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CRYPTOGRAPHIC COMPUTER MACHINES
WITH NOVEL SWITCHING DEVICES

COPYRIGHT NOTICE

A portion of the mstant disclosure contains material which
1s subject to copyright protection. The copyright owner has
no objection to the facsimile reproduction by anyone of the

patent document or the patent disclosure, as it appears in the
Patent and Trademark Oflice patent file or records, but
otherwise reserves all copyright rights whatsoever.
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This application claims the benefit and 1s a continuation-
in-part of U.S. patent application Ser. No. 16/172,584 filed
on Oct. 26, 2018. This application claims the benefit and 1s
a continuation-in-part of U.S. patent application Ser. No.
16/717,691 filed on Dec. 17, 2019. This application claims
the benefit and 1s a confinuation-in-part of U.S. patent
application Ser. No. 17/240,635 filed on Apr. 26, 2021.
Application Ser. No. 17/240,635 claims the benefit and 15 a
continuation-in-part of U.S. patent application Ser. No.
16/532,489 filed on Aug. 6, 2019 now abandoned. U.S.
patent application Ser. No. 16/532,489 claims the benefit
and 1s a continuation-in-part of U.S. patent application Ser.
No. 15/499,849 filed on Apr. 27, 2017 now U.S. Pat. No.
10,375,252, Application Ser. No. 16/172,584 claims the
benefit and 1s a continuation-in-part of U.S. patent applica-
tion Ser. No. 14/975,841 filed on Dec. 20, 2015, now
abandoned. U.S. patent application Ser. No. 16/172,584
claims the benefit of and 1s a continuation-in-part of patent
application Ser. No. 15/442,556 filed on Feb. 24, 2017, U.S.
patent application Ser. No. 16/172,584 claims the benefit of
U.S. Provisional Patent Application No. 62/610,921 filed on
Dec. 27, 2017, which 1s incorporated herein by reference.
U.S. patent application Ser. No. 15/442,556 claims the
benefit of U.S. Provisional Patent Application No. 62/299,
935 filed on Feb. 25, 2016, and of U.S. Provisional Patent
Application No. 62/435,814 filed on Dec. 18, 2016, and of
U.S. Provisional Patent Application No. 62/455,555 filed on
Feb. 6, 2017. This application claims the benefit of U.S.
Provisional Patent Application No. 63/067,281 filed on Aug.
18, 2020 and of U.S. Provisional Patent Application No. 4>
63/118.374 filed on Nov. 25, 2020 and of U.S. Provisional
Patent Application No. 63/162,995 filed on Mar. 18, 2021.
U.S. patent application Ser. No. 16/717,691 claims the
benefit of U.S. Provisional Patent Application No. 62/902,
350 filed on Sep. 18, 2019. All the above Provisional and >
Non-provisional U.S. Patent Applications and Patents are
incorporated herein by reference 1n their entirety.
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BACKGROUND OF THE INVENTION

55

The present invention relates to apparatus and methods
for computer cryptography that provide increased security of
data exchange by modifying aspects of proven cryptography
methods. The looming appearance of Quantum Computers
require better resistance ol computer data exchange against
cryptanalysis and other attacks. Novel and improved cryp-
tographic computers and methods are required.

60

SUMMARY OF THE INVENTION

63
In accordance with an aspect of the present mnvention,
cryptographic apparatus and methods are provided that

2

perform modified known cryptographic methods, including
encryption/decryption, public-key cryptography, message
digest cryptography and elliptic curve cryptography,
wherein at least one known n-state switching operation 1s
replaced by a modified n-state switching operation, wherein
a modification 1s achieved by modifying the n-state opera-
tion 1n accordance with a Finite Lab-Transform (FL'T). The
FLT includes transforming input n-state data which repre-
sent 1nput signals with a first n-state reversible inverter and
transforming data outputted by the n-state switching opera-
tion by a second n-state reversible mverter. In one embodi-
ment a combination of the first and second n-state inverter
establish an n-state identity inverter. Herein n 1s a positive
integer with n>2 or n>5 or n>>64 or n>2356 or n 1s very large
with n being a positive integer having more than 50 digits.

The n-state switching operation 1s one of several n-state
switching operations 1 a computer device as commonly
used 1n cryptography and are usually characterized by one of
the following operations: a modulo-n addition, a known
addition over a finite field GF(n), a modulo-n multiplication
and a known multiplication over a finite field GF@n). A
known operation over a finite field GF(n) 1s either a
modulo-n addition or modulo-n multiplication when n 1s a
prime number, or it 1s defined by a primitive polynomial
when n=g” with q being prime >1 and p 1s 2 or greater. In
accordance with an aspect of the present invention, appli-
cation of the FLT creates a modified n-state switching
operation that 1s no longer known as defined above. Certain
FLTs do create known additions and/or multiplications over
GF(n=q”). In accordance with an aspect of the present
invention such FLTs are discarded and are not applied. That
1s: 1if an FLT of an n-state operation creates a modified
n-state switching operation that 1s a known n-state switching
operation then that modified n-state operation 1s not applied
as a replacement 1n a cryptographic operation.

In accordance with an aspect of the present invention an
FL'T based modification 1s applied to public data in data
exchange between computing machines. The modification
may be generating an FLLTed multiplicative inverse.

DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates 1in diagram a device that performs in
accordance with a Finite LLab Transform:;:

FIGS. 2 and 3 are screenshots of computer programs that
execute mstructions 1n accordance with aspects of the pres-
ent 1nvention;

FIG. 4 1llustrates a cryptographic device in accordance
with an aspect of the present imvention;

FIG. 5 1s a screenshot of an output generated by a
cryptographic device performing an 1sogeny based operation
in accordance with an aspect of the present invention;

FIG. 6 illustrates a sequence generator 1n accordance with
an aspect of the present mnvention;

FIGS. 7 1s a screenshot of a correlation graph generated
from a maximum length signal sequence generated by a
sequence generator in accordance with an aspect of the
present 1nvention;

FIG. 8 1s a screenshot of a computer stored program that
computes an FLT modified mverse matrix in accordance
with an aspect of the present invention;

FIG. 9 1s a screenshot of a computer stored program that
computes an FL'T modified determinant of a matrix 1in
accordance with an aspect of the present invention;
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FIG. 10 illustrates a processor based computer system;
and

FIG. 11 illustrates a network of computer devices.

DESCRIPTION OF A PREFERRED
EMBODIMENT

An n-state 1nverter 15 a machine circuit or a machine
operation based on physical instructions wherein an 1put
signal having one of n states with n an integer greater than
2 generates an output signal having one of n states. A
reversible n-state inverter uniquely modifies each of n states
into one of n states. Identity 1s a reversible n-state imnverter.
A reversing n-state mverter of a reversible n-state inverter
reverses the modification of the n-state reversible inverter.
The combination of n-state reversible inverter with corre-
sponding reversing inverter 1s the identity. An n-state
iverter may be a combinational circuit, an addressable
memory or a set of machine instructions. An example of a
rule based reversible n-state inverter, for mstance for mput
signals that have 100 or more bits, may be represented as an
arithmetical operation: mmv(1)=a*1+b mod-n with n being
prime or 1 being relative prime to n or the * and +operation
being defined over GF(n). Inverter rules may include revers-
ible permutations, shuflles or interleaves.

The Finite Lab Transform machine operation 1s 1llustrated
in FIG. 1. A computer device 100, which may be a pro-
grammable processor, an addressable memory or a custom
switching device has mputs 108 and 109 and output 110 and
1s configured to execute an n-state operation, such as an
operation represented as an addition or a multiplication over
GF(n) or any other 2-input n-state operation. Both inputs are
provided with 1dentical n-state reversible inverters 101 and
102 with respective mputs 105 and 106. The output 110 1s
provided with n-state reversing inverter 103 with output 103
which reverses 101 to identity. FIG. 2 1s a screenshot of a
Matlab program that generates a reversing n-state mmverter
and FIG. 3 1s a screenshot of a Matlab program that performs
an Finite Lab Transform (FLT).

Several cryptographic operations are recognized. 1)
reversible encryption usually coupled with decryption; 2)
one way encryption; 3) hashing; 4) authentication; 5) digital
signature generation and verification. All these operations
(also sometimes known as primitives) generally include
exchange of information between two machines or part of
machines, such as processor and storage medium.

Aspects of the present disclosure relate to “public key
generation.” The “public” 1n “public key generation™ herein
means that data related to a key, which 1s secret, takes place
over a public channel that can be accessed, surreptitiously or
not, by an attacker. It 1s recognized that there are diflerent
methods to establish a common key. In a Dithe Hellman
(DH) process two machines exchange different data that
allows both machines to create a common keyword. Another
way 1s that one machine creates a keyword that 1s encrypted
and transmitted to a second machine using for instance a
public key from the second machine, such as in RSA. In Post
Quantum cryptography key encryption and/or DH exchange
may 1nclude a Key Encapsulating Mechanism (KEM). The
term “public key generation” and related terms are used to
mean all cryptographic processes that intend to create a
secret key that 1s established between two machines and then
used to further encrypt a message that 1s exchanged. The
term “public key generation” thus covers for instance DH,
RS A, ElGamal, Isogeny based DH, SIKE, Classic McEliece,

NTRU, lattice based encryption, GGH encryption.
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Digital signatures operations also include exchange of
publicly transmitted data. It usually mvolves a public key
and a signature ol a document transmitted from a first to a
second device. The second device may verily the signature
by applying the public key to the signature to find a verified
authentication such as a hash of the document. In a vanant
there are zero-knowledge schemes that are based on certain
challenges. The term “digital signatures” herein 1s fully
intended to cover all possible signature and 1dentification
machine operations.

Basic cryptographic operations are often considered as
primitives and are designated by a name of their
developer(s) or abbreviation and/or may be considered to be
exemplary representations of an approach. Examples are
Dithe-Hellman, ElGamal, RSA, McEliece, Schnorr, NTRU,
LWE, Fiat-Shamir and Feige-Fiat-Shamir, and so on, which
may all be modified in accordance with one or more aspects
of the present invention as disclosed herein. For instance
1sogeny based public key exchange has SIDH/SIKE but also
variant CSIDH. NTRU comes 1n different flavors and so
does McEliece. Referral to such a name herein refers to a
basic and identifiable operation or sets of operations that 1s
part of a cryptographic operation. For istance DH, ECDH
and SIDH all use at least the exchange of partial components
between machines that in combination generate i1dentical
secret keywords. DH 1s distinctly different ifrom RSA.
McEhece 1s distinct from NTRU. One of ordinary skill
knows what these distinctions are. If confusion exists then a
name refers to 1n order: 1) a most recent specification in the
NIST PQ program; or if the name does not exist in that
program then it refers 2) to a cryptographic method and/or
circuit described 1n a publication that admuits it 1s related to,
similar to or derived from a published original disclosure
with such a name or designation.

One approach 1n creating a common and secret keyword
1s to find some intractable processing problem that 1s very
hard to attack without access to some private keys. In
accordance with an aspect of the present invention, each
machine has one or more common n-state nverters or
n-state inverter rules that are synchronized in use so two
machines use the same inverter or inverter rule 1n a message
exchange. Synchronization may be organized by a third
machine, or by one of the two machines, or may be rules by
a common rule for the two machines. A simple toy example.
Each machine has 100 or 1000 or any other useful amount
ol different n-state 1nverter rules or n-state inverters stored
in memory in a same order. Each stored imnverter may have
a umque, but to the outside world, meaningless, 1D code.
Meaningless means that no order of a code can be derived
from the code.

When a data exchange 1s started, one of the machines
selects a code from the series of codes and sends 1t to the
other machine. Now both machines know which inverter or
inverter rule to use. Preferably, a code and thus the corre-
sponding 1mverter or inverter rule 1s used a limited number
of times, after which a machine activates a new code and
thus a new inverter or mverter rule. An inverter or inverter
rule may be used only once and then be changed or k pre-set
times and then modified or changed every hour, day, week
Or every pre-set time.

The machines have a common proof-of-work rule that
both have to execute to arrive at a common keyword. This
may be called a common expression rule. The common
expression rule may be represented by a polynomial expres-
sion like a0+al*x+a2*x>+ . . . ak*x". Preferably, the expres-
sion includes at least one multiplicative inverse term like
ap™x¥. In one embodiment of the present mvention a
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rational function of the form (a0+al *x+a2*x*+ . . . ak*x")/
(bO+b1*x+b2%*x°+ . . . bp*x?) with preferably irreducible
polynomuials 1s provided. In one embodiment of the present
invention one may use (a0+al*x+a2*x+ . . . ak*x")/(b0+
bl1*y+b2*y*+ . . . bp*y?) wherein two variable are applied.
In one embodiment one may apply an expression with
multivariate components such as ¢, *x?*y* or c e *yk or
¢ *xP*y*  or any arithmetical modification, including
square roots, or other roots, inverses or powers of constants
and the like. Expressions may be stored as secret expressions
in a way similar to inverters or inverter rules.

In according with an aspect of the present invention,
expressions may be published as public keys. One condition
may be that a certain amount of work 1s needed to generate
an outcome of an expression in unmodified operations over
modulo-n or GF(n). This has as a consequence that brute
force attacks, wherein an execution of an expression requires
C1 processor cycles an attacker would need to spend 1n the
order of Ninv*Ci1 cycles to break the common keyword,
wherein Ninv 1s roughly the number of possible n-state
inverters or inverter rules. Thus the public key may contain
the expression, including all coetlicients, and the required
unknowns and may include the code for an inverter or
inverter rule, if needed for synchronization. The execution
of the expression may take place by FLTed operations by
both machines. The factor n as 1n modulo-n or GF(n) or
GF(n=p?) may be published, but may also be kept secret as
part of the n-state inverter or inverter rule.

In accordance with an aspect of the present invention the
FLTed square root of a modulo-n number i1s applied to
generate a cryptographic message, or a common keyword
that 1s part of or processed 1n a cryptographic message. One
may, 1I so desired even form a common keyword from the
square root. There are several methods to develop a square
root over GF(n) or 1n a composite modulo-n. These methods
are documented 1n the known literature. For relatively small
values of n, such as n<10,000 or n<10'*+1 or n<10*°+1 or
any n that 1s considered relatively small compared to a
machine on which a square root over GF(n) or modulo-n 1s
determined. For instance 30 minutes processor time for
computing a square root may not be desirable when the
processor 1s needed for other tasks.

A naive way for determining a square root 1s to find an x
for which x> mod-n or over GF(n) exists. One can make the
decision to only use the positive roots. There 1s a well known
square root program for n=3 mod-4 and a slower program
when n=1 mod-4. One first checks 1f the Legendre Symbol
(x®~12) is 1 (or Quadratic Residue) and the compute
sqrt(c)=c®?*’*in Zp. One may do the same operations under
FLT but with x?~'”* is not 1 but rinv(1) wherein rinv is the
reversing inverter of the FLT. The square root 1s determined
as sqrtFLT(c)=c®*"* under FLT multiplication.

Take GF(47) and ¢=18. The Legendre symbol of ¢ 1s
18¢@7=1/2=18**=1, so the square root exists and can be
computed with the above steps as: sqrt(c)=21, which can be
casily verified. Use an FLT over GF(47) with mnv(1)=23*1+
1’7 mod 47. This has a corresponding reversing inverter for
which rinv(1)=32. Compute 18> under FLT which is 18
®18% . . . ®18 (22 times) wherein O 1s the FLT of *
mod-47. The result 1s 32, so 18 1s a quadratic residue under
FLT. Using equivalent 18'* generates 6 as the FLT square
root of 18.

Isogeny Based Cryptography

The Costello article: Craig Costello, Supersingular 1sog-
eny key exchange for beginner, Microsoit Research, USA 1s
incorporated herein by reference. This article provides a
43]1-state Elliptic Curve 1sogeny based key exchange.
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P=431. The finite field 1s for n=kl1*r+k2*1 as Gaussian
integers. And the Montgomery curve y°=x +ax +x with
a=3291+423 and generator points Pa=(1001+248, 3041+199);
Qa=(4261+394, 511+79); Pb=(3381+275, 4101+10) and Qb=
(201+185, 28114+239). Selected private keys are ka=11 and
kb=2. Because p=2"3"-1 Alice has to perform 4 isogenies on
Pb and Qb and Bob 3 isogenies on Pa and Qa. Alice
generates public key PKa=[4231+179 (1sogeny of a), (1421+
183, 1191+360) (1sogeny of Pb); and (221+314, 2891+10)
(1sogeny of Qb). Bob generates public key PKb=[2731+76
(1sogeny of a), (1871+226, 431+360) (1sogeny of Pa); and
(32514415, 32214254) (1sogeny of Qa).

Alice uses public key of Bob, Bob uses public key of
Alice to both perform 1sogenies to generate an=[230] and
1-invariant [234].

Create an 431-state mverter nv(1)=19*1+270 and the
corresponding reversing 431-state mnverter rinv(1) wherein
inv(rinv(1))=1. Modily all parameters with rinv, including the
operations over GF(431) applied to F ,. This creates terma=
[2981+371] for the mverted parameter ‘a’ in the Montgom-
ery curve. And the rinv mverted curve points Par=[3341+
203, 2741+87], Qar=[1671+188, 2381+58], Pbr=[5014+91,
3931+82], and Qbr=[1911+177, 1141+384].

Using the same private keys ka=11 and kb=2 and the same
number of i1sogenies but using the FLled operations in
accordance with ‘inv’ and ‘rinv’ will generate the following
public keys KAMlt=[2711+154, (841+313, 1611+171), (3831+
25, 841+76)], and KB1lt=[2271+262, (4114406, 3511+345),
(1391453, 34314226)] which 1s used by 2 machines to
generate common curve term [2381+134] or common j-1n-
variant [2381+293]. As one uses the reverse mverter to get
from clear to FLT, the inverter inv 1s used to get from FLT
to clear. And mv(238)=0 and 1nv(293)=234 which was the
clear result of the DH 1sogeny computations.

The generated public keys 1n FLTed form are the rinv
inverted versions of the open or clear versions of the public
keys. Because ka and kb are private keys it 1s believed to be
very hard to reverse engineer the results. However, 11 one
applies the FLT as described above, 1t may be beneficial to
operate publicly 1n clear mode on starting parameters and
points and apply the secret FLTed multiplicative inversion
for public exchange. This prevents an attacker from finding
cribs on the inverter or inverter rule. However, if 1t 1s
unlikely for an attacker to find the ka and kb for an open
1sogeny based DH operation 1t 1s even more unlikely to find
it for an FL'Ted system. Furthermore 1t 1s highly unlikely that
the secret FLT will be broken. One simple precheck is to
compute 1f provided points are on a curve. If not, 1t may be
an indication that an FI'T was used. However, this doesn’t
help an attacker much as now both the secret key and the
secret FLLT have to be found.

Isogeny Based Key Exchange

One problem with key exchange systems like SIDH/SIKE
1s that they work from the same public keys. In case of
SIDH/Sike both parties use the same starting curve EO
(y*=x"+ax*+x) and the same initial points and the same
value of n=*2°°*3°°+1. The “customization” herein is the
selection of ‘multiplication factors” ka and kb to create the
first and thus following isogenies. The Costello article
provides the starting curve for p=431 being a=2291+423 and
iitial pomnts pa=248+1001, 199+3041;, qa=394+4261;
pb=275+3381; qa=394+4261, 79+51 1. In the general litera-
ture the real and 1imaginary points 1n Gaussian integers are
exchanged. In general points are represented like pa=1001+
248. However, for calculating purposes in for instance
Matlab the x and y coordinates of points may be represented
by two coordinates each [real imaginary] and 1n origin 1.
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This means that pa=[249 101 200 305] being [xpa ypa] and
xpa=[249 101] and ypa=[200 305]. The factor ‘a’ in y*=x"+
ax~+X in a p-state Montgomery curve is then a=term=[424
330] 1n Matlab.

In accordance with an aspect of the present invention, a
cryptographic operation, including key exchange, encryp-
tion, digital signature and message digest 1s modified so 1t 1s
privatized or customized so it 1s only useful for computers
that have the custom or private parameters and the modified
methods are more safe and secure than de cryptographic
methods that they are dertved from. In accordance with an
aspect of the present invention, public data such as public
keys between machines are enciphered as FLTed multipli-
cative inverses. Characterized by kp & kpf'=onef, wherein
kp is a public key, & is the FLT of n-state *, kpf~" is the
FLTed multiplicative inverse of kp, and onefl 1s the one-
clement (or neutral element) of & .

The Costello article explains and provides a relatively
small example (p=431) of a Dithe Hellman 1sogeny based
key exchange. The method starts with calculating p as
p=2°4*%3%/_1=431 wherein eA=4 and eB=3. This means that
A (=Alice) has to perform 4 2-level 1sogenies (factor 16, 8,
4 and 2) and B (=Bob) 3 3-level 1sogenies (factor 27, 9 and
3). Initial points pa and ga of order 16 and pb and gb of level
2’7 are determined as a basis for further computations. The
NIST submitted version SIKE of SIDH specification 1s
Supersingular Isogeny Key Encapsulation, Oct. 1, 2020,
downloaded from https://sike.org/files/SIDH-spec.pdf and 1s
incorporated herein by reference. How to determine gener-
ating points 1s provided 1n section 1.3.3 of this specification.
SIKE uses as curve y"=x"+6x"+x or with term [0i+6] or in
Matlab [7 1]. For instance for term=[7 1] and p=431 one
finds base points P2=[177 191 237 130]; Q2=[108 307 131
403]; P3=[152 1 357 1]; Q3=[313 1 1 429] 1n [r] 11 r2 12]
origin—1 notation. For p=863 one determines for term=[7 1]:
pay=[40 27 291 476]; gay=[768 70 680 672]; pby=[224 1
860 1]; gby=[6251 1 427].

In accordance with an aspect of the present invention one
or more additional mitial conditions for a key exchange
procedure are stored 1n a memory for two devices, a status
of the starting conditions between the two devices being
synchronized so that both devices apply the same 1nitial
conditions. In the Costello article and elsewhere one or more
graphs are used to illustrate the working of an 1sogeny based
key generating procedure. The vertices of these graphs are
commonly the so called j-invariants of the terms that deter-
mine the elliptic curves of the 1sogemes. The formula for a
1-invariant 1s provided for mnstance 1n the Costello article.
However, the curves and the point generation in isogenies
are determined by the terms of the elliptic curves. For
instance the starting curve in the Costello article has term
a0=3291+423 or j-invariant j(Ea0)=871+190. For computa-
tion of the 1sogemes the terms should be used. Some
intermediate curves 1n the 2-level 1sogenies 1n Costello are
for instance: al=2731+132 and a2=2731+76 with corre-
sponding j-invariants j(Eal =107 and j(Ea2)=3441+190.

In an article Christopher Leonardi A note on the Ending
Elliptic Curve in SIDH downloaded from https://eprint.i-
acr.org/2020/262.pdf and which 1s incorporated herein by
reference, explains that 1sogenies 1 a SIDH/SIKE protocol,
especially when de 1sogenies are of a degree 2 and 3, ends
not only on identical j-invariants but actually on the same
and 1dentical curves. This aspect will be used.

If one starts an 1sogeny based key exchange, it 1s desirable
that both devices (named Alice and Bob) start with the same
curve and common 1nitial points. For instance, in the small
toy example in the Costello article, both the 2-level 1sogeny
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public key generation (Alice) and the 3-level 1sogeny public
key generation, go through vertex with j-invariant 3441+190
which 1s an intermediate point for Alice and the end-point
for Bob for public key generation. This j-invariant in both
cases 1s based on term ac=2731+76 with point Pa’=(1871+
226, 431+360), Qa’=(3251+415, 3221+254) generated by
device Bob and Pb’=(2741+251, 3181+39) and Qb’=(2141+
94, 35414193). This will generate common secret key (2091+
118) which 1s not on the path of either Alice or Bob 1n the
original example. This illustrates that 1t 1s beneficial for
security to use different initial conditions for common key
generation. Using stored and non-published initial condi-
tions will greatly improve security, because an attacker only
has the exchange of public keys to work with.

