Storage Encryption Technologies for End

2007/0266444 A1* 11/2007 Segalcccoceove.... GO6F 21/78 User Devices, NIST Special Publication, Nov. 2007.

726/27
2007/0300287 Al 12/2007 Wynne * cited by examiner

IE

US 12,147,588 B2

£,

Qo

-

Y

2

e

9

_4

g

—

“ 101

2 uoljiued ainoes
W SS820Y P8||0JU0)

20} sneseddy buissaosoid

U.S. Patent

L L0 welboud Jeasn

L0} snjeteddy buissasold

US 12,147,588 B2

Sheet 2 of §

Nov. 19, 2024

U.S. Patent

- ——— —
! o Doeg || oo | | s | | o,
| uoned ainoes | | oo [Soog | 1033U0D
P - — m O/
¢ "Old
cOope zove Jorua|| GOE
1 | sonug oy | OVE Weishg | 3dned : Alquaessy
m Sunesado abelo]s : J0SS8201d
|GOE $8J0D
m m JOSSD00]A
+ | LCEC Slde L LOVe m o
+ | uoissiwied Jajjoauon vCee Sl9B L : <
m IEL apPON HORBISUELL 1 -
m m 5 90€ UN
: m uonoa8l0I4
7S¢ aoedg |ouIoy | RIOWBS\
0CE 991A9(abri0}g [r e ——— — ~—
#0€ 8INPON | e |
LEEE LLec seunpnoy | LOE 107
S : <] JO||CHUO)) 1=
(| Seung Bied uofeot|ddy m 1 o —| ¢10¢ Bea Loneonddy
” 00¢
&g sadeds Jesn waysAsqng 10Z @91A8(] 96EI0}S
.. . BuISS920.1d

/.No_‘

U.S. Patent Nov. 19, 2024 Sheet 3 of 5 US 12,147,588 B2

350 ~

Assoclate a predetermined exception with an 359
exception handling program in an operating
system

Restrict a user program to execution by a normal
privilege user 394

Designate a secure partition and restrict the
secure partition to be accessible by a highest
privilege user; wherein, when executed Iin user

space corresponding to the normal privilege user,

the user program generates the predetermined
exception, and wherein the predetermined
exception triggers execution of the exception

handling program In kernel space, and the

exception handling program Is configured to read

data from the secure partition and deliver the data

after processing to the user program

356

FIG. 3

588 B2

2

r~
4
—
~ Moedq Blep passadold
Ao Moeq eljep puss ‘Ajjeuondo ‘gLt
% PeSS820.d puss ‘v v
uoniued
2JN2as ay] Wol) -
ejep peal gl _

£,
= aoelalul buljpuey
- uoildaoxa ||ed ‘Ol
3
e
9 9.

uonelJasdo sABsS 8)IS-Uo

wJopad 0] Jo1osA 1dniisiul ‘-

3 juonideoxe 0} 0b ‘goY
~ uondaoxs paulwlalspald
al,.,,, oAl8d8al ‘OOt
>
-
r4

uondeoxs paulwlislspald ‘——
ajelauab ‘0t

yZy welboud

S— 22y WalsAg

uondaox3 Bunesado

U.S. Patent

0Z weiboud

19S) 94N298

weJlboud
Jash aJnoss lelsS ‘Z0v

\'4
l1asn abajialg

[eWLION

US 12,147,588 B2

Sheet 5 of 5

Nov. 19, 2024

U.S. Patent

2109 PLEOS
JNJJID HNOULY

UBOQ UBOS
Alepunog Alepunog

qL€0S eLc0S
1IN2JID JINDUID

ueoS UBOS

Alepunog

£0G HNoJIY SoEelSlU]

Alepunog

OdL

1AL

L C0G °|NPOA
Juswsbeue|\
pue
|0Jjuo)) bnga

¢0G
Ja||oau09

dV.1l

pUBLLWON
bnga

L0G Jalndwod

|IoA8|-JaybIH

US 12,147,588 B2

1

CONTROLLED ACCESS TO DATA STORED
IN A SECURE PARTITION

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to People’s Republic of
China Patent Application No. 201910890559.9 entitled A
METHOD, SYSTEM AND COMPUTER-READABLE
MEDIUM filed Sep. 20, 2019 which 1s incorporated herein

by reference for all purposes

FIELD OF THE INVENTION

The present mmvention relates to restricting access to
designated data stored on a system. Specifically, the present
invention relates to restricting access to data designated to
be stored 1n a secure partition of a system.

BACKGROUND OF THE INVENTION

In the fragmented application field of the Internet of
Things, there 1s a class of devices which are characterized by
low cost, low power consumption, and few resources. They
are large 1in number, and their applications are wide-ranging.
They are mainly concentrated among sensors, industrial
control products, consumer electronics, and Internet of
Things products. Their large quantities mean very stringent
cost requirements. Therefore, the final products often do not
have basic security features. As a direct result, the manu-
facturers’ private data or product function authentication
information may very easily be leaked to or accessed by
unauthorized users during product secondary development
processes or during the production process. Persons seeking,
to 1llicitly acquire benefits may directly read useful data
information via the debugging interface, or they may
directly read such data information through a self-developed
user code. After analyzing 1t, they can extract valuable or
sensitive information. By using this valuable or sensitive
information, persons seeking to illicitly acquire benefits may
quickly replicate similar devices having the same features.
Some replicated devices may use this information to directly
communicate with cloud servers. As a result, the i1llicit users
may conceal their own true identities and use cloud services
via their unauthorized devices without paying. Some devices
have an automatic networking feature. Because of the need
for real-time performance and ease of use, the networking
protocols are not very secure when i1t comes to identity
recognition, and some even lack identity recognition fea-
tures. As a result, 1t becomes possible to freely join a local
network with just a device having the networking informa-
tion and then to use a device on another network node to
acquire more information of value, which could leave
devices vulnerable to thelt of the manufacturers’ private data
or product function authentication information.

An 1mvestigation 1nto the fundamental cause of this prob-
lem reveals that this class of devices often sacrifices security
needs 1n the pursuit of low costs. However, to raise the
security protections of this type of device while constrained

*

by cost pressures remains a technical difliculty for persons
skilled 1n the art.

BRIEF DESCRIPTION OF THE

DRAWINGS

Various embodiments of the invention are disclosed 1n the
tollowing detailed description and the accompanying draw-
ngs.

10

15

20

25

30

35

40

45

50

55

60

65

2

Retference to the drawings below that describe embodi-
ments of the present invention will further clarity the
objectives, features, and advantages, whether described
above or otherwise, of the present invention. The drawings:

FIG. 1 1s a diagram showing an application scenario of
one processing apparatus interacting with another process-
ing apparatus.

FIG. 2 1s a structural diagram showing an example of a
processing apparatus.

FIG. 3 presents an interaction diagram of a normal user,
a secure user program, an operating system, and an excep-
tion handling program.

FIG. 3 1s a flow diagram showing an embodiment of a
process for performing a controlled access to a secure
partition.

FIG. 4 1s a sequence diagram that shows an example
process 1n which a user program can perform a controlled
access to data stored at a secure partition.

FIG. 5 1s a diagram of an example debugging control and
management module, a higher-level computer, and a pro-
cessing apparatus.

