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HYBRID-FEEDBACK DRIVEN TRANSPILER
SYSTEM

BACKGROUND

Large organizations, such as financial institutions and
other large enterprise organizations, may provide many
different products and/or services. To support these complex
and large-scale operations, a large organization may own,
operate, and/or maintain many different computer systems
that service different internal users and/or external users in
connection with different products and services. In addition,
some computer systems internal to the organization may be
configured to exchange information with computer systems
external to the organization so as to provide and/or support
different products and services oflered by the organization.

As a result of the complexity associated with the opera-
tions of a large organization and its computer systems, 1t
may be difficult for such an organization, such as a financial
istitution, to efliciently, effectively, securely, and uniformly
manage 1ts computer systems, and particularly manage how
internal computer systems exchange information with exter-
nal computer systems in providing and/or supporting difler-
ent products and services oflered by the organization. Often,
applications and/or data repositories are migrated to difler-
ent platforms, due to many reasons including hardware
obsolescence, software obsolescence, platform vendor
migration, and the like.

Many data and platform migration projects may require
and/or benefit from a “lift and shift” strategy where the
platform and data components are migrated. In some cases,
such as with data repository migration projects, historical
information such as code and its residuals like time and
business critical reports, may often be left within the original
platform after migration to the new platform 1s completed.
Often, these residuals may be translated over time and 1n
many cases cause mmmense technical debt on users and
teams that are migrated over to the new technology since the
old code must be regenerated on the new platiorm and/or the
older hardware must continue to operate in parallel with the
new platform. This problem 1s not only re-occurring but
includes huge hidden costs 1 terms of time, money, and
computing power. Often costly vendor solutions may be
explored, but these new vendor solution may be required to
navigate and understand the complex existing technological
ecosystem of the enterprise network and/or spend long time
and eflort 1n resolving the technical debt. Such efforts may
be better applied to more productive activities.

Current language conversion technologies may use a
“brute force” method where terms from a source language
may be substituted with a defined term of the target lan-
guage. Unfortunately, such systems fail to learn from errors
and remain error prone. Other methods may use a general
model that requires large amounts of data, which leaves the
system open to biasing errors due to characteristics of
particular datasets. Once these biasing errors are learned,
they are dithcult, 11 not impossible to unlearn thus causing
the model to be unusable outside a certain learned environ-
ment.

SUMMARY

The following presents a simplified summary 1n order to
provide a basic understanding of some aspects of the dis-
closure. The summary 1s not an extensive overview of the
disclosure. It 1s neither intended to identify key or critical
clements of the disclosure nor to delineate the scope of the
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2

disclosure. The following summary presents some concepts
of the disclosure 1n a simplified form as a prelude to the
description below.

Aspects of the disclosure relate to computer systems that
provide ellective, eflicient, scalable, and convenient ways of
securely and uniformly managing how internal computer
systems exchange information with external computer sys-
tems to provide and/or support different products and ser-
vices ollered by an organization (e.g., a financial mstitution,
and the like).

Aspects of the disclosure relate to computer hardware and
soltware. In particular, one or more aspects of the disclosure
generally relate to computer hardware and software for a
bi-directional hybrid-feedback driven self-healing and seli-
scaling language transpiler.

A system of one or more computers can be configured to
perform particular operations or actions by virtue of having
software, firmware, hardware, or a combination of them
installed on the system that in operation causes or cause the
system to perform the actions. One or more computer
programs can be configured to perform particular operations
or actions by virtue of including instructions that, when
executed by data processing apparatus, cause the apparatus
to perform the actions. One general aspect includes parsing
and transforming code via a natural language processing
system to generate code 1n another language.

In some cases, a bi-directional hybrid-feedback driven
seli-healing and seli-scaling language transpiler system may
establish and provide a robust framework facilitate transpila-
tion capabilities that are self-correcting and seli-scaling.
Such tunctionality may improve operation of technical plat-
form migrations by automatically translating an existing
code base without user intervention. A natural language
processor may include machine learning and/or artificial
intelligence capabilities to facilitate learning from estab-
lished and/or trained language vocabularies and/or language
models. An automated mapping to a conversion service
allows the natural language processing system to generate
simple mappings that may be translated into configuration
specifications, which may be pushed down to the mapping
transformation components to update the transpiler.

These features, along with many others, are discussed 1n
greater detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s illustrated by way of example
and not limited 1n the accompanying figures 1n which like
reference numerals imdicate similar elements and 1n which:

FIG. 1A shows an illustrative computing environment for
teedback driven transpilation of code, 1n accordance with
one or more aspects described herein;

FIG. 1B shows an 1llustrative computing platform enabled
for feedback driven transpilation of code, 1n accordance with
one or more aspects described herein; and

FIG. 2 shows an illustrative system and method for
teedback driven transpilation of code 1n accordance with one
or more aspects described herein.

DETAILED DESCRIPTION

In the following description of wvarious illustrative
embodiments, reference 1s made to the accompanying draw-
ings, which form a part hereof, and in which 1s shown, by
way of 1llustration, various embodiments 1n which aspects of
the disclosure may be practiced. It 1s to be understood that
other embodiments may be utilized, and structural and
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functional modifications may be made, without departing
from the scope of the present disclosure.

It 1s noted that various connections between elements are
discussed 1n the following description. It 1s noted that these
connections are general and, unless specified otherwise, may
be direct or indirect, wired or wireless, and that the speci-
fication 1s not intended to be limiting 1n this respect.

As used throughout this disclosure, computer-executable
“software and data” can include one or more: algorithms,
applications, application program interfaces (APIs), attach-
ments, big data, daemons, emails, encryptions, databases,
datasets, drivers, data structures, file systems or distributed
file systems, firmware, graphical user interfaces, images,
instructions, machine learning (e.g., supervised, semi-super-
vised, remnforcement, and unsupervised), middleware, mod-
ules, objects, operating systems, processes, protocols, pro-
grams, scripts, tools, and utilities. The computer-executable
soltware and data 1s on tangible, computer-readable memory
(local, 1n network-attached storage, or remote), can be stored
in volatile or non-volatile memory, and can operate autono-
mously, on-demand, on a schedule, and/or spontaneously.