In accordance with an aspect of the present invention, a
series ol curves that are part of a valid 1sogeny graph are
computed. For large values of p, no common shared curves
may exist or very diflicult to find. However, each one of all
possible curves crossed during 1sogeny computations may
be applied as a common curve. To limit mitial point and term
computation, one may run through an Alice (or a Bob)
1sogeny and designate one of the intermediate curves as a
starting curve. Alice will automatically provide Bob’s
related mnitial curve points Pb' and Qb' and 11 Bob 1s applied
Pa' and Qa'. In that case only one set of corresponding points
for Bob or Alice has to be determined. One may store for
imstance 100 or more, or 1000 or more or 1,000,000 or more
initial curves and related generating points 1n synchronized
memories.

In accordance with an aspect of the present 1nvention,
both devices thus have a list of secret 1nitial conditions in a
same order. One machine may provide a public index of the
list to the other device so both will use the same 1nitial
conditions. One may also store a formula on both devices
that operate modulo-k for instance when k 1nitial conditions
are stored. For instance assume 101 initial conditions are
stored. One may use as expression (g)’-mod 101 with secret
g and k=101 wherein g 1s a generator element and one
machine provides h, on which basis 1nitial conditions in
secret ordered position (g)”-mod 101 is activated. Preferably
an specific value hi for h 1s used only once or once 1n at least
k times or k/2 times or in only a few times so that no pattern
can be determined. Because all 1nitial conditions are secret,
all information has to be derived from the public key
exchange 1n the SIDH/SIKE procedure.

In order to further protect security of key exchange, one
may modily public key mformation in accordance with the
FLT. If the amount of public key data warrants this it may
be beneficial to apply a reversible n-state mnverter to encode
the public key data. This may apply to the 1sogeny computer
public key exchange. One may also maintain on both
computing devices one or a list of two or more p-state
reversible inverters. SIDH/SIKE starts always in curve
y*=x"+6x°+X according to its specification with preset gen-
crating points and 2-level 1sogeny factor eA and 3-level
1sogeny factor eB. If one sticks to the same curve, it has
limited use to apply the n-state reversible inverters on the
initial states, but would be beneficial to encode the 1sogeny
generated public keys. These inverted states are then
reversed by the reversing inverter at the receiving side.
Additional security comes for selection of secret multipli-
cation factor Na for the Alice machine and Nb for the Bob
machine. However, iI one uses one of multiple possible
starting curves and generating points then inverting public
starting conditions may be helpiul. There 1s a relation
between starting curve and related generating points. In
accordance with an aspect of the present invention, one
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applies at least two different p-state reversing inverters (or
p-state 1nversion rules) for inverting public data. For
instance a first p-state reversible inverter for the curve term
and one for the generating points. More preferably one uses
different p-state inverters for the Alice points and a different
p-state inverter for the Bob points. Even more preferably one
uses a first reversible p-state inverter for the real component
of the first generator Alice point, a second reversible p-state
inverter for the real component of the second generator Alice
point, a third reversible p-state inverter for the 1-component
of the first generator Alice point, a fourth reversible p-state
inverter for the 1-component of the second generator Alice
point, etc.

The above modifies the working of the computer 1n an
unconventional way. It provides an extremely high level of
security in Diflie-Hellman (DH) key exchange. While 1t 1s
applied to 1sogeny based Dithe Hellman key exchange one
may apply it with appropriate adaption to any key exchange
procedure. For mstance one may encode generator elements
and/or public key elements 1n classical DH key exchange,
and 1n elliptic curve DH exchange.

In certain cases 1t 1s 1mpossible or undesirable to store
and/or synchronize custom data. In accordance with an
aspect of the present invention one uses a SIDH/SIKE
procedure for instance with initial data for curve y"=x"+
6x°+X as published in the specification or determined and
published by a network connected machine. One preferred
condition 1s that the end condition of the 1sogeny based DH
procedures not only ends on the same j-invariant but also on
a same curve. Security of the method/procedure 1s created by
the secret private keys Na and Nb and the large si1ze of p. The
initial generating points have order Alice 2°* and Bob 3°“.
In the Costello example eA=4 and eB=3 and Alice points
have order 16 and Bob’s generating points have order 27.
During the 1sogeny process each point that 1s mapped during
the 1sogeny diminishes in order. Points of lesser order are
annihilated during multiple 1sogeny steps. Furthermore,
Bob’s points are left mitially unmodified in order during
Alice 1sogeny and Alice point are order constant during Bob
1sogeny. However, the public points lose in order once they
get 1into their base 1sogenies.

In accordance with an aspect of the present imnvention, an
initial curve point 1s determined with an order at least as
great as a Bob or Alice order and preferably greater than that
order. For instance determine a points that 1s not a multiple
of Bob or Alice and has an order 100 in the Costello
example. This point 1s a common point to both machines
Alice and Bob and 1s public or secret. Assume 1t to be public.
In a first step Alice and Bob go through the SIDH/SIKE
1sogeny and public keys are published. In a second step only
the new common point of high order i1s published and 1s
moved through the 1sogenies as required 1n SIDH/SIKE and
its public key result 1s published. The public key 1s applied
in shared secret key computation and the computation ends
at the previously computed end state and j-invariant. How-
ever, the computation 1n the selected 1sogenies ends at the
same curve and thus the 1sogeny moved the public point 1n
both machine and generates the same secret point on the
shared end-curve. Both the Alice and Bob machines already
have the required public keys and no key exchange (unless
Na and/or Nb are changed) on the 1sogenies are required.
Only the public key for the 1sogeny on the single point has
to be published. The new shared secret 1s based on the shared
common curve point (and not on the curve).

A toy example using the Costello toy example. The
Costello example uses Na=11 and Nb=2 for respectively the
2-level (Alice) and 3-level (Bob) 1sogenies. The generated
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and transmitted public keys (Bob computer receives and
stores (4231+179, (142144183, 11914360), (2201+314, 2891+
10) generated by Alice and Alice receives and stores (2731+
76, (18714226, 4314360), (32514415, 3221+254)) generated
by Bob. Using the combined SIDH i1sogenies on point
X=[1001+4, 761+145] will generate Y1=[1391+46, 151+412]
at Alice and Y2=[1391+46, 4161+19] at Bob. One can see
that Y1=-Y2 or when Y 1=[x, y] then Y2=[x, —-y]. Alice and
Bob may use only the x-coordinate of the common endpoint.
In addition, a rule may require that one of the parties inverts
the y-coordinate. In that case both parties may use both the
x- and y-coordinates as a common key or as the base for a
common keyword. It 1s believed that using a separate point
(separate from being a generating or base point) to carry
through 2 multi-step 1sogenies to generate a common key-
word 1s novel.

As a toy example, the Costello example 1s modified to
p=863 thus enforcing a 32-step 1sogeny for Alice (as com-
pared to 16-step 1sogeny for Alice for p=431). Using the
SIDH/SIKE phase 3 procedure for generating base points,
the following points, using from here on the [xr x1 yr yi]

notation using Matlab origin—1, with starting term [7 1] and
points P2=[40 27 291 4776]; Q2=[768 70 680 672]; P3=[224

1 860 1]; and Q3=[6251 1 427]. Using ka=5 and kb=21 will
generate end-curve 1 SIDH with common term [763 4350]
and end j-invariant [759 241. Both the Alice and Bob
machine use the above starting curve and points and ka and
kb and further carry through till the end curve one of the
starting points, for instance P2. This will provide as end
point for the Alice machine the point AA=[440 301 60 364]
and the Bob machine BB=[440 301 805 501] which have the
same X-coordinate and opposing (negative) y-coordinates.
Both points are on the end-curve and have order 32. Car-
rying through the Q points have as result end points with
order 27. One may thus use at least the x-coordinate as
common key. And/or use the y-coordinate wherein one party
1s designated to change the y-coordinate modulo-p.

In accordance with a further aspect of the present mnven-
tion, a starting point on the starting curve 1s selected with an
order greater than 2°% or 3°” or any other isogeny order
greater than the greatest term 1n q°% with q prime and that
does not divide p. This starting selection forces all interme-
diate points during 1sogeny being on an 1sogeny curve. For
instance a point XP=[132 435 357 113] 1s on curve [7 1].
Using valid terms ka and kb, for instance again ka=5 and
kb=21, with generate as end points [749 237 48 733] on
Alice and [749 237 817 130] on Bob.

Furthermore a very unusual and also novel aspect has not
been disclosed elsewhere, it 1s believed. It 1s using point any
point, for mstance SP=[101 102 103 104], which 1s NOT on
the starting curve [7 1] and will generate 1n p=863 SIDH the
points [636 555 863 863] for Alice and [636 555 592 830]
for the Bob machine, which are not on ending curve [759
241]. It turns out that a random starting point, using valid
starting conditions, even when not on the starting curve will
generate at least 1dentical x-coordinates of a point on the
end-curve 1n the SIDH 1sogeny common key generation.

For instance the point [121 207 403 774] on curve [7 1]
with valid starting conditions using ka=>5 and kb=21 will still
generate end curve [759 241], of course, but the starting
point after 1sogenies 1s carried to [419 386 863 863] for Alice
and [419 386 97 393] for Bob and the x-coordinates may be
basis for a secret key. All in origin—-1 Matlab notation.

The above can be used 1n different manners. It 1s known
that 1sogeny computations may take too long, while the
exchange of public data may take too much bandwidth,
which may be addressed by encapsulation and coding tricks.
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Once a valid connection 1s established over a network
between machines named Alice and Bob, 1t may be easier to
re-establish secure connection 1n current sections, inter-
rupted sessions or re-established sessions 1n a limited time-
frame using previous data rather than going through a
complete SIDH cycle. That 1s, establishing a common key-
word 1s done by re-using the previous session parameters,
but for security reasons using a new security starting point.
For instance, one of the Alice/Bob machines may generate
a common starting poimnt SP=[xr x1 yr yi] that 1s driven
through 1sogeny as described above. All intermediate data
are already known and may be retrieved from memory, so
republishing, unless changed, it not required. This pertains
in particular for the public intermediate data of the 1sogenies
that may be stored and re-used. In the case of a SIDH
protocol, this means that the Alice and Bob computer only
publish the result of their local SP 1sogeny results. For
instance, 1 the 1sogeny of SP=[101 102 103 104] Alice
published public imntermediate point [169 115 863 863] for
use by machine Bob, and Bob publishes public key [121 138
747 486] for use by Alice. (all 1n origin—1 and [xr x1 yr yi]
notation.). For security purposes, these public key may be
enciphered in FLTed multiplicative inverses.

In one embodiment of the present the Alice and Bob
computers may store all intermediate 1sogenies (that 1s their
kernels and perhaps terms) so that mappings for each
1sogeny of the keypoint can be computed without recalcu-
lating the kernel and curve term, as these already have been
calculated previously. This can make computation of a secret
common key lightning fast, if one makes all data for instance
available through a cache memory.

In one embodiment of the present mmvention the two
machines are provided with one or more sets of 1mitial data
for an 1sogeny exchange. For instance ka and kb are pre-
programmed, as well as the generating points. In one
embodiment of the present invention, the public keys related
to for mstance a SIDH/SIKE protocol are pre-computed and
stored 1n the recerving machine. This prevents the machines
from having to exchange the public key data. In that case one
machine, which may be one of Alice or Bob or an external
machine may publish a starting point that may or may not be
on a curve. One may keep the starting curve a secret as well
as p. Both machines use the published point to compute and
then publish a public key which 1s then used to generate a
new secret common key that 1s applied 1n further secure
communication either directly or in a derived form.

A disadvantage of public key exchange 1s that public data
still offers a (be 1t a very small and usually negligible)
opportunity to derive the private key and/or the secret
keyword. One way to address that 1s to publish upiront
starting data and based on that determine a secret common
keyword without additional intervening key exchange.
Sticking to 1sogeny based key exchange or at least elliptic
curve based key generation. One way to prevent intermedi-
ate or intervening data exchange 1s to make sure all data 1s
generated after providing mitial public data.

The more familiar or related two devices are, the better
one can hide data or keep 1t private, ranging from the value
p 1n GF(p) or mod-p, the generator or base elements G,
G1 , G2 etc. and the factors k for determining k*G for
instance. An incidental connection of an unknown device
that wants to connect securely to another device in a
network, for imstance under an TLS protocol 1s diflerent
from a chipcard user that charges to an account or wants to
withdraw money from an ATM machine. In the first case
almost no shared information 1s available a priori except the
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protocol for data exchange. In the latter case a chip 1s
configured and some private information like a PIN 1s
available.

In the first case a SIDH/SIKE protocol may be applied
with public keys and exchange of public keys as 1n DH
related protocols. In the latter case 1t may be assumed that
as soon as one machine (or chipcard) 1s i1dentified by the
other machine, commonly shared data and protocols may be
assumed and retrieved for which no data exchange 1is
needed. To make sure that successiul attacks, including
stealing of data, 1s prevented or rendered moot, 1t may be
beneficial to modily exchanged data per connection, even 1t
the same rules are applied.

In the “unknown relationship™ connection a full blown
DH protocol 1s applied. This may be enhanced after an mitial
tull SIDH/SIKE protocol with a reduced public data
exchange by one machine publishing a single starting point
on or off the starting curve, which 1s used to maintain or
restore a connection by keeping all other starting data,
including ka and kb the same, but deriving the secret shared
key from the 1sogeny of the starting point. This includes an
exchange of 1ntervening public data.

One example: a wireless cardoor opener and a car based
computer that controls the car lock. The cardoor opener 1s
presumably 1n possession of an authorized user and 1s
assigned or designated to a car. That 1s the cardoor opener,
when activated, can unlock (and lock) one or more doors on
a specific car. The car “knows” so to speak the cardoor
opener and the cardoor opener “knows™ the car and both
controlling computing devices may have stored common
data and computer instructions. In that case an incidental
pass-by device should specifically NOT be able to open or
unlock that car. Nor allow a malifeasant who wants to enter
the car unauthorized. In that case a door opener and spe-
cifically a wireless door opener should provide a unique
signal that works only once to instruct a device on the car to
unlock the door. The signal should only work once so 1t
cannot be picked up and re-used by an attacker. Further-
more, 1t should be impossible to interfere with a signal, for
instance block 1t and then resend 1t to gain time to attack.
Furthermore, the signals should be of an unspecified format
(for instance a varying length) so an attacker cannot be
successiul 1n transmitting variants of a known signal format
to try at random to influence the car computer to unlock the
door. The example 1s mitially directed at a cardoor. How-
ever, 1t 1s known that hackers are working on hacking
autonomously operating vehicles, including cars, trucks
aircraft and the like, to influence their performance. Accord-
ingly, security 1s required for all forms of access to a
computing device on a vehicle.

A first step to increase security 1s to use a system that does
not require public key exchange between computing
devices, perhaps after providing 1nitial data. In accordance
with an aspect of the present invention, both devices will
perform operations on data that may be public but may also
be kept private. For instance, both machine have access to an
clliptic curve and have programmed instructions for pro-
cessing data that 1s private or public. For instance, both
machines have istructions to compute k*G. The private
data may be the parameters of the elliptic curve, and/or the
factor k and/or the point G. Private data may be stored 1n an
ordered way at both the Alice and Bob machine for different
computations of a secret common keyword. For instance,
there may be 3 instances of a keyword computation:

Stage 1: n-value: pl term=term1; factor=k1 generator=G1
codel active:N]; Stage 2: n-value: p2 term=term2; factor=k2
generator=G2 code2 active:Y]; Stage 3: n-value:p3
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term=term3; factor=k3 generator=G3 code3 active:Y];
Stage v: n-value: pv term=termv; factor=kv generator=Gv
codev active: Y]|;

It should be clear that more than 3 parameter sets may be
included. For instance there may be 100 or more sets of
parameters, 1000 or more sets of parameters or one million
or more sets of parameters. An arbitrary order 1s assumed 1n
the stored set of parameters. Both machines may have the
same order of parameters. No order can be derived from the
individual parameters. A umique i1dentifying code may be
included with the set of parameters. In accordance with an
aspect ol the present invention, a parameter set 1s retrieved
at each machine 1n 1ts order of storage. An external event,
such as a date, a time, or an external instruction may instruct
cach of both machines which of the parameter sets to use.
One field associated 1n the parameter set indicates 1f the set
1s active. The above example shows that set associated with
codel 1s no longer active. In a data management step the
active code may be changed from Y to N. In a follow on step,
the memory elements associated with the parameters marked
as Active:N may be further deactivated by overwriting the
memory with for mstance all 1 or all O or any pattern that
overwrites the content, or at least the operational parameters
term, factor and generator. Once the parameter set 1s marked
as Active:N 1t cannot be used 1n an actual computation.

In one embodiment of the present imnvention a line 1n a
plurality of parameters sets may be activated in one
machine. For instance, a computing machine may be a door
opener with an activation button or interface. Based on the
activation signal, preferably at random, but stepping through
a stored order 1s also contemplated, a specific line or
parameter set that 1s active 1s activated. The code of the
parameter set 15 retrieved and 1s transmitted to the other
machine and receirved by the other machine. Based on the
received code the other machine retrieves and activates the
parameter set associated with the received code. At the
appropriate time, the parameter sets 1 both machines are
de-activated and made impossible to be used again. This
prevents that a malfeasant steals a signal and surreptitiously
applies a parameter set to attack a machine. In one embodi-
ment of the present invention, the code 1s transmitted but
strictly 1n order of storage. Imagine a user accidentally
presses an activation key while being out of contact with the
other device or out of reach/distance. This means that a
specific parameter set 1s activated in one device but not 1n
the other device. The next time the first device 1s activated
while being near to the car, appropriate signals are trans-
mitted and received. The receiving device, while checking
the order and position of the recerved codes will determine
that one or more intervening codes were not used and will
be de-activated from future use.

In each parameter set different factors may be stored and
different generators and even different value for p and
different terms for elliptic curves. Both machines have the
same computation instructions for point addition and point
doubling on an elliptic curve. For illustrative purposes a
Montgomery curve 1s used. But others like Edwards and
Weierstrasz and others may be used. One may use straight
forward Fq fimite field computations or apply Gaussian
integer representation points, as long as both machines use
the same parameters. Under the above conditions both
machines will generate the same end-point k1*G1 over
GF(pl). The point G1 even doesn’t have to be a curvepoint.

In addition to the above one may store in the set of
parameters an g-state reversible imnverter or a g-state revers-
ible 1mnverter rule wherein q matches parameter n-value p.
The g-state inverter may be used to invert the secret common
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keyword before 1t 1s further processed, such as hashed. The
receiving machine may be provided with the corresponding
reversing g-state mverter or mverter rule. Both machines
may also apply the reversible k-state inverters that modify
the hashing or encryption methods in accordance with an
FLT as described and disclosed earlier by the inventor. The
receiving machine 1s preferably provided with the same
iverters or reversing operations.

Both machines may also implement a knowledge free
exchange such as a modified Fiat Shamir method or heuristic
(FSH), for instance as explained 1n https://en.wikipedia.org/
wiki/Fiat-Shamir_heuristic which 1s incorporated herein by
reference. In the Feige-Fiat-Shamir ID (FFSID) scheme as
explamed 1  https://en.wikipedia.org/wiki/Feige-Fiat-
Shamir_identification_scheme, which 1s incorporated herein
by reference, the public exchange of data may be enciphered
using n-state mverters as explained herein. One may also
modily the computations of public data in accordance with
an FLT. Also signatures based on FSH and FFSID may be
modified in accordance with methods and/or operations as
disclosed herein.

The above computer procedures use preprogrammed data.
Though the machines step through diflerence configurations,
all data 1s pre-programmed and changes only when a new set
ol parameters 1s activated. In accordance with an aspect of
the present invention both machines work without exchange
of data, but are both provided with initial information. This
information may be provided by a third trusted machine on
a network. This machine may have at least the codes stored
that are associated with parameter set. One of the first two
machines transmits the code of an activated set of param-
eters to the other machines. The third and trusted machine
retrieves or computes one or more common parameters, like
the factor or the generator or the curve, that allows the first
two machines to compute their secret common keyword.

In a vanation of the above one of the Alice or Bob
machines generates from computations or retrieval an appro-
priate parameter to be shared with the other machine. In
accordance with an aspect of the present invention, a specific
reversible mverter 1s associated with a code and thus with a
parameter set. One of the machines inverts the public data
with the reversible inverter and publishes i1t. The other
machine receives the mverted data and reverse inverts 1t to
generate data that 1s used 1n computations.

Returning to 1sogemes. The stored parameters sets may
also relate to parameters of 1sogenies for instance as a
complete or a partial SIDH protocol. For instance if p 1s
composed of terms that are powers of 2 and 3, a limited
1sogeny, for mstance only a degree 2 1sogeny 1s computed.
In SIKEp434 the exponent €2 for 1=2 1s €2=216. While
SIDH has of course two different degrees 1sogenies, 1n this
case for two machines using private common data one may
limit to one 1-degree 1sogeny. In that case the generated
secret common keyword may be any generated state of the
1sogeny It may be the term, a generated point or the
1-invariant of the term. For instance the point [101 102 103
104] which 1s not on the Montgomery curve with term [7 1]
(or 6 1n SIDH/SIKE) generates a point [282 110 59 112] on
curve [421 390] using ka=11 kb=2 and the earlier provided
generator points at the end of the public key generation part
of SIDH for p=431. However, one may also use the result of

the next to last 1sogeny step, which generates a curve with
term [319 97] and a point [207 306 157 234] which 1s not on

the curve as a result of [101 102 103 104].

One may use any generated 1sogeny data as long as both
machines perform the same computations, even if starting
points are not on a set curve. To make the process operate on
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not stored data, one device may generate preferably at
random a point that falls within the requirements of each
clement being smaller than p. Though such a random point
may not be on a curve 1t will still generate a proper and
usable output. One may also provide a number of the SIDH
step that a result has to be taken. For instance in p=431 that
number cannot be greater than 4 for the degree 2 ‘public’
part 1sogeny (even though that part in this variant 1s kept
secret). For p-863 that parameter cannot be greater than 3.
However, each of the generated result after the first 1sogeny
step may be used as long as both machines apply the same
parameters. In fact the 1sogeny based formulas including the
Velu derived formulas in this case are merely modulo-n or
GF(n) cyclic operations and within broad limits provide a
useful result as long as both machines apply exactly the
same steps and same input values.

In accordance with an aspect of the present invention the
entire SIDH procedure 1s implemented on both the Alice and
Bob machine. Both machines thus have access to ka and kb
and all required points and terms. Any random point with
coordinate elements <p and even those not on a starting
curve may be used as a published point and may be provided
by a trusted machine on a network. In case of each machine
performing the entire SIDH protocol, 1n one embodiment
both machines perform the 3 degree i1sogeny (originally
assigned to Bob) on the 2°¢ order points. Furthermore, the
Bob part still performs the multiplication of 3°“ order points
to get to the base point that 1s used to determine the kernels
of the 1sogenies. This generates the points and curve that
originally would be provided as public key data. A next set
of instructions takes the generated key data and performs the
steps in accordance with the 2° order steps. This ends with
generating the end curve and 1f so desired the computed
points based on the 1sogenies.

One of ordinary skill would understand that one may also
reverse the order of steps: first do the order 2% isogenies to
generate intermediate data that 1s then further processed by
the 3°” isogenies to generate the same curve, j-invariant and
if applicable a computed point. The advantage 1s a very
intricate and largely intractable cryptographic method that 1s
hard to attack 1f no or limited data 1s published. For instance
using as only public data a p-state point in F , with x and y
coordinate [xr x1 yr y1] that 1s not on a specific curve will
generate an 1rreversible result that may be further idden by
using a e-state reversible mverter.