DETAILED DESCRIPTION

The mvention can be implemented 1n numerous ways,
including as a process; an apparatus; a system; a composi-
tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such
as a processor configured to execute instructions stored on
and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the mvention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that 1s tem-
porarily configured to perform the task at a given time or a
specific component that 1s manufactured to perform the task.
As used herein, the term ‘processor’ refers to one or more
devices, circuits, and/or processing cores configured to
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention 1s provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention 1s described in connection with such embodi-
ments, but the mvention 1s not limited to any embodiment.
The scope of the invention 1s limited only by the claims and
the mvention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth 1n the following description 1 order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the mnvention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clanty, technical
material that 1s known 1n the technical fields related to the
invention has not been described 1n detail so that the
invention 1s not unnecessarily obscured.

The present mvention 1s described below on the basis of
embodiments, but the present immvention 1s not limited to
these embodiments. In the following description of the
details of the present invention, some specific details are
described exhaustively. A person skilled 1n the art would be
able to completely understand the present invention without
the description of these details. To avoid confusing the
substance of the present mvention, there 1s no detailed

US 12,147,588 B2

3

recitation of well-known methods and processes. In addi-
tion, the drawings are not necessarily drawn according to
proportion.

Embodiments of performing a controlled access to data in
a secure partition are described herein. A predetermined
exception 1s recerved from a user program. The user pro-
gram 1s caused by a normal privilege user to be executed by
a processor. In response to receipt of the predetermined
exception, an exception handling program corresponding to
the predetermined exception 1s executed by the processor to
access data from a secure partition. The exception handling
program 1s configured to output the accessed data from the
secure partition.

As will be described 1n further detail below, the secure
partition 1s configured to store sensitive, secretive, and/or
proprietary information (e.g., that 1s associated with the
manufacturer that had manufactured the processing appara-
tus on which the secure partition 1s stored) and usually, users
of the normal privilege type/permission level are not per-
mitted to read, write, or otherwise access the secure parti-
tion. However, 1n various embodiments, a secure partition
that 1s associated with a corresponding exception handling
program can be generated by a user program that 1s executed
by a processor 1n response to an instruction by a normal
privilege user. The exception handling program correspond-
ing to the secure partition can then be executed to directly
read raw data from the secure partition. Belore the exception
handling program returns the data from the secure partition
back to the normal privilege user, the exception handling
program processes the raw data by, for example, encrypting,
obfuscating, and/or removing at least a portion of the data so
that any sensitive, secretive, and/or proprietary portions of
the data from the secure partition will not be readily avail-
able to the normal privilege user. Hence, the normal privi-
lege user’s access to data stored at the secure partition 1s not
unrestricted by rather controlled.

For the sake of clarity given the diflerent meanings of the
terms “exception” and “interrupt” in different CPU archi-
tectures (e.g., x86, ARM, RISC V, PowerPC, etc.), 1n various
embodiments, “exception” refers to a software exception
that occurs 1n a program while 1t 1s running, and, 1n various
embodiments, “interrupt” 1s defined as a hardware-related
interrupt. In the case of an operating system, both “excep-
tions” and “interrupts” begin handling through a unified
entry: “exception/interrupt vector.” In various embodiments,
the “exception/interrupt vector” includes all types of excep-
tions and interrupts the handling program addresses corre-
sponding to each exception or interrupt type, and corre-
sponding control process flows. When an exception or
interrupt occurs, the processor goes to the processing pro-
gram address corresponding to the occurred type of excep-
tion or interrupt and begins execution. Exceptions may be
divided between “recoverable” and “‘unrecoverable.” Spe-
cifically, an exception 1s a “recoverable” exception 1f a user
program that 1s being executed triggers the generation of the
exception, and then, after the exception has entered and
undergone handling 1n an exception handling program, the
processing context of the user program can be recovered,
1.€., recovered to the current istruction that generated the
exception or to the next istruction. In contrast, all interrupts
are unrecoverable.

A “processing apparatus” described herein may refer to
any of various types ol computer systems, including but not
limited to, desktop computers, servers, notebooks, and work
stations. A “processing apparatus” may also refer to any of
various types of embedded products, including but not
limited to cellular telephones, voice over Internet protocol

10

15

20

25

30

35

40

45

50

55

60

65

4

devices, digital cameras, personal digital assistants (PDAs),
hand-held PCs, network computers (NetPCs), set-top boxes,
network hubs, and wide area network (WAN) switches. A
control system realized on the basis of software and hard-
ware 1s deployed on the processing apparatus. This control
system may be partially integrated into the processing
apparatus and may be partially deployed 1n the processing
apparatus through installation. This control system may be
called different names 1n diflerent types of processing appa-
ratuses. However, for the sake of descriptive convenience,
the control system will be referred to as “operating system”™
in the present document.

In various embodiments, the default management mode of
this operating system 1s multi-user. In various embodiments,
there are at least two types of users/privilege levels of the
operating system. In some embodiments, a first (privilege
level) type of users 1s sometimes referred to as “normal
privilege users” and the second (privilege level) type of
users 1s sometimes referred to as “highest privilege users.”
Each privilege type of user of the operating system 1s
assigned a diflerent set of permissions (e.g., read, write, and
read and write) with respect to different functions of a
device. For example, “normal privilege users™ are users that
are developers that perform secondary development after a
processing apparatus has been delivered to a customer, such
as application developers. For example, “highest privilege
users” are users that are associated with the manufacturer of
the processing apparatus or users that have been granted
access to sensitive, secretive, and/or proprietary data asso-
ciated with the manufacturer. What type of permissions that
may be assigned to each privilege type of users (e.g., normal
privilege users and highest privilege users), in some embodi-
ments, are described 1n further detail below.

In various embodiments, the operating system under
multi-user management mode partitions the address space of
memory 1n terms of software logic into a “kernel space” and
at least one ““user space.” For example, the Linux operating
system treats the highest 1G bytes (from virtual address
0xC0000000 to OxFFFFFFFF) as kernel space and treats
lower 3G bytes (from 0x00000000 to OxBFFFFFFF) as user
space. Operating system code and data are put 1n the kernel
space, and user-created user program code and data are put
in a user space. Tasks can be performed 1n the kernel space,
and they can also be performed 1n a user space. The
operating modes of the processor are thus divided into the
kernel mode and a user mode. The processor has more
permissions in the kernel mode than it does 1n a user mode.
For example, when operating 1n the kernel mode, the pro-
cessor can access all data and instructions in the kernel space
and a user space. Moreover, the processor can also access
peripheral devices, such as hard drives and network cards,
through device drivers. For example, when executing in a
user mode, the processor can only access the data and
istructions 1n 1ts own user space. However, when operating
1n a user space, the processor can switch from user space to
kernel space, 1.e., from the user mode to the kernel mode,
through system calls, exceptions, and peripheral device
interrupts.

FIG. 1 1s a diagram showing an application scenario of
one processing apparatus interacting with another process-
ing apparatus. In the example of FIG. 1, processing appa-
ratus 101 1s interacting with processing apparatus 102. As
shown in FIG. 1, processing apparatus 102 includes secure
partition 1021. Secure partition 1021 represents any parti-
tion within processing apparatus 102. Secure partition 1021
may be designated by physical addresses or by virtual
addresses, for example. Secure partition 1021 may be secre-

US 12,147,588 B2

S

tive, proprietary, and/or sensitive data, ¢.g., some important
code and data information. For example, at least some
content imncluded 1n secure partition 1021 relates to a manu-
facturer of processing apparatus 102. Specifically, device
information, IDs, keys, and other information from when the
product was manufactured may be written 1to secure par-
tition 1021. Processing apparatus 101 includes user program
1011. As will be described in further detail below, user
program 1011 (e.g., such as an application) 1s configured to
read data from secure partition 1021 1n a controlled manner.
For example, reading data from secure partition 1021 1n a
controlled manner may include the operating system of
processing apparatus 102 providing a processed version of
data that has been read from secure partition 1021, where the
processed version of the data has already removed any
sensitive data or other data that 1s not desired to be shared
with user programs. As a result, user program 1011 can only
obtain data processed from protected data so as to ensure
data security 1n secure partition 1021.