“Computer machines” can include one or more: general-
purpose or special-purpose network-accessible administra-
tive computers, clusters, computing devices, computing
platforms, desktop computers, distributed systems, enter-
prise computers, laptop or notebook computers, primary
node computers, nodes, personal computers, portable elec-
tronic devices, servers, node computers, smart devices,
tablets, and/or workstations, which have one or more micro-
processors or executors lfor executing or accessing the
computer-executable software and data. References to com-
puter machines and names of devices within this definition
are used interchangeably in this specification and are not
considered limiting or exclusive to only a specific type of
device. Instead, references in this disclosure to computer
machines and the like are to be interpreted broadly as
understood by skilled artisans. Further, as used in this
specification, computer machines also include all hardware
and components typically contained therein such as, for
example, processors, executors, cores, volatile and non-
volatile memories, communication interfaces, etc.

Computer “networks™ can include one or more local area
networks (LANSs), wide area networks (WANs), the Internet,
wireless networks, digital subscriber line (DSL) networks,
frame relay networks, asynchronous transter mode (ATM)
networks, virtual private networks (VPN), or any combina-
tion of the same. Networks also include associated “network
equipment” such as access points, ethernet adaptors (physi-
cal and wireless), firewalls, hubs, modems, routers, and/or
switches located 1nside the network and/or on 1ts periphery,
and software executing on the foregoing.

The above-described examples and arrangements are
merely some examples of arrangements in which the sys-
tems described herein may be used. Various other arrange-
ments employing aspects described herein may be used
without departing from the mnovative concepts described.

In some cases, the bi-directional hybrid-feedback driven
self-healing and self-scaling language transpiler system may
perform various methods to generate automatic scaling
and/or self-correcting conversions of a given source lan-
guage and/or related dialects into a given target language
and/or target language dialects. In some cases, a method may
include an 1n1tial configuration, initialization, and/or setup to
start a transpilation process between any two or more given
languages. The method may incorporate natural language
processing and/or other feedback to perform one or more
autocorrection functionalities to continue building upon an
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initialized token, model and/or transformer vocabularies. A
mapping configuration for multiple vocabularies may be
automatically generated from the specification and may be
based on a two or multi-hop scheme that allows the
transpilation capability to continuously scale, thus allowing
for increased accuracy over time. The natural language
processor and other generated feedback methods may be
continuously combined to increase accuracy and optimiza-
tion over time when building a knowledge base. The knowl-
edge base may be converted into an enterprise mapping
vocabulary.

Features of the bi-directional hybrid-feedback driven seli-
healing and self-scaling language transpiler system may
include bi-directional hopping to support multi language
transpilation, automatic conversion of a mapping o a
transformation specification, a hybrid feedback mechanism
to update the transformation mappings, automatic scaling
and/or creation of enterprise wide mapping and token (e.g.,
grammar) vocabulary, and/or a self-healing and/or correc-
tive translation capability to perform automatic correction of
any partial transpilations over time from a learned mapping.

FIG. 1A shows an illustrative computing environment 100
tor feedback driven transpilation of code, 1n accordance with
one or more arrangements. The computing environment 100
may comprise one or more devices (e.g., computer systems,
communication devices, and the like). The computing envi-
ronment 100 may comprise, for example, a hybrid feedback
driven transpilation system 104, one or more application
computing systems 108, a source computing system 122, a
destination computing system 123, and/or one or more
database(s) 116. The one or more of the devices and/or
systems, may be linked over a private network 125 associ-
ated with an enterprise organization (e.g., a financial 1nsti-
tution, a business organization, an educational 1nstitution, a
governmental organization and the like). The computing
environment 100 may additionally comprise a client com-
puting system 120 and one or more user devices 110
connected, via a public network 130, to the devices in the
private network 125. The devices 1 the computing envi-
ronment 100 may transmit/exchange/share information via
hardware and/or software interfaces using one or more
communication protocols. The communication protocols
may be any wired communication protocol(s), wireless
communication protocol(s), one or more protocols corre-
sponding to one or more layers i the Open Systems
Interconnection (OSI) model (e.g., local area network
(LAN) protocol, an Institution of Electrical and Electronics
Engineers (IEEE) 802.11 WIFI protocol, a 3™ Generation
Partnership Project (3GPP) cellular protocol, a hypertext
transier protocol (HT'TP), etc.). While FIG. 1A shows the
source computing system 122 and the destination computing,
system 123 as being separate computing systems, one or
both of the source computing system 122 and the destination
computing system 123 may be incorporated within the one
or more of the application computing systems 108 and/or the
databases 116.

The hybnid feedback driven transpilation system 104 may
comprise one or more computing devices and/or other
computer components (€.g., processors, memories, Comimu-
nication interfaces) configured to perform one or more
functions as described herein. Further details associated with
the architecture of the hybrid feedback driven transpilation
system 104 are described with reference to FIG. 1B.