Because both machines perform both the 2 and 3 degree
1sogenies, no data has to be published and both machines
will generate the same data, of which data elements gener-
ated during each step may be used. The random 1nput point
may also be provided by one of the Alice or Bob machines.

In case of unlocking a mechanism or activating/unlocking,
a database or computing device, both machines have created
a secret common keyword. An “opening” device or a device
that seeks access has to inform the device that needs to be
unlocked or accessed that the opener has the same secret
common keyword. If so desired a Fiat Shamir zero-knowl-
edge procedure may be used. However, this 1s usually an
interactive process. It may be made non-interactive. In one
embodiment, a code and possibly enciphered (possibly by
inverter) are packaged 1n a single frame or multiple frames
that are transmitted from opener to the to be opened device.
The packaging 1s such that there 1s realistically no oppor-
tunity to separate code from keyword or enciphered key-
word. That 1s, an attacker cannot stop a device from part of
a signal that 1s only the key. The code alerts the receiving
device what 1s coming. If so desired, one may send the code
separate from the key or enciphered key. If they are not
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separated, the receiver may store the entire received frame
or frames, separate the code from the key or enciphered key.
Using the code, specific parameters are retrieved associated
with the code. A public key may be part of the frame. The
receiving device generates the key, it may decipher an
enciphered key or 1t may encipher 1ts own generated key, for
instance via hashing and for instance compares deciphered
received key with generated key or the received enciphered
key with the locally enciphered generated key. When they
are 1dentical the device i1s unlocked, a lock 1s unlocked or
access 1s given to a database or a locked device or protected
device.

In accordance with an aspect of the present invention a
point (be 1t on a curve or not) may be included 1n a frame 1n
open or enciphered form to be used to compute an exit point
of which at least the x-coordinate(s) will be used to deter-
mine a common keyword. In one embodiment such a point
may be provided 1in open or enciphered form as a separate
signal. In one embodiment an 1sogeny has already been
determined. In that case the SIDH protocol may be re-used
and only the entry point is the variable and may be provided
to both machines from for instance an mndependent source or
may be provided from one machine to another one. Such a
point may be determined at random or may be stored. In one
embodiment such points may be part of a parameter set and
do actually not have to be transmitted from one machine to
another one as they are retrieved from the parameter set that
1s activated.

Very fast executions of complete SIDH/SIKE key
exchanges have been reported and speed of around 20 ms
appears to be very achievable and worst case of below 200
ms for SIKE751 earlier was reported on ARM Cortex-A72.
For practical purposes, the above “opening™ using part or all
of SIDH protocol will take place within a single step of 200
ms or less. This means that one has a very fast and highly
secure opening device. It can be made much faster by storing
intermediate results and using starting points that are locally
stored.

The SIKE protocol works with a well defined initial set of
parameters, including the starting curve and curve points.
Providing two or more different sets of starting points for the
SIDH protocol which has starting curve y*=x +6X°+X, Or
term [7 1] in Matlab onigin—-1 representation, further
enhances security. Earlier above a set of starting generator
clements was provided for a=[7 1] and p=431. For instance

another set of generator points of order 16: Plalt=[124 347
24 2778] and Qlalt=[360 84 118 38] and degree 27 points

P2alt=[200 211 202 280] and Q2alt=[30 259 75 180] with
ka=11 and kb=2 will generate common end term [416 1] and
common j-invariant [ 190 1]. A common entry point [100 101
102 103] which 1s not on the curve [7 1] will generate both
for Alice and Bob machines the exit point [25 63 229 183]
and [25 63 204 251] having identical x-coordinates which
may be used as the secret key or as a basis for a secret key.
This as compared to the earlier provided points which will
generate end curve [3 86] and end j-invariant [242 1] and
exit point [180 386 420 109] and [180 386 13 324] respec-
tively having 1dentical x-coordinates and are different from
the output with other generator points. One may also change
one of the two generator point sets, as long as mew points
are also base generator points.

One may also modity the starting curve, preferably to a
curve that 1s 1n the 1sogeny graph that includes curve [7 1].
A simple way to find such a curve 1s to take an intermediate
result of the 1sogeny steps. For instance using the starting
curve [7 1] with a set of earlier provided generator points
will go through curve [319 97] 1n the level 2 1sogenies. The
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order 27 points will keep that order through the 1sogenies
and may be used as new generator points. In this example

this results 1n point Pb27=[118 46 99 130] and Qb27=[197
369 303 62] which may be used for the new Bob machine
generators for curve [319 97]. It 1s diflicult 1f not impossible
to predict what the 1sogeny intermediate states will be. So,
one has to determine independently what order 2°? generator
points need to be. One can either determine the 2°* generator
points or 3°? generator points from intermediate isogeny
results, 11 at all possible. Or one can compute a pair of base

points for the desired curve of desired order. For instance
Palo=[127 356 102 182] and Qal6=[21 179 267 9]. This

will generate for ka=11 and kb=2 the end curve [255 184]
with j-invariant [316 133]. A point hh=[100 101 102 103]
not on the curve will generate point [266 57 276 290] for
both branches of p=431 SIDH isogemes. This approach
improves security and alleviates some of the required eflorts
and makes 1t much easier to switch curves.

In accordance with an aspect of the present invention one
may also apply a point on the curve with order infinity, when
applicable, to move through the 1sogenies. One may store
and save on a memory or storage device the intermediate
public keys. One may then take as an entry point PI, either
a curve point that 1s on the starting curve as new public key
with an order that 1s relative prime to 2 and 3 1n SIKE/SIDH
(or the ‘base’ orders of the 1sogenies, as in CSIDH). Thas
generally means that the order of this point will not be
allected or the point will at least not be annihilated during
Alice/Bob 1sogenies. This means that both the Alice and Bob
machines will generate as a result of executing the SIDH/
SIKE and CSIDH protocol an end point that has at least
identical x-coordinates. They will also generate (of course)
cach time the same end curve. Both Alice and Bob machines
already have access to the intermediate keys which may be
stored and may be retrieved. Thus, transmission of these
intermediate keys, called sk2 and sk3 in the SIKE specifi-
cation and PK , and PK; i the Costello article, 1s not
needed. Only intermediate keys PI, and Pl as a result of
first round 1sogenies have to be transmitted which 1s smaller
than the mnitial intermediate key. Some literature uses the
term “infinity order” for points that are unaflected by 1sog-
enies.

herein a point that 1s not on a curve 1s specifically defined
as a point that order infinity on the curve. In accordance with
an aspect of the present invention an entry point PI or 1nitial
point PI 1s selected for generating a secrete key in SIDH,
and/or SIKE and/or CSIDH point that 1s not annihilated
during 1sogenies 1n at least its x-coordinates or at least not
degraded to a zero-point during isogenies. Thus a point PI
may be of a specific order on the curve or may not be on the
curve.

The Costello article demonstrates that i order to carry
any point, including a point PI, through an 1sogeny one
needs the formulas for 1sogenies ¢(x) which depends on a
kernel point. In a first round all individual kernel points have
been computed and have been applied as parameters in
computation of ¢(x). Only ¢(x) 1s required for each 1sogeny
of pomnt PI and re-computation of kernel points, curve
parameters and 1sogeny of starting points 1s not needed as
the useful result of those (the intermediate public keys) may
be retrieved from memory if needed. Again, only kernel data
1s required to perform execution of ¢(x) and only the
intermediate result ¢ ,(PI) and ¢,(PI) needs to be computed
and transmitted, assuming using the same imtial starting
data except for PI.

One may achieve secure exchange with much smaller
representations for p if p 1s kept secret. For instance, the
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1sogenies may be reduced to eA=100 and eB=65 or even
cA=~50 and eB=32 or even smaller combinations of (€A, eB)
may be applied. Especially when the purpose 1s to only once
unlock or open or access a device or database within a very
limited timeframe, there 1s no benefit to extend security
beyond what 1s required. When diflerent sets of parameters
are used, or at least one parameter (including an 1dentifying
code) there 1s no to limited benefit to attack the opening
sequence as 1t will not be repeated and it may not be used to
protect a message by encryption.

It makes a difference i an entry point that 1s either on a
starting curve or not, 1f provided 1n an encrypted or clear text
manner as a public key or as a private key stored as one of
a parameter set. Preferably, 11 it 1s transmitted either i clear
text or in encrypted form as a public key, all elements should
be part of a single message, so attackers have limited
opportunity to analyze. A recerver may be programmed with
instructions to separate from a coded form message one or
more public key elements embedded in a message. Such
separation may not be clear from a message itself. For
instance elements, such as bits or blocks of bits belonging to
a specilic parameter, code or key, may be embedded 1n a
message by a predetermined interleaving or multiplexing
and/or by different encipherments such as using different
n-state mverters which as known to the devices.

A device that recerves an above type message may store
and process the message for processing and as soon as an
clement 1s detected that indicates that it 1s an opening or
unlocking message may prevent a processor 1n the receiving
device from storing and/or processing opening/unlocking
data at least for a limited time, for instance until authenticity
and/or validity or correctness of the message 1s determined.

If required and 1f warranted by suilicient lengths of
messages, an 1dentifying code and/or a parameter and/or
public key may be transmitted by an requesting or opening
device within a predetermined interval. It may be like an
opening device transmitting to a receiving device a code for
a lock, allow a receiving device to mitiate and activate the
lock and then have the opener transmait the key and allow the
receiving device the opportunity to have a valid key to
unlock or open the receiving device. In that case a receiving
device may only allow a limited time between receiving the
code and the key. For instance when a code 1s received, a to
be opened device may allow preferably at most 5 minute,
more preferably at most 1 minute, even more preferably at
most 30 seconds, even more preferably at most 10 seconds,
even more preferably at most 1 second, and most preferably
not more than 1 second to receive a key message. This gives
an attacker i most circumstances not enough time to
prepare an attack. After the time 1s elapsed, the receiving
device de-activates the parameter set associated with the
received code and 1s ready to activate the next code 1n an
ordered set of parameter sets.

In certain cases a very large number of key exchange
cllorts 1s expected with public key exchange to make sure
that two machines are properly matched by data-exchange
and storing of a lot of parameter sets or static data 1s to be
prevented. For instance, an autonomous vehicle drops and
reconnects olten with a particular server on a network. In
that case, it may not be necessary to do the fill SIDH/SIKE
protocol, but use for a limited number of times a randomly
generated point for instance as a basis to generate a common
exit point that serves as the basis, for instance via hashing,
as a secret reconnection code. In order cases, as little data as
possible 1s desired to be exchanged and the number of
possible connects/opening 1s limited, for instance to less

than 1 million or less than 100,000.
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Especially 1n certain cases, for mstance wherein at least
one device has not a powerful enough processor, it 1s
desirable to avoid complex and/or time consuming compu-
tations. In that case 1t may be desirable to store as much data
as possible on a memory, which may be a fixed memory or
non-volatile memory from which data 1s retrieved and
transmitted. The power of SIDH and even stronger for
CSIDH 1s the circular commutative character of the key
generation process. That 1s: two apparently separate pro-
cesses both 1n time and 1n space will arrive at the same result
by exchanging at least one time of public data.

One embodiment of the commutative property as stored
states 1s 1llustrated 1n FIG. 4. There are two machines which
are called Alice and Bob to keep in style with general
naming in cryptography. Machine Alice has two memories
or two parts of one memory or storage 1dentified as 3100 and
5101 while Bob has a memory 5110. The memories are part
of computing devices mcluding memory control and man-
agement and processing circuitry. The machines have trans-
mission and receiving circuitry, bodies, power supply and
other equipment which 1s familiar to one of ordinary skill 1n
mobile computer technology. In order to not obscure a
working of the system these and other circuitry and equip-
ment 1s not shown but should be assumed to be present.

An mitiative for opening or activation starts from the
Alice machine. However modifications that allow start from
the Bob machine 1s fully contemplated. An activation step,
for instance a user pushing or activating a button or other
interface causes a processor to look for a next valid line 1n
memory Alice 1 5100 to be activated. For illustrative pur-
poses validity of a line 1s indicated by a column named
‘valid’ that carries a 0 (not valid) or 1 (valid). A processor
may overwrite a line with valid indicator O so no usetul
states are present on that line. Line 2 1s the first valid line and
it has signal ‘1’ 1n the column output. A signal representing
‘1’ 1s transmitted to machine Bob and a memory line in 5110
represented by signal 17 1s activated. One output signal ‘13’
1s associated with line 1 as well as common key ‘11033.°
Machine Bob outputs signal ‘13 to machine Alice and
retrieves a common key identified as ‘11033’ as a common
key. The signal represented by ‘13° 1s transmitted to the
Alice machine. The Alice machine that receives a signal
from Bon now activates memory or memory location 5101
and the memory line associated with signal *13’. A processor
reads the memory content of line ‘13" and outputs common
key 11033, The common keys may have any format and
any value as long as the they are unique from other common
keys. One may also further process the common keys to
generate a final key. However, 1t should be clear that both
machines Alice and Bob 1n this scheme end up working with
the same common keys. After using a line 1t may be disabled
by switching the valid bit from 1 to O or by overwriting the
line with all O or all 1 bits or with a meaningless pattern. Not
specifically highlighted, one may check that line 3 1n 5100
outputs signal ‘19’ to 5110 where 1t activates output ‘15’ to
5101 and generates common key *654° at 5110. Memory line
associated with ‘15” 1n 5101 also output common key ‘654°.
This has been made a 3-step generation. If so desired the
number of steps may be expanded by having additional
translation memories or memory parts.

In practice 1t may be useful to have 100,000 or 1,000,000
different and unique memory states to generate unique
common keywords. It may be diflicult to achieve this
manually. One way to {ill the memories automatically 1s to
use an 1sogeny based method. This i1s illustrated 1n FIG. 5.
FIG. 5 1s a screen shot of an output of possible 1sogeny states
as generated by a SIDH protocol. In fact it 1s based on the
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Costello article example. Costello 1n his article mentions
“the curse of the toy example.” Because of the small value
of p=431 1n the example, the number of diflerent j-invariants
and even of curve parameters 1s small, 37 and much smaller
than p. The number of different end-states for p 1s about
p/12. For larger values of p or of €A and eB, the number of
possible end states exceeds the number of computed end
states. Thus for p=~100,000 and certainly for p=1,000,000
there 1s little chance of duplications or collisions 1n SIDH.
However, a program should check and drop any end state
that already occurred.

FIG. 5 shows a partial table 5200 which 1s a small part of
1’75 outputs. The 2 line table 1sogenall22(:,:, 160) show a
recoded output of a complete 1sogeny SIDH cycle for p=431
and for the generator elements and 1nitial curve as provided
in the Costello article. The imventor first did run all possible
175 (ka, kb) SIDH 1sogenies and stored all generated curves
and renamed them. For instance state 1 1s the starting curve
in Costello indicated as a0=3291+423. The first line shows 5
numbers followed by a zero and then followed by 4 more
numbers. The first 5 numbers are the 4 1sogenies in Alice
ending with 16, which 1s the public key which 1s represented
by curve now designated as 16. The zero 1s meaningless and
serves as a separation. The next 4 numbers are the Bob
1sogenies, also starting at 1. To distinguish with Alice it 1s
named 101, but 1t 1s the same as Alice curve 1. The first stage
public output of Bob 1s 32 named 132 to distinguish from
Alice. The second line shows the second state 1sogenies in
Alice and Bob using the public keys. So Alice starts with 32
(which was first shown as Bob’s output 132) and ends as
secret common curve 33. Bob enters public curve 16 from
Alice as 116 and ends generating as secret curve 133 which
1s the same as 33. To highlight part of the process the public
key of Alice to Bob and the secret key generation of Bob are
marked.

The public outputs of Alice are associated with an initial
state (for 1nstance index 160 in this case). It generates 16
which may be used as an ID for a memory line 1 5110 in
Bob and provides an output 33 (or 133) The signal 33 is
applied as an identifier in memory 5101. The secret curve or
1-invariant associated with 133 or 33 may then be used as a
common secret keyword. One may also apply a reversible
k-state inverter wherein k may be much greater than p and
wherein an additional number may be added to generate a
keyword that depends upon the output state 133. By using
the SIDH or any other 1sogeny based protocol and an
adequate recoding of all possible or preferably all occurring
begin, intermediate and end curves one may create a stored
but highly secure key exchange system as illustrated in FIG.
5.

It should be clear to one of ordinary skill that the above
may be modified so device 5110 only generates a signal for
5101 but does not provide a common key. A similar but
mirrored process, using for instance first the Bob 1sogeny
states or start with the second part of the first line in 5200
(after O) that starts with 101 (being 1dentical to curve 1) and
ends with 132 or curve 32 out of 37. Signal 32 1s transmitted
from 5110 from Bob to Alice to a memory not shown 1n FIG.
5 that generates from Alice a signal 33 back to Bob. A
separate and not shown memory in Bob then at position
identified by 33 identifies a common key that 1s 1dentical to
the one generated by Alice. This 1s of course the SIDH
mirror of the first process as illustrated 1n FIG. 4. One may
take care that the second signals are recoded (for instance
using different inverters) 1n a way so they are not 1dentical
in both processes. Other ways to modily interactivity are
tully contemplated.
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A way of limiting interactivity between machines 1s to
compute 1sogeny mntermediate and end curve data and asso-
ciate them with a unique code. The umique code may be for
instance created by hashing the curve data. The hashing may
take place with an FL'T modified hashing method such as
FLl'Ted SHA-2. The common keyword may be hashed with
a differently FLT modified hashing algorithm, using for
instance diflerent reversible iverters. This may be done
ofl-line, for instance to generate 1 million or 10 million
unique codes with associated 1sogeny based keywords which
are then stored 1n memories dedicated for Alice and Bob
machines. One may also try to generate 1 or 10 million
pseudo-random numbers. Using determinmistic methods and
devices may be easier to create hundreds or thousands of
pairs ol corresponding common key generators.

Herein the term curve or elliptic curve 1s used. An elliptic
curve 1s determined by 1ts parameters. An elliptic curve may
be represented 1n its short Weierstrasz form equation. While
one may different representations a common one is y°=xX"+
Ax+B. In cryptography the terms A and B are generally
selected from a finite field Fp. As applied above, 1n 1sogeny
based protocols such as SIDH Montgomery curves are
popular, which may be represented as By*=x"+Ax*+1. In
SIDH/SIKE B 1s commonly set to 1 and 1n SIKE A may be
6 or [6 0] as Gaussian integer. So when 1n the context of
SIDH/SIKE a “curve” 1s mentioned 1t generally means a
curve y'=x +Ax”+1 with A an element [alr a2i] wherein al
and a2 are elements of a fimte field Fp. So a curve 1n
SIDH/SIKE means commonly an element A=[alr a21]. Thus
a curve 1s 1dentified by 1ts parameters. A curve may also be
identified by 1ts j-invariant. However, a same j-invariant may
identily two or more different curves.

An 1sogeny 1s a mapping ol a curve including 1ts param-
cters and points on the curves generally defined over a finite
fiecld or a finite ring onto another curve with different
parameters and different points but still defined over the
same finite field or ring with the O point on one curve
mapped to the other curve. For instance a first Montgomery
curve By"=x"+Ax”+x has an isogeny or is a mapping to
curve B'y*=x"+A'x*+x both defined over a same finite field
GF(p). Notwithstanding the fact that the curve parameters
are defined over a finite field GF(p) the applied parameters
of the curve may be Gaussian integers. That 1s, the param-
cters may have what are called a real and an 1imaginary parts
such as alr and a21 represented as [al a2] or (a2i+alr). In
general in mathematical representation the elements as well
as curve points are said to be defined over finite field F ,. In
processor based computation elements such as real and
imaginary integers do not exist. While it may be convement
to name elements Gaussian integers, for computation 1t only
means that parameters consist of multiple coordinates for
which a computational rule for a processor 1s applied. A
parameter of a curve may be [Al A2]. Another element may
be [cl c¢2]. The computational rule says: [Al A2]+[c]
c2|=[(Al+cl) (A2+c2)] and [Al A2]*[c]l c2]=[(Al*cl-
A2*c2) (Al*c2+Al*cl)]. The operations * and + are opera-
tions defined over GF(p). A point on a curve may be defined
as [x y] wherein x and v may both be Gaussian integers.
Thus a point on a curve over I, may be represented as [xr
X1 yr y1] and may have 4 coordinates in total for which the
above computation rules apply.

In the literature on 1sogeny based cryptography, for
instance 1n the Costello article, a notation 1s used that looks
like a sum. For instance Costello discloses a curve with
a,=3291+423 and a point P ,=(1001+248, 3041+199). The ‘+’
in this notation 1s for computer execution meamngless as no
terms are added. The ‘+  serves merely as a separation
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character. Instructions in the 1nstant disclosure are executed
in Matlab, but may be performed in any viable computer
language, assembler or machine code. Some operations such
as addition and multiplication are FLTed. The FLTed switch-
ing tables may be used when n 1s relatively small, for
instance n being expressed by 20 bits. If n 15 of intermediate
s1ze, Tor mstance n being around 30 bits or smaller one may
store the entire n-state inverter. Matlab operates in origin-1,
and most operations herein are based on origin—1 switching
tables. This demonstrates that no mathematical operation in
performed i the FLT but merely a switching table with
defined meta properties. Furthermore, to represent any ele-
ment appropriately a notation [alr a21] and [xr x1 yr y1] 1s
applied for Matlab. This means that the above curve term a,
1s entered as [424 330] instead of 3291+423. That 1s 1n

Matlab notation a 1 1s added to all elements and 1 and r
positions are switched and no artificial *+’ 1s mserted. The

point P ,=(10014+248, 3041+199) 1s used in Matlab as [249

101 200 303]. Thais 1s for programming purposes and makes
no matenial difference to 1sogeny operations as described in
the literature.

For computational purposes an individual 1sogeny or
1sogeny step, unless mentioned differently, 1s a mapping
from a first curve to a second curve. There are several
1sogenies distinguishable 1n 1sogeny based cryptography.
For mstance SIDH/SIKE 1s an interactive public key gen-

cration method. It has two diflerent sets of two stages. First
of all SIDH/SIKE uses a p=2°?3°’+1 with p being prime.

Alice (the A or Alice machine) performs €A complete
1sogenies or complete determinations of a mapping of curve
parameters of one curve to another curve. A first stage
includes mapping of curve points having order 2% and order
3°% at the first isogeny. A combination of 2 initial points of
order 2°* are used to generate a third point of this order
which 1s used to generate a kernel point. This kernel point 1s
applied to find the parameters of the new curve. Velu’s
formulae or specific expressions thereol are applied to move
starting points from a first curve to a second curve. The
resulting points may be called image points and the param-
cters of the mapped curve may be called image parameters.

Image points resulting from the first stage are published as
public keys and are used by the A and B machines as next
starting points 1n a repeat of the 1sogeny cycles.

The order of starting points 2% decreases with a factor 2
alter each 1sogeny. The order of a point that 1s not divisible
by 2 remains the same aiter 1sogeny or decreases slightly.
This means that a point of order 2°? can only be submitted
eA times to a level-2 or degree-2 isogeny. In general a ¢ “*
1sogeny wherein ¢ determines the base of the 1sogeny order
1s called the level or degree of the isogeny. Accordingly,
when ¢ =2 1t will be called a level-2 or degree-2 1sogeny.
Some literature names the degree of an 1sogeny after the
number of possible kernel points.

The Alice machine, which i1s arbitrarily associated with
the € =2 1sogenies, thus may perform up to eA 1sogenies. The
Alice machines moves 2 starting points with order 3°°
through the eA ¢ =2 1sogenies, as well two generating points
with starting order 2°¢. At the end of eA ¢ =2 isogenies
image parameters are generated as well as two 1mage points
on that curve with 1mage parameters, which may be pub-
lished and are mputted to the Bob machine for eB 1sogenies.
During the eA 1sogenies image parameters and image points
are generated, which 1n SIDH/SIKE serve as intermediate
and largely invisible results. A machine may be provided
with instructions that stop the Alice process after Ki 1sog-
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cnies, wherein Ki<eA. The intermediate results of image
parameters and/or image points may be used for determining
keys or inverters.

