12 United States Patent

Jaleel et al.

US012135781B2

US 12,135,781 B2
Nov. 5, 2024

(10) Patent No.:
45) Date of Patent:

(54) IMPLEMENTING HARDWARE-BASED
MEMORY SAFETY FOR A GRAPHIC
PROCESSING UNIT

(71) Applicant: NVIDIA Corporation, Santa Clara, CA
(US)

(72) Inventors: Aamer Jaleel, Northborough, MA (US);
Mohamed Tarek Bnziad Mohamed
Hassan, New York, NY (US); Mark
Stephenson, Austin, TX (US)

(73) Assignee: NVIDIA CORPORATION, Santa
Clara, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 384 days.

(21) Appl. No.: 17/565,345
(22) Filed: Dec. 29, 2021

(65) Prior Publication Data
US 2023/0061154 Al Mar. 2, 2023

Related U.S. Application Data
(60) Provisional application No. 63/237,088, filed on Aug.

25, 2021.
(51) Int. CL

GO6F 21/53 (2013.01)

GO6F 9/44 (2018.01)

GO6F 9/445 (2018.01)

GO6F 12/14 (2006.01)
(52) U.S. CL

CPC ... GOGF 21/53 (2013.01); GOGF 9/44589

(2013.01); GO6F 12/1441 (2013.01)

(s)
'

(38) Field of Classification Search

None
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
7,596,721 Bl 9/2009 Flake et al.
9,823,851 B2* 11/2017 Beale GO6F 3/0659
11,609,863 B2 * 3/2023 Boettcher GO6F 12/1441
11,922,171 B2* 3/2024 Winterberg GO6F 9/4401
11,928,045 B1* 3/2024 Bhattacharya GOO6F 11/3636
(Continued)

FOREIGN PATENT DOCUMENTS

EP 4064058 Al * 9/2022 ... GO6F 12/0223

OTHER PUBLICATTIONS

Non-Final Office Action from U.S. Appl. No. 17/565,352, dated
Mar. 27, 2023.

(Continued)

Primary Examiner — Philip Wang
(74) Attorney, Agent, or Firm — Zilka-Kotab, P.C.

(57) ABSTRACT

While a compiler compiles source code to create an execut-
able binary, code 1s added into the compiled source code
that, when executed, 1dentifies and stores 1n a metadata table
base and bounds information associated with memory allo-
cations. Additionally, additional code 1s added into the
compiled source code that enables hardware to determine a
safety of memory access requests during an implementation
of the compiled source code by performing an out-of-bounds
(OOB) check 1n hardware using the base and bounds infor-
mation stored 1n the metadata table. This enables the 1den-
tification and avoidance of unsafe memory operations during
the implementation of the executable by a GPU.

24 Claims, 10 Drawing Sheets

600

S

802

Maintain a metadata table for memory allocations
made during an execution of compiled source code

;

£04

Determine, in hardware, a safety of memory access
requests made during the execution of the compiled
source code, utilizing the metadata table

(e)

US 12,135,781 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0145513 A1* 6/2011 Lyercoooeene... GO6F 12/0868
711/E12.017

2014/0143494 Al1* 5/2014 Whalley GO6F 12/0862

T11/122

2018/0004445 Al 1/2018 Stark et al.

2019/0121716 Al 4/2019 Kurmus et al.

2019/0156008 Al 5/2019 Tamura

2020/0257827 Al 8/2020 Kounavis et al.

2020/0379902 Al* 12/2020 Durham GO6F 11/1048

2021/0200546 Al* 7/2021 Lemay GO6F 12/145

2021/0232511 A1* 7/2021 Boettcher GO6F 12/0253

2021/0405896 Al1* 12/2021 Durham GO6F 3/0604

2023/0063568 Al* 3/2023 Hassan GO6F 3/0622

2024/0078233 Al* 3/2024 Pasupuleti GO6F 16/24552

OTHER PUBLICATIONS

Notice of Allowance from U.S. Appl. No. 17/565,352, dated Oct.