The application computing systems 108, the source com-
puting system 122 and/or the destination computing system
123 may comprise one or more computing devices and/or
other computer components (€.g., pProcessors, memories,
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communication interfaces). In addition, the application com-
puting systems 108, the source computing system 122
and/or the destination computing system 123 may be con-
figured to host, execute, and/or otherwise provide one or
more enterprise applications. In some cases, the application
computing systems 108 may host one or more services
configured facilitate operations requested through one or
more API calls, such as data retrieval and/or mitiating
processing of specified functionality. In some cases, the
source computing system 122 and/or the destination com-
puting system 123 may be configured to communicate with
one or more of the application computing systems 108 such
as via direct communications and/or API function calls and
the services. In an arrangement where the private network
125 1s associated with a financial nstitution (e.g., a bank),
the application computing systems 108 may be configured,
for example, to host, execute, and/or otherwise provide one
or more transaction processing programs, such as an online
banking application, fund transfer applications, and/or other
programs associated with the financial institution. The appli-
cation computing systems 108, the source computing system
122 and/or the destination computing system 123 may
comprise various servers and/or databases that store and/or
otherwise maintain account information, such as financial
account information mcluding account balances, transaction
history, account owner information, and/or other iforma-
tion. In addition, the client computing system 122 and/or the
application systems 108 application computing systems 108,
the source computing system 122 and/or the destination
computing system 123 may process and/or otherwise
execute transactions on specific accounts based on com-
mands and/or other information received from other com-
puter systems comprising the computing environment 100.
In some cases, one or more of the application computing
systems 108, the source computing system 122 and/or the
destination computing system 123 may be configured, for
example, to host, execute, and/or otherwise provide one or
more transaction processing programs, such as electronic
fund transier applications, online loan processing applica-
tions, and/or other programs associated with the financial
institution.

The application computing systems 108 may be one or
more host devices (e.g., a workstation, a server, and the like)
or mobile computing devices (e.g., smartphone, tablet). In
addition, an application computing systems 108 may be
linked to and/or operated by a specific enterprise user (who
may, for example, be an employee or other afliliate of the
enterprise organization) who may have administrative privi-
leges to perform various operations within the private net-
work 1235. In some cases, the application computing systems
108 may be capable of performing one or more layers of user
identification based on one or more different user verifica-
tion technologies including, but not limited to, password
protection, pass phrase identification, biometric identifica-
tion, voice recognition, facial recognition and/or the like. In
some cases, a first level of user 1dentification may be used,
for example, for logging 1into an application or a web server
and a second level of user identification may be used to
enable certain activities and/or activate certain access rights.

The source computing system 122, the destination com-
puting system 123 and/or the client computing system 120
may comprise one or more computing devices and/or other
computer components (e.g., processors, memories, comimu-
nication interfaces). The source computing system 122, the
destination computing system 123 and/or the client comput-
ing system 120 may be configured, for example, to host,
execute, and/or otherwise provide one or more transaction
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processing programs, such as goods ordering applications,
clectronic fund transier applications, online loan processing
applications, and/or other programs associated with provid-
ing a product or service to a user. With reference to the
example where one or more of the source computing system
122, the destination computing system 123 and/or the client
computing system 120 1s for processing an electronic
exchange of goods and/or services. The s source computing
system 122, the destination computing system 123 and/or
the client computing system 120 may be associated with a
specific goods purchasing activity, such as purchasing a
vehicle, transferring title of real estate may perform com-
municate with one or more other platforms within the
system 100. In some cases, the source computing system
122, the destination computing system 123 and/or the client
computing system 120 may integrate API calls to request
data, mitiate functionality, or otherwise communicate with
the one or more application computing systems 108, such as
via the services. For example, the services may be config-
ured to facilitate data communications (e.g., data gathering
functions, data writing functions, and the like) between the
source computing system 122, the destination computing
system 123 and/or the client computing system 120 and the
one or more application computing systems 108.

The user device(s) 110 may be computing devices (e.g.,
desktop computers, laptop computers) or mobile computing
device (e.g., smartphones, tablets) connected to the network
125. The user device(s) 110 may be configured to enable the
user to access the various functionalities provided by the
devices, applications, and/or systems in the network 125.

The database(s) 116 may comprise one or more computer-
readable memories storing information that may be used by
the hybrid feedback driven transpilation system 104. For
example, the database(s) 116 may store one or more source
language libraries, one or more destination language librar-
ies, a learned natural language processing (NLP) lexicon,
and the like. In an arrangement, the database(s) 116 may be
used for other purposes as described herein. In some cases,
the hybrid feedback driven transpilation system 104, the
application computing systems 108, the source computing
system 122 and/or the destination computing system 123
may write data or read data to the database(s) 116 via the
SErvices.

In one or more arrangements, the hybrid feedback driven
transpilation system 104, the application computing systems
108, the source computing system 122, the destination
computing system 123, the client computing system 120, the
user computing devices 110, and/or the other devices/sys-
tems 1n the computing environment 100 may be any type of
computing device capable of receiving input via a user
interface, and communicating the recerved mput to one or
more other computing devices 1n the computing environ-
ment 100. For example, the hybnd feedback driven
transpilation system 104, the application computing systems
108, the source computing system 122, the destination
computing system 123, the client computing system 120, the
user computing devices 110, and/or the other devices/sys-
tems in the computing environment 100 may, 1n some
instances, be and/or include server computers, desktop com-
puters, laptop computers, tablet computers, smart phones,
wearable devices, or the like that may comprised of one or
more processors, memories, communication mterfaces, stor-
age devices, and/or other components. Any and/or all of the
hybrid feedback driven transpilation system 104, the appli-
cation computing systems 108, the source computing system
122, the destination computing system 123, the client com-
puting system 120, the user computing devices 110, and/or
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the other devices/systems 1n the computing environment 100
may, 1n some instances, be and/or comprise special-purpose
computing devices configured to perform specific functions.