Processing apparatus 101 and processing apparatus 102
may be any apparatuses, including but not limited to, flash
chups, processors (CPUs), digital processors (DSPs), sys-
tems on a chip, processing units manufactured for various
specialized purposes, and various electronic products
tformed from the above. If processing apparatus 101 1s, for
example, flash memory, and processing apparatus 102 1s a
computer, processing apparatus 101 and processing appara-
tus 102 may be regarded overall as one computer system.
When both processing apparatus 101 and processing appa-
ratus 102 are, for example, computers, then processing
apparatus 101 may remotely execute a user program or may
COpYy a user program to processing apparatus 102 for execu-
tion there.

FIG. 2 1s a structural diagram showing an example of a
processing apparatus. In particular, the example processing,
apparatus of FIG. 2 may be used to implement processing
apparatus 102 of FIG. 1.

Referring to FIG. 2, the example processing apparatus
includes storage device 201 and processing subsystem 300,
which are linked together by bus unmit 320. Processing
subsystem 300 includes storage controller 301 correspond-
ing to storage device 201. Processing subsystem 300 con-
trols operations directed at storage device 201 through
storage controller 301. For example, processing subsystem
300 may engage 1n data exchanges with storage device 201
in the form of data blocks. In this example, storage controller
301 and storage device 201 are represented as independent
devices. However, 1n some situations, the functions of
storage controller 301 and storage device 201 are integrated
in one device.

Processing subsystem 300 executes multiple application
routines 3311 to complete the execution of multiple tasks.
Each application routine 3311 may be any of many types of
application programs, including but not limited to, word
processing programs, electronic form editors, CAD/CAM
soltware, website browsers, audio/visual recording and/or
playing software, and photograph editors. As a management
scheduling center for various tasks, operating system 340,
being a part of processing subsystem 300, 1s executed by
processor assembly 305. Operating system 340 can provide
an operating environment to support the execution ol mul-
tiple application routines 3311. Thus, operating system 340
executes one or more device drivers. With the device driv-
ers, the operating environment of operating system 340 is
expanded to provide support for all kinds of devices. For
example, storage device driver 3402 supports storage con-
troller 301 1n communicating with external storage device

10

15

20

25

30

35

40

45

50

55

60

65

6

201. I/O dniver 3403 supports 1/O controller 303 1n com-
municating with external I/O controls.

In each embodiment, processing subsystem 300 may
contain processor assembly 305. Processor assembly 305
may contain one or more processor cores 3051. The plurality
ol processor cores may, for example, include high-power
cores, which are faster and more complex, and low-power
cores, which are slower and less complex. Some 1nstances of
storage devices 330, which are more eflicient than the
storage device 201, are partitioned in processing subsystem
300, and are used for the intermediate storage and caching
required by the various kinds of processing provided by
processor assembly 305.

In various embodiments, storage device 330 1s partitioned
into kernel space 332 and one or more user spaces 331 1n
accordance with storage position address ranges. In a multi-
user management operating environment, one or more user
spaces 331 belong to the run spaces of one or more respec-
tive user programs, and kernel space 332 belongs to the run
space of the operating system and system programs. In
kernel space 332, it i1s possible, for example, to store
operating system 340, page table (not shown), page buller
(not shown), interrupt table (IDT) 3323, translation table
3324, block bufler 3326, and user permission table 3327,
and entries associated with the running of the operating
system. A page table relates the page virtual addresses of
application 2011 (executing on storage device 201) to the
physical addresses used for pages in storage device 330.
Block bufler 3326 1s configured to cache data in storage
device 201 1n the form of blocks and can provide page data
that 1s searched 1n the form of pages. Translation table 3324
1s configured to relate a page virtual address to identifiers of
one or more data blocks in storage device 201 that can
include the content of that page. User permission table 3327
1s a relational table for multiple users and permissions.

In various embodiments, processor assembly 305 can be
linked to a memory protection unit (MPU) 306. Processor
assembly 3035 1s configured to access storage device 330
through memory protection unit 306. Memory protection
umt 306 1s realized with hardware logic and manages
storage space by using regions. The regions are attributes
associated with storage space. Operating system 340 may
then allocate more attributes, such as access permissions and
caches, to the regions. Therelfore, 1n some embodiments, the
alforementioned partitioning of kernel space 332 and user
space(s) 331 may be achieved using memory protection unit
306 and operating system 340.

Each user space of one or more user spaces 331 can store
corresponding instances of application routine 3311 and data
bufler 3331. Application routine 3311 is a copy of at least a
part ol application 2011 stored on storage device 201. Data
bufler 3331 1s a copy of at least a part of data 2012 stored
on storage device 201. Although, 1n some embodiments,
storage device drniver 3402 and /O driver 3403 may be
provided by a vendor other than the vendor of operating
system 340, these drivers may be regarded on the basis of
their interactions as components of operating system 340, as
shown 1n the drawing. For example, operating system 340
may be a current, generally applicable version of a Win-
dows™ operating system, a UNIX operating system, a
Linux operating system, an Android operating system, or a
RealTime OS operating system.

One or more processor cores 3051 of processing assembly
3035 may have the same or diflerent instruction sets. With an
instruction set, any processor core 3051 of processing
assembly 305 can contain any instruction in application
routine 3311 and operating system 340, which it can decode

US 12,147,588 B2

7

and execute. As shown 1n the diagram of FIG. 3, operating
system 340 may also include mode controller 3401. Mode
controller 3401 1s configured to make judgments on the
execution of the multiple processor cores. For example, 1n
some embodiments, mode controller 3401 may monitor the
level of demand for processing resources and may dynami-
cally set processor assembly 305 to one of multiple modes
based on the demand level. For example, when the demand
for processing resources drops to a level where they may be
provided solely by low-power cores, mode controller 3401
can set processor assembly 303 to a mode where nstructions
are executed by low-power cores, but not by high-power
cores. For example, when the demand for processing
resources rises close to the upper limit of what can be
provided by low-power cores, mode controller 3401 can set
processor assembly 305 to a mode where instructions are
executed collaboratively by a combination of low-power
cores and high-power cores.

The modules and sub-modules described above can be
implemented as soltware components executing on one or
more processors, as hardware such as programmable logic
devices, and/or as Application Specific Integrated Circuits
designed to elements can be embodied by a form of software
products which can be stored in a nonvolatile storage
medium (such as optical disk, flash storage device, mobile
hard disk, etc.), including a number of instructions for
making a computer device (such as personal computers,
servers, network equipment, etc.) implement the methods
described 1n the embodiments of the present invention. The
modules and sub-modules may be implemented on a single
device or distributed across multiple devices.

Processing subsystem 300 also includes JTAG module
304. JTAG (Jomt Test Action Group) 1s an international
standard test protocol (IEEE 1149.1 compatible), which 1s
mainly used for circuit testing within a chip. For descriptive
convenience, all the required hardware and software units
used for supporting JTAG testing that are included in
subsystem 300 will be collectively referred to as JTAG
module 304. Test signals can be sent to the JTAG module
304 to drive all the relevant internal circuits, and the test
results can be determined according to the output signals.