20, 2023.
Bialek et al., “Securtity Analysis of Memory Tagging,” Microsift,
Github, Mar. 2020, pp. 1-16, retrieved from https://github.com/

microsoft/MSRC-Security-Research/blob/master/papers/2020/
Security%?20analysis%2001%20memory%o20tagging.pdf.

Rodinia, “Rodinia: Accelerating Compute-Intensive Applications
with Accelerators,” Rodinia, 2018, 3 pages, retrieved from http://
rodinia.cs.virgima.edu/doku.php.

Hawkes, B., “News and updates from the Project Zero team at
Google,” Project Zero, May 15, 2019, 8 pages, retrieved from
https://googleprojectzero.blogspot.com/p/Oday.html.

Ziad et al., “No-FAT: Architectural Support for Low Overhead
Memory Safety Checks,” Author’s preprint, Proceedings of the 48th
Annual International Symposium on Computer Architecture, Jun.
2021, pp. 1-15.

Erb et al., “Dynamic Buffer Overflow Detection for GPGPUs,”
CGO ’17: Proceedings of the 2017 IEEE/ACM International Sym-
posium on Code Generation and Optimization, Feb. 2017,
13 pages , retrieved from https://www.computermachines.org/joe/
publications/pdfs/cgo2017_clarmor.pdf.

Hassan et al., U.S. Appl. No. 17/565,352, filed Dec. 29, 2021.

D1 et al., “Efficient Bufter Overflow Detection on GPU,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, No. 5,
May 2021, pp. 1161-1177.

Final Office Action from U.S. Appl. No. 17/565,352, dated Aug. 17,
2023.

* cited by examiner

U.S. Patent Nov. 5, 2024 Sheet 1 of 10 US 12,135,781 B2

100

S

Maintain a metadata table for memory allocations
made during an execution of compiled source code

102

Determine a safety of memory access requests
during the execution of the compiled source code,
utiizing memory safety checks inserted within the

compiled source code and the metadata table

104

Enag

Fig. I

U.S. Patent Nov. 5, 2024 Sheet 2 of 10 US 12,135,781 B2

202

PPU 200
17O Unit Front End Unit
205 215

-
i
i
|
i
i
i
i
i
i
i
i
I

Work Distribution Unit
229

N R YN T i W BEE e meee tE T Beie e
Wb MM AR AMARA NOAMAN GRMRME by RARLE R RRMAN RN RN AR YR #““““#““““““1

MM“MMMM“ M by ODARARR M- bbb DMMAMMAMARE MR MMM DAAMAARMY bR

U.S. Patent Nov. 5, 2024 Sheet 3 of 10 US 12,135,781 B2

To/From XBar 270

GPC 250

Pipeline Manager PROP
310 319
| . MPC
330

Primitive
Engine
339

Raster Engine

329

“““uu““u““““““u“““u#
Shkkh Ekh AhhhE ShhA BRE dhhAE hAR dhAE AhMAR RRAE. ABARE AhRME- GMAAE- GRMAN GBRAN GRAEM hRAA ABAME bR

I
|
|
|
|
|

)
|
|
|
|
|
!
|
|
i
!
!
i
!
i
i

mmmmmmmmmmmmmm

MMU 380

To/From XBar 270 To/From XBar 270

Fig. 54

U.S. Patent Nov. 5, 2024 Sheet 4 of 10 US 12,135,781 B2

To/From
XBar 270
Memory Partition Unit
2380
ROP 350

| 2 Cache @ To/From
XBar 270

Memory Interface
370

To/From
Memory 204

Fig. 3B

U.S. Patent Nov. 5, 2024 Sheet 5 of 10 US 12,135,781 B2

SM 340

Instruction Cache 405

Scheduler Unit 410(K)

Dispatch 415

Register File 420

Core SFU LSU
450(L-1) 452(M-1) 454(N-1)