FIG. 1B shows an illustrative hybrid feedback driven
transpilation system 104 1n accordance with one or more
examples described herein. The hybrid feedback driven
transpilation system 104 may be a stand-alone device and/or
may at least be partial integrated with another computing,
system and may comprise one or more of host processor(s)
155, medium access control (MAC) processor(s) 160, physi-
cal layer (PHY) processor(s) 165, transmit/receive (TX/RX)
module(s) 170, memory 1350, and/or the like. One or more

data buses may interconnect host processor(s) 155, MAC
processor(s) 160, PHY processor(s) 165, and/or Tx/Rx mod-

ule(s) 170, and/or memory 150. The hybrid feedback driven
transpilation system 104 may be implemented using one or
more integrated circuits (ICs), software, or a combination
thereol, configured to operate as discussed below. The host
processor(s) 155, the MAC processor(s) 160, and the PHY
processor(s) 165 may be implemented, at least partially, on
a single IC or multiple ICs. The memory 150 may be any
memory such as a random-access memory (RAM), a read-
only memory (ROM), a flash memory, or any other elec-
tronically readable memory, or the like.

Messages transmitted from and received at devices 1n the
computing environment 100 may be encoded 1n one or more
MAC data units and/or PHY data units. The MAC proces-
sor(s) 160 and/or the PHY processor(s) 165 of the hybnd
teedback driven transpilation system 104 may be configured
to generate data units, and process received data units, that
conform to any suitable wired and/or wireless communica-
tion protocol. For example, the MAC processor(s) 160 may
be configured to implement MAC layer functions, and the
PHY processor(s) 165 may be configured to implement PHY
layer functions corresponding to the communication proto-
col. The MAC processor(s) 160 may, for example, generate
MAC data units (e.g., MAC protocol data units (MPDUs)),
and forward the MAC data units to the PHY processor(s)
165. The PHY processor(s) 165 may, for example, generate
PHY data units (e.g., PHY protocol data units (PPDUs))
based on the MAC data units. The generated PHY data units
may be transmitted via the TX/RX module(s) 170 over the
private network 155. Similarly, the PHY processor(s) 165
may receive PHY data units from the TX/RX module(s) 165,
extract MAC data units encapsulated within the PHY data
units, and forward the extracted MAC data units to the MAC
processor(s). The MAC processor(s) 160 may then process
the MAC data units as forwarded by the PHY processor(s)
165.

One or more processors (e.g., the host processor(s) 1355,
the MAC processor(s) 160, the PHY processor(s) 163,
and/or the like) of the hybrid feedback driven transpilation
system 104 may be configured to execute machine readable
instructions stored i memory 150. The memory 150 may
comprise (1) one or more program modules/engines having
instructions that when executed by the one or more proces-
sors cause the hybrid feedback driven transpilation system
104 to perform one or more functions described herein
and/or (11) one or more databases that may store and/or
otherwise maintain information which may be used by the
one or more program modules/engines and/or the one or
more processors. The one or more program modules/engines
and/or databases may be stored by and/or maintained 1n
different memory units of the hybnd feedback driven
transpilation system 104 and/or by different computing
devices that may form and/or otherwise make up the hybrnid
teedback driven transpilation system 104.
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For example, the memory 150 may have, store, and/or
comprise a parsing engine 1350-1, a transformer engine
150-2, an NLP engine 150-3, a code generation engine 150-4
and/or the like. The parsing engine 150-1 may have instruc-
tions that direct and/or cause the hybrid feedback driven
transpilation system 104 to perform one or more operations
associated with loading an mput code source (e.g., a source
file, a code base, and the like), analyzing the code to 1identily
key aspects (e.g., key words, terms, parameters, and the
like), identily a source language of the code, and formatting
the parsed language into a common format associated with
that language (e.g., a parse tree, an abstract syntax tree

AST), and the like) that may be used as an 1nput to the
transformer engine 150-2. The transformer engine 150-2
may have instructions that direct and/or cause the hybnd
teedback driven transpilation system 104 to perform one or
more operations associated with transforming an 1nput file
(e.g., an AST 1n a source language) 1into an output file (e.g.,
an AST 1n a destination language) based on natural language
processing analysis of the mput file. The NLP engine 150-3
may have instructions that direct and/or cause the hybnd
teedback driven transpilation system 104 to perform one or
more operations associated with identification of words and
phrases associated with one or more languages and auto-
matically improving this the language-based identification
via a feedback engine. The code generation engine 150-4
may have instructions that direct and/or cause the hybnd
teedback driven transpilation system 104 to perform one or
more operations associated with transforming an input file
(e.g., an AST 1n a destination language) into an output {file
(e.g., a code file 1n one or more code languages or dialects)
based on an AST file output by the transformer engine 150-2.

While FIG. 1A illustrates the hybrid feedback driven
transpilation system 104, the application computing systems
108, the source computing system 122, and the destination
computing system 123 as being separate elements connected
in the private network 125, 1n one or more other arrange-
ments, functions of one or more of the above may be
integrated 1 a single device/network of devices. For
example, elements 1 hybnid feedback driven transpilation
system 104 (e.g., host processor(s) 155, memory(s) 150,
MAC processor(s) 160, PHY processor(s) 165, TX/RX
module(s) 170, and/or one or more program/modules stored
in memory(s) 150) may share hardware and soltware ele-
ments with and corresponding to, for example, the applica-
tion computing systems 108, the source computing system
122, and/or the destination computing system 123.

FIG. 2 shows an illustrative system 200 and method 300
for feedback driven transpilation of code 1n accordance with
one or more aspects described herein. The system 200 may
include a data store storing source code (e.g., one or more
source files 203), a parsing engine 210, a language learning
engine 220, a transformation engine 230, a code generation
engine 240, and a data store storing translated code for use
on a target computing system (e.g., the target files 250a-n).
The language learning engine 220 may further include a
natural language processor 222 and a feedback engine €224,
where the NLP 222 may be capable of i1dentifying terms,
phrases and/or other language i1tems based on analysis of
information stored in a source library repository 207 and a
destination library repository 257. In some cases, the feed-
back engine 224 may receive feedback from a computing
device 260 that may be used to automatically enhance a
language 1dentification model processed by the NLP 222.