Storage device 330 and storage device 201 may be
realized on the basis of any of a wide range of many kinds
ol information storage technology. Each of storage devices
330 and 201 includes, but i1s not limited to read-only

memory (ROM), random access memory (RAM), dynamic
RAM (DRAM), double data rate DRAM (DDRAM), syn-

chronous DRAM (SDRAM), static RAM (SRAM), pro-
grammable ROM (PROM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), flash memory, polymer memory (e.g., ferroelectric
polymer memory), two-way memory, phase-change or fer-
roelectric memory, silicon-oxide-nitride-oxide-silicon
(SONOS) memory, magnetic or optical cards, one or more
single ferromagnetic magnetic disk drives, or multiple stor-
age devices organized into one or more arrays (€.g., orga-
nized into a redundant array of independent disks or multiple
ferromagnetic magnetic disk drives in a RAID array). Please
note that, although each of these storage devices 1s presented
as a single storage device, 1t may include multiple storage
components based on different storage technologies. For
example, storage device 330 may represent a combination of
an optical disk driver or flash card reader that can store and
output programs and/or data in a particular form of machine
readable medium, a ferromagnetic disk driver that locally
stores programs and/or data for a relatively long period of
time, and one or more volatile solid-state memory devices

10

15

20

25

30

35

40

45

50

55

60

65

8

(e.g., SRAM or DRAM) that permit relatively rapid access
to programs and/or data. Or each storage device of storage
devices 330 or 201 may be based on the same storage
technology, but be composed of multiple storage compo-
nents that have specialized uses and are individually main-
tamned (e.g., some DRAM devices that serve as a main
memory, and other DRAM devices that serve as unique
framebullers for graphics controllers).

A typical selection based on the positions and uses of
storage device 330 and storage device 201 i1s as follows:
storage device 330 makes use of volatile storage technology
that provides uninterrupted power. Storage device 330 may
need to provide even more power, but the relative speed will
be higher and the processing, faster. For example, storage

device 330 uses one or more of random-access memory
(RAM), dynamic RAM (DRAM), dual data rate DRAM

(DDRAM), synchronous DRAM (SDRAM), and static
RAM (SRAM), while the storage device 201 makes use of
non-volatile storage technology, such as flash memory.

To ensure data security 1n secure partition 1021, secure
partition 1021 may be set within an area 1n kernel space 332
of storage device 330 and storage device 330 1s required to
store secure partition 1021 1n a non-volatile memory to
ensure that the data 1n that area will not be lost following an
operating system power outage. For example, secure parti-
tion 1021 may be set up 1n an area of ROM. In such a
situation, data security in secure partition 1021 can be
increased because kernel space data 1s basically “invisible”
to a user program. In addition, 1t 1s also possible to set up
secure partition 1021 1n storage device 201, and, to prevent
the user program from reading data in the secure partition
1021, secure partition 1021 can be set up so that 1t can be
executed a processor 1n response to an mstruction only by a
highest privilege type of user. However, 1t 1s still possible in
such a situation for a normal privilege type of user to raise
his or her privilege through a system call security vulner-
ability 1n order to access the secure partition 1021 1n a kernel
space.

Therefore, 1n various embodiments, a processing appara-
tus also provides a security access management module (not
shown) to further strengthen access control over secure
partition 1021.

A security access management module, which may be
executed by operating system 340 in the kernel space of
storage device 330, sets the operating permission for secure
partition 1021 and strictly manages the execution stream
from the processor and access of the partition by peripheral
device direct memory access (DMA). In various embodi-
ments, the security access management module has logic
processing functions relating to three aspects: 1) for desig-
nating the position and size of secure partition 1021; 2)
setting the access permission for secure partition 1021 so
that only highest privilege users can directly read 1t while
other users (e.g., normal privilege users) do not have per-
mission to directly read from secure partition 1021; and 3)
providing an exception handling program, which 1s used to
extract protected data from secure partition 1021 when a
predetermined exception occurs and then to export the data
alter processing 1t. Example techniques for processing raw
data read from secure partition 1021 may include exporting
the data after encrypting 1t with a key, hiding critical
confliguration information 1n the device mnformation, remov-
ing or obfuscating sensitive content within the data before
exporting the data, and so on. Regardless of how the data
from secure partition 1021 1s processed, the result 1s that
processed data 1s not 1n need of further secrecy (e.g., because
it has either been encrypted for use by legitimate parties that

US 12,147,588 B2

9

know how to correctly decrypt the encrypted data and/or 1t
1s stripped of sensitive content) and the requesting user may
use 1t without concern.

In various embodiments, the operating permission that 1s
needed by a user to operate a user program in storage device
330 1s the permission associated with the group of normal
privilege users. Put another way, a user program can be
started 1n storage device 330 by users of the normal privilege

type. Generally, because the developers of user programs
(c.g., the developers that perform secondary development
alter products are delivered to customers) are restricted to
having only the normal privilege level and do not have the
highest privilege level, the user programs they develop are
by default executed by a processor in response to 1nstruc-
tions by normal privilege users. In some cases, 1t can be
mandatory to restrict user programs so that they can be
executed by a processor in response to instructions by
normal privilege users only.

The security access management module 1s configured to
set an operating permission for access to (e.g., the ability to
directly read from) secure partition 1021. Therefore, 1n
various embodiments, access to the security access manage-
ment module 1itself 1s limited to highest privilege users. In
addition, as an interface function provided to the user
program, the exception handling program generally 1s not
set to have an independent permission. While a user program
1s enabled to use the exception handling program only
during exception handling, in various embodiments, the
operating permission for the file containing the exception
handling program 1is restricted to execution by a processor in
response to istructions by highest privilege users only.

In addition, to prevent user program developers, which
are normal privilege users, from accessing secure partition
1021 through a system invocation using a system service
program, 1n various embodiments, most system service
programs may be set so that they can be used by highest
privilege users only. A system service program 1s a group of
sub-routines used to implement various system functions.
With regard to a general operating system, a system service
program may include, for example, but 1s not limited to:
device management, file management, process management,
and memory management. However, as will be described
below, 1n various embodiments, normal privilege users and
therefore, a user program that 1s executed by a processor in
response to an nstruction by a normal privilege user, 1s to be
granted permission to cause a processor to execute one or
more specific types ol system service programs that once
called by the user program, are to cause the user program to
generate a “predetermined exception,” which will be
described in further detail below.

With regard to the permissions mentioned above, the
permission-setting command (e.g., chmod 1n Linux or Unix)
provided by operating system 340 may be used to configure
the setting, or a relevant interface may be called in the
program to configure the setting. Example permissions as
described above with respect to each entity by different

groups/types/permission level of users are summarized 1n
Table 1, below.

TABLE 1

Category Normal privilege user Highest privilege user

User program
Secure
partition
Secure access

May execute

May not read, write,
Or access

May not execute

May not execute
May read, write,
and access

May execute

10

15

20

25

30

35

40

45

50

55

60

65

10
TABLE 1-continued

Category Normal privilege user Highest privilege user

management

module

Exception handling
program

(Most) System service
programs

May not execute May execute

May not execute May execute

In some embodiments, secure partition 1021 and the
security access management module are both located 1n
processing apparatus 102, while a user program may be
located 1n another processing apparatus (e.g., such as pro-
cessing apparatus 101 of FIG. 1) or the user program may be
copied to processing apparatus 102 and run there.

Based on the example permissions described above 1n
Table 1, the only access to a secure partition by any user
program 1s via controlled access, as will be described in
turther detail below. Specifically, how access to a secure
partition 1s controlled, in accordance with at least some
embodiments, 1s as described below:

First, a user program cannot directly access a secure
partition. Recall that a user program 1s restricted so that only
normal privilege users can start it. Therefore, when the user
program requests to directly read data 1n the secure partition
alter being started by a normal privilege user, the processor
generates an exception because the secure partition 1s
restricted so that only highest privilege users can read
directly from it. As a result, the user program will fail to
directly read data from the secure partition.