For instance one may stop the ¢ =2 i1sogenies after Ki=2
and use either a generated 1mage point or an 1mage param-
eter or a j-invariant or other derived parameter from such
intermediate results for determining a secret key or a secret
inverter. If the secret has to be shared or be the same without
interaction, both the Alice and Bob machines have to be
programmed with the same ¢ =2 1sogenies instructions and
both stop after K1 1sogenies.

The 24 order composite point in the ¢ =2 isogenies is
used to determine a kernel 1n each 1sogeny step. This point
ends up as an order-O point at the end of the 1sogeny steps
and 1s thus effectively anmhilated. However, during the
1sogenies one may still use the 1image points of the gener-
ating point for purposes of determining an inverter or a
secret shared key.

The Bob machine 1s associated with ¢ =3 1sogenies. Due
to the selected value of p, the order of starting points for the
eB ¢ =3 isogenies should be 3°”. After eB ¢ =3 isogenies the
1sogenies are exhausted and all provided generating points 1n
SIDH/SIKE are annihilated. The end state of the Bob
1sogenies 1s then the final 1mage curve parameter, which
generally 1s used to determine a j-invariant which serves as
the shared secret key. In this process only the Bob machine
has a secret key. Using the Bob machine as the {first stage,
generating after eB ¢ =3 1sogenies a public key of image
points and an 1mage curve parameter as input to the Alice
machine allows the Alice machine to generate the exactly
same 1mage curve parameter as the Bob machine.

In accordance with an aspect of the present invention, a
common entry point that has an order not divisible by 2 or
3 on the starting curve 1s submitted to the Alice and Bob
1sogenies 1n accordance with the SIDH/SIKE protocol. Both
machines will generate a common 1mage point at least with
the same x-coordinates that can serve as a common key or
may be used to compute a common key or a reversible
inverter. Both machines perform different operations. Both
machines may be programmed to execute exactly the same
instructions. That 1s, both machine may be programmed to
perform the £ =2 i1sogenies or £ =3 i1sogenies or perform a
first set of £=2 1sogenies followed by ¢ =3 1sogenies or
perform first € =3 1sogenies followed by ¢ =2 1sogenies. In
those cases no interactive exchange of data 1s required. For
instance both machine may perform Ka<=e¢A ¢ =2 1sogenies
or Kb<=e¢B ¢ =3 1sogenies or ¢A ¢ =2 1sogenies followed by
Kb<=eB ¢ =3 1sogenies or eB ¢ =3 1sogenies followed by
Ka<=eA ¢ =2 1sogenies. One has to make sure that both
machines use the same starting data.

In accordance with an aspect of the present mnvention,
both machines are programmed with identical i1sogeny
istructions with up to eA or eB i1sogenies. Based on a
common signal or preprogrammed 1nstructions both
machines using identical input data perform Kx 1sogenies in
¢ =2 1sogenies or € =3 1sogenies. This generates a common
image curve parameter and image curve points based on Kx.
If the common i1sogenies are ¢ =2 1sogenies then ¢ =3
isogenies or 3°” order image points and the generated image
curve parameter for mstance aim are generated that are used
as secret starting parameters. Both machines then may use
known methods to generate two 2°? order generator points
for curve parameter aim. If the common 1sogenies are ¢ =3
isogenies then ¢ =2 isogenies or 2°? order image points and
the generated 1image curve parameter for instance aim are
generated that are used as secret starting parameters. Both
machines then may use known methods to generate two 3°°
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order generator points as new starting points for new curve
aim. This means that the next round of 1sogenies computa-
tions may be kept largely secret.

SIDH/SIKE 1n i1ts unmodified form i1s interactive and,
unless as modified as disclosed above, require exchange of
intermediate public data. The literature mentions that re-use
of factor ka and kb in SIDH/SIKE 1s advised against.
However, re-use of 1sogeny computation results may con-
siderably speed up keyword computation.

In accordance with an aspect of the present invention, a
common secret keyword 1s computed using SIDH or any
1sogeny based DH method. The result 1s generally a common
1-invariant or a common curve parameter. One may also
carry a point, on the starting curve or being an off-curve
point through i1sogeny steps. The common result may be
used to create a common p-state inverter or inverter rule or
shared secret key. Such a rule may be public or secret. If it
1s secret 1t requires to be distributed to machines. It may also
be published as a public rule. For instance the rule may be:
use the real part of the j-invariant and use the first k digits
of the j-invariant in reverse order as a factor m and use the
last k digits 1n reverse order as an addition factor ca. When
the j-invariant 1s 2211+118, then the real part 1s 118. Using
k=2 the factor m 1s 11 and the factor ca=81. The reversible
inverter of state 1 1s then mv(1)=11*1+118 mod-p. This 1s a
reversible imnverter. One may make the inversion more com-
plicated by for instance interleaving or shifting as described
carlier by the inventor. Clearly, the two machines Alice and
Bob having computed 22114118 now have a common
reversible 431-state inverter when p=431 as 1n the Costello
article.

In a follow-on determination of a secret common key one
may provide eirther in clear text or in mverted or otherwise
encrypted form a datapoint X which may be on the starting
curve or 1t may not be. The same secret factors ka and kb are
used 1n the exchange. However, the generator points do not
have to be carried through 1n 1sogenies as they were already
determined. One may store immediate kernels and use them
for 1sogeny of the datapoint X. The machines may also
perform the 1sogeny mapping computation of this point. It
appears that computation of the image curve parameter 1s
also not required, because one may apply the known Velu
expression for each 1sogeny based on a stored/retrieved or
computed kernel point to carry through the x-coordinate of
the point using the related kernel point. For appropriate DH
procedure both Alice and Bob machine have to publish the
result of their specific 1sogenies of the point X. However, no
other intermediate 1mage points nor the 1sogeny of the curve
has to be published as these are already known. Instead of
publishing the image point of X by respectively Alice and
Bob, the image point may be inverted or FL'Ted multiplica-
tively mnverted by the secret and mutually available revers-
ible inverter. For further processing the received point i1s
reversed. Ultimately the 1sogenies are completed and a novel
secret common keyword 1s based on the thus computed
image ol datapoint X.

In order to limit bandwidth requirements 1n exchanging
public keys, SIDH/SIKE oflers the opportunity to compress
the size of public keys to be exchanged. This compression 1s
described for instance 1n the article Costello et al. Eilicient
Compression of SIDH Public Keys, downloaded from
10.10077/9°78-3-319-56620-7_24 pdf (springer.com), which
1s 1incorporated herein by reference.

SIDH/SIKE and other cryptographic methods attempt to
reduce the size of keys and make a better use of bandwidth.
The SIDH/SIKE compression 1s based on computation of
public key points as coetlicients of a basis for a specific
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1sogeny curve using two points of order ¢ for the public
1sogeny curve for £ =2 or £ =3 and ¢ 1s €A or eB respectively,
which 1s smaller than p. In accordance with an aspect of the
present invention such or another compression 1s used for
transmission of public key points. In case of applying such
a compression method one should preferably not apply the
p-state reversible inverter derived from a previous secret
shared key. In such a case one should adapt the inverter or
inverter rule to the pre-determined size of Z.** or Z.°".
This can be done by modifying the rule to mv(1)=11*1+18
GF(¢ ). That 1s: one makes terms in the mverter rule smaller
than ¢, for instance by selecting the first k1 digits of for
instance a point or a parameter or of the j-invariant that
represent a number smaller than ¢ and for instance the last
k2 digits that represent a number smaller than ¢ . In order to
make the inversion rule reversible or invertible the * and +
operation should be defined over GF(¢) or over a prime
number q so that g>¢ .

Re-use of the base parameters or the absence of the need
to re-compute certain intermediate 1mage points may speed
up the required computations considerably. The same
parameters, or at least the same private keys, may be re-used
at least once and preferably more than once. There may be
a risk that repeated re-use may aflect security of the key
exchange. In accordance with an aspect of the present
invention, private parameters or keys are used a first time to
determine a common shared secret key and 1f so desired to
derive a secret reversible inverter to encipher and decipher
with a corresponding reversible inverter public keys gener-
ated by using a datapoint to create a fast SIDH/SIKE 1sogeny
secret image point and using the secret image point as a basis
for a secret shared key and/or for a new reversible mverter.
In accordance with an aspect of the present imnvention the
same set of private keys are used for a limited time, for
instance for a message exchange session wherein commu-
nication has to be checked or re-established. Using same
private keys may be limited to for instance 15 minutes, 30
minutes, 1 hour, half a day, a day, a week or longer. One may
also limit re-use to a number of times that a public key
exchange takes place. For instance re-use takes place for 2,
4,10, 25, 50 or 100 or more public key exchanges. For each
re-use preferably a new datapoint not previously used,
preferably a randomly generated datapoint 1s used. After a
condition for re-use of private keys has expired, new private
keys have to be used and a cryptographic cycle may start
anew.

Cryptographic methods generally require full publication
of all possible computational steps and only private keys are
kept secret. One basically knows how a private key 1s used,
but 1t 1s intractable to dertve from public exchange of data
what the private key 1s. The cardinality ‘p’ of an operation
1s generally part of a public key. Making an operation private
by using a secret FLT tremendously boosts the security of an
operation beyond the cardinality p. However, unless two
machines “know” each other, they may not share a common
n-state reversible inverter and then they cannot use the FLLT
without an exchange mechanism. In accordance with an
aspect of the present invention, the 1ssue of creating a private
reversible inverter or mnverter rule 1s addressed by generating
a shared secret keyword from which a secure FLT can be
derived.

In many cases, not only in SIDH/SIKE but 1n other public
key systems, the time and eflort required to generate a
common secret keyword depends on the size of p or n 1n
GF(p) or GF(n). Flements that have to be processed have
more bits when p or n 1s greater. On the upside, this provides
better security. On the downside it requires longer compu-
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tations. Thus, 1t would be beneficial for computation time to
use smaller values of n or p. The SIKE specification 1in Table
2.7 illustrates that SIKEp751 requires 4,541*10° cycle
counts, while SIKFEp434 requires about half or 1,906*10°
cycles. It would be beneficial 11 one had an implementation
with the security of SIKEp731 but with the speed of
SIKEp434. This may be approached by applying an n-state
reversible inverter as disclosed above. That 1s, a secret
common keyword 1s computed based on SIKEp751 with
eA=372 and eB=239 and n=2>"73""-1 and a p-state inverter
1s determined from a secret common keyword for eA=216
and eB=137 with p=2*'°3'2"/_-1. Security of SIKEp434 is
improved by encryption of public keys with a reversible
p-state 1nverter derived from an n-state secret common
keyword 1n SIKEp731.

A toy example 1illustrates this. Assume a simple SIDH
system with eA=8 and eB=>5 thus having prime n=2°*3°"-
1=6220°7. Assume further for illustrative purposes that a
secret common keyword sn=32771+120881 has been cre-
ated, either as j-invanant or curve parameter or from an
entry datapoint. We want to make the SIDH system for
p=431 more secure by using at least a 431-state inverter, or
by applying an FLT using such an inverter. An p-state
reversible mverter rule may be created from nv(i1)=a*1+b
mod-p. For ‘a’ one selects elements such as digits from for
instance the real part of sn (32771) that 1s smaller than p.
One rule may be to take the first kl digits of the real part of
sn that form a number smaller than p=431. That would be the
first 3 digits 0132771, which 1s 327. For b one selects the last
k2 digits of sn that form a number smaller than 431. That
would be the last 2 digits of 32771 or b=71. The new
43]-state reversible imverter rule 1s then mv(1)=327*1+71
mod-431. Other rules are fully contemplated. For instance a
processor may be instructed to use the odd digits of the real
part for factor ‘a’ and the even digits of sn for the factor ‘b’.
Reversible interleaving of digits, shifting and the like may
also be applied as well as other reversible rules. The basic
rules to be applied may be public. They may also be kept
private. One may create two or more reversible rules derived
from a common key. For instance, a first p-state inverter 1s
used to encrypt public keys from the Alice machine and a
second p-state inverter for the Bob machine.

If unpredictable pointdata not being on a curve 1s used as
entry data and an unpredictable p-state inverter for enci-
phering 1s used 1t will become very, very diflicult to suc-
cessiully attack SIDH/SIKE wvia public data. The increased
security 1s of course not enftirely free, as 1t may require a
multiplication and an addition to encrypt and/or to determine
a multiplicative mverse and in addition an inversion 1in
decryption 1f one encrypts with the mverter and decrypts
with the corresponding reversing inverter. In one embodi-
ment one may pre-program instructions for encryption and
decryption using placeholders for the mverter terms. Once
the terms are derived from an n-state secret common key-
word all required parameters to execute the inverter rules are
available.

Also the cardinality p may be hidden from being a public
parameter. However, this may have limited benefits for a
SIDH protocol wherein only limited values of p are avail-
able if one uses p=2°43°”-1. This requires that one selects
cither from pre-selected or pre-stored values of €A and eB
and combinations thereof. Eventually, after several public
key exchanges 1t will become clear around what value p 1s.
But if one applies a limited number of exchanges this may
be a way to further improve security.

A reversible inverter has a corresponding reversing
inverter. From that perspective 1t 1s possible and sometimes
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preferable to invert public data such as public point data or
a value p 1 accordance with an n-state inverter with n>p.
For instance in the p=62207 example with secret keyword
sn=32771+120881 a prime value of pk>p 1s created by
placing concatenating the first 2 digits of sn (being 32) to p
so that pk=326220"7. The newly formed pk 1s not prime.
However big-integer instructions exist to compute the next,
the previous or second next or any other prime close to pk.
For instance Magma has instructions NextPrime( ) that will
generate pn=3262241 which 1s a prime number up from pk
and closest to pk. One may then form a reversible inverter
rule inv(1)=a*1+b mod pn using pre-agreed digits from sn to
create a and b.

For example: use as ‘a’ the first 4 digits of the real term
of sn, which 1s 3277 and use for b the first 4 digits of the
imaginary part of sn which 1s 12088, provided 11 those terms
are not 0. If O stick to only the non-zero element of sn. Use
as pn=3272241. For instance for 1=200 the result of mver-
sion 1s 1nv(200)=3277*200+12088 mod 3272241 which 1s
244877. The reversing inverter rule is i=(inv(i)-b)*a~' mod
pk. A program like Magma can rapidly determine a~* which
1s 542801. One can check that (244877-12088)*542801
mod pk will provide the original value 200.

Methods like CSIDH are presumably already non-inter-
active. CSIDH works 1n a different manner from SIDH and
creates 1sogenies of different levels. One may modity CIDH
1n a manner similar as above, wherein first a secret inverter
1s derived and then a datapoint X 1s carried through. In that
case one may store the intermediate kernels and use Velu
formulae to carry the datapoint X through all relevant
1sogenies. Similar applications and modifications as
explained above are possible on other 1sogeny based key
exchanges, including with different type of curves like
Weierstrasz or Edwards, or different and/or modified proto-
cols like CSIDH as explained in articles and software
provided on https://csidh.isogeny.org/ which is/are icorpo-
rated herein 1n 1ts/their entirety.

For 1illustrative purposes and 1n case of SIKE, 1sogenies
are limited to 2-1sogenies and 3-1sogemes. However, other
p-1sogenies are possible as i CSIDH and aspects of the
present invention are fully contemplated as to being applied
to p-1sogenies with p being at least a prime number.

Other Use of Secret Reversible Inverters

One may use the above methods and/or devices to
improve security of existing cryptographic primitives by
applying an FLT based on secret n-state inverters and/or by
generating a secret value of n being a cardinality of an
operation over GF(n) or modulo-n.

In one illustrative example one may want to use a classical
DH (non elliptic curve). In general one would not want to
create own primes. In accordance with an aspect of the
present mvention a prime for a DH exchange is selected
from a Diflie-Hellman group as known in the art. One may
apply a coding of these groups using an n-state inverter as
described above. Preferably, a relatively small prime of for
instance 512 bits or 768 bits of Group 1 should be selected
or created. In some cases a PQ) secure secret key may be
smaller than a desired length of a DH key. In that case one
may extend a length of a key to obtain a desired size of an
inverter to encipher a prime 1 a confidential prime. In
general one may desire to use a relatively small generator
clement. However a private and secret generator may be
beneficial. In that case one should avoid relatively small and
commonly used generators as they will leak information
about the inverter. One may also use key stretching or key
derivation functions or a salt to extend the PQ secure
keyword to a practical DH usable inverter.
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In a similar way one may apply a PQ secure common
keyword to make a RSA method using relatively small
parameters secure and comparable to for istance p=4096
RSA keywords. DH 1s a closed system. Thus a complete FLT
of operations may be replaced by inverting with the secret
inverter of public keys and final secret key. The number of
potential mnverters 1s so large that without suflicient infor-
mation it may not be possible to successtully recover a
common secret keyword from publicly available data. RSA
1s an encryption method that may use at least one secret
message m. This oflers the opportunity to apply at least one
FLT to further secure a common keyword.

In one embodiment of the present imnvention both Alice
and Bob machines derive a secret reversible n-state inverter
or inverter rule from a PQ secure key exchange method. If
needed a key extension 1s applied to achieve an inverter of
for mstance 1024 bits. The machines follow the steps of
RS A using parameter sizes related to the mverter but pret-
erably smaller. For instance Alice creates a composite inte-
ger represented signal n formed from two primes p and g so
that n=p*q has a length of 512 bits or smaller. The public
keys n and e are enciphered based on the nverter and
transmitted to the Bob machine that performs a message
cipher (m)” mod n wherein m“=m® me®& . . . ®m or (e-1)
consecutive performing of operation % which 1s the FLT of
* mod n 1n accordance with the secret inverter. By keeping
at least n and potentially e secret (and selecting for e a not
commonly used value) one may greatly increase security of
small length RSA keywords. This comes at a cost of an
upiront PQ secure operation that allows a secure RSA that
1s faster than classical secure RSA which now may require
keywords of 4096 bits.

In a similar way one may modily Diflie Hellman Elliptic
Curve key exchange using secret n-state inverters by using
smaller pk cardinality of operations as significant public
keys and/or parameters are kept secret by for instance by
enciphering based on a secret inverter or a secret FLT.

It 1s noted 1n the literature that public keys are large 1n
SIDH (and smaller in CSIDH). Still, measured against
available sizes of memories and even caches, the total need
for memory of all intermediate data to compute a final
output, such as an 1sogeny parameter or j-invariant 1s not
exorbitant. Measured against computational requirements,
making memory available may be more advantageous than
re-computing curve or isogeny parameters. In published
1sogeny protocols such as SIDH/SIKE and CSIDH the
desired result 1s a j-invariant or a curve parameter (usually
A in y*=x +Ax”+x). A computationally expensive operation
1s determination of a kernel point of an 1sogeny and the
related mapping of curve points.

In accordance with an aspect of the present invention a
pomnt (x,y) which may be on an imtial curve or may
preferably not be on the mitial curve, 1s carried through all
1sogenies to determine a result point which may not be on
the result curve. In order to compute the 1sogenies, for each
1sogeny a kernel point may be needed. The kernel points are
originally computed from base points that are carried
through the 1sogenies. Rather than re-compute these kernel
points they may be stored mn memory and retrieved into
proper processor memory or cache to be used for computing
the 1image point related to a starting point based on a relevant
kernel. For instance in SIKE434 one uses ¢2=216. The
protocol at the Alice side € =2) computes 2*¥216=432 1s0g-
enies which each requires a kernel point. Assuming a 600
byte size kernel or even a 1 kB kernel point, less than 500
kB memory 1s required to store all kernel points. This may
speed up considerably generating the public part of a com-
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puted point and the generation of a shared secret end-point.
A secret common reversible n-state inverter may be derived
from an original or starting SIDH or CSIDH protocol. Such
a secret inverter may be used to invert the point that 1s to be
carried through the 1sogenies and/or the public point that 1s
exchanged between two machines.

The determination of a secret n-state inverter in CSIDH
may be illustrated using a toy example of CSIDH over F419
in the slides Castryck et al. CSIDH: An Efhlicient Post-
Quantum Commutative Group Action down loaded from
https://yx’7.cc/docs/csidh/csidh  cwg  slides.pdf which 1s
incorporated herein by reference. Slhide 25 of 79 illustrates
the different curves E ,: y"=x"+Ax”+x over F419 due to 3-,5-
and 7-1sogenies with expressions for a 3-1sogeny from curve
E., onto curve E,. Herein p=4*3*5%*7-1 with 26 diflerent
curves that can be reached from a starting curve (27 curves
in total). The CSIDH example shows a secret 1sogeny
starting from E,, or E,: y"=x"+x with as shared secret curve
E.on OF Eaoy: V=X +390x°+X. As an illustrative example,
one may use the first 2 digits of the curve parameter (being
39) as a multiplication factor and the last 2 digits (being 90)
as an addition factor mod-419 to create a reversible 419-
state 1nverter 1v(1)=39*1+90. Another example may be
iverter v(1)=390*1+093 or 1nv(1)=2*390*1+3*093 mod-
419 or any shared rule between Alice and Bob machines to
determine a shared reversible n-state inverter. If needed, one
can generate a p-state inverter by doing the above compu-
tation mod-p with p<n. One may also create inverters with
p>n by applying additional agreed upon multiplication fac-
tors k1 and k2 so that inv(1)=k1*a+k2*b mod-p.

In accordance with an aspect of the present invention,
such inverter may be used i a different cryptographic
application that 1s modified 1n accordance with a common or

shared reversible inverter or in CSIDH method with an n2
that 1s smaller than nl. For instance, a first CSIDH method
is used with nl=4*72*57%77_1 and n2=4*3"*55%7%_1
and n2<nl. For data exchange the computed nl-state
inverter 1s applied. Thus providing faster computation of
smaller 1sogenies enhanced by security of using a diflicult to
determine n-1-state inverter.

Furthermore, one may apply a (X,v) coordinate that may
represent a point on the original curve and encode or
encipher the (X,y) coordinate with the previously determined
inverter. The point (X,y) may also be NOT on the original
curve. The exchange data 1s also enciphered on the basis of
the reversible inverter. Practically, the literature recom-
mends p being a composite of about 74 primes with powers
in [-5, 3]. If so desired, the computed parameters of the
intermediate 1sogenies may be stored and re-used to carry
the point (x,y) through all the 1sogenies. A shared secret after
re-use of the original CSIDH method 1s at least the x-coor-
dinate of the final point generated by both the Alice and Bob
machine. In one embodiment of the present invention the
point (X,y) 1s on the original curve. The shared secret 1s
based on at least the x-coordinate of the computed end-point
at the Alice and Bob machine. An agreement may be made
between the two machines to arrive at a common and shared
y-coordinate that 1s used to further determine a common
shared secret. In one embodiment of the present invention,
the starting point 1s not of an order of the used primes or
prime’*“°”. One may generate at random a point that is not
on the original curve. The shared secret 1s then again based
at least on the x-coordinate of the carried through point
generated by the end curve. It 1s again noted that even
though curve expressions are used or expression related to a
curve, the computed point 1tselt does not need to be on the
curve. As 1 SIDH, the above approach allows a re-use of
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previously determined parameters and at least prevents
exchange of public keys as these remain the same. Only the
intermediate coordinates have to be exchanged. These 1nter-
mediate or public coordinates may be exchanged “in the
clear” or may be enciphered based on the earlier determined
reversible mverter.

In general 1sogeny computation may be easier for a server
than managing a set of kernel points. In one embodiment of
the present invention, one machine may recompute kernel
points while another machine stores computed kernels and/
or curve parameters and retrieves stored kernel points and/or
computed curve parameters for 1sogeny computations of a
new point. This retrieval of stored 1sogeny data takes place
until iitial parameters (especially multiplication factors) are
changed and a new cycle 1s started.