Aspects of the system 200 and method 300 concerns
translation of programming languages and more particularly,
automatic translation of programming languages during a
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plattorm migration. When an application or other techni-
cally programmed solution 1s built using a particular pro-
gramming language, time and effort 1s expended to build the
application. Such applications and/or technically pro-
grammed solutions have a finite lifetime, due to hardware
aging and/or advancements, improved technological plat-
forms, lost support for a vendor supplied product, and/or the
like. As such, a point 1s reached 1n the application life cycle
when the application 1s migrated to another technology stack
and/or platform, which means migrating all backend tech-
nology, including any customized programming aspects, and
the full dataset. Aspects of this disclosure may concern
migrating backend technology such as a database or other
data repository, but can be applied to other technology
utilizing programmed features including web servers, appli-
cation servers, hosts, kiosks, and the like.

In an 1llustrative example, data may be migrated from one
database technology platform to another, such as from a
structured query language (SQL) based platform (e.g., a
relational database platform) to a non-relational database
plattorm (e.g., a noSQL database platform), a big data
database platform, and the like. Within the technology stack
for an SQL-based database platform, queries and other
functionality may be customized and/or programmed based
on an SQL dialect that has been customized for a specific
technology platform (e.g., a vendor specific SQL dialect).
Dialects of a particular programming language may have
common elements that conform to a programming language
standard and also may include customized features that the
vendor uses to enhance their product. For the most part, the
programming language or dialect may be used to develop
reports, dashboards, and other data intensive functionalities.
During migration, the data itself may be easily migrated to
the new platiorm, the code and other customized function-
alities may be left behind on the old platform. As such,
movement of the programmed functionalities from the origi-
nal technology stack to the new technology stack requires a
massive manual task to convert the programmed features
from the original programming language or dialect of the
original technology platiorm to the new programming lan-
guage or dialect utilized by the target technology platiorm.
For example, an SQL based database used by an enterprise
organization may include millions (e.g., 1 million, 2 million,
5 million, and the like) user queries, which would require a
large amount of effort and a long time to convert. As such,
a need has been recognized for a system to facilitate auto-
matic migration and transpilation of programming lan-
guages, such as by utilizing a machine learning engine, to
convert programmed functionalities (e.g., queries, functions,
and the like) from a source programming language (or
dialect of a language) to a target programming language.

In some cases, the system 200 may be used to perform a
method 300 of code migration from a first computing
platform (e.g., a source computing platform) to a second
computing platform (e.g., a destination computing platiorm,
a target computing platiorm, or the like). For example, a data
repository may be migrated from a source computing plat-
form to a destination computing platform based on a change
in database vendors for the enterprise organization, an
update to an existing data repository product, an update to a
new product version or new product that supports a diflerent
programming language, and/or the like. While data migra-
tion may be automated during this process, migration of an
existing code base (e.g., schemas, queries, macros, and the
like) may not be capable of being automatically moved to
the new platform. As such, much time and eflort used to
develop the existing code base may be lost. Additionally,
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hardware costs may be increased due to the additional time
needed to maintain the hardware infrastructure for both the
source computing platform and the new destination com-
puting platform. Further, communications and/or other
activities may be delayed due to lost links or links to a wrong
plattorm may be included 1n the new computing platform
and/or the applications using or otherwise accessing the
data. As such a need has been recognized to streamline the
transformation of code between the source computing sys-
tem and/or a target computing systems, such as by auto-
matically transforming the code from a source language
and/or one or more dialects of the source language to a target
language or one or more dialects of the target language via
a hybrid feedback-driven transformation system 200.

In some cases, the system 200 and method 300 facilitates
a robotic framework to automate translation (e.g., transpila-
tion) ol functionalities programmed 1n a source language or
dialect to corresponding functionalities in a target language
or dialect. The system 200 may include machine learning
enabled engines (e.g., the language learming engine 220, the
NLP 222, the transformation engine 230, and the hke) to
provide a self-supported and seli-learming environment to
automate transpilation functionality with minimal to no
human interaction. The system 200 i1s self-healing and
provides self-correcting functionality over time. For
example, any errors due to mis-transpilation of functionali-
ties to the target system may be feed back into the language
learning engine 220 to improve a machine learning-based
transpilation model for transpilation from the source lan-
guage to the target language.

In some cases, the system 200 and method 300 facilitates
a robotic framework to automate translation (e.g., transpila-
tion) ol functionalities programmed in a source language or
dialect to corresponding functionalities in a target language
or dialect. The system 200 may include machine learning
enabled engines (e.g., the language learming engine 220, the
NLP 222, the transformation engine 230, and the like) to
provide a self-supported and self-learming environment to
automate transpilation functionality with minimal to no
human interaction. The system 200 1s seli-healing and
provides self-correcting functionality over time. For
example, any errors due to mis-transpilation of functionali-
ties to the target system may be feed back into the language
learning engine 220 to improve a machine learning-based
transpilation model for transpilation from the source lan-
guage to the target language.

The method 300 may generally start with a base of learned
source dialect information, apply transpilation transforma-
tions to a target language based on a tramned intelligent
machine learning model, and generate target code in the
target language based on the transformed information. The
system 200 and method 300 may include multiple aspects,
such as bidirectional hopping to support multi-language
transpilation capabilities, automatic conversion of language
mappings 1nto a conversion specification, a hybrid feedback
mechanism to supplement automatic feedback learning with
human feedback on an as-needed bases and incorporating
that feedback mto the conversion specifications, allowing
the system 200 and method 300 the ability to organically
scale and evolve with improvements to technologies, and
seli-learming updates to grammar and vocabularies of each
programmed language or dialect.