Second, a user program cannot obtain data from a secure
partition by raising the user program’s operating permission
with a system call. A system service program 1s set so that
only highest privilege users can execute 1t. So, only a user
program that 1s executed by a highest privilege user can
invoke a system service program. However, as mentioned
above, user programs are subject to the requirement that
only normal privilege users can execute it. Therefore, after
a normal privilege user starts the user program, the processor
will generate an exception when code for calling the system
service program to raise the user program’s operating per-
mission 15 executed.

Third, to enable a user program to access data 1n a secure
partition, 1n various embodiments, a “predetermined excep-
tion” 1s needed to be generated in the user program and then
a corresponding exception handling corresponding to the
predetermined exception 1s to be executed. In various
embodiments, the “predetermined exception™ refers to a
particular software exception that 1s predetermined as the
exception that 1s associated with a particular type of excep-
tion handling that results 1n reading, processing, and export-
ing data from the secure partition. The exception handling
program ol the security access management module 1s
configured to access data in the secure partition and send
back a processed version of the data that 1s read from the
secure partition. The exception handling can be executed
successiully because 1t 1s executed 1n the kernel space. With
this approach, the user program 1s only able to obtain data
alter the raw data read from the secure partition has been
processed. Thus, data security 1n the secure partition can be
guaranteed.

In some other embodiments, a special user may be estab-
lished 1n an operating system. Use by this special user 1s not
unrestricted. The permission for the secure partition 1s
designated so that only the special user can read and access

US 12,147,588 B2

11

it. Other permission settings remain unchanged. Thus, 1t 1s
still possible to obtain processed data based on the opera-
tions described above.

The example of an exception type supported by an ARM
system architecture processor 1s used below to provide a
detailed example explanation of a predetermined exception

that 1s generated by a user program in accordance with
various embodiments. Other system architectures, such as
X86, MIPS, and PowerPC, may differ slightly, but the basic
principles should be universal.

Table 2, below, 1s used to present at least part of the data
information of an exception/interrupt vector.

TABLE 2
Priority level

Exception/interrupt Exception/interrupt Vector (1 1s the
type mode address highest)
Reset Management mode 0x00000000 1
Undefined Undefined mode 0x00000004 6
instruction
Software interrupt Management mode 0x00000008 6
(SWI)
Prefetch abort Abort mode 0x0000000C 5
Data abort Abort mode 0x00000010 2
Retain 0x00000014 Retain
External interrupt IRQ mode 0x00000018 4
request (IRQ)
Fast interrupt FIQ mode 0x0000001C 3
request
(IRQ)

Generally, the operating system code contains an excep-
tion/interrupt vector, like the one shown above 1n Table 2.
Table 2 specifies the entry address (corresponding to the
“Vector address” column in Table 2) for the processing
program corresponding to each exception or interrupt type
(corresponding to the exception or interrupt type in Table 2).
The entry address 1s the base address of the exception/
interrupt vector with the oflset added. After a corresponding
exception or interrupt type occurs, the system goes to the
entry address that corresponds to the occurred exception/
interrupt type and executes the instructions stored at that
address. Moreover, the processor enters the corresponding
exception/interrupt mode (corresponding to the “Exception/
interrupt mode™ column 1n Table 2). Thus, 1t 1s necessary for
the corresponding exception handling program correspond-
ing to each exception/interrupt type to be copied 1n advance
or written as firmware at the corresponding entry address.

Although the user program theoretically can generate any
exception/interrupt type, 1n various embodiments, the user
program 1s configured to generate an exception/interrupt
type that 1s controllable and recoverable. “Controllable”™
means that the exception can be generated with the neces-
sary method, and “recoverable” means that the processing
context prior to the occurrence of the interrupt may be
recovered alter the exception/interrupt handling program
has been executed. In various embodiments, a (e.g., con-
trollable and recoverable) exception/interrupt type 1s prede-
termined as the “predetermined exception” that 1s to trigger
the exception handling program for reading, processing, and
exporting data from the secure partition. For example,
testing has shown that the exception/interrupt type of “data
abort” may be selected as the predetermined exception to be
generated by a user program to trigger the corresponding
exception program as described herein. A “data abort”
exception/interrupt type indicates that the address of the
instruction to be accessed by the processor does not exist or
that the address 1s mnaccessible by the current instruction.

10

15

20

25

30

35

40

45

50

55

60

65

12

It 1s possible 1n the user program to generate predeter-
mined exceptions by calling various system service pro-
grams that perform memory or file operations. For example,
a data abort exception 1s generated when a system service
program in memory 1s used to perform a write operation on
a read-only storage area. To give another example, if a
storage area (e.g., the secure partition) can be read by the
highest privilege user only, a data abort exception will be
generated when a normal privilege user attempts to read
from that storage area (e.g., the secure partition). However,
it should be noted that while normal privilege users typically
do not have permission to cause the execution ol most
system service programs, in various embodiments, normal
privilege users are to be given permission to cause the
execution of the particular system service program(s) that
will cause the user program to generate the exception that 1s
set as the predetermined exception. By allowing normal
privilege users to have permission to execute certain enu-
merated system service program(s), a user program that 1s
executed by a normal privilege user 1s able to generate a
predetermined exception during the execution of those sys-
tem service program(s). For example, if the “data abort™
exception/interrupt type has been set as the predetermined
exception, then normal privilege users are set to have
permission to call/execute a system service program in
memory that 1s configured to perform a write or read
operation. As such, when the user program, started by a
normal privilege user, calls the system service program in
memory that 1s configured to perform a write or read
operation to the secure partition, from which the normal
privilege user does not have permission to perform a write,
the user program 1s configured to generate the predetermined
“data abort” exception.

In various embodiments, the predetermined exception 1s
also associated with a corresponding exception handling
program that, when executed, 1s configured to read data from
the secure partition, process (e.g., encrypt, obfuscate, and/or
remove sensitive portions) the read raw data, and then export
the read data such that 1t can be accessible to the normal
privilege user that had requested the write or read operation
to the secure partition. That 1s, the predetermined exception
and the data and code associated with the corresponding
exception handling program are added in the exception
handling vector, and the exception handling program code 1s
copied to the vector address corresponding to the exception/
interrupt vector after the operating system starts. As for
embedded systems, the exception handling program code
can be written as firmware 1nto the processor ROM.

Through the operations described above, the correspond-
ing exception handling program can be triggered when the
predetermined exception occurs.

FIG. 3 1s a flow diagram showing an embodiment of a
process for performing a controlled access to a secure
partition. In some embodiments, process 350 1s implemented
by an operating system such as operating system 340 as part
of the example processing apparatus that 1s shown in FIG. 2.

At 352, a predetermined exception 1s associated with an
exception handling program i1n an operating system.

At 354, a user program 1s restricted to execution by a
normal privilege user.

At 356, a secure partition 1s designated and restricted to
be accessible by a highest privilege user 1s permitted to read
the secure partition, wherein, when executed in user space
corresponding to the normal privilege user, the user program
generates the predetermined exception, and wherein the
predetermined exception triggers execution of the exception
handling program in kernel space, and the exception han-

US 12,147,588 B2

13

dling program 1s configured to read data from the secure
partition and deliver the data after process to the user
program.

As mentioned above, the secure partition stored on the
processing apparatus may include sensitive, secret, or pro-
prictary information. As such, the secure partition 1s con-
figured so that 1t 1s readable, writeable, and accessible to
only users of a predetermined type. In some embodiments,
where there are at least two types of users, normal privilege
users and highest privilege users, only highest privilege
users can read from, write to, and access from the secure
partition while other types of users, including the normal
privilege users, cannot read from, write to, or access the
secure partition.