ﬂ——

Interconnect Network 480

Shared Memory/L1 Cache 470

To/from MMU 390

Fig. 44

U.S. Patent Nov. 5, 2024 Sheet 6 of 10 US 12,135,781 B2

/ 400

CPU 430
202

NVLink
210

Fig. 4B

U.S. Patent Nov. 5, 2024 Sheet 7 of 10 US 12,135,781 B2

Main

465
Memory /

440

Network
Interface

Display

Input
Devices Devices

449

439 460

202

4
Switch 410

V&S
204 | PPU200 | | PPU200 | 204

D

NVLink
210

204 | PPU 200 PPU 200

Fig. 4C

U.S. Patent Nov. 5, 2024 Sheet 8 of 10 US 12,135,781 B2

‘{ 500

SOURCE CODE

02

COMPILER

S0

RUNTIME

EXECUTABLE LIBRARY

240 10

GPU

Fig. 5

U.S. Patent Nov. 5, 2024 Sheet 9 of 10 US 12,135,781 B2

600

S

Maintain a metadata table for memory allocations
made during an execution of compiled source code

02

T ————

Determine, In hardware, a safety of memory access
requests made during the execution of the compiled
source code, utilizing the metadata table

604

——

Enag

Fig. 6

U.S. Patent Nov. 5, 2024 Sheet 10 of 10 US 12,135,781 B2

‘{ 700

ALU

LOAD/STORE

UNIT L1 CACHE

/1

70

MEMORY SAFETY
HARDWARE

MEMORY SAFETY
CACHE

(0

/08

METADATA BASE
REGISTER

/1

Fig. 7

US 12,135,781 B2

1

IMPLEMENTING HARDWARE-BASED
MEMORY SAFETY FOR A GRAPHIC
PROCESSING UNIT

FIELD OF THE INVENTION

The present invention relates to compiling and executing
applications, and more particularly to detecting, via hard-
ware, memory salety vulnerabilities when compiling and
executing applications.

BACKGROUND

Memory safety 1s a program property that guarantees
memory objects can only be accessed (1) between their
intended bounds, (2) during their lifetime, and (3) given
theirr original or compatible type. Violating any of these
requirements will result in memory corruption. For example,
accessing objects beyond their intended bounds 1s called
spatial memory safety violation, such as buller overtlow/
underflow. Accessing objects beyond their lifetime 1s called
temporal memory safety violation, such as use-after-iree.
Finally, accessing objects with an incompatible type 1is
referred to as type confusion, which can lead to spatial and
temporal violations. A memory safety vulnerability can
enable privilege escalation, information leakage, and denial
of service on a system.

Multiple defenses have been proposed to address memory
safety violations in central processing units (CPUs), but
there 1s a need to detect memory satety problems on graphic
processing units (GPUs).

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 illustrates a flowchart of a method for implement-
ing compiler-based memory safety for a graphic processing
unit (GPU), 1n accordance with an embodiment.

FIG. 2 1llustrates a parallel processing unit, 1n accordance
with an embodiment.

FIG. 3A 1llustrates a general processing cluster within the
parallel processing unit of FIG. 2, 1n accordance with an
embodiment.

FIG. 3B illustrates a memory partition unit of the parallel
processing unit of FIG. 2, 1n accordance with an embodi-
ment.

FI1G. 4A 1llustrates the streaming multi-processor of FIG.
3A, 1n accordance with an embodiment.

FIG. 4B 1s a conceptual diagram of a processing system
implemented using the PPU of FIG. 2, 1n accordance with an
embodiment.

FIG. 4C 1illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented.

FIG. § illustrates an exemplary compiler-based memory
safety implementation, 1n accordance with an embodiment.

FI1G. 6 illustrates a flowchart of a method for implement-
ing hardware-based memory safety for a graphic processing
unit (GPU), 1n accordance with an embodiment.

FIG. 7 illustrates an exemplary hardware-implemented
memory safety implementation, i accordance with an
embodiment.

DETAILED DESCRIPTION

While a compiler compiles source code to create an
executable binary, code 1s added into the compiled source
code that, when executed, identifies and stores 1n a metadata

10

15

20

25

30

35

40

45

50

55

60

65

2

table base and bounds information associated with memory
allocations. Additionally, additional code 1s added nto the
compiled source code that performs memory safety checks
during execution. This updated compiled source code auto-
matically determines a safety of memory access requests
during execution by performing an out-oi-bounds (OOB)
check using the base and bounds information retrieved and
stored 1n the metadata table. This enables the 1dentification
and avoidance of unsale memory operations during the
implementation of the executable by a GPU.