At 310, the parsing engine 210 may parse or otherwise
analyze one or more source files 205 containing source code
to be translated. The parsing engine 210 may i1dentily a
language or a dialect of the language and may generate an
input file for the transformation engine 230. For example,
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the parsing engine 210 may generate an AST file 214
corresponding to the source language of the source file 205.
Additionally, at 320, the parsing engine 210 may further
optimize the AST file 214 via feedback received from the
NLP 222 to automatically enhance term 1dentification by the
parsing engine 210. At 330, the transformation engine 230
may process the source AST file 214 based on information
received from the NLP 222 of the language learning engine
220. For example, the language learning engine 220 may
provide, based on an indication of the source language or
dialect and an indication of the destination language or
dialect, 1dentification of words and/or phrases indicative of
a particular language or dialect used for programming a
particular application and/or for queries within a particular
data repository environment.

In some cases, the system 200 and method 300 may
facilitate bidirectional hopping to support multi-language
transpilation, where a transpiler automatically solves a prob-
lem of moving a developed code base between platiorms,
where the vocabulary and grammar of a programming
language are mapped to others. The transpilation system
may provide an automated process to move programmed
functionalities between technology platforms having dispa-
rate programming languages or different dialects of pro-
gramming languages. The transpilation system 200 may
provide a method 300 that automatically expands transpila-
tion functionalities based on learned relationships between
programming languages or dialects. In an 1illustrative
example, a transpilation mapping from programming lan-
guage A to programming language B and a transpilation
mapping irom programming language A to programming
language C may be learned by the transpilation system.
Based on these learned relationships between programming
language A and B and between programming language A
and C, the transpilation system may automatically learn a
transpilation between programming languages B and C. As
such, learned relationships between additional languages
may be automatically expanded to other languages. For
example, a transpilation between programming languages C
and D may be learned by the transpilation system. As such,
the transpilation system may also automatically expand the
transpilation capability to transpile code from programming
language A to D and from B to D. As such, once the
transpiler system 200 creates an initial mapping between any
two languages, the system can learn relationships between
other combinations of learned languages or dialects.

Additionally, the transpilation system 200 may be capable
ol automatic conversions of mappings into a translation or
transpilation specification. For example, the language learn-
ing engine 220 may be capable of capturing or automatically
learning nuances of programming languages or dialects.
Programming languages often provide general functionality
that can be leveraged 1in multiple ways to achieve desired
functionalities. For example, different programmers can
write programs or functions that generate a same output by
performing different intermediate operations. As such, a
person’s skill, experience and/or creativity often determines
how that particular person creates their code. The language
learning engine 220 therefore learns multiple ways to emu-
late particular functionalities, such as by using a constraint-
driven automatic process to convert mappings 1mto a con-
figuration specification. In some cases, the language learning
engine 220 may provide a user interface where a user may
configure a ftranspilation mapping to use a particular
sequence ol operations within the source language and/or
the target language. In some cases, the user interface screen
may include an 1nput section where the user may enter the
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transpilation information, such as by entering code as text,
graphically, pseudo code and the like. The user interface
screen may also include a button to trigger the language
learning engine to generate the translated code. In some
cases, the language learning engine 220 may automatically
convert the code based on the learned model. In some cases,
the language learning engine 220 may receive feedback
from learned transpilations performed between other lan-
guages and based on use of combination of terms and/or
operators. In some cases, the language learming engine 220
may provide a user interface screen that displays the
transpiled code for review and/or approval by the user. The
user may be given one or more interface tools to edit the
transpiled code. For example, a configuration file may be
created and entered. Once entered, the language learning
engine 220 updates the transpilation models such that on a
future transpilation event, the language learning engine 220
may 1dentily patterns of terms and/or operators and provide
a conversion for the next instance of the pattern. In doing so,
the language learning engine 220 allows the system to learn
on the fly, e.g., update vocabulary and/or grammar of a
programming language or dialect, during operation, where
these learned patterns allow the system to improve the
automatic conversions. In doing so, the learning capabilities
are 1mproved without going through another development
cycle. Additionally, future manual conversions are elimi-
nated through this automatic generation of configuration
specification (e.g., pattern configuration specifications, func-
tional configuration specifications, and the like). In some
cases, the configuration specification may be specific to
certain users or user groups. In some cases, the configuration
specification may be made available for general use and
used to update one or more transpilation models. Once the
configuration specifications are learned, a global vocabulary
1s updated and expended for use going forward.

In some cases, the system 200 may include a hybrid
feedback mechanism within the language learning engine
220, where the generation of configuration specifications
may be automated using the NLP 222 and a machine
learning engine. For example, the source library repository
207 and/or the target library repository 257 may store files
associated with corresponding programming languages and/
or dialects, such as programming references, sample code
functionality, and/or other support documentation. In some
cases, the source library repository 207 and/or the target
library repository 257 may include flowcharting or other
code visualization tool information, along with pseudo code
information as preferred by the enterprise organization and/
or programmers associated with the enterprise organization.
The NLP 222 may analyze the files stored in the source
library repository 207 and/or the target library repository
257 to generate a base “thesaurus and/or dictionary™, e.g.,
vocabulary and/or grammar, of one or more programming
languages or dialects. For example, each vendor of a pro-
gramming product (e.g., a database platform, compiler, and
the like) may provide documentation about available func-
tionality within the platform and how the functionality may
be used and/or customized. Such information may include
function listings, function descriptions, sample programs,
sample functions, and/or other programming examples or
best practices. Such information may be analyzed by the
NLP 222 to allow the language learming engine 220 to build
one or more configuration specifications for that particular
language or dialect and/or for related languages or dialects.
Additionally, the configuration specification may be used to
update and allow the machine learning model to automati-
cally learn functionalities and to make connections with
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similar functionalities between programming languages.
The NLP 222 may consumer this data and identity key
features of a programming language such that the language
learning engine may automatically identify a source or target
language without user mput or with minimal user input. If
the language learning engine 220 identifies unknown func-
tionality when {transpiling code, the language learming
engine may 1include a data crawler that may search an
internal and/or external network for information concerning
the unknown functionality. If found, the data crawler pro-
vides the information to the NLP for conversion and gen-
eration ol a configuration specification.