In various embodiments, a user program 1s executed 1n a
corresponding user space that also stores data and computer
code pertaining to one or more application routines.

In various embodiments, given that user programs are
configured such that only normal privilege users can instruct
a processor to execute them, any user program that is
executed 1s executed by a normal privilege user. Further-
more, the executed user program 1s also associated with the
normal privilege level of the normal privilege user that had
executed 1t. In various embodiments, because a normal
privilege user cannot directly access data stored in the secure
partition by using an executed user program to access the
secure partition, the normal privilege user can request the
executed user program to perform a particular operation that
will cause the user program to generate a predetermined
exception. As mentioned above, the predetermined excep-
tion 1s generated by the user program when the user program
calls a particular system service program, for which the
normal privilege user has been granted permission to call, to
perform a particular operation. In a specific example, 11 the
“data abort” exception/interrupt type has been preset as the
predetermined exception, then a user program invocation of
a system service program to perform a write or read opera-
tion to the secure partition will cause the user program to
generate the predetermined “data abort” exception, because
only highest privilege users can access the secure partition
and not a user program that has been executed by a normal
privilege user.

In various embodiments, the exception handling program
that corresponds to the predetermined exception, when
executed, 1s configured to provide the normal privilege user
that had executed the user program controlled access to the
secure partition. The computer code corresponding to the
exception handling program that corresponds to the prede-
termined exception 1s stored at the vector address corre-
sponding to the predetermined exception in the exception/
interrupt vector (e.g., an example of which 1s shown 1n Table
2, above). As such, once the predetermined exception that 1s
generated by the user program 1s received by the operating
system, the operating system 1s configured to access the
exception/interrupt vector and determine the vector address
at which the computer code for the exception handling
program corresponding to the predetermined exception 1s
stored. The computer code for the exception handling pro-
gram corresponding to the predetermined exception 1s then
read from the storage medium and executed. The executed
computer code for the exception handling program corre-
sponding to the predetermined exception 1s configured to
read raw data from the secure partition and then process the
raw data 1n accordance with one or more configured tech-
niques. For example, because the raw data from the secure
partition 1s presumed to include sensitive, secretive, and/or
protective mnformation, the exception handling program cor-

10

15

20

25

30

35

40

45

50

55

60

65

14

responding to the predetermined exception 1s configured to
process the raw data by encrypting 1t 1n a manner that
authorized users (e.g., with the appropriate decryption key)
can decrypt the encrypted data, obfuscate the sensitive
portions of the raw data, remove the sensitive portions of the
raw data, or otherwise process the raw data to make at least
the sensitive portions of the raw data not readably readable
to a normal privilege user. After processing the raw data read
from the secure partition, the exception handling program
corresponding to the predetermined exception 1s also con-
figured to export the processed data. In some embodiments,
the exception handling program corresponding to the pre-
determined exception exports the processed data by includ-
ing 1t 1n a data file that 1s granted access to the normal
privilege user that had executed the user program that had
generated the predetermined exception. In some embodi-
ments, the exception handling program corresponding to the
predetermined exception exports the processed data by
sending 1t back to the operating system, which in turn sends
it back to the user program. The user program can then
output the processed data from the secure partition to the
normal privilege user. However the normal privilege user
receives the exported processed data that was read from the
secure partition by the exception handling program corre-
sponding to the predetermined exception, and various
embodiments described herein enable a normal privilege
user that does not have direct access to the secure partition
to be able to access a protected version of data read from the
secure partition. Therefore, the access to the raw data from
the secure partition can be controlled 1n a manner that
ensures the security of such data.

FIG. 4 1s a sequence diagram that shows an example
process 1n which a user program can perform a controlled
access to data stored at a secure partition.

In FIG. 4, secure user program 420 refers to the user
program that generates the predetermined exception and
thereby triggers the exception handling program that corre-
sponds to the predetermined exception in the security man-
agement access module as described above. Most of the
control process for the exception or interrupt has already
been implemented in the operating system. Therefore, the
operating system 1s presented as an independent entity in the
diagram of FIG. 4.

At 402, secure user program 420 1s started by normal
privilege user A 1n a corresponding user space. As mentioned
above, secure user program 420 is restricted by the secure
access management module so that 1t can be executed only
by a normal privilege user (and not by another type of user,
such as a highest privilege user).

At 404, a predetermined exception 1s generated by secure
user program 420. As mentioned above, secure user program
420 can generate a predetermined exception 1n response to
calling a system service program, for which secure user
program 420/normal privilege user has permission to
invoke, to perform a certain operation. For example, the
system service program 1s imnvoked by the user program to
perform a write or read operation to the secure partition,
which will cause the user program to generate the predeter-
mined (e.g., “data abort”) exception, because only highest
privilege users can access the secure partition and not a user
program that has been executed by a normal privilege user.

At 406, the predetermined exception is received by oper-
ating system 422.

At 408, an exception/interrupt vector 1s accessed by
operating system 422 to conduct on-site save operations. For
example, conducting on-site save operations includes cal-
culating the post-exception-handling return address and sav-

US 12,147,588 B2

15

ing status information (e.g., corresponding to user program
420). Subsequent recovery 1s needed to continue execution
at the 1nstruction following the instruction where the excep-
tion occurred. Therefore, it 1s necessary to save status
information when the exception occurs and the return
address for after exception handling 1s completed.

At 410, exception handling program 424 corresponding to
the predetermined exception 1s called by operating system
422 1n a kernel space.

At 412, data from a secure partition 1s read and processed
by exception handling program 424. Because exception
handling program 424 1s run in the kernel space, 1t 1s
possible to successtully read data from the secure partition
(which 1n some embodiments, 1s stored in the kernel space)
and to return 1t after processing.

At 414, the processed data 1s returned to operating system
422 from exception handling program 424.

At 416, the processed data 1s returned to secure user
program 420 from operating system 422. Because operating,
system 422 saves the user program status information and
the post-exception-handling return address before carrying
out exception handling, 1t still can result 1mn recovery in
secure user program 420 after exception handling 1s com-
pleted.

In some embodiments, step 416 1s optionally performed.
That 1s, 1t 1s not necessary to return the processed data to
secure user program 420 and continue execution. The objec-
tive 1n returning to secure user program 420 1s to transter the
processed data to secure user program 420. Alternative to
sending the processed data back to secure user program 420,
exception handling program 424 can store the processed
data 1n a data file and grant reading permission to the normal
privilege user. In this way, it 1s not necessary to transier
processed data via parameters.

As shown through the steps described above for the
example of FIG. 4, all the data obtained by secure user
program 420 from the secure partition 1s processed data.
Data security 1n the secure partition 1s thus ensured.

As described above, various embodiments use an operat-
ing system permission setting to restrict normal privilege
users so that they cannot directly read data stored in the
secure partition. This 1n turn also renders user programs that
are permitted to be stored by a processor in response to
instructions (e.g., exclusively) by normal privilege users
unable to directly read data in the secure partition. A
particular exception handling program of the operating
system 1s then associated with a predetermined exception.
When the user program generates the predetermined excep-
tion, the exception handling program corresponding to the
predetermined exception 1s triggered for execution in the
kernel space so as to read data in the secure partition and
output processed data to the normal privilege user, thereby
ensuring the data security of the secure partition. Various
embodiments described herein may be implemented using
software. Therefore, various embodiments described herein
cause almost no increase to product manufacturing cost. It 1s
particularly suitable for low-cost, low-power IoT devices
that have few resources.