In one embodiment 11 for instance a curve 1s defined over
I, one may agree that the y-coordinate of a poimnt is
determined to be based on 1ts lowest real value equivalent,
in order to arrive at the same (X,y) point at two machines.

Once a secret common key that 1s PQ and classical secure
has been computed, a secret n-state inverter may be derived
that 1s also PQ secure. Security may be increased by
applying cryptographic primitives that do not require any or
very limited exchange of data between machines. One can
come up with many variants of such procedures. One may
mix different primitives. For instance, determine a common
keyword via SIDH/SIKE and then proceed with common
secret mod-p multiplication. It 1s noted that for instance a
point multiplication k*P over an elliptic curve, when not
degenerative, even when P 1s not on a curve will generate the
same result, when both machine perform the same compu-
tations. As an illustrative example, a secret common curve
parameter Ab which may include several sub parameters 1s
computed by two machines. The curve determined by Ab 1s
then applied to determine k*P. The factor k may be derived
from Ab as shown above or from a derived parameter, such
as the j-invariant of Ab. A point P may be randomly
generated and transmitted by one machine. It may be
inverted by both machines based on a common secret
inverter into P' and then computed as k*P' by two machines
to arrive at a common new shared and secret keyword Q.
New computational parameters may be derived from the
newly computed point or from a combination of previously
computed and newly computed data. As long as no interac-
tive data 1s exchanged (except random data), no data 1s
available for serious attacks by an attacker.

Elgamal encryption 1s a known primitive to encrypt a
message. It 1s often used as an alternative to RSA. Elgamal
also has a signature scheme. Elgamal encryption may also be
used 1n an elliptic curve. Instead of powers of a generator
term as in the original Flgamal system, the elliptic curve
form applies multiplication of points as known 1s elliptic
curve cryptography (ECC).

Elgamal, like RSA and unlike Diflie-Hellman (IDH) 1s not
a closed system because a user defined message m 1s
applied. In Fl'Ted DH one works with an inverted generator
term. In RSA and Elgamal one may apply any wviable
message, though preferably not one that represents an
iverter zero-clement or one-element. Elgamal, 1n principle
and as known to one of ordinary skill uses preferably a finite
field Fq and selects a generator element g, and a machine
generates a term h=g* 1 Fq with x being private and
transmits h to the Bob machine. The Bob machine generates
s=l" with y preferably random and cl=g” and ¢2=m*s and
transiers [c1 c2] to the Alice machine. Because m 1s secret
and not predetermined, an FLT will increase the security of
Elgamal encryption.
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As an example take =23 and F23 with generator 5. With
x=7 and y=14 and m=21, [h ¢c1 c2]=[17 13 6]. Using an FLLT
with reversible 23-state inverter inv=[22235167 129 16
2038 18 4 11 10 17 14 13 0 19 15 21] will require a
generator gi=rinv(g)=rinv(5)=2, which may be determined
by the Alice and Bob machines based on the mverter. In the
Elgamal exchange using x=7 and y=14 and message m=17
will have data transfer [h ¢1 ¢2]=[16 18 9].

In the elliptic curve Elgamal, a generator point P 1s
“multiplied” by secret a to form A=a*P and transmitted by
the Alice machine to the Bob machine. The Bob machine
computes K=k*P and C=k*A+m wherein message m 1s
preferably a point on the curve, though that may not be
required in all circumstances. The Bob machine transmits
encrypted message C=k*A+m and K to the Alice machine.
The Alice machine computes S=a*K=a*k*P. k*A=S and
thus C=S+m and thus m=C-S. Suppose an FLTed curve 1s
determined by y*=x"+a*x+b or in FLTed form y"=x"Pa
® xPb. One may then select an m with a random x-coor-
dinate on the FLTed curve and determine the corresponding
FL'Ted y-coordinate. This breaks the relationship between
classic and FLTed elliptic curve Elgamal.

In accordance with an aspect of the present invention one
or more signals represent a message or one or more symbols
which are modified 1n accordance with an n-state reversible
inverter and/or mverter rule or with a part of an n-state
inverter or mverter rule preferably with n>3 or more pret-
erably n>100 or more preferable n>250. As explained herein
a first modification 1n accordance with or based on an n-state
inverter may be an n-state Finite Lab-transform or FLT. That
1s, a cryptographic method, primitive or circuit 1s determined
by an n-state switching operation. Such an operation may be
defined as a binary operation and operates on sets or words
ol at least k-bits with k>1. In that case 1t 1s understood herein
that 1n that case the n-state operation may be described by an
n-state operation, which in the binary case in n=2".

The FLT of an n-state operation preserves meta-properties
of an n-state operations but may change a state which
represents a zero-element or one-element of the operation. It
has been disclosed by the mnventor thereof that one may thus
modily by FLT known cryptographic methods and/or cir-
cuits for instance DES, 3DES, AES, SHA-1, SHA-2 and
SHA-3 and other methods of encryption/decryption and
hashing or message digest generation. In accordance with an
aspect of the present invention one may also modify an mput
signal and/or an intermediate signal and/or output signal 1n
accordance with a reversible n-state inverter. Such an
inverter may be the same mverter of the FLT or a different
one. One may use the n-state inverter to modity a signal. Or
one may use the corresponding reversing n-state inverter to
modily a signal. A requirement to obtain useful results 1s that
two machines using the methods of this disclosure 1s that all
use the same modifications (in case of hashing for instance)
or corresponding reversing modifications in case of encryp-
tion/decryption.

In some cases, cryptographic procedures may be closed,
in the sense of having pre-defined parameters. For instance
in a standard Diflie-Hellman (DH) method to determine a
common keyword g?*g”=g?” two machines use the same
operation * defined over GF(n), and a predefined generator
g. The intractable part comes from both machines selecting
sulliciently large terms a and b. The machines exchange g
and g” in order to arrive at a common g“’. One may apply
an FL'T on the operation. For both machines to perform a
correct FL'T modified DH, they have to use the pre-defined
generator g. IT an FLTed operation & (the FLLT of *) 1s used,
the FLLTed ® should be applied to a generator gi=rinv(g). A
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potential weakness may be that the intermediate results (gi”
and gf”) that are exchanged are in fact rinv(g®) and rinv(g®).
In accordance with an aspect with an aspect of the present
invention, one may reversibly encipher input and/or inter-
mediate and/or output data with one or more times applica-
tion of an n-state inverter. For instance in the FLl'Ted DH
method one may apply the reversing inverter rinv k times.
Thus gf*k=rinv*(rinv(g®)). For correct further processing, a
receiving machine then applies the n-state mverter v k
times and gf*=inv*(rinv*(rinv(g?)))=inv*(rinv*(gf*)).

This 1s easily 1llustrated with an example over GF(19).
Assume a reversible 23-state inverter 1s inv=[2225167 12
9162038184 111017141301915 21]. A corresponding,
reversing 23-state mverter 1s rinv=[193 1 1013245117
1514 6 18 17 21 8 16 12 20 9 22 0]. One may check that
inv(rinv(3))=3 (origin—-0). One can also check that
rinv*(6)=12 and inv"(12)=6. For relatively small values of n
an mverter rule mv(1)=a*1+b mod-n may not be secure
enough. Additional transposition increases the security.

Accordingly, part of a modification may include at least
once or up to k application of an inversion, an inversion rule,
a reversing inversion or reversing inversion rule that is
preferably kept secret and 1s common to two machines that
are engaged with a modified cryptographic method. For
instance, 1n an illustrative example of a modified DH method
an intermediate result 1s a 23-state state 6. This result 1s
modified consecutively 4 times with the above 23-state
reversing 1inverter rinv to transmitted message 12. The
receiving machines applies the 23-state inverter inv 4 times
to recover state 6 and applies this state in completion of a
DH or modified DH computation. The two machines may be
programmed to apply addition inversion of the DH result to
generate a common keyword.

This approach may also be applied to Elliptic Curve DH.
It may also be applied to other forms of DH computations
such as Isogeny Based DH or any form of cryptographic
computation wherein an exchange of data takes place
between at least two machines.

In accordance with an aspect of the present invention, data
that 1s exchanged as part of a cryptographic method between
two machines may be modified in accordance with an FLT.
For instance, a machine transmits an intermediate result of
a DH or modified DH procedure to another machine.
Assume such a data 1s represented as ge. Rather than
transmitting gh, the transmitting machine determines gh™'
based on an inverter based FLT, wherein gh® gh™'=f0. Thus
gh™! is the multiplicative reverse relative to & and wherein
10 1s the one-element of the FL'led operation of * mto & .
When the mverter of the FLT 1s secret than certainly the
inverse of gh relative to the FLT 1s secret and intractable to
determine. One can check that gh™'=rinv(g™") wherein rinv
(2)=gh.

One may apply the same approach 1n Elliptic Curve Ditlie
Hellman (ECDH) by determinming for data exchange the
multiplicative inverse coordinates of public key (xp,yp)
relative to operation % .

One may apply the same approach 1n for instance Isogeny
Based DH like SIDH and CSIDH. The public keys are then
modified by the above approach. Because 1sogeny based
methods apply computations based on Gaussian integers in
ficld Fp the computation may look a bit different, but is
essentially the same as above. Assume a public key has a
coordinate corl=a+b*1 wherein one may call a the real and
b the imaginary part and i°+1=0. The multiplicative inverse
of a+b*1 1s c+d*1 and (a+b*1)*(c+d*1)=1+0*1 wherein
(140*1) 1s the neutral element. For a multiplicative inverse
it requires that c+d*i=(a—b*1)/(a®+b”). Or (c+d*i)=(a—b*1)*
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(a®+b*)™"). One is reminded that the above applies to the
FLTed operation and thus one has to compute (cdi)
#® (a”@b>)"'. The inverse of (a*®b”) is relative to the
neutral element of the FLLTed operation ® which 1s prefer-
ably not 1, but for instance 10.

The above may be implemented in a computer program
that 1s easy to execute to compute the desired result. How-
ever, 1t 1s hard to determine (a+b*1) from (c+d*1) when the
related inverter of the FLT 1s kept secret.

A combination of intractable problems like EC, RSA, DH,
SIDH, CSIDH with hard to find reversible inverters from
public keys increases security of inverter based modifica-
tions of cryptographic methods. Assume solving an intrac-
table problem requires an etiort z=i(k, . . . ) which 1s an eflort
depending on at least a parameter k. Commonly k relates to
the size of a finite field GF(k). Unless there 1s a deterministic
way to determine 1verters from published data, which 1s
believed to be very hard, the solving of this problem requires

an effort h=g(k, . . . ). This suggests that one can achieve a
same level of Securlty by lowering zl=t(kl, . . . ) to
z2=1(k2, . . . ) with k2<k1 11 one applies h2=g(k2, . ) For

k=k1 or unmodiﬁed method h=1. Applymg an FLT or other
inverter based modification requires increased eflorts, but
presumable much less than savings from fewer operations in
the original intractable problem. For instance lowering a size
of a field with 25% may reduce computation eflorts from
f(x*") to f(x**) while the required increase of effort is linear
f(k1-k2). This may lead to a substantial increase of security
at a same or siumilar level of computation effort or achieve an
acceptable level of security at a relatively low level of
computation efforts. This 1s beneficial 1n low computation
resource machines as found for instance in Internet of
Things (IoT).

An 1llustrative example 1s the use of elliptic curve pairing
based cryptography. For instance, pairing based signatures
or validation that may pertain to a confidential group of
machines, benefits significantly of the FLT. It 1s known that
clliptic curve based pairing may ofler significant security
benefits. For instance the article Boneh et al. Short Signa-
tures from the Weil pairing, downloaded from https://ww-
w.iacr.org/archive/asiacrypt2001/22480516.pdl’  which 1s
incorporated herein by reference teaches the creation of very
short but highly secure cryptographic signatures or machine
signatures. These signatures based on Weil pairings of points
of an elliptic curve may be called BLS signatures. Briefly
recapped, in a BLS signature a signing machine determines
a Weil pairing of 2 points on a curve (or on different elliptic
curves) but with identical order. A first point P 1s a public
generator point that 1s “multiplied” as known in the art by a
private or secret number k. A message m 1s hashed to H(m)
that represents an x-coordinate of the (or one of the) starting,
curves and the corresponding y-coordinate 1s determined. A
public point Pk=k*P 1s generated with k held secret. The
signing machine then determines signature point S which 1s
k*H(m). The signature 1s also public. A receiving machine
determines the hash H(m) and pairings el(P,H(m)) and
e¢2(Pk, S). If el=e2 the message signature 1s validated.

Unfortunately, pairings determinations are quite resource
demanding. One may achieve the benefits of BLS signatures
with may be as small as 33 bytes by limiting the size of the
finite field for computations and by enciphering the public
data S and/or Pk with a reversible n-state inverter. A
receiving machine recovers clear S and/or Pk by applying a
corresponding reversing inverter.

Applying 1 a cryptographic method of a reversible
n-state inverter may be susceptible to brute force trial of all
possibilities. In accordance with an aspect of the present
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invention, an attack should require a certain level of efiort.
This will render a successtul attack, especially a brute force
attack, less likely because a significant amount of processing
ellort 1s required. One way to 1ncrease a level of attack etlort
1s to encode or encipher public data or at least part of public
data with an FLT. For instance if public exchange data is
‘dat’ as defined under GF(n) or modulo-n requirements, an
n-state reversible inverter may be used to encipher ‘dat’ to
inv(dat) or rinv(dat), which 1s deciphered at a receiving
machine. In accordance with a further aspect of the present
invention a machine determine datFL.T™!, which is an
iverse of ‘dat’ relative to an FLTed operation such as
% which i1s the FLT of a multiplication operation or &
which 1s the FLT of a *+” or addition operation.

In accordance with an aspect of the present mmvention
dat,,,~* is the inverse of ‘dat’ determined from the FLT.
Assume an n-state inverter inv. For instance an n-state
operation * 1s FLTed from 1nv and corresponding reversing
inverter rinv into & . The new one-element under which the
inverse dat.,, ' is determined is rinv(one)=onef wherein
‘one’ 1s the original one-element. One determines then
d:&l‘[ﬂ_r,f_l so that dat® dat,, . '=onef. How to determine
FlTed imverses in different manners has been explained
previously by the inventor. For example use n=23 and
GF(23) and as 23-state reversible inverter the 23-state
identity mverter (JO 1 2 3 ... 21 22]) which 1s cyclically
shifted 3 positions to the left ([345...21 2201 2]) and
has as reversing mverter rinv=[202122012 ... 18 19].
From rinv one can see that the new one element onei=21.
Take element g=15. The multiplicative inverse g~ in GF(23)
1s 20 as 20%15 mod-23=1. The FLT of * 1n GF(23) 15 0. The
multiplicative inverse ol g=15 1 O relative to onef 1s
g =6 as 15® 6=21. A receiving machine can recover
g=15 from 21 by determining the FLTed multiplicative
iverse ol 21 relative to onef. One may of course also
determine an inverse relative to another operation, like
addition.

In accordance with another aspect of the present mven-
tion, a data element may be inverted with an n-state inverter
before an inverse 1s determined. For instance with g=15,
inv(15)=18 and rinv(15)=12. The mverse of 18 over *GF
(23) 1s 9. This 1s different from the original mverse, which
1s 20. One may also determine the multiplicative inverse of
nnv(15)=12, which 1s 21. One may also determine the
FlTed multiplicative iverse of 18 which 1s 8 (8
% 18=onel=21.) One may also determine the FL'Ted multi-
plicative inverse of 12 which 1s 17 (12® 17=onef=21).

It 15 common to define additive and multiplicative
inverses relative to 0 and 1, respectively. However, one may
also redefine and inverse such as a multiplicative relative to
an element not 1. For instance, one may define a multipli-
cative mverse over GF(23) relative to 3. The new 1verse of
7 relative to 3 1s then 7, as 7*7 mod-23=3. Such inverses are
casy to determine, especially 1n modular computations, but
form an additional burden on an attacker.

A reversible n-state inverter herein, 1s a reversible inverter
represented as a series of n elements, each element having
one of n states, each element having an index and each of
n-states appears exactly once. A reversible n-state imnverter,
represented as v has n elements 1n n positions. One may
represent an n-state mverter as an teger function mnv(1)=k.
Herein, unless specifically indicated otherwise, the use of a
reversible n-state inverter means an inverter that i1s not
identity. The identity inverter may be represented as inv(1)=1.
Such an inverter leaves all elements (or signals 1n a circuit
that 1s represented by an inverter) unmodified and, again

unless specifically mentioned as such, 1s not intended to be
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used 1n the herein provided aspects of the present invention,
unless indicated as such specifically.

The above approach also applies to elements 1n a finite
field ot Gaussian integers. For instance the finite field GF ,,
has elements a+i*b and i*+1=0 and a and b in GF(23). An
clement a+b1 has as multiplicative inverse 1/a+b1 or after
some manipulations (a—bi)*(a*+b*)"".

One can check that element (3+31) with a,b 1n GF(23) has
as multiplicative mverse (17+101) with (5+31)*(17+101)=1.
The FLT applies to these inverses. Accordingly, in for
instance a SIDH isogeny computation two machines
exchange public data. These data may be modified as to be
represented as for instance an FLTed multiplicative inverse
or any other secret modification. The machines are enabled
to restore the modified data to a form that 1s apphied to
further computation of a common keyword.

Gaussian integer representation of n-state operations 1s
provided in the context of 1sogeny based cryptography.
However, Gaussian integer representation may be used 1n
many different cryptographic operations such as key
exchange, encryption, and signature generation. A further
range of Gaussian integer based cryptographic methods that
are modified using an FLT 1s disclosed and described 1n US
Provisional Patent Application 63/067,281 from which the
instant disclosure depends.

In general a cryptographic machine and/or method applies
one or more common public parameters, like n of GF(n) and
g as generator in classical Diflie Hellman key exchange. By
providing unusual data as public parameters, an attacker
may be alerted that a modification, such as an FLT 1s applied.
This may provide a give-away to an attacker to exclude
certain data 1n an attack. It would be beneficial to hide the
fact that an FLT and/or an n-state reversible inverter is
applied. In that case one prefers to apply an FL'T or an n-state
inverter that leaves data that are part of a public key
unmodified.

For instance, using GF(23) the element g=5 1s a generator
clement. The example 23-state inverter 1s mnv=[34 5 6 7 8
01011 121314151617 181920212223 01 2]. It 1s
preferred that invr(5)=5. However (using origin 0) currently
inv(5)=8. Furthermore mmv(2)=5. In order to make the
inverter ivr with ivr(5)=5, element of 1vr(2) should be
given the content of 1v(5)=8 so that invr(2)=8, which will
give the mverter mvr=[3 4867591011 12 13 14 15 16
17 18 19 20 21 22 23 0 1 2]. One then generates the
FLT of *-mod-23 i accordance with inverter invr. This
ensures that gi=5 1s now a generator of the exponentiation of
FLTed * which we may call & .

The effect of the FLT using this modified and adjusted
inverter (that 1s: adjusted for not modifying one or more
public data) is that g*=g*g*g . . . *g mod-n is likely different
from gf*=gf® of® ... ® gf, while gf=g and & is the n-state
FLTed version of *, with the understanding that inv(g)=g and
inv being a reversible n-state inverter. In the above example
g*=4 and gf* under ® generates gf*=1. So, while for an
uninformed attacker, the operation looks like a common DH
operation, the actual operation 1s modified generating an
unexpected result. Common attacks on DH will be 1netlec-
tive. It 1s further noted that using the not adjusted n-state
inverter will generate an FLTed operation that does NOT
have g=5 as generator.

As a further example, the above FLT 1s applied to *
mod-233, The element g=87 1s a generator of GF(233).
Using 1nv(1)=199*1+98 with the * operation will create an
FLlTed operation ® 1 which does not have g=87 as a
generator. The inverter 1s adjusted for g=87 by making
invr=inv and modifying mvr(87)=87. The inverter element
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inv(87)=171 and 1nv(158)=88. These elements are modified
in 1nvr so that mvr(158)=171 and invr(87)=87. Based on the
new 1nverter a new FLTed operation 1s generated as
% 2=labtransform(*, invr). One may check that g=87 1s a
generator of & 2. One may also check that g*g=113 and gf
% g1=75 with gi=g. This proves that, the FLL'Ted operation
using the same generator element as the original operation
will generate different results. This 1s of course beneficial for
Increasing or improving a security of a cryptographic opera-
tion such as DH key exchange.

The above adjustment of an inverter or FLT to ensure that
a public key remains unchanged under an FLT, may be
applied to any cryptographic method that applies a generator
clement or a public key which may be limited by verifiable
conditions. Thus, a change or modifications of such a
generator element or starting element or public key under an
FL'T may be an indication to an attacker that a modification
1s applied. Even when 1t 1s clear that a modification or FLLT
1s applied, a successiul attack on an FLTed cryptographic
method 1s generally unsuccessiul. One reason 1s that on top
of a generally intractable problem, there are just too many
possible FLT configurations. However, 1n order not to alert
an attacker of a possible FL'T or modification, 1t may be
beneficial to apply an FLT or encryption that leaves the
initial public key unmodified. Any follow-up public key
exchange as in classic DH and other methods, including
Elgamal, which also applies a generator element, will appear
as a valid public-key. However, such a public key will not
help an attacker as 1t appears to be generated with common
GF(n) operations. An attacker may even derive correct
exponents for these public keys under unmodified DH.
However, these derived exponents will not lead to the
correct common keyword under the provided FLT modifi-
cations.

The above adjustment of the FLT or n-state inverter
requires a different approach when a machine applies a
computational inversion rule, rather than a stored switching
table or stored inverter. Rather than performing the mver-
sions of FIG. 1 and the reverse inversion of the result, an
exponentiation gf=gf®gf . . . ® gf k-1 times may be
performed by gf*=g*g* . . . *g mod-n k-1 times (gf=g) and
performing the reversing mverter of ivr (which rinvr) on
the result with a reversing inverter rule, wherein one has to
catch a modified result, due to the modification of the
iversion rule for invr(g)=g. The reversing inversion rule
exchanges the output for input states g and for the inverter
index ‘ind’” for which mv(ind)=g. Thus rinvr(g)=g and
rinvr(inv(g))=ind. Thus one has to catch these input states
prior to reversing inversion and apply the correct mversion.

One benefit of the above approach 1s that one may modily
an n-state mverter for an FLT ad hoc on the basis of one or
more public keys, which may be vaniable. For instance, there
are usually multiple generator elements of a finite field.

One may apply a similar approach to elliptic curve based
methods. One may apply an n-state reversible inverter, for
instance to FLT modily the to be applied computer opera-
tions. One may use one of one or more n-state reversible
inverters available to two machines that apply matching
cryptographic methods on a message that 1s exchanged.
However, public keys 1n elliptic curves have generally more
components than classical methods.

An elliptic curve expression may be determined (in
Weierstrasz notation) as y°=x"+ax+b, requiring two param-
cters a and b. Furthermore, a point on an elliptic curve 1s
determined two coordinates, even though the second (or v
coordinate) may be derived via the curve expression from
the x-coordinate. Furthermore, the number of points on a
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curve over a finite field 1s limited. Certain x-coordinates do
not occur in curve points. The application of FLT and
inverter based modifications generate curve points that gen-
crally are not on an onginal curve. The FLT 1n general
modifies the curve expressions. An attacker thus may con-
clude from a public key exchange (such as k1*G and k2*G
in ECDH) that these do not represent points on an original
curve. It will be impossible for an attacker to derive an
applied n-state inverter from public data alone, unless 1n
some way one or more of the private keys were revealed.
One may still modily a reversible n-state mverter to keep
one or more public parameters unmodified. However, inter-
mediate key exchange may reveal that these points are not
on a published curve.