FIG. 1 illustrates a flowchart of a method 100 for imple-
menting compiler-based memory safety for a graphic pro-
cessing unit (GPU), in accordance with an embodiment.
Although method 100 1s described 1n the context of a
processing unit, the method 100 may also be performed by
a program, custom circuitry, or by a combination of custom
circuitry and a program. For example, the method 100 may
be executed by a GPU (graphics processing unit), CPU
(central processing unit), or any processing element. Fur-
thermore, persons of ordinary skill 1in the art will understand
that any system that performs method 100 1s within the
scope and spirit of embodiments of the present invention.

As shown 1n operation 102, a metadata table 1s maintained
for memory allocations made during an execution of com-
piled source code. In one embodiment, the source code may
be presented 1n a predetermined programming language. In
another embodiment, the source code may be mput into a
compiler, and the compiler may convert the source code to
an executable (e.g., compiled source code 1n binary) to be
run by a graphics processing umt (GPU).

Also, 1n one embodiment, instructions for maintaining the
metadata table may be inserted into the source code during
a compiling of the source code. For example, at compile
time, memory allocation APIs may be added within the
source code being compiled, and additional 1nstructions may
be inserted within the source code that will create and
populate Base and Size Table (BST) entries 1in response to
memory allocations made at runtime (e.g., during the execu-
tion of the source code).

Additionally, 1n one embodiment, each of the memory
allocations may return a pointer to a beginning of a
requested bufler. For example, each pointer may be returned
by an application programming interface (API) in response
to a memory allocation (e.g., bufler creation) request made
to the API. In another example, the memory allocations may
include explicit and/or implicit memory allocations on the
stack.

Further, in one embodiment, the memory may include any
memory accessed by a GPU to perform one or more opera-
tions (e.g., dynamic random-access memory (DRAM),
scratch pad memory, local memory, global memory, etc.). In
another embodiment, the pointer may be i1dentified within
the API, or may be intercepted. In yet another embodiment,
the 1dentification/interception of the pointer may be per-
formed during the execution of the compiled source code
(e.g., by a runtime library). For example, the runtime library
may include routines used by the compiler to mnvoke behav-
1ors of a runtime environment (e.g., by inserting calls to the
runtime library to the executable binary).

Further still, in one embodiment, for each memory allo-
cation made during the execution of the compiled source
code, a size of the buller and a start address of the butler may
be 1dentified from the associated identified/intercepted
pointer. In another embodiment, for each memory alloca-
tion, the size of the bufler and the start address of the bufler
may be stored within the metadata table. For example, the
metadata table may include a device-side metadata table. In

US 12,135,781 B2

3

another example, the metadata table may include a base and
s1ze table (BST) containing a plurality of entries, and each
of the plurality of entries may include a three-tuple including
a base address, a size, and a validity indicator. In yet another
example, the size of the buller and the start address of the
bufler may be stored as base and bounds metadata within the
metadata table. The base metadata may correspond to the
start address of the bufler, and the bounds metadata may
correspond to the size of the bufler.

Also, 1n one embodiment, for each memory allocation, the
runtime library may perform the identification and storage of
the size of the buller and the start address of the buller within
the metadata table. In another embodiment, the pointer for
cach memory allocation may be modified (e.g., by the
runtime library) to include an 1ndex (e.g., another pointer)
that points to a location within the metadata table that
contains the size of the bufler and the start address of the
bufler for the memory allocation. For example, the index
may be added within unused bits within the pointer for each
memory allocation.

In this way, during the execution of compiled source code
at runtime, a metadata table may be created by the runtime
library that logs base and bound metadata for each memory
allocation made during the runtime.

Furthermore, as shown in operation 104, a safety of
memory access requests 1s determined during the execution
of the compiled source code, utilizing memory satety checks
inserted within the compiled source code and the metadata
table. In one embodiment, the memory access requests may
be included within the executable. In another embodiment,
one or more of the memory access requests may include a
request to store or load a value to an address.