Furthermore, 1n some embodiments, access control
involving more levels may be established for the secure
partition. For example, a three-level access control may be
established. The adoption of the above technical scheme
means that, 1n the case of a third-level user, the user can only
use a user program to obtain processed data from the secure
partition. As for a second-level or first-level user, the oper-
ating system permission setting 1s used so that the second-
level user has read permission for only a portion of the data

10

15

20

25

30

35

40

45

50

55

60

65

16

in the secure partition, while the first-level user may read
and revise any data in the secure partition. It 1s thereby
possible to meet the security requirements of processing
apparatuses 1n different contexts.

As mentioned above, the secure partition can be desig-
nated so that only the highest privilege user can perform
write or read operations to the secure partition. When a user
program 1s executed 1n a corresponding user space, a pre-
determined exception may be generated that triggers the
execution of a corresponding exception handling program 1n
the kernel space. The exception handling program can revise
some of the data in the secure partition. (The secure partition
can be preset so that a portion of the data 1s read-only and
a portion of the data 1s readable and writable.) As a result,
a highest privilege user can modily data in the secure
partition while still being subject to restrictions. This serves
to ensure the write security of the secure partition.

To strengthen security management, 1 some embodi-
ments, a processing apparatus further provides, in addition
to the security access control module described above, a
debug control management module for analyzing debug
commands from a higher-level computer. In various
embodiments, debug addresses that are designated accord-
ing to the debug commands are compared to secure partition
addresses, and those commands to debug the secure partition
are filtered (e.g., 1gnored, not performed).

FIG. 5 1s a diagram of an example debugging control and
management module, a higher-level computer, and a pro-
cessing apparatus. Higher-level computer 501 1ssues a
debug command to TAP controller 502 of processing appa-
ratus 500. TAP controller 502 1s responsible for organmizing
debug commands mto JTAG signals and applying them to
the corresponding port of interface circuit 503. JTAG signals
include TDI, TMI, TDO, and TCK signals. The input ports
through which they pass are, correspondingly, TDI, TMI,
TDO, and TCK ports. The output port through which they
pass 1s the TDO port. The TDI port 1s configured to receive
input debug commands. The TCK port 1s configured to
receive mput test clock signals. The TMS port 1s configured
to recerve test method selection signal iputs, and the TDO
port 1s configured to output test result data. Multiple bound-
ary scan components 5031a-d are serially interconnected.
After receiving a debug command sent from the TDI port,
boundary scan components 5031a-d start to execute, and
result data 1s output from the output interface TDO. TAP
controller 502 1s responsible for sending output result data
back to higher-level computer 501.

In this example, TAP controller 502 also includes debug
control and management module 5021, which 1s configured
to monitor and filter debug commands. When a debug
command 1s received from higher-level computer 501,
debug control and management module 5021 1s configured
to check whether the command 1s a debug command for the
secure partition stored on processing apparatus 500. If the
command 1s a debug command for the secure partition, then
the debug command 1s filtered out (e.g., 1gnored and not
performed). If the command 1s not a debug command for the
secure partition, then the debug command undergoes sub-
sequent processing by TAP controller 502. For example, 11
the debug (e.g., GDB) command 1s x/32xw 0x40000000,
1.€., the command to debug the 0x40000000 debug address,
and the security partition 1s also located at 0Ox40000000,
debug control and management module 5021 waill filter out
all debug commands for this address. The debug address
designated by the debug command may be a virtual address
in memory (associated with a physical address by a memory
management unit). The debug address designated by the

US 12,147,588 B2

17

debug command can also be a physical address in memory.
If it 1s known that the parameter transmitted by debug
control and management module 5021 1s a virtual address,
but that the secure partition uses a physical address to
designate the access address, the virtual address can be
translated into a physical address based on the translation
table, or the access address can be translated into a virtual
address.

Please note that TAP controller 502, like interface circuit
503, 1s located on processing apparatus 500. For example,
both TAP controller 502 and interface circuit 303 are located
on a printed circuit (1f there 1s one). Or they may be located
outside of processing apparatus 400 on, for example, an
external test device. TAP controller 502 1s essentially set up
in order to conduct circuit testing. Therefore, 1t might or
might not be removed from the device after the product 1s
shipped from the factory.

In some embodiments, the control program of debug
control and management module 5021 may be burned into
the ROM. This control program can read a one-1dentifier bit
in the secure partition of the processing apparatus and, on
the basis of the identifier bit, decide whether to perform
debug control (e.g., the controlling of filtering out debug
commands targeting the secure partition). Specifically, if no
identifier bit has been set, the control function of debug
control and management module 5021 will not start. The
control function of debug control and management module
5021 starts only when the 1dentifier bit 1s set. The setting of
the identifier bit can be executed by debug control and
management module 5021 or by the security access man-
agement module.

By combining the use of the security access management
module and the debug control module as described herein,
in most situations, the data security of data stored in the
secure partition can be ensured.

The methods described above can be applied to any
processor architecture and applied to flash chips, processors
(CPUs), digital processors (DSPs), systems on a chip, pro-
cessing units manufactured for various specialized objec-
tives, and various electronic formed on the basis of the
above, e.g., smart phones, smart speakers, television sets,
set-top boxes, players, firewalls, routers, notebook comput-
ers, tablet computers, PDAs, IoT (Internet of Things) prod-
ucts, and other terminals that merge combinations of these
functions.

The aforementioned processing units, processing systems,
or electronic devices can be implemented with hardware,
special-purpose electronic circuits, software, logic, or any
combination thereof. To give an example, some aspects may
be realized 1n hardware, while other aspects are realized in
firmware or soitware executable by a controller, micropro-
cessor, or other computing device, although the present
invention 1s not limited to these. Although each aspect of the
present mvention may be explained and described i the
form of block charts or tlowcharts or by other graphic
representations, i1t 1s clear that these blocks, apparatuses,
systems, techniques, or methods described 1n the text can be
realized through the following non-restrictive examples:
hardware, software, firmware, special-purpose circuits or
logic, general-purpose hardware or controllers, other com-
puting devices, or combinations thereof. One may 1mple-
ment circuit designs of the present invention in each com-
ponent, such as an integrated circuit module, if 1t 1s relevant.

The above are merely preferred embodiments of the
present invention and are not for the purpose of restricting,
the present invention. For a person skilled in the art, there
may be various modifications and variations of the present

10

15

20

25

30

35

40

45

50

55

60

65

18

invention. Any modification, equivalent substitution, or
improvement made in the spirit and principles of the present
invention shall be included within the protective scope of the
present 1vention.
Although the {foregoing embodiments have been
described 1n some detail for purposes of clarity of under-
standing, the mvention 1s not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.
What 1s claimed 1s:
1. A method, comprising:
associating a predetermined exception with an exception
handling program in an operating system having at
least two types of users, wherein the at least two types
of users comprising the normal privilege user and the
highest privilege user;
restricting a user program to execution by the normal
privilege user, wherein a highest privilege user i1s not
permitted to execute the user program; and

designating a secure partition of an address space of
memory and restricting the secure partition to be acces-
sible by a highest privilege user;

wherein:

in response to the user program causing a type of excep-

tion handling to be executed for which a result 1s a
reading, processing, or exporting data stored in the
secure partition when the user program 1s executed in
a user space corresponding to the normal privilege user,
the user program generates the predetermined excep-
tion, wherein the exception handling program pro-
cesses the data read from the secure partition before
returning data from the secure partition to the normal
privilege user;

the predetermined exception triggers execution of the

exception handling program 1n a kernel space;

the exception handling program executing in the kernel

space 1s configured to read data from the secure parti-
tion, obtain post-processed data by processing the data
read from the secure partition to cause the user program
to be unable to read or access portions of the data for
which the user program does not have requisite per-
missions, and deliver the post-processed data to the
user program;

the user program 1s stored in a user space of the address

space; and

a normal privilege user permission set 1s more restrictive

with respect to the secure partition than a highest
privilege user permission set.