In an illustrative example, the NLP may identily an
unknown word or phrase, and may automatically check for
additional information on an internal or external network. If
nothing found, a user request may be triggered, such that a
message may be automatically communicated to a user of a
requesting user group to provide additional information
and/or to confirm a proposed translation or transpilation of
the unknown word or phrase. Once 1dentified, a configura-
tion specification may be generated and used to update a
machine learning model. Additional feedback may also be
given based on use or analysis of the transpiled output 1n the
target language, where the feedback may be given as an error
message 1dentifying an unknown term or term, or perifor-
mance of unexpected activities, and this feedback may be
used to update the model and/or to trigger additional user
input requests. Such processes may be used to generate a
transpilation model capable of transpiling user defined func-
tionalities. In some cases, certain combination of words or
phrases may be identified and used to generate a configu-
ration specification, where the words and/or phrase may
have no meaning outside a specific learned context. In some
cases, a human 1n the loop situation may occur in feedback
situations in minimal cases (e.g., 2-3%), where no mapping
can be identified on the source and/or target systems, such
that new functionality may be entered manually and then
used to update the ML model going forward.

As such, the bidirectional capabilities, where specifica-
tions and feedback may be used by a machine learning
engine to learn and adapt automatically, allows the system
200 to organmically scale without additional services being
added. With this process, the configuration specifications,
and feedback, the ML model for grammar and vocabulary
transpilation can continue to automatically expand. Because
the grammar and vocabulary continues to automatically
update, the system 1s seli-correcting where transpilation
errors can trigger an update to the ML model to learn new
mappings, such that a particular failure will not occur again.
In some cases, data lineage capabilities can be leveraged to
learn grammar and vocabulary aspects of a particular pro-
gramming language and/or dialect.

At 340, the language learning engine 220 may apply the
source AST 214 to the ML model to identify a source
language, 1dentily terms and operators within the AST (e.g.,
key terms in the vocabulary and grammar) of the identified
language and output mappings in the specified target lan-
guage for each identified term. If a term 1s unknown, the
language learning engine 220 may initiate an error condi-
tion, provide substitute functionality from another similar
language or dialect, and/or solicit feedback via the feedback
engine 224 from a user via the computing device 260. The
transformation engine 230 may use the information from the
language learning engine 220 to generate an target AS'T 244
at 350 which may then be processed by the code generation
engine to generate one or more output files (e.g., target files

5

10

15

20

25

30

35

40

45

50

55

60

65

14

255a-n) where each target file may be associated with a
particular target language or dialect of the target language at
360.

One or more aspects of the disclosure may be embodied
in computer-usable data or computer-executable instruc-
tions, such as in one or more program modules, executed by
one or more computers or other devices to perform the
operations described herein. Generally, program modules
include routines, programs, objects, components, data struc-
tures, and the like that perform particular tasks or implement
particular abstract data types when executed by one or more
processors 1 a computer or other data processing device.
The computer-executable instructions may be stored as
computer-readable instructions on a computer-readable
medium such as a hard disk, optical disk, removable storage
media, solid-state memory, RAM, and the like. The func-
tionality of the program modules may be combined or
distributed as desired 1n various embodiments. In addition,
the functionality may be embodied in whole or 1n part in
firmware or hardware equivalents, such as integrated cir-
cuits, application-specific integrated circuits (ASICs), field
programmable gate arrays (FPGA), and the like. Particular
data structures may be used to more effectively implement
one or more aspects of the disclosure, and such data struc-
tures are contemplated to be within the scope of computer
executable instructions and computer-usable data described
herein.

Various aspects described herein may be embodied as a
method, an apparatus, or as one or more computer-readable
media storing computer-executable instructions. Accord-
ingly, those aspects may take the form of an entirely
hardware embodiment, an entirely software embodiment, an
entirely firmware embodiment, or an embodiment combin-
ing software, hardware, and firmware aspects 1n any com-
bination. In addition, various signals representing data or
events as described herein may be transferred between a
source and a destination in the form of light or electromag-
netic waves traveling through signal-conducting media such
as metal wires, optical fibers, or wireless transmission media
(e.g., air or space). In general, the one or more computer-
readable media may be and/or include one or more non-
transitory computer-readable media.

As described herein, the various methods and acts may be
operative across one or more computing servers and one or
more networks. The functionality may be distributed 1n any
manner, or may be located in a single computing device
(e.g., a server, a client computer, and the like). For example,
in alternative embodiments, one or more of the computing
platforms discussed above may be combined 1nto a single
computing platform, and the various functions of each
computing platform may be performed by the single com-
puting platform. In such arrangements, any and/or all of the
above-discussed communications between computing plat-
forms may correspond to data being accessed, moved,
modified, updated, and/or otherwise used by the single
computing platform. Additionally, or alternatively, one or
more of the computing platforms discussed above may be
implemented 1n one or more virtual machines that are
provided by one or more physical computing devices. In
such arrangements, the various functions of each computing
plattorm may be performed by the one or more virtual
machines, and any and/or all of the above-discussed com-
munications between computing platforms may correspond
to data being accessed, moved, modified, updated, and/or
otherwise used by the one or more virtual machines.

Aspects of the disclosure have been described 1n terms of
illustrative embodiments thereof. Numerous other embodi-
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ments, modifications, and variations within the scope and
spirit of the appended claims will occur to persons of
ordinary skill in the art from a review of this disclosure. For
example, one or more of the steps depicted 1n the 1llustrative
figures may be performed 1n other than the recited order, and
one or more depicted steps may be optional 1n accordance
with aspects of the disclosure.