In one embodiment, the memory safety checks may be
inserted into the executable created during the compiling of
the source code. For example, during the compiling of the
source code, the compiler may insert additional information
during the creation of the resulting executable (e.g., the
compiled source code) to be run by the GPU. In another
embodiment, the additional information may perform a
memory salety check during each memory access request
within the executable during execution by the GPU. In yet
another embodiment, inserting the memory safety checks
and the instructions for maintaining the metadata table nto
the source code during compiling may create an updated
executable (e.g., binary) for execution by the GPU.

For example, at compile-time, the compiler may identify
memory operations within the source code and may insert
additional code belfore each memory operation that retrieves
the operation’s pointer metadata from the metadata table,
and confirms that the pointer 1s pointing to a valid location
using the retrieved metadata. In one embodiment, the pointer
may be tagged. For example, during the compiling of the
source code, the compiler may mask off the tag before
performing a memory operation so that a load/store opera-
tion uses a valid virtual address. Also, the compiler may
insert additional code 1nto the binary during the compiling of
the source code, where the additional code ensures that
pointer arithmetic does not overflow and aflect the pointer’s
tag.

Further still, in one embodiment, determining the safety
of memory access requests may include performing, by the
executable, an out-oi-bounds (OOB) check for such memory
access requests during the implementation (e.g., execution)
of the executable by the GPU. In another embodiment, when
the executable 1s being executed by the GPU, 1n response to
identifying a memory access request within the executable,

5

10

15

20

25

30

35

40

45

50

55

60

65

4

a pointer to a memory address included within the memory
access request may be 1dentified.

Also, 1n one embodiment, the pointer may have been
previously modified (e.g., during a memory allocation) to
include an 1ndex that points to a location within the metadata
table that contains the size of the builer and the start address
of the bufler for the memory allocation. In another embodi-
ment, the size of an allocated bufter and a start address of the
allocated bufler may then be retrieved from the metadata
table, utilizing the index.

Additionally, in one embodiment, an out-of-bounds
(OOB) check may then be performed in software for the
memory address included within the memory access request,
utilizing the retrieved size of the allocated bufler and the
start address of the allocated bufler. For example, the OOB
check may confirm that the pointer to the memory address
included within the memory access request points to a valid
region of memory (e.g., a region of memory bounded by the
retrieved size of the allocated bufler and the start address of
the allocated buifler).

Furthermore, 1n one embodiment, 1n response to deter-
mining that the memory access request points to a valid
region of memory, the memory access request may be
allowed. In another embodiment, 1n response to determining
that the memory access request points to an invalid region of
memory, the memory access request may be denied (e.g., by
returning an exception, etc.). In yet another embodiment, in
response to determiming that the memory access request
points to an invalid region of memory, the memory access
request may be allowed but reported to a system and/or user.
In still another embodiment, 1n response to determining that
the memory access request points to an mnvalid region of
memory, the memory access request may be elided/dis-
carded. In another embodiment, 1n response to determining
that the memory access request points to an invalid region of
memory, the memory access request may be redirected to a
valid memory region and/or filled with a synthetic value.

In this way, memory safety checks (e.g., 00B checks) may
be automatically inserted into a compiled executable and
implemented during execution of the executable by the
GPU. This may enable the identification and avoidance of
unsafe memory operations during the implementation of the
executable by the GPU, which may improve a security and
performance of the GPU, as well as the hardware environ-
ment 1n which the GPU operates.

Also, 1n one embodiment, a memory deallocation may be
intercepted, and the metadata table may be updated to reflect
the memory deallocation (e.g., by invalidating an associated
entry within the metadata table, etc.). In another embodi-
ment, an 1dentification of the reuse of an 1nvalidated entry
may indicate a temporal memory safety error (e.g., use after
free). In yet another embodiment, a safety of only a prede-
termined subset of all memory access requests made within
the system may be determined during the execution of the
compiled source code. For example, a safety of only a
predetermined type of memory access requests (e.g., read
requests, etc.) may be performed. In another example, a
safety of only memory access requests made by one or more
predetermined entities (e.g., entities other than an operating
system, etc.) may be performed.