In a further embodiment of the present invention, one may
encipher elements of an intermediate key exchange as
inverses relative to an FLT as disclosed earlier above. One
may also publish all mitial and intermediate public keys in
unmodified form, but compute or modily the common
keyword 1n accordance with a common n-state inverter or
FLT dernived from that. An attacker 1s unable to discern from
public key exchange that an FLT or n-state inverter will be
applied, let alone what the modification 1s or will be.

Matrix Based Dithe Hellman Key Exchange

In accordance with an aspect of the present mnvention, an
apparatus and a method are provided to generate a common
keyword at two computing machines, using at least a com-
mon key and private keys and using matrix based compu-
tations. Using matrices 1in cryptography as opposed to single
clements 1n a finite field or ring adds complexity to com-
putations. Though i1t may increase computational efforts of
the machines 1t also requires increased eflorts from an
attacker to successiully attack a cryptographic method. The
cllorts of an attacker on matrix based cryptography is greater
than a burden placed on authorized machines. There are
several ways to design a matrix based key exchange system.

In a first embodiment one may apply an k-by-k n-state
matrix, say A, which may be a common and public element
of the system. In a further embodiment an Alice machine
applies secret/private key ka to compute A* and publishes
A" to the Bob machine. The Bob machine applies private
key kb to compute and publish public key A*”. The Alice
machine computes (A*)* and the Bob machine computes
(A*Y* . The common and secret key may then be A"
This requires that A has associative properties. It 15 well
known that matrix multiplication 1s not automatically com-
mutative. However: AP*A*=A**AP=AP**  Furthermore,
while not strictly required, one would like the matrix A to be
a generator element of the group of matrix products prefer-
ably in a cyclic way, and preferably so that the repetition rate
of the multiplication of n-state multiplication 1s as close as
possible to n.

Different ways to create matrix based key exchange
systems and/or DH-like matrix based key exchange systems
have been proposed. For efliciency reasons these systems are
often limited to binary and/or 2-by-2 matrices and/or include
multiple matrices, due to the limitations of lack of commu-
tative operations.

One way to determine an n-state matrix that fits a need of
a cryptographic operation 1s a matrix that represents a
teedback shift register (FSR) operation, of which the LFSR
(linear feedback shift register) 1s a known device. Such a
device 1500 i Fibonacci configurations is 1illustrated in

generic form m FIG. 6. FSR 1500 has 3 shift register
elements 1501, 1502 and 1503 and n-state inverters 1504,
1505 and 1506 and 2-mput/one output switching devices
1507 and 1508. Loop 1509 is a straight through connection

10

15

20

25

30

35

40

45

50

55

60

65

38

and may be represented by an 1dentity inverter, as what goes
in comes out. The arrows are to 1indicate a direction of signal
flow 1n 1500. A device as shown 1n FIG. 6 can be represented
by a polynomial of order 3. For instance by 1*x +b%*x "+
c*x+d wheremn * and + are n-state operations, yet to be
defined and b, ¢ and d are based on n-state inverters not
representing a zero-clement. An open connection may be
considered an always ofl inverter and loop connection 1509
may be represented by the 1dentity inverter. The FSR oper-
ates under a clock signal, not shown but assumed as not to
confuse the diagram by too many details, so that a content
ol a shuft register element 1s used to determine a new signal
after which all signals are shifted in a counter clockwise
direction. A content of a shift register (in this example 3
clements) 1s cyclic, in the sense that an n-state FSR such as
1500 has at most 3”-1 unique contents. When an 1nitial
content re-appears after 3”-1 cycles, 1500 1s called a maxi-
mum-length (ML) sequence generator. This generator 1s
then represented by a primitive 3-degree polynomial over
GF(n). As an 1illustrative example, one may use a n=11
system, which means the signals and the operations on the
signals are represented by 11-state operations such as addi-
tion and multiplication operations defined over GF(11) with
zero-element represented as O and one-element represented
by 1. The switching functions 1508 and 1509 may be
represented by addition mod-n (or mod-11 1n the example)
and the mverters are multiplication mod-11 with a constant
factor. For instance the multiplication *5-mod 11 1s the
11-state mnverter [0 5104938271 6].

FSR device 1500 1s a 11-state ML generator of a sequence
of length of 1330 elements when 1s shows a particular
autocorrelation graph such as 1n graph 700 1n FIG. 7 or when
the content of 1501, 1502 and 1503 [x1 x2 x3] has 1330 (1s
11°-1) different consecutive contents. Being an ML genera-
tor means that 1330 different combinations of [x1 x2 x3]
occur. The only combination that does not occur 1s [0 0 O]
which 1s a forbidden and degenerative condition. Each of the
valid [x]1 x2 x3] contents 1s a valid starting position or

generator state. Using still GF(11) as representing the opera-
tions of 13500, then 1507 and 1508 are represented by

addition over GF(11) (which 1s +-mod 11) and 1504 1is
represented by a 11-state inverter represented by 0*11 mod
11 and 1505 by *9 mod 11 and 1506 by *7 mod 11.

It has been explained by the inventor elsewhere how to
generate ML n-state sequences and how to check if a
generator 1s indeed ML. One way 1s to have a k-clement
n-state FSR generate a complete sequence of t=n"-1 ele-
ments. Then form a sequence by concatenating the sequence
t with part of itsell into a sequence of 3t-2 elements and
compare (correlate) the sequence oft elements step by step
with a sequence oft elements 1n the 3t-2. An ML sequence
will generate a correlation that 1s tlat with one central peak.
One example of such a correlation graph is 1illustrated 1n
computer screen capture 700 1n FIG. 7 of a graph generated
by a Matlab program. The first mverter in this specific
representation 1s always a connection 1509 in FIG. 6 which
would be i1dentity or being 2 1n origin-1.

The 11-state generator 1500 may be represented by a
primitive polynomial of degree 3 as x> +c1*x*+c2*x+c3 over
GF(11) which 1s represented 1n origin 0 with 1ts illustrative
coellicients as [1 0 2 4] 1n 1ts coethicients origin—-0 and [2 1
3 5] in origin 1 and the first coellicient may be considered
to be always 1 (or 2 1n origin—1) and thus may be left out of
the representation. The illustrative example generates a
11-state maximum length sequence of 11°-1=1330 ele-
ments. Hence the correlation graph 700 having indicia on the
x-axis of up to 2600, as a correlation graph of a sequence
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requires about twice the length of that sequence. An 1mpor-
tant property of the graph 1s the single peak and flat basis
over about twice the length of the sequence, which indicates
a maximum length sequence.

Another mmportant property of a maximum length
sequence 1s that the combined content of the shift register
clements 1s umique for each state of generating the sequence.
That 1s, during 1330 steps ol generating the sequence
content [a b c] of 1501, 1502 and 1503 does not repeat and
ranges between [1 1 2] and [11 11 11] (in origin—1). In the
current configuration [1 1 1] 1s excluded as being a forbidden
(and degenerative) FSR state. This makes a current state of
an n-state FSR with n being fairly large, a simple keyword
generator. All states are deterministic. This also makes an
FSR with a long cycle a good candidate for a Diflie Hellman
(DH) key generating system. ML FSRs may be described as
performing 1n accordance with an additive group. That 1s, an
Alice machine may generate starting a FSR from content
START 1n k1 steps a content PUBA which 1s published for
use by a Bob machine. The Bob machine may run the FSR
from START in k2 steps, generating PUBB as published
content. The Alice machine using PUBB as 1nitial point and
running k1 steps and the Bob machine running the FSR for
k2 steps from 1nitial shift register content PUBA will both
end at a same content KEY, because running an FSR (k1+k2)
steps 1s 1dentical to runming 1t (k2+kl1) steps.

To become practical, an FSR DH method requires at least
two conditions: 1) the number of FSR steps must be large
enough to make 1t intractable for an attacker to determine
steps k1 and k2 from the public keys; and 2) both the Alice
and Bob machine must be able to determine the public and
shared keys fast enough. One advantage of a FSR DH
method 1s that any valid, non-degenerative state can be used
as a starting state and no specific generator element has to be
determined.

One may use a matrix representation of an FSR to
compute an end-state and 1t 1s not necessary to run through
all idividual states which would be unpractical. This
method 1s partially illustrated 1n the Wikipedia article Lin-
car-feedback shift register, downloaded from hittps://
en.wikipedia.org/wiki/Linear-feedback shift register which
1s incorporated herein by reference. The article discloses the
matrix form for determining a k-step state from an initial
state using a transfer matrix which may represent a Galois or
a Fibonacci configuration LFSR. It 1s observed by the
inventor that 1t 1s not required for the FSR to be linear. For
illustrative purposes the Fibonacci configuration 1s used
herein. It should be clear that one may also apply the method
as taught herein for Galois configuration FSRs.

A single FSR step 1n the FSR from state k-1 to state k 1s
achieved by multiplication of mitial state with the FSR
matrix. The FSR Matrix 1s an n by n matrix, wheremn n
represents the number of taps or coetlicients of the FSR,
even though there are (n-1) shiit register elements. The first
(n-1) rows of the matrix indicate the shiit of one position of
a shift register element to the next right position. The
modification of an actual content (rather than only a shift) 1s
expressed 1n the last or nth row, wherein the new content of
the first shuft register element 1s determined by the actual
inverters 1n the FSR or the coellicients of a representing
polynomial. One limitation of the literature, including the
Wikipedia article, 1s that these are limited to LFSRs and
generally to binary LFSRs.

For cryptographic FSRs 1t 1s desirable to use p-state FSRs
with p>2 or being non-binary and perhaps not being linear.
The mathematical description as a representation of a p-state
FSR by a polynomial of order k 1s very useful, even though
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an FSR or even an LFSR does not perform or execute a
polynomial. In the case of a p-state non-binary FSR with k
shift register elements one may determine a primitive and
thus 1rreducible polynomial over GF(p) of degree k. The
book Sequence Design for Communication by Fan et al.
1996, Research Studies Press, Taunton, England describes
throughout and for instance on page 89 as expression (4.20)
how Fibonacci FSR coeflicients (inverters) and polynomial
coellicients are related. In fact the mverters in the FSR are
(-h,) mod-p of the 1th coellicient in the representative
polynomial. A representing polynomial over GF(11) of the
FSR of FIG. 6 may be x*+0*x*+2*x+4 with inverter 1504 is
(0) while the mverters 15035 and 1506 are (-2) mod-11 and
(-4) mod-11. In a Matlab implementation this requires
origin—1 iverters c0=2, c1=1, ¢2=10 and c3=S8.

It 1s to be understood that other configurations also will
work, such as cO being greater than 2 1n origin—1. However,
primitive polynomials are relatively easily determined from
which appropriate ML generators are determined. For
instance the above mentioned Fan book lists tables of
irreducible polynomials with cO=1 (in origin 0) and an €
value from which 1s determined 1f the polynomial 1s 1rre-

ducible and primitive.

For m=3 the required € 1s 1330 as listed 1n Fan on page
442, table A.14 where one can find coeflicients 1024 with

e=1330.

The configuration as shown 1n FIG. 6 1s determined by a
primitive polynomial of degree 3 and by a 3 by 3 matrix.
Each step in the device (for mnstance initiated by a clock-
pulse) moves the individual states through the shift register
and 1s equivalent and 1s represented by a vector representing
a content of the shift register, matrix multiplied by the 3 by
3 matrix representing the FSR. With an 1nitial content veci
and a representing matrix A, the content after k steps is
vecr=A".veci.

The DH variant using FSRs 1s then: two machines agree
on a finite field or ring representation of operations and/or
the representing matrix and an initial shift register content.
While the system 1s illustrated with GF(n) with n 1s prime,
the same system applies to FSRs described by GF(n=p?) or
extension fields with p prime and g an integer, as properly
configured FSRs over GF(n=p?) also generate ML
sequences. The Alice machine generates a secret value kl of
FSR steps and may publish the resulting shift register
content pba or the resulting matrix A** as public key. The
Bob machine does the same for a prnivate key k2 and

publishes resulting shift register content pbb and/or matrix
A**. The Alice machine then computes (A*)* and/or

pas=A“'.pbb while the Bob machine computes (A“')** and/
or pbs=A“*.pba which each or both may be used as a
common shared keyword. One may use commonly known
shortcuts to compute A” with h being large. For instance
repeat doubling or baby-step giant step methods may be
used to make computation times reasonable.

For instance the matrix A based on FIG. 6 with applied
i1llustrative inverters will be 1n Matlab notation A=[1 10 8; 2
1 1; 1 2 1] 1n ongin-1. Assume k1=23 and k2=16 then
A23=A>=[4 4 11,4 4 10, 7 4 5] and A16=A"'°=[3 4 5; 11
3 2; 911 8] and (A16)>=[1 11 11; 4 1 6; 8 4 4] and
(A23)'°=[1 11 11; 4 1 6; 8 4 4]. Using initial vec=[2 11 4]
will generate pba=A>’.vec=[9 6 5] and pbb=A"°.vec=[1 1
9], with psa=A>>.pbb=[4 7 11] while psb=A"'°.pba=[4 7 11].
For illustrative purposes an FSR with m=3 shiit register
clements 1s applied. If one desires one may use m=2 (or even
m=1) to limit the number of computations, or one may use
longer FSRs to make successiul attacks even less likely.
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In accordance with an aspect of the present invention an
FL'T 1s applied to the machine matrix computation as
explained above. This may be eflected in different ways.
One way 1s to apply an FLT with an n-state inverter 1n such
a way that n-state inversion of the elements of the matrix
provide their original representation. Assume that the origi-
nal matrix has elements a,;. An FLT as illustrated in FIG. 1
should create of inputted elements ¢, inverted elements after
iversion by inverter 101 ‘inv’ after inversion so that inv
(¢,,)=a,. This means that rinv(a, )=c,.

One may further obfuscate a source of a computational
matrix by using a power Ap=Af as a public key. This may
hide the structure of the FSR derivation.

As an 1llustrative example apply the 11-state
inverter *7+4 mod-11, which1s inv=[4 0731062 9 51 8]
and rinv=[1 9 6 3 0 8 5 2 10 7 4]. One may create
AF=rinv(A) previously provided, from A=[108;2 1 1; 1 2
1] 1 origin—1 which gives AF=[2 8 3; 10 2 2; 2 10 2] 1n
origin—1. Modily * mod-11 and +mod-11 1n accordance with
inv as for instance illustrated in FIG. 1. Using the same

k1=23 for the Alice machine and k2=16 for the Bob
machine. This will generate public key matrices
matpa=AF>>=[4 4 5; 4 4 8; 6 4 1] origin-1 for the Alice
machine and matpb=AF'°=[7 4 1; 57 10; 11 5 3] origin-1
for the Bob machine. The shared secret 1s then for the Alice
machine matpb>=[2 5 5; 4 2 9; 3 4 4] and for the Bob
machine matpa'°=[2 5 5; 4 2 9; 3 4 4] which are the same
as expected 1n a DH exchange. One may also use an mitial
state vector as a generator with AF. Using vec=[2 11 4], the
public key are puba=AF*> @ vec with @ the FLTed matrix
computation using the above FLT; and pubb=AF'°® vec,
which generates puba=[3 3 4] and pub=[4 11 7]. The shared
keys are then seca=AF>’@pubb and secb=AF'°@puba
which are both [8 3 6] and the same as expected in A DH
operation.

One may further obfuscate the use of an FLT by using an
n-state inverter that leaves the elements of a public key
including such as in a matrix unchanged but changes all or
many or most of the elements. It 1s then for an attacker
difficult to determine if an FLT 1s bemng applied as all
intermediate public states will be valid states that may be
generated with or without an FLT.

The above 1llustrations are what 1n the art 1s known as toy
examples and will generally not used in a cryptographic
exchange of data between machines or 1n any cryptographic
application or device. In general one would like ‘n’ to be
represented by a decimal number that has at least 10 digits,
preferably at least 20 digits, more preferably more than 30
digits and most preferably at least 40 digits. Cryptographic
security 1s generally defined as a binary number of around
130 bits. That means that n being represented by a decimal
number of 50 bits will be secure. This means that each public
key element may be at least 50 bit or about 7 bytes. A public
key vector 1s then at least 7*k bytes wherein k 1s the number
of elements 1n a public key.

The FSR representation 1s helptul to create a matrix (from
a primitive polynomial) that 1s known to have a cycle of
multiplication of n-1. A central server may provide via
secure delivery such polynomials to the Alice and/or Bob
machine. The FSRs from which the matrix 1s derived may be
as small as 2 elements FSRs (or even 1 element i1 one uses
a single mverter) which provides a 2 by 2 matrix based on
a degree 2 polynomial. One may use any k by k FSR matrix
with k>1, which may be based on Fibonacci or Galois FSRs.
The more elements in a matrix, the greater the number of
computations. However, such the cyclic nature may be
deemed to require upping the size of n. As an alternate
embodiment one may consider to use a matrix that has a
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cycle>n or preferably a cycle>2*n and more preferably a
cycle>5*n. One such matrix 1s a vandermonde matrix. For
instance the vandermonde matrix [2 3 5;2 517; 2 6 26] 1n
origin—1 has a cycle 211 for n=29. The matrix AV=[2 3 5; 2
9 65;2 16 226] 1n onigin—1 for n=233 has a cycle of 9049.
One may also use AV>, which is not clearly related to a
vandermonde matrix. However, the cycle 1s then reduced to

4525. One 1s reminded that a ML FSR matrix for n=233 has
a cycle 12,649,337.

In accordance with an aspect of the present invention, an
n-state inverter 1s applied to reversibly modily a public key
such as the intermediate result that 1s published to a recerv-
ing machine. One may encipher individual elements of a
public key, for mstance by direct inversion. One may also
compute by machine an FLTed mverse of an element of a
public key, for instance the FLTed multiplicative inverse
based on an inverter of each element. IT a matrix 1s part of
a public key, one may have a machine compute an FLTed
inverse of a matrix. It 1s assumed that an inverse of a matrix
A exists as A™" so that A.A~"=] with I the identity matrix and
*.” the matrix multiplication. For a 3 by 3 matrix in ornigin 1,
the identity 1s [2 1 1; 1 2 1; 1 1 2]. When n=233 and A=[8
79 101; 74 95 5; 9 3 97] in origin 1 then A~'=[26 165 172;
170 220 10; 175 75 222] 1n origin—1 and their product 1s [2
11;121;11 2] and the inverse of A™" is A again.

In accordance with an aspect of the present invention, an
FSR DH 1s performed using the inverse of the FSR matrix
or the FL'T of an FSR matrix. Depending on what a public
key 1s, the application of the inverse matrix may contribute
to confounding an attacker, making 1t harder to successtully
attack and making a key exchange more secure.

In accordance with an aspect of the present 1nvention,
computation of a matrix mverse 1s modified based on an
n-state inverter. In accordance with an aspect of the present
invention, computation of a matrix verse 1s modified 1n
accordance with an FL'T based on the n-state inverter.
Assume an nverter mnv233(1)=132*1+77 origin—0 which 1s
adapted to origin-1 (which 1n Matlab 1s the statement
inv233=1nv233+1). The reversing mverter rinv233 1s also
computed with (in origin—1) zero-element z=rinv233(1)=41
and one-element e=rinv233(2)=11. A screen print of Matlab
executable code for determining a matrix inverse based on
an FLT generated by a computer 1s shown i FIG. 8. This 1s
the function mnvmat(mat, scn, mgn, minn, z, €, n). The mputs
are: ‘mat’ which 1s the matrix that 1s inverted, scn, which 1s
the FL'Ted addition over GF(n), mgn, which 1s the FLTed
multiplication over GF(n), minn which 1s the subtraction
over GF(n), generally provided as switching tables, z being
the FLTs zero element, ¢ being the FL'Ted one-element, and
n being n 1n GF(n), all in origin—-1 wherein n 1s origin 1 1s
still n. It 1s believed that determining an FLT based matrix
imverse 1s novel.

One will recognize the tflow of matrix mversion, which
requires minor determinant determination via function ‘fin-
detn” of which a screenshot 1s shown 1 FIG. 9. The nputs
to ‘findetn’ are the same as 1n ‘invmatn.” While determining
a determinant 1s not novel, 1t 1s believed that determining an
FL'T based determinant of a matrix 1s novel. The Matlab
program 1s recursive and calls itself repeatedly based on a
size of the mput matrix. The flow 1s similar as 1n known
Determinant computations, but the functions are diflerent as
being FL Ted. In particular one has to adjust for computations
equivalent to + and - values as 1n lines 20 to 24 1n FIG. 9.
The program flows as shown 1n FIGS. 8 and 9 are illustrative
and others are possible and are fully contemplated. The
Matlab code 1s easy readable and serves as pseudo-code to
illustrate the process and one of ordinary skill 1s believed to
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have no problems in understanding the flow as well as the
tunctions 1tself. The Matlab code 1s easily converted 1n other
programming language such as C#, Java, Python, Sage,
Visual Basic, Magma and Sagemath or any assembly lan-
guage or even machine language of a processor. Algorithms
for matrix multiplication and matrix determination are plen-
tiful. Unfortunately, they are all available only for straight-
torward computations over GF(n). Hence the inventor pro-
vides the herein provided illustrative examples to
demonstrate practicality of FL'T modification. The herein
provided examples illustrate the eflects of modification in
view of a known signal flow. The herein provided examples
are not necessarily the fastest of most etlicient flows. How-
ever, the FLT may be applied to any of known faster and
more eilicient computations. These faster and/or more efli-
cient methods 1n general obscure basic flows and thus may
not illustrate actual workings without undue experimenta-
tion. For that reason very basic approaches have been used
to 1llustrate effects of the FLT. It 1s to be understood that
application of the FLT to faster and more eflicient machine
based algorithms are fully contemplated and thus aspects of
the current invention are not limited to the herein provided
illustrative examples.

Using A as above, but know using FLTed functions the
inverse AF™! or inverse based on FLTed addition, multipli-

cation and subtraction generates with invmatn the matrix

AF~'=[107 203 141; 226 54 184; 146 184 153]. FLTed

matrix multlpheatlen of A with A_?'l will generate IF=[11

41;41 11 41; 41 41 11] whach 1s the FLTed identity matrix.
It may be assumed to be close to impossible for an attacker
to derive an unmodified matrix A let alone M from AF~" if
A is the result of A=M”* and the FLT and/or the related
inverter and k are unknown to the attacker.

One may use smaller FSRs, for instance with 2 shift
register elements. A matrix for a 23-state ML generator 1s
B=[19 3; 1 0]. This requires fewer computations as the
matrix 1s 2 by 2. One may use online available functionality
in programming languages such as Sagemath or Magma to
determine a primitive polynomial over GF(p) and then
create an FSR matrix for either Fibonacci or Galois con-
figuration and then modity i1n accordance with an FL'T and
preferably use a matrix not reflecting a zero-position as a
public key. For instance B*=[18 12; 4 11] may not reveal
mitially 1ts FSR basis 1f one wants to hide that. Preferably,
one applies an FLLTed inverse of a matrix or an FLT inverse
of a computed itermediate state for intermediate data
exchange.

Hoflstein Crypto System

The book Hoflstein et al., An Introduction to Mathemati-
cal Cryptography, 2 edltlen 2014, Springer, New York,
N.Y. 1n section 7.1 pages 373-376, teaches a Congruential
Public Key Cryptosystem (“Holflstein system”). An Alice
machine selects a large primitive q (or GF(q)), a factor 1 and
g so that I<sqrt(q/2); sqrt(q/4)<g<sqrt(g/2); and
gcd(f,g*g)=1. The Alice machine computes h=f"*g(mod q).
A Bob machine has access to g and h and selects a factor r
with O<r<sqgrt(q/2). With sqrt being the short name for
square root. The Bob machine then computes, using a
message m with O<n<sqrt(g/4) a ciphertext e=r*h+m mod q
and sends cipher text ¢ to the Alice machine. The Alice
machine computes a=f*e¢ (mod q) and then computes
b=f,”"*a (mod g). Herein f,~" is the multiplicative inverse
ofl (mod g). The result b 1s 1dentical to original message m.