2. The method of claim 1, wherein the user program 1s
configured to generate the predetermined exception by
invoking a system service program.

3. The method of claim 2, wherein the system service
program 1s configured to generate the predetermined excep-
tion 1n response to performing a write operation on a
read-only storage area.

4. The method of claim 3, wherein the system service
program 1s configured to generate the predetermined excep-
tion 1n response to an access to a read-only storage area that
1s restricted to be accessible by the highest privilege user.

5. The method of claim 3, wherein the read-only storage
area 1s the secure partition.

6. The method of claim 4, wherein the read-only storage
area 1s the secure partition.

7. The method of claim 1, wherein the associating the
predetermined exception with the exception handling pro-
gram 1n the operating system comprises:

US 12,147,588 B2

19

copying the exception handling program into an excep-
tion/interrupt vector of the operating system during the
boot-up of the operating system.

8. The method of claim 7, wherein the predetermined
exception triggers execution of the exception handling pro-
gram 1n the kernel space comprises:

in the kernel space, the operating system being configured
to respond to the predetermined exception, obtain
return address after processing the predetermined
exception, save status information, and execute the
exception handling program based on the predeter-
mined exception.

9. The method of claim 8, further comprising:

returning to the user program according to the return
address.

10. The method of claim 1, wherein the exception han-
dling program 1s configured to write the data after process-
ing the data into a data file and grant the normal privilege
user read permission to the data file.

11. The method of claim 1, further comprising:

receiving a debug command;

comparing a debug address designated by the debug
command and an access address associated with the
secure partition; and

filtering out the debug command 1f the debug address
matches the access address.

12. The method of claim 11, further comprising: if either
the debug address or the access address 1s a virtual address
and the other 1s a physical address, converting both to either
virtual addresses or physical addresses based on a translation
table.

13. The method of claim 10, further comprising: config-
uring an identifier bit, wherein the identifier bit represents
whether to perform debugging control.

14. The method of claim 13, wherein the 1dentifier bit 1s
stored 1n the secure partition.

15. A system, comprising:

a processor for executing instructions, the instructions
coming from an operating system, a secure access
management module, an exception handling program,
and a user program;

a storage device linked to the processor;

wherein:

at least a portion of storage space of the storage device 1s
partitioned into kernel space and user space;

multiple instructions of the operating system and the
secure access management module are executed by the
processor 1 kernel space;

multiple instructions of the user program are executed by

the processor 1n the user space;

the user program 1s stored in the user space;

the operating system 1s configured to associate a prede-
termined exception with the exception handling pro-
gram;

the security access management module 1s configured to
designate a secure partition comprised in the kernel
space, and restrict the secure partition to be accessible
by a highest privilege user and restrict the user program
to be executable by a normal privilege user, wherein the
highest privilege user 1s not permitted to execute the
user program;

a normal privilege user permission set 1s more restrictive
with respect to the secure partition than a highest
privilege user permission set;

in response to the user program causing a type ol excep-
tion handling to be executed for which a result 1s a
reading, processing, or exporting data stored in the

10

15

20

25

30

35

40

45

50

55

60

65

20

secure partition when the user program executed 1n a
user space corresponding to the normal privilege user,
the user program 1s configured to generate the prede-
termined exception, wherein the exception handling
program processes the data read from the secure par-
tition before returning data from the secure partition to
the normal privilege user;

the predetermined exception 1s configured to trigger

execution of the exception handling program 1in the
kernel space; and
the exception handling program executing in the kernel
space 1s configured to read data from the secure parti-
tion, obtain post-processed data by processing the data
read from the secure partition to cause the user program
to be unable to read or access portions of the data for
which the user program does not have requisite per-
missions, and deliver the post-processed data to the
user program.
16. The system of claim 15, wherein the user program 1s
configured to generate the predetermined exception by
invoking a system service program.
17. The system of claim 16, wherein the system service
program 1s configured to generate the predetermined excep-
tion when performing a write operation on a read-only
storage area.
18. The system of claim 16, wherein the system service
program 1s configured to generate the predetermined excep-
tion 1n response to an access to a read-only storage area that
1s restricted to be accessible by the highest privilege user.
19. The system of claim 17, wherein the read-only storage
area 1s the secure partition.
20. The system of claim 18, wherein the read-only storage
area 1s the secure partition.
21. The system of claim 15, wherein 1t further comprises:
a debug control and management module that 1s configured
to compare a debug address designated by a received debug
command to an access address associated with the secure
partition and filter out the received debug command 1f the
debug address matches the access address.
22. The system of claim 21, further comprising: a iden-
tifier bit setting unit configured to configure a identifier bit,
wherein the identifier bit represents whether to perform
debugging control.
23. The system of claim 22, wherein the i1dentifier bit 1s
stored 1n the secure partition.
24. A non-transitory computer-readable medium, com-
prising multiple instructions, the multiple instructions form-
Ing an operating system, a user program, and an exception
handling program;
the instructions of the operating system, user program,
and exception handling program implement the follow-
ing operations when executed by a processor:

associating a predetermined exception with the exception
handling program in the operating system having at
least two types of users, wherein the at least two types
of users comprising the normal privilege user and the
highest privilege user;
restricting a user program to execution by the normal
privilege user, wherein a highest privilege user i1s not
permitted to execute the user program; and

designating a secure partition of an address space of
memory and restricting the secure partition to be acces-
sible by a highest privilege user;

wherein:

in response to the user program causing a type of excep-

tion handling to be executed for which a result 1s a
reading, processing, or exporting data stored in the

US 12,147,588 B2

21 22
secure partition when the user program 1s executed in partition to cause the user program to be unable to read or
a user space corresponding to the normal privilege user, access portions of the data for which the user program does
the user program generates the predetermined excep- not have requisite permissions comprises:
tion, wherein the exception handling program pro- determining a portion of the data read from the secure

cesses the data read from the secure partition before s
returning data from the secure partition to the normal
privilege user;

the predetermined exception triggers execution of the
exception handling program in a kernel space; the
exception handling program executing in the kernel 1g
space 1s configured to read data from the secure parti-
tion, obtain post-processed data by processing the data
read from the secure partition to cause the user program
to be unable to read or access portions of the data for
which the user program does not have requisite per- 15
missions, and deliver the post-processed data to the
user program;

the user program 1s stored 1n a user space of the address
space; and

a normal privilege user permission set 1s more restrictive ¢
with respect to the secure partition than a highest
privilege user permission set.

25. The system of claim 1, wherein obtaining post-

processed data by processing the data read from the secure I I

partition for which the user program does not have
requisite permissions; and

using a process running in the kernel space to remove the

portion of data read from the secure partition before
providing the data read from the secure partition to a
process outside the kernel space.

26. The system of claim 1, wherein obtaining post-
processed data by processing the data read from the secure
partition to cause the user program to be unable to read or
access portions of the data for which the user program does
not have requisite permissions cComprises:

determining a portion of the data read from the secure

partition for which the user program does not have
requisite permissions; and

using a process running in the kernel space to encrypt the

portion of data read from the secure partition before
providing the data read from the secure partition to a
process outside the kernel space.

	Front Page
	Drawings
	Specification
	Claims