The 1nvention claimed 1s:

1. A system comprising:

a source computing system comprising a data repository
storing a source file associated with a source program-
ming language;

a target computing system comprising configured to pro-
cess operations 1n a target file associated with a target
programming language, wherein the source programs-
ming language and the target programming language
are different programming languages;

a transpilation platform, comprising:
at least one processor; and
memory storing computer-readable instructions that,

when executed by the at least one processor, cause

the transpilation platform to:

recerve, from the source computing system via a
network, the source file;

parse the source file to generate a first intermediate
file corresponding to a structure of the source
programming language;

transpile, by a machine-learning (ML) transpilation
model, terms from the source programming lan-
guage to corresponding terms in the target pro-
gramming language;

generate, based on transpiled terms received from
the ML transpilation model, a second intermediate
file corresponding to a structure of the target
programming language;

generate, based on the second intermediate file, a
target file comprising instructions in the target
programming language, wherein the target file
causes the target computing system to perform
actions performed by the source computing sys-
tem based on the source file; and

train, by a language learning engine, the ML
transpilation model, based on feedback receirved
from the target computing system after perfor-
mance ol operations based on execution of the
target file.

2. The system of claim 1, wherein the target programming,
language 1s a dialect of the source programming language.

3. The system of claim 1, wherein the source program-
ming language 1s unrelated to the target programming lan-
guage.

4. The system of claim 1, wherein the first intermediate
file 1s an abstract syntax tree (AST) file.

5. The system of claim 1, wherein the instructions cause
the transpilation platform to automatically train the ML
transpilation model based on documentation describing
operations of the source programming language and the
target programming language.

6. The system of claim 3, wherein the 1nstructions cause
the transpilation platform to:

process, via a natural language processor, the documen-

tation describing operations of the source programming,
language:
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generate a first configuration file based on output from the
natural language processor, wherein the first configu-
ration file i1dentifies a plurality of characteristics of
operations of the source programming language; and
train the ML model based on the first configuration file.
7. The system of claim 6, wherein the mstructions cause
the transpilation platform to:
process, via a natural language processor, the documen-
tation describing operations of the target programming
language:
generate a second configuration file based on output from
the natural language processor, wherein the second
configuration file identifies a plurality of characteristics
of operations of the source programming language; and
train the ML model based on the second configuration file.
8. The system of claim 7, wherein the istructions cause
the transpilation platform to:
generate, based on the first configuration file and the
second configuration file, a first mapping between
operations of the source programming language and the
target programming language.
9. The system of claim 7, wherein the mstructions cause
the transpilation platform to:
process, via a natural language processor, the documen-
tation describing operations of a third programming
language:
generate a third configuration file based on output from
the natural language processor, wherein the third con-
figuration file 1dentifies a plurality of characteristics of
operations of the source programming language;

train the ML model based on the third configuration file;
and

generate, by the ML model, a second mapping of opera-
tions between the target programming language and the
third programming language.

10. The system of claim 9, wherein the 1instructions cause

the transpilation platform to:

generate, by the ML model and based on first mapping of
operations and the second mapping ol operations, a
third mapping of operations between the source pro-
gramming language and the third programming lan-
guage.

11. A method comprising;:

recerving, from a source computing system via a network,
a source file, wherein the source computing system
comprises a data repository storing a source file asso-
ciated with a source programming language, wherein
the source file, when processed by the source comput-
ing system, causes a source computing system to per-
form a first operations;

parsing the source file to generate a first intermediate file
corresponding to a structure of the source programming
language;

transpiling, by a machine-learning (ML) transpilation
model, terms from the source programming language to
corresponding terms in a target programming language,
wherein the target programming language 1s used by a
target computing system to provide programmed func-
tionalities;

generating, based on transpiled terms received from the
ML ftranspilation model, a second intermediate file
corresponding to a structure of the target programming
language;

generating, based on the second intermediate file, a target
file comprising 1nstructions 1n the target programming
language, wherein the target file causes the target
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computing system to perform actions similar to those
performed by the source computing system based on
the source file; and

training, by a language learning engine, the ML transpila-

tion model, based on feedback recerved from the target
computing based on execution of the target file by the
target computing system.

12. The method of claim 11, wherein the target program-
ming language 1s a dialect of the source programming
language.

13. The method of claim 11, wherein the source program-
ming language 1s unrelated to the target programming lan-

guage.

14. The method of claim 11, wherein the first intermediate
file 1s an abstract syntax tree (AST) file.

15. The method of claim 11, further comprising automati-
cally training the ML transpilation model based on docu-
mentation describing operations of the source programming,
language and the target programming language.

16. The method of claim 15, further comprising:

processing, via a natural language processor, the docu-

mentation describing operations of the source program-
ming language:

generating a first configuration file based on output from

the natural language processor, wherein the first con-
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figuration file 1dentifies a plurality of characteristics of 2>

operations of the source programming language; and
traimning the ML model based on the first configuration
file.
17. The method of claim 16, further comprising:
processing, via a natural language processor, the docu-
mentation describing operations of the target program-
ming language:
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generating a second configuration file based on output
from the natural language processor, wherein the sec-
ond configuration file identifies a plurality of charac-
teristics ol operations of the source programming lan-
guage; and

training the ML model based on the second configuration

file.

18. The method of claim 17, further comprising generat-
ing, based on the first configuration file and the second
configuration file, a first mapping between operations of the
source programming language and the target programming
language.

19. The method of claim 18, further comprising:

processing, via a natural language processor, the docu-

mentation describing operations of a third program-
ming language:

generating a third configuration file based on output from

the natural language processor, wherein the third con-
figuration file identifies a plurality of characteristics of
operations of the source programming language;

training the ML model based on the third configuration

file: and

generating, by the ML model, a second mapping of

operations between the target programming language
and the third programming language.

20. The method of claim 19, further comprising generat-
ing, by the ML model and based on first mapping of
operations and the second mapping of operations, a third
mapping ol operations between the source programming
language and the third programming language.
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