One can check that m 1s recovered by substitution which
results in a=f*{f'*g*r)+F*m=g*r+f*m and a*t,” '(mod
g )=g*r*t, ‘l+f “HPrm (mod g)=0+1*m=m.
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In accordance with an aspect of the present invention, the
Hoflstein system 1s modified by an FLT. The relevant
clements (g, T and g) under the preset conditions are gen-
crated, preferably at random and h 1s computed. The bound-
ary conditions of  and g are important to the correct working
of the system. In order to apply the FLT, first q, I and g are
determined and then a g-state reversible inverter or inverter
rule 1nvq 1s determined. One may determine Ig=rinvq(l) and
gg=rinvq(g). One then determines hg=rinvq(h) as a public
key with hq=fq~'® gq with ® being the FLT of * mod q. A
Bob machine then selects an r and m based on preset
conditions and determines rg=rinvq® and mqg=rinvq(m) and
computes eq=hq® rqPmq with & being the FLT of +mod q.

In a numerical example take g=1021; g=21 and 1=16;
'=702; gcd(16, 21*1021)=1. Also the inverse off mod-g is
f,~'=4. This will provide h=f"'*g=448 mod q as public key.
The Bob machine uses r=6 and m=5. The Bob machine
generates e=rh+m=6351 which 1s sent to the Alice machine.
The Alice machine computes a=t*e (mod q)=206 and the
l'_):a’i‘fg"l mod g=206*4 mod g=5 which 1s the original
message.

Let both machines have access to g-state inverter
invq(1)=76*1+170 mod-q. The Alice machine uses the origi-
nal data and computes h which 1s 448, but applies the
reversing inverter rinvg(h) to create the FL'Ted pubhc key,
which 1s hf=541. The Bob machine computes ef=rf& hftbm{f
wherein rf=rinv(r)=777 and mf=rinv(m)=468 and & and D
are the FL'T of * mod-gq and +mod-q respectively 1n accor-
dance with g-state inverter inv. This provides for cipher text
¢1=98"7 (instead of original e=631). The Alice machine may
then determine the “original” or not-FLTed signal
e=1nv(el)=1nv(987)=6351 and complete decryption as in the
original Hoflstein system. The exchange in the FLTed sys-
tem 1s thus hi=541 and ef=987, nstead of the unmodified
system h=448 and e=651. With no further data exchange it
will be extremely difficult for an attacker to derive the clear
text from public data.

In accordance with a further aspect of the present mnven-
tion, hf™' and ef"" may be computed relative to % the FLTed
function of * mod g, with hf~'=617 and inverse ef ef~1=989.

Hoflstein’s book describes a possible successiul attack as
finding a pair (F,G) from an equation F(1,h)-R{0,q)=(F,G).
However, such an attack equation 1s also modified by the
(secret) FLT and as long an attacker does not know the FLT
or related g-state inverter there 1s no to little expectation of
a successiul attack.

Hoflstein’s book at pages 417-425 sections 7.10.1 and
7.10.2 teaches the related NTRUEncrypt system. An Alice
machine applies integers p and q with p<<q for polynomaial
selection 1(x) and g(x) with coeflicients 1n GF(p) and GF(q)
or in rings 7Z/q and Zp. The Alice machine computes Fq={""
(mod q) and Fp=f'(mod p) and computes h=Fg*g (mod q)
being a polynomial multiplication, all polynomials being
truncated as mod x”-1. The polynomial coeflicients of h are
a public key transmitted to a Bob machine. The Bob machine
selects a random polynomial r and a message m represented
by a polynomial, and computes coetlicients of a polynomaal
e=ph*r+m (mod q). The Alice machine computes a=I*¢
(mod q) which generates pg*r+1*m (mod q). Alice center-
lifts ‘a’ and multiplies with Fp (mod p) to recover m.
Hoflstein provides conditions for selecting p, g, m and r for
this form of encryption/decryption to work, which 1s pre-
sumably PQ and quantum safe.

As with many PQ cryptographic methods, there 1s a high
demand for computational resources to execute the switch-
ing operations to perform the NTRU tasks especially in time.
Thus NTRU (both signature generation and validation and
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encryption decryption) may benefit substantially by limiting
the operational size of n 1n x”-1 and q (p 1s generally p=3).
One can achieve that by applying an n-state reversible
inverter and/or a related FLT of public key exchange.

In accordance with an aspect of the present invention, a
public key and/or signature in the NTRU system 1s enci-
phered with an n-state reversible inverter that 1s known to
both the Alice and Bob machine. The encipherment may be
reversed at the receiving end, where the normal NTRU
operation 1s performed. In case of NTRUEncrypt the signal
e=ph*r+m 1s encrypted by the Bob machine with the n-state
reversible inverter and transmitted to the Alice machine,
where at least reversing of inverter encryption takes place.
Recommended NTRUEncrypt parameters range Irom
N=167 to 503 and g=128 to 256.

In accordance with an aspect of the present invention, one
or more public keys are encrypted by computing the mul-
tiplicative imnverse of h and/or ¢ with an FLT that 1s based on
a n-state inverter available to two machines that are
exchanging NTRU processed messages. Such an encryption
may increase the security of NTRU. For mstance an NTRU
method using N=167 and gq=128 may achieve security
beyond N=303 and g=256 by applying the FL'T at a com-
bined much lower computational effort than the N=303 and
q=256 computational requirements.

The Hoflstein book provides several numerical examples
to 1llustrate NTRU. One example 1s Example 7.5.3 at page
423 with q=41, p=3, N=7 (max degree is 6) f(X)=x°-x"*+
x> +x°—1. Use g(x)=x’+x"—x"—x+1 (which has a multiplica-
tive 1nverse 1 GF(41). The multiplicative inverses:
Fq(x)=f' (mod q)=8x°+26x>+31x*+21x +40x°+2x+37 and
Fp(x)=f"" (mod p)=x°+2x°+x3+x°+x+1 and g '=12x°+
36x°+8x +38x° +19x°+39x+13 mod 41. The public key in
this example 1s h(x)=Fq(x)*g(x) (mod q) wherein * indicates
a polynomial multiplication with may be expressed as a
convolution. This generates h(x)=28x°+25x +33x"+18x +
7x”+28x+26. An attacker presumably is unable (or it is very
hard) to determine 1(x) from h(x). In accordance with an
aspect of the present invention an FLTed multiplicative
iverse ol h(x) 1s determined.

An 41-state inverter based FLT 1s executed, for instance
using mv41(1)=15*1+21. The computer operation repre-
sented by multiplication modulo 41 1s FLTed based on the
above mnverter. Other types of inversion, including interleav-
ing steps, and permutation mappings may be used, as long
they are reversible (or invertible) operations. This waill
generate coellicients [7 16 36 29 28 7 24]. The original
coellicients may be recovered by again applying the FL'Ted
inversion. The Hoflstein book also generates r=phr+m which
1s a polynomial of degree 6 with coeflicients [31 19 4 2 40
3 235]. The FLTed inversion generates coeflicients are [21 15
4 11 20 1 16] which are transmitted. The recerving machine
may recover the correct coellicients again by FLTed multi-
plicative 1nversion. The NTRU decryption may be com-
pleted applying the rules as taught by Hoflstein.

Among preferred parameters of NTRU as for instance
taught in NTRU Algorithm Specifications and Supporting
Documentation, Chong et al, Mar. 30, 2019 and downloaded
from https://csrc.nist.gov/Projects/post-quantum-cryptogra-
phy/round-2-submissions which 1s incorporated herein by
reference, 1s q being a power of 2. An NTRU toy example
that 1s used in the literature to illustrate steps of NTRUEn-
crypt applies N=11, p=3 and g=32 with 1 and g being
polynomials of degree 10 with coeflicients fc=[1 -1 01 00
1000-1]and gc=[1 000100 -1 -11 1]. The example
provides h (with h=f""*g) with coefficients [13 29 20 19 9
10 13 4 30 23 24]. One may of course only determine
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multiplicative inverses when they exist and some do not
exist for g=32. In accordance with one or more aspects of the
present invention one may apply then one of 2 FLTed
approaches. First, one may encipher the coetlicients with a
g that 1s prime and greater than 32 (or whatever the power
of 2 g 1s 1n 1ts application.) For instance, 1n this example one
may use the FL'Ted inv41 for qr=41 as replacement for q-32,
for coetlicient encipherment only. This generates enciphered
coellicients [38 18 40 15 39 17 38 4 14 23 26] that may be

transmitted to a recerving computer that also has the inverter
and recovers the original coeflicients with which the coet-
ficients of e=ph*r+m are generated which may be also
enciphered as described.

—

The use of qr=41 1n case q=32 reveals that potentially an

FLT 1s applied. As a second solution one may also apply a
multiplication over GF(32) as the basis of an FL'T. The FLLT
will generate coetlicients that are in the expected range
of [0, ..., 31]. Because there are diflerent versions of *
GF(32) (depending on the basis of modulo polynomial
degree 5) both machines have to apply the same base
polynomial. Assume that both machines apply modulo
x’+x°+1 over GF(2). Using inv32(1)=19*i+7 will create
32-state mverter [928 12 25 15301431 21 824 519 2 18
312041772262329160 13271026 11] whichis a
reversible inverter which 1s applied to generate the FLTed

multiplication over GF(32) and the related inverses. Coel-
ficients [13 29 2019 9 10 13 4 30 23 24] will be enciphered

by multiplicative FLT as [0 522 231 300 17 10 25 28] as
public key and may be recovered by applying the FLT at the
receiving end. In a next step a machine applies the public
key and generates e=[28 4 57 16 31 8 313 20 31]. Applying
the inverter for FLT enciphers ¢ as ef=[24 17 29 7 14 9 27
11 0 22 9] which may be deciphered by a receiving machine.

The steps of NTRU (and basically of most other crypto-
graphic message exchanges) in eflect scrambles elements of
public keys 1n a recoverable way. The recoverable way 1s
that the steps may be reversed or that consecutive steps
applied by two machines lead to a same result. One can see
above 1n the NTRU examples that a relatively limited range
ol coetlicients (basically using merely 3-states) leads to a
very broad range of publicly transmitted coellicients. One
may use the FLT or mnverter based encryption/decryption on
all exchanges 1n a cryptographic cycle, or one or on more
than one but not all exchange steps. One may use the same
inverters or same FLUT on all data. One may also use different
inverters. For instance exchange from the Alice machine to
the Bob machine 1s based on a first inverter or inverter based
FL'T while the exchange from the Bob machine to the Alice
machine uses another inverter or inverter based FLI. Fur-
thermore, one has to take measures that a data-element does
not represent a zero-element 1n the FLTed set, as a multi-
plicative mverse does not exist for the FLLT. In that case one
may catch the data-clement pre-FLT and leave the element
unchanged.

McElece CryptoSystem (MEC)

One of the submission in the NIST Post-Quantum project
1s the Classic McEliece Cryptosytem (CM). In essence 1n
MEC a public key PK 1s generated which 1s a generating
n-by-k matrix G" formed from a generating matrix G, an
invertible k by k matrix S and a permutation matrix P so that
G"=SGP. A machine having access to G" generates a cipher
message m'=G"m+e and a receiving machine having S,G
and P as private keys deciphers m' by using S~ and P~"'. The
underlying error correcting code in CM 1s a binary Goppa
code. One 1ssue with MEC 1s the size of the public key G
which 1s an k by n binary matrix with n up to 2048 and
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k=1751 with a public key of around half a million bits. For
n=6960 and k=5413 1n PQ applications a public key contains
more than 8 million bits.

A difference between the original MEC and CM 1s the
generation of the public key. The largest part of the public
key 1s the generator matrix G or parity check matrix H (in
accordance with a modification by MEC by Niederreiter). In
text-book MEC there 1s a use of a scrambling matrix S and
a permutation matrix P as private keys. In CM, the public
key 1s the Goppa code parity check matrix part T after
Gaussian elimination and the identity part 1s dropped from
the systematic matrix H. No further scrambling matrix for T
1s used. As part of a ciphertext or a response a public
codeword C,=Encode(e,T) 1s generated, with C,=He with
H(,, ,I'T). In accordance with an aspect ot the present inven-
tion C, 1s enciphered 1n accordance with an 1nverter based
FLT. The ciphertext transmitted between computers in CM
1s C encapsulating the session key and 1s formed from CO
and C1 as per definition of the CM specification as available
from the NIST post-PQ website. The length of C, 1s n-k bits
C1 may be selected as a 256-bit hash. The parameter k 1s
generally n-mt with g=2" (q 1s field size) and t being
correction capability. The size of T 1s (n-k)xk bits. C, may
have mt bits. A rough estimate of key sizes 1s provided in
section 5.8 of the CM specification of the NIST submuission,
being ciphertext being 0.2*n bits and public key T being
0.16*n” bits. There are different proposed CM variants, for
instance mceliece8192128 (MC128) with 1,357,824*8 bat
public keys and 240%*8 bit cipher texts and mceliece6960119
(MC119) with 1,047,319*8 bit public keys and 226*8 bit
cipher text and with MC128 presumably more secure than
MCI119.

In accordance with an aspect of the present invention the
public keys in CM and 1n any variant of a McEliece or
Niederreiter crypto system (including signature and encryp-
tion) are enciphered by a p-state inverter based FLT. Assume
a sequence seq ol 1 million bytes as an 1llustrative example,
which 1s 8 million bits which may represent the matrix T. An
encipherment of 1024 bits per symbol may be handled by a
processor. That means that the sequence seq needs to be
enciphered by 977 symbols of 1024 bits which requires at
least an additional stuiling of the sequence with 576 baits to
reach the required 977 bytes. In accordance with an aspect
of the present invention, a finite field GF(p=2""*%) is applied
as well as a p-state reversible mverter rule, for instance
invp(1)=a*1+b with a and b selected from the finite field. This
determines also a reversing p-state imnverter. If the operation
1s limited to binary fields, one may apply as rule a permu-
tation rule that permutes 1024 bits 1n a reversible way.

To compute all FLTed multiplicative inverses of about
1000 symbols may be too demanding for a processor. In that
case the processor may just permute the symbols that
represent the public key matrix T (in CM) or G (1in MEC).
Permutation rules can be established fairly easy by an FLSR
for instance characterized by a primitive polynomial over
GF(27). An FLRS with a 10 bits shift register characterized
by a polynomial of degree 10 and characterized by a
primitive polynomial has 2'”-1 unique shift register con-
tents. The order of generation from a starting position may
be assigned a memory position at which the state or content
of the shift register 1s stored. For completeness the state
represented the O-state should be added. Preferably the O
position should be modified 1 the representation, for
instance being exchanged with a state 1n a predefined
position (like the last or next to last) so 0 1s not 1nverted to
0. One may then form the reversing inverter from the thus
established inverter.
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In accordance with an aspect of the present invention the
ciphertext, and/or at least the C, part in CM should be
enciphered by determining the FLTed inverse, based on a
common p-state inverter available to both machines that are
in communication. The ciphertext CO and C1 are much
smaller than the T and G matrices and thus FLTed inversion
1s not a major burden on the processor.

The CM ciphertext may still be large, like in the order of
250 bytes, which 1s still 2000 bits. However, Biglnteger
circuitry 1n a processor easily deals with that. In accordance
with an aspect of the present invention a p-state inverter with
p 1n the order of p=2" 1s available to both machines. The
p-state mnverter may be one with p being prime or p being a
power of 2. In any case a machine operation defining a
multiplication mod-p or over GF(p) 1s available. The pro-
cessor then applies an FLT based on the p-state inverter on
the symbol representing a ciphertext in CM or MEC to
generate an FlTed multiplicative inverse which 1s transmiut-
ted to a receiving machine where the original ciphertext 1s
recovered by reversing the FTLed inverse. The ciphertext
may be split into 2 or more smaller bit sequences thus
representing smaller valued symbols, which may require
smaller (smaller p) inverters. In accordance with an aspect
of the present invention, one may consider a split up of q bits
(1f needed packed with random bits) to create d bit sequences
of g/d bits that may be arranged i1n a square matrix. This
means that for instance q bits are split into 4 sequences ot q/4
bits. Each g/4 sequence 1s then considered to represent an
element p, ~mod-27"* for instance preferably being prime or
in a GF(29%) symbol in a matrix M. In accordance with a
turther aspect of the present invention an FLTed inversion of
M being Mif " is generated based on an p, -state inverter.

This 1s not a closed inversion. In other words, one cannot
determine Mif™ " from the inverse Mi~" of M by inversion of
matrix elements. For instance use p=41 and the 2 by 2 matrix

M41 1n origin 1 M41=[4 34; 29 12] with mverse M411=[2
39; 32 5] all in GF(41). Using inv41(1)=16*1+10 mod 41
(and then moved to origin 1), will generate data represented
by FLTed inverse matrix M411f =[8 36; 14 33]. One may
check that the elements of M411 and M411f are not inverted
versions of each other.

One problem that may arise 1s that a matrix may turn out
not to be mvertible. One solution 1s to select a size p, ~p/4
that 1s greater than p/4. This allows each p/4 sequence to
have a number of dummy bits that are meaningless to the
ciphertext and that may be added and removed from the
sequence before and after FLT. For instance each symbol 1s
represented by pn bits of which nm bits are meaningless.
These nm bits may be selected in such a way that an
invertible FL'Ted matrix may be generated. The selected bit
sequences are then processed as representing a matrix of
which an FLTed inverse 1s computed. Again inverting at a
receiving machine recovers the original bit sequences of
which the meaningless bits are stripped and the ciphertext 1s
recovered, which may then be processed in accordance with
the error correcting code processing.

Because of the additional level of security by the appli-
cation of the FLT, one may thus apply a lower security level
CM or MEC encryption and still achieve a much higher level
of security than de highest defined level CM or MEC codes.
In accordance with an aspect of the present invention
machines in communication both have access to different
and synchronized inverters and synchromized in the sense
that both machines are configured to apply the same 1nvert-
ers. There are diflerent ways to achieve that. One way 1s to
provide each inverter with a unique and secret 1dentifier and
wherein one machine mstructs the other to apply a specific
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and secret mverter. This approach allows two machines to
keep using the same public key (T or G) while the ciphertext
1s enciphered with different FLTs.

The mventor has observed that matrix multiplication of
one constant matrix with a variable one, 1s, depending on the
position of the variable matrix being the multiplier or
multiplicand, retlected on a row basis or a column basis.
That 1s: 1n matrix multiplication G"=S*G*P changes in a
row 1n S 1s retlected 1n a change of row 1n G" and change in
a column of P 1s reflected in a change in column 1n G".

In accordance with another aspect of the present invention
a method and circuit 1s provided that modifies a previously
transmitted G" using a public key C" that 1s significantly
smaller than G. This allows a modification of matrix G" to
Gm" by modifying 1 or more rows or columns i G" by
transmitting the modified parts as a new public key. A
relatively small but still significant modification may be
achieved by modifying one or more rows in scrambling
matrix S or one or more columns in permutation matrix P.
Such modifications have to comply with the conditions of S
and/or P. That 1s: a modified S (with some modified rows)
has to be mvertible. A modification of columns 1n permu-
tation matrix P has to be invertible and each row still has
only one bit being represented by a 1 (or state High for a
switching circuit).

An 1illustrative toy example of an MC cryptosystem 1s
provided at website ss-1 by Prof Bill Buchanan OBE dated
Oct. 6, 2020 which incorporated herein by reference. This 1s
an example of what 1s generally called a textbook MEC. The
generating matrix G 1s related to a Hamming (7, 4) code. The
matrix G 1s modified by a 4 by 4 scrambling matrix S and

a 7 by 7 permutation matrix P. The matrix S (1n row Matlab
representation) 1s S=[1101;1001;0111;11 00]. And

G=[1000110;,0100101;0010011;000111
1]and P=[01 00000;,0001000,0000001;10
00000;0010000;0000010,0000100].And
G=S*G*P=[1111000;,1100100,1001101;0
10111 0].

Matrix S 1s modified 1n the first row to Sm=[00 1 1;1 O
01; 0111;11 0 0] which 1s mvertible. The matrix
Gm'=Sm*G*P=[1010001;1100100;,1001101;
010111 0] which 1s G' with the first row changed. In
accordance with an aspect of the present invention, a text-
book implementation of MEC and/or MC 1s performed.
Herein the original McEliece generator matrix G or parity
matrix H 1s used without being modified into echelon or
systematic form. The matrix G 1s modified by scrambling
matrix S and permutation matrix P into G'=S*G*P. The data
of G' 1s transmitted (be it as 1s or enciphered) to a receiving
device as public key. This may be a large dataset and
preferably 1t 1s used 1n a set-up phase. The dataset may be
used as an operational public key. Preferably, the scrambling,
matrix S 1s modified 1n at least 1 row, but preferably 1n at
least 2 rows, preterably up to 1% of the rows, preferably up
to 5% of the rows, more preferably up to 10% of the rows
and 11 so desired up to 25% of the rows, so that the modified
matrix Sm 1s invertible. The new and row modified matrix
Gm' 1s determined and only the modified rows are transmit-
ted as public key to a receiving device.

The machine may operate under a protocol that provides
preset row numbers of rows that are modified. One may
encipher the row numbers and include them 1n the public
key. One may also use an p-state mnverter and encipher the
sequences of bits 1n the modified rows as p-state symbols. At
any rate, a receiving device modifies 1ts existing received
matrix G' into Gm' with the modification applied and com-
putes the ciphertext and transmits the ciphertext to the
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device that published the public key. Because the Alice
device has the correct matrices, 1t can then compute the text
from the received ciphertext, which may be the common
keyword. The ciphertext may be enciphered by an FLT as
explained earlier. One may apply also a modification of
predetermined columns of the permutation matrix to reduce
a si1ze of a public key word.

A modification of G' permeates the generated ciphertext
and modifications may be limited to a small number of rows.
This may dramatically reduce a size of a public key, for
instance to a single row which has n bits. So, 10 rows
modified 1f n=1024 would require a public key of 10 kilobit.
This may be translated in 4 sequences of 2.5 kbit, which may
casily be represented as a 4 symbol matrix which may be
inverted under FLT rules. This adds further security by FLT
to the above use of only modified rows and/or columns of a
public key matrix. This easily allows an at least 10 times
smaller public key with at least the same level of security.
The scrambling eflect of echelon/systematic elimination
may generally not be used as 1t will aflect multiple rows that
may make the number of changed rows too large to achieve
meaningful reduction 1n a public key.

In accordance with an aspect of the present invention a
key exchange system represented by ct=W*m4+e 1s provided.
In a variation thereof a system ct=W® me 1s provided,
wherein & and & are FL'Ted versions of mod-p operations
or operations over GF(p). In a further variation ctf™' is
computed and transmitted as ciphertext, wherein
ct® ctf'=onef, with onef being the one-element of & .

An Alice machine determines a sequence of data elements
that is represented by an invertible matrix, or W' exists. The
matrix W may be transmitted as public key. It may also be
enciphered in accordance with a scrambling matrix or by an
FL'T inversion. In any case, a receiving Bob machine
receives W or may recover W. Furthermore, the Alice
machine may publish an error vector ¢ which exists mod-p
or in GF(p). Both the Alice machine and the Bob machine
have access to a secret p-state mverter. The Bob machine
generates a message m preferably randomly, which 1s
encoded as a p-state vector. The Bob machine generate ct=W
% m&e using FLTed operations. There are few limitations in
selecting m and e, as opposed to other cryptographic meth-
ods. Preferably one should eliminate messages that contain
many zero elements.

The Bob machine then computes ctf™ as FLTed cipher-
text. If so desired the Bob and Alice machine may apply at
least two different p-state mvertors. One for the ciphertext
operation and one for the FLT 1mversion of the ciphertext.
The Alice machine receives for instance ctf™' and recovers
ct using a first FLT. Depending on a size of ctf™', one may
invert the individual elements of ctf™" if it has multiple
clements. In a further configuration ct 1s represented as a
matrix and 1s FL'T mverted. The Alice machine recovers ct
and computes cte=ctOe with © the FLT of the subtraction
operation. This generates cte=W & m. The message m 1s then
recovered by performing mr=W~' & W& m=m.

As an 1illustrative example use p=41. Use a encipher
matrix in onigin 1 w41=[4 34; 29 12] which 1s invertible to
wd11=[2 39; 32 3]. Use an error vector e=[3 24]. Generate
m=[15 16]. Compute W*m=[35 25] and compute W*m+e=[7/
7] (all 1 origin—-1). The compute [7 7]-e=[5 25] of course
and compute W™*[5 25]=[15 16]. Using inv41(i)=16*1+10
mod 41 for FLT will generate WX m=W&® [15 16]=[32 19]
and W% mDe=[4 12]. If so desired [4 12] may be FLT
inverted on individual elements with another inverter and/or
represented as a matrix and FLT inverted. For this example
[4 12] 1s transmitted by the Bob machine to the Alice
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machine. The Alice machine computes [4 12]©e=[4 12]O[3
241=[32 19] and computes WI ' & [32 19]=[15 16] with
WI'=[8 36; 14 35] which is the FLT inverse of W. In a
turther variation, devices may also be instructed to compute
ct=W & (m&e), which requires at a receiving machine com-
puting cint=W~' & (W& (mPe)) followed by m=cintSe. In
a further variation one may use p-state iverters on n-state
symbols with p>n and the related FLT.

The operations & and & are the FLT of p-state reversible
operations * and + and * and + may be replaced and FL'Ted
with any reversible p-state operation. One may change also
an order of data elements, as in NTRU where e=r*h+m mod
g and m 1s 1n effect a modification of r*h. When not being
limited by a size of r and m, one may use h as a static public
key (that 1s FLTed as described) and r 1s provided as a
variable public key. One or more of publicly transmitted data
may then be FL'Ted as described earlier. In case of e=r*h+m,
one may FLT the term e.

Herein methods and circuitry are disclosed to improve
security of cryptographic exchange of data between at least
two computing devices in communication via a physical
channel. An exchange of data includes at least one machine
and generally two machines each performing physical
switching operations. The switching operations may be
represented by a descriptive mathematical expression. How-
ever, the machine 1tsellf does not perform mathematics, but
1s strictly a configured physical device that changes states of
physical devices, usually between states Low and High. A
physical device, of course, does not “know” a value of a
state, which 1s strictly a human interpretation. It 1s popular
to represent internal physical states by 0 and 1. However,
such states do not exist 1n nature. The states have physical
values, commonly on data sheets indicated as Voltages Low
and High and of which the actual value depends on used
technology like CMOS technology. This sometimes con-
fuses people to believe that internally to computers some-
thing like symbols exist. Hey don’t. Only physical states
exist as originally explained by Claude Shannon 1n his MIT
Master of Science thesis “A Symbolic Analysis of Relay and
Switching Circuits”. How mathematical logic description,
for instance 1n a high level descriptive and computer execut-
able language like APL, relates to physical realization 1is
taught 1n Gerrit Blaauw, Digital System Implementation,
Prentice Hall, 1976 which 1s incorporated herein by refer-
ence. It explains how arrangement of physical switching
devices (in Blaauw usually NANDs) leads to switching
operations that perform in accordance with an arithmetical
description. A computer cannot spontaneously perform
arithmetic. It has to be physically built and configured,
including provided with appropriate input and output
devices. The FLT modifies internal computer configurations
with as results currently unknown and hard to attack novel
configurations, which increases the security of devices
(against side channel attacks for instance) and message
exchange between devices. FLT operations 1in a mathemati-
cal sense do currently not exist. They are to be interpreted as
a description of internal computer operations and/or con-
figurations. The FLT 1s believed to be not conventional,
routine and/or well understood and to be entirely novel in
creating novel computer configurations that have as a benefit
to ofler a higher level of securnty.

The use of mathematical terms like addition and multi-
plication over GF(p) and multiplicative inverse may appear
to 1mply mathematics and to be functional. It 1s to be
understood that these terms are strictly used as representa-
tion for computer circuit configuration and in particular
computer switching configuration. The engineering term
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used for this representation 1s sometimes known as Com-
puter Arithmetic, which 1s a science related to hardware
design of Arithmetical circuit design. A simple illustration
may be the term addition over finite field GF(n=27). While
it looks like mathematics, it 1s 1n fact a representation of
bitwise XORing of 2 words of g bits, with an XOR being a
2 mput/one output 2-state switching device that switches
states 1n accordance with a logical “exclusive or” function.
All descriptive and functional appearing terms used herein
refer to physical devices that perform well defined circuits
and controlling instructions. One of ordmnary skill will
understand how these terms are related to physical devices,
usually located in an Arithmetic-Logic Unit (ALU) of a
processor. An example how to design or realize computer
operations 1n accordance with machine related instructions
(the switching operations) can be found in Intel 64 and
IA-32 Architectures Software Developer’s Manual, avail-
able online at https://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-1a-32-architectures-
soltware-developer-instruction-set-reference-manual-
325383.pdt Descriptions of specific multiplication circuits
and 1mplementations are provided in the earlier mentioned
Blaauw book.

Thus terms like multiplication, addition and subtraction
are, unless stated differently, mtended to mean machine
operations that perform operations that may be described by
these terms, even though the machine operations are not
mental operations. The operations thus cover circuitry such
as configured circuitry or dedicated customized circuitry
such as FPGA circuitry and are in case of processors
performed by circuitry that executes the intended term by
one or more structions as available 1n a processor mstruc-
tion set. It 1s observed that processors have physical limi-
tations set by size of words for instance that do not apply to
mental or human operations. Another difference with
humans and mental operations is that processors operate on
a much higher speed that cannot be matched by any human.
This brings solving 1ssues posed by the cryptographic meth-
ods and circuitry outside the realm of being solved by
humans within a lifetime of even 100 years be it with or
without paper and pencil.

Any processor executed expression or mstruction, such as
in Matlab 1n the examples or in APL as 1n the Blaauw book
or any other processor executed instruction and/or instruc-
tion set establishes a physical circuit. While the uninformed
observer may believe that a mental process 1s executed by a
processor, a processor does not perform mental processes
but establishes physical circuit configurations as 1t executes
instructions.

FLT modified key exchange methods and circuitry have
been provided herein. They included novel key Post Quan-
tum exchange and key encapsulating methods as being
pursued 1n the PQ project of NIST of which all Submissions
in Round 1, Round 2 and Round 3 as published and available
on https://csrc.nist.gov/projects/post-quantum-cryptography
are incorporated herein by reference. Specifically Isogeny
based cryptography, including SIKE, SIDH and CSIDH,
NTRU like methods like NTRU and NTRU Prime and
McEliece based methods are FL'T modified as explained
herein.

It 1s to be understood that any cryptographic method that
includes public exchange of data may be modified 1n accor-
dance with an FL'T using common n-state inverters held
secret by 2 computing devices. This includes data exchange
for authentication and digital signatures of which at least the
public portion may be inverted by an FL'T to encipher a data
clement 1nto the FLTed multiplicative inverse which may be
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recovered by a receiving device having access to the related
FLT, FLT rule and/or FLT circuitry.

Most of the NIST PQ submissions (and certainly in the
third round submissions) include a Key Encapsulation
Mechanism (KEM). The KEMs as required in SIKE, NTRU
and CM are different. For instance SIKE uses three hash
tunctions (F, G and H) 1n 1ts KEM, which 1s a SGA-3 derived
SHAKE256. The SIKE KEM 1s built on top of SIDH.
Accordingly, one may apply the disclosed modifications of
SIDH as provided herein and then apply the KEM to the
modified SIDH outputs. One may modity with an FLT any
of the applied hash functions. For instance a bit-wise word
ol g bits based XOR may be replaced with a p-state FL'T with
p=27. The same applies to any other bitwise operation on
words ol g-bits, like AND and XOR as used in FIPS 180.2
functions (4.1) to (4.13) for instance. SIKE defines a func-
tion Enc wherein j=1soex2(pk3, sk2), h=F(;) and cl=h
(XOR)m. The determination of ¢l may also be modified by
an FL'T as h and m are multi-bit words. Furthermore, an
attacker may try to use a difference between a hash of 1 and
a hash of an FLLTed 7 to try to find the inverter that determines
the FLT. This can easily be addressed by using an FLT to
modity a used hash function.

The NTRU KEM, like other proposes PQ KEMs, and
generates a ciphertext and a shared key. The same observa-
tions as above apply. The same applies to Classic McEliece.
The original and herein modified Public Key Encryption
(PKE) 1s 1n all cases the engine of the KEM and thus benefit
from the FLT modifications as described herein. Several
KEMSs form a public transmission of a combination c0, cl
wherein cO 1s for instance a public key generated during
encryption and ¢l 1s an encoding such as a ciphertext. One
may FLT modily ¢O and/or ¢l individually and/or with
different FLTs or one may combine ¢O and cl as one
sequence of bits and FL'T the combined sequence.

Digital signatures may be recognized as classical digital
signatures including the FIPS 186-4 Digital Signature Stan-
dard (DSS), RSA signature, Fl Gamal signature, ECDSA
signature and other elliptic curve signatures, the Schnorr
signature, the Feige-Fiat-Shamir signature and other zero-
knowledge 1dentification schemes as well as PQ signatures
and 1dentification schemes, for instance as described in the
Wikipedia article Post-quantum digital signature at https://
en.wikipedia.org/wiki/Post-quantum_cryptography which 1s
incorporated by reference all include an exchange of mes-
sage which may include a public key, a signature message,
a hash or a challenge message may all be modified partially
or 1n their entirety by FLT as described herein. Blockchain
and crypto-currencies rely strongly on signatures and
authentication of transaction wherein some of the above or
other ID schemes are applied. The security of blockchain
and crypto-currency 1s 1increased by using the FLT as
described. It limits the machines that participate in valid
transactions to ones that have access to n-state inverters. In
a sense an n-state inverter acts as a certificate, and one that
changes operations to generate messages and data.

A system 1llustrated 1n FIG.10 and as described herein 1s
enabled for receiving, processing and generating data. The
system 1s provided with data that can be stored on a memory
5101. Data may be obtained from a sensor or may be
provided from a data source. Data may be provided on an
iput 5106. The processor 1s also provided or programmed
with an 1nstruction set or program executing the methods of
the present invention 1s stored on a memory 3102 and 1s
provided to the processor 5103, which executes the nstruc-
tions of 5102 to process the data from 5101. Data, such as
an 1mage or any other signal resulting from the processor can
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be outputted on an output device 5104, which may be a
display to display data or a loudspeaker to provide an
acoustic signal. The processor also has a communication
channel 5107 to recerve external data from a communication
device and to transmit data, for instance to an external
device. The system in one embodiment of the present
invention has an mput device 5103, which may be a key-
board, a mouse, a touch pad or any other device that can
generated data to be provided to processor 5103. The
processor can be dedicated hardware. However, the proces-
sor can also be a CPU or any other computing device that
can execute the 1nstructions of 5102, for instance provided
in a form of instructions 1n a programming language. The
processor 5103 1in some embodiments has integrated or
connected to 1t communication circuitry 5110 with a cus-
tomized physical interface. A customized interface may be a
connector, an antenna, a reader or read/write interface or any
other physical interface to transmit and/or receive signals to
or from an external device. Accordingly, the system as
illustrated 1n FIG. 10 provides a system for data processing
resulting from a sensor or any other data source and 1s
enabled to execute the steps of the methods as provided
herein as an aspect of the present invention and provide the
results on an output.

Several computing device community configurations are
illustrated 1n FIG. 11. FIG. 11 has a communication network
6100. Network 6100 may be a single network such as a
wireless or wired network or a combination of networks
such as the Internet. The network may be a switched network
or a packet based network, a private network or a public
network or a virtual private network or any other commu-
nication network that enables connection of 2 computing
devices and of 3 or more computing devices. In one con-
figuration two computing devices 6101 and 6102 with
communication circuitry to transmit, receive or transmit/
receive signals are provided. The communication circuitry
of 6101 and 6102 can transmit signals over a channel 6108.
The channel 6108 1s identified as a double arrow. This
indicates that the channel 1s bi-directional, but it does not
necessarily mean that 6101 and 6102 do both have to
transmit and receive, though they may. For instance 6101 1s
an opening device or a smartcard or any other transmitting
device and 6102 1s a computing device that 1s part of an
access mechanism that 1s being activated by one or more
signals from 6101. Device 6101 for instance has crypto-
graphic circuitry that generates opening signals that have to
be detected and decrypted by 6102. For that application
wherein each device has the appropnate instructions and
data stored to complete an authenticated transaction, like
opening. In one embodiment of the present invention there
1s thus only one way transmission by 6101 and receiving of
data by 6102. The channel 1s a direct channel, like a wireless
or wired or Near Field Communication (NFC) channel, a
USB connection, a Bluetooth connection or any other direct
connection. For the transaction itself no other channel 1s
required. The devices 6101 and 6102 may have other
communication capabilities, such as equipment to connect to
network 6100, but are not shown. Devices 6101 and 6102
have diflerent modified n-state switching functions stored on
local memory. These may be updated from time to time.

Devices 6101 and 6102 may also perform some mutual
authentication or for instance key exchange. In that case
6108 1s a dual use (send and receive) channel and the devices
6101 and 6102 both have send a receive equipment. The
same applies to devices 6103, 6104, 6105, 6106, 6107 and
6115 and 6116 and communication channels 6109, 6110,
6117, 6118, 6111, 6112, 6113 and 6114.




US 12,143,468 B2

3

Computing devices 6103 and 6104 communicate with
cach other via channels 6108 and 6110 via network 6100.
Cryptographic n-state switching functions may be stored
locally and may be provided by secure server 6107 which 1s
connected to network 6100 via channel 6114.

Device 6115 and 6116 communicate directly via a channel
6117. Device 6115 1s also able to communicate with secure
server 6107 via channel 6114. Devices 6105 and 6106 can
directly communicate with each other over channel 6112 and
with server 6107 via 6100 over channels 6111 and 6113,
respectively. As needed 6105 and 6106 can also communi-
cate via 6111 and 6113 wvia network 6100. Any of the
communication channels, even though 1llustrated by double
sided arrows may be single direction as dictated by practical
circumstances.

For mstance devices 6115 and 6116 communicate directly
via 6112 to complete a transaction, such as withdrawing
money from an ATM 6115 machine with a smartcard 6116
and 6115 uses 6118 for venification from 6107 via network
6100. Assume 6116 to be a chipcard or smartcard which 1s
connected to 6115. During an established connection 6116
can be updated with additional or replacement modified
n-state switching functions.

Computing devices can be mobile or fixed. For instance
6103 and 6104 are two computing devices that are con-
nected to the Internet, for instance 6103 1s a computer, such
as a PC, a smartphone, a tablet and 6104 for placing an order
and 6104 1s a server for processing the order. For instance
6103 1s a computing device which may be a server, a
computer, a PC, a smartphone, a tablet, a processor and the
like to monitor and/or control an IoT (Internet of Things)
device 6104 with a processor such as a camera, a medical
device, a security device such as a lock or fire monitor, a
thermostat, an appliance, a vehicle or any other device.

One of ordinary skill will realize that the herein disclosed
novel and mnventive aspects increase security ol computer
based messages and messaging over a network, including
phone networks and the Internet. In accordance with a
turther aspect of the present invention computer istructions
that perform operations 1n accordance with these aspects are
a) stored on a memory and/or storage device and/or b) part
of an 1instruction set on a computing device and/or c)
included as an 1nstruction set 1n an Internet browser includ-
ing one such as Google Chrome™, Microsoft Edge™,
Firefox™ among others and/or d) part of an mstruction set
of an application or app that 1s used in communication
between at least two computing machines and/or ¢) as
instructions and/or circuitry on a device such as a chipcard
or smartcard as described 1n https://en.wikipedia.org/wiky/
Smart_card and/or 1) any other use 1n an exchange of data
between at least two computing devices.

All terms related to operations, including transformations,
inversions, processing, mstructions, arithmetical operations,
modulo-p operations, operations over GF(p), transmissions,
receiving are fully and explicitly to be machine and/or
circuit and/or processor and/or discrete circuits and/or
FPGA based operations and not mental operations. Any
cryptographic operation herein i1s specifically a machine
operation. A data element 1s a machine state that may be
materialized as a signal. Unless expressly stated diflerently,
a data-element 1s represented by an n-state value with n an
integer greater than 2. A data-element may be 2 or more bits
or binary states and 1s processed under an FL'T as an n-state
unit. An exchange of data between machines may be a
message ol one or more data-elements, which unless stated
differently are one or more n-state data-elements with n an
integer greater than 2.
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A machine multiplication 1s a machine operation of two
operands. A machine multiplication with a first operand that
1s a one element and a second operand has the second
operand as output. A machine multiplication with a first
operand that 1s a zero element and a second operand has the
zero element as output. A machine multiplication with a first
operand and a second operand that 1s 1ts multiplicative
inverse has the one element as output. In an Fl'Ted machine
multiplication a zero-element may not be 0 and a one-
clement may not be 1 1 a origin-0 representation of
operands.

A public key (PK) or public key exchange (PKE) cryp-
tographic system establishes a secret keyword after public
data exchange. The PK/PKE system may determine a com-
mon secret key after exchange of 2 components between
machines such as 1n Dithie Hellman. It may also be a system
wherein one machine determines or generates a key that 1s
encrypted transmitted to another machine and then
decrypted, causing two machines having the same key. A key
encapsulating system 1s also considered a public key system
herein, unless explicitly said to be different.

One aspect of the present invention disclosed herein 1s the
encryption of a data element A by determining an FL'T based
multiplicative inverse Aﬂr"l. The inverse Aﬂ;l 1s defined as
A~ ® A=onef, wherein ¥ is the FLT based on a reversible
n-state mverter of the operation *, which 1s the machine
operation described as a multiplication over GF(n) or a
multiplication mod-n. The term onef 1s the one-element or
neutral element of & so that A® onel=A. Determination of
Aﬁr‘l 1s non-trivial. One way 1s to create a switching table of
0 and find 1n the row or column related to A and index for
which the row or column element 1s onef. This works only
if n 1s small enough to generate the switching table or at least
the related row or column. Another way 1s to use the inverter
rules of the FLT and apply the Extended Fuclidean Algo-
rithm based on finding a remainder, using FLTed multipli-
cation, addition and subtraction. Yet another way 1s to
determine Ai=inv(A), determine the normal multiplicative
imverse Ami of A1 related to * (so that A1*Ami=1) and then
determine A, ™' as A, ~'=rinv(Ami), with inv being the
n-state inverter rule and rinv being the related reversing
n-state mverter rule.
Accordingly Aﬂf'l 1s not simple to determine and takes
computing efforts. Furthermore 1t 1s impossible or extremely
hard to determine A from Aﬂf‘l without knowledge of A and
the inverter rule. This makes, under a condition of a secret
n-state inverter and/or iverter rule, encryption as disclosed
highly eflective and dramatically increases security.

In a similar sense one may arrange a data element, which
in most cases 1s a representation of bits, into at least 4
separate elements that may be combined into the data-
clement. The at least 4 elements may be considered or

arranged as a matrix B of which the FLTed inverse matrix
B, ' is computed so that B, ® B=I, with I, the FLT
neutral matrix so that B¥ 1,=B. Such a matrix encryption 1s
even harder to attack successiully. Both FLT-based encryp-
tions are non-trivial, are not routine, are not conventional
and not known 1n the art let alone generally well understood.

While there have been shown, described and pointed out
fundamental novel features of the mvention as applied to
preferred embodiments thereot, it will be understood that
various omissions and substitutions and changes 1n the form
and details of the device illustrated and 1n 1ts operation may
be made by those skilled 1n the art without departing from
the spirit of the mnvention. It 1s the imtention, therefore, to be
limited only as indicated by the scope of the claims

appended hereto.
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The 1nvention claimed 1s:

1. A cryptographic system, comprising:

a processor configured to exchange over a physical com-
munication channel to a device a message that is
generated as part of a cryptographic machine operation
that includes an n-state Finite Lab Transform (FLT)
based modification of an n-state computer operation
having at least 2 inputs, the n-state FLT modification
includes each of the at least 2 inputs of the n-state
computer operation having an i1dentical n-state revers-
ible 1nverter not being 1dentity and at an output of the
n-state computer operation a reversing n-state revers-
ible 1nverter, the n-state reversible inverter and the
reversing n-state reversible inverter i combination
form 1dentity, with n an integer greater than 2.

2. The cryptographic system of claim 1, wherein:

the n-state computer operation 1s selected from the group
ol n-state computer operations characterized by opera-
tions in the group consisting of a modulo-n multipli-
cation, a modulo-n addition, a multiplication over GF
(n) and an addition over GF (n), wherein GF (n) 1s a
fimite field with n elements.

3. The cryptographic system of claim 2, wherein the
cryptographic machine operation 1s a digital signature opera-
tion.

4. The cryptographic system of claim 3, wheremn the
cryptographic machine operation 1s a Schnorr signature
based system.

5. The cryptographic system of claim 3, wheremn the
cryptographic machine operation 1s a digital signature based
system that includes a Fiat-Shamir heuristic.

6. The cryptographic system of claim 3, wherein the
cryptographic machine operation 1s a digital signature sys-
tem that performs a Feige-Fiat-Shamir 1dentification opera-
tion.

7. The cryptographic system of claim 1, wherein the Finite
Lab Transform (FL'T) modification of the n-state computer
operation 1s stored as a table on a memory.

8. The cryptographic system of claim 1, wherein a data
clement 1s processed by the n-state FLLT modification as a
(Gaussian integer.

9. The cryptographic system of claim 1, wheremn the

message 1s a ciphertext in the cryptographic machine opera-
tion.
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10. The cryptographic system of claim 1, wherein the
cryptographic machine operation 1s a public key system
operation.

11. The cryptographic system of claim 10, wherein the
cryptographic machine operation 1s an 1sogeny based opera-
tion.

12. The cryptographic system of claim 11, wherein the
1sogeny based operation includes an iput data element that
1s a point on an elliptic curve on which the 1sogeny operation
1s based and of an order not being a power of 2 or 3.

13. The cryptographic system of claim 11, wherein the
1sogeny based operation includes an mput data element that
1s processed as a point on an elliptic curve on which the
1sogeny operation 1s based but 1s not a point on the elliptic
curve of 1sogeny computation.

14. The cryptographic system of claim 11, wherein one or
more computed kernel points are stored after a prior com-
putation and are used in processing the mput data.

15. The cryptographic system of claim 10, wherein the
cryptographic machine operation 1s a Goppa-code based
operation.

16. The cryptographic system of claim 13, further com-
prising;:

the processor 1s configured to generate data as a first

matrix with p-state elements, p being an integer greater
than 2, based on the Goppa code, the first matrix being
modified into a first modified matrix by at least a
machine multiplication with a scrambling matrix;
data based on the first modified matrix is transmitted over

the physical communication channel; and

the processor 1s configured to modily one or more rows 1n
the first modified matrix and to transmit data based only
on the modified one or more rows to the second
ProCessor.

17. The cryptographic system of claim 10, wherein the
cryptographic machine operation 1s a N-th degree Truncated
polynomial Ring Units (NTRU) based operation.

18. The cryptographic system of claim 10, wherein the
cryptographic machine operation 1s a Feedback Shiit Reg-
ister modeled system.

19. The cryptographic system of claim 18, wherein the
cryptographic machine operation 1s an n-state Feedback
Shift Register 1n a Galois configuration.

20. The cryptographic system of claim 10, wherein pub-
licly exchanged data 1s processed as an invertible matrix.
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