In yet another embodiment, the safety determination may
be performed utilizing a parallel processing unit (PPU) such
as the PPU 200 1llustrated 1n FIG. 2.

More 1llustrative information will now be set forth regard-
ing various optional architectures and features with which
the foregoing framework may be implemented, per the
desires of the user. It should be strongly noted that the

US 12,135,781 B2

S

following information 1s set forth for illustrative purposes
and should not be construed as limiting 1n any manner. Any
of the following features may be optionally incorporated
with or without the exclusion of other features described.
Parallel Processing Architecture

FI1G. 2 illustrates a parallel processing unit (PPU) 200, in
accordance with an embodiment. In an embodiment, the
PPU 200 1s a multi-threaded processor that 1s implemented
on one or more mtegrated circuit devices. The PPU 200 1s a
latency hiding architecture designed to process many threads
in parallel. A thread (1.e., a thread of execution) 1s an
instantiation of a set of istructions configured to be
executed by the PPU 200. In an embodiment, the PPU 200
1s a graphics processing unit (GPU) configured to implement
a graphics rendering pipeline for processing three-dimen-
sional (3D) graphics data 1n order to generate two-dimen-
sional (2D) image data for display on a display device such
as a liquid crystal display (LCD) device. In other embodi-
ments, the PPU 200 may be utilized for performing general-
purpose computations. While one exemplary parallel pro-
cessor 1s provided herein for illustrative purposes, 1t should
be strongly noted that such processor i1s set forth for illus-
trative purposes only, and that any processor may be
employed to supplement and/or substitute for the same.

One or more PPUs 200 may be configured to accelerate
thousands of High Performance Computing (HPC), data
center, and machine learning applications. The PPU 200
may be configured to accelerate numerous deep learning
systems and applications including autonomous vehicle
platforms, deep learning, high-accuracy speech, image, and
text recognition systems, intelligent wvideo analytics,
molecular simulations, drug discovery, disease diagnosis,
weather forecasting, big data analytics, astronomy, molecu-
lar dynamics simulation, financial modeling, robotics, fac-
tory automation, real-time language translation, online
search optimizations, and personalized user recommenda-
tions, and the like.

As shown i FIG. 2, the PPU 200 includes an Input/
Output (I/0) umt 205, a front end unit 213, a scheduler unit
220, a work distribution unit 225, a hub 230, a crossbar
(Xbar) 270, one or more general processing clusters (GPCs)
250, and one or more partition units 280. The PPU 200 may
be connected to a host processor or other PPUs 200 via one
or more high-speed NVLink 210 interconnect. The PPU 200
may be connected to a host processor or other peripheral
devices via an interconnect 202. The PPU 200 may also be
connected to a local memory comprising a number of
memory devices 204. In an embodiment, the local memory
may comprise a number of dynamic random access memory
(DRAM) devices. The DRAM devices may be configured as
a high-bandwidth memory (HBM) subsystem, with multiple
DRAM dies stacked within each device.

The NVLink 210 interconnect enables systems to scale
and include one or more PPUs 200 combined with one or
more CPUs, supports cache coherence between the PPUs
200 and CPUs, and CPU mastering. Data and/or commands
may be transmitted by the NVLink 210 through the hub 230
to/from other units of the PPU 200 such as one or more copy
engines, a video encoder, a video decoder, a power man-
agement unit, etc. (not explicitly shown). The NVLink 210
1s described 1n more detail in conjunction with FIG. 4B.

The I/O unit 205 1s configured to transmit and receive
communications (1.e., commands, data, etc.) from a host
processor (not shown) over the mterconnect 202. The /O
unit 205 may communicate with the host processor directly
via the iterconnect 202 or through one or more intermediate
devices such as a memory bridge. In an embodiment, the I/O

10

15

20

25

30

35

40

45

50

55

60

65

6

umt 205 may communicate with one or more other proces-
sors, such as one or more the PPUs 200 via the interconnect
202. In an embodiment, the I/O unit 205 implements a
Peripheral Component Interconnect Express (PCle) inter-
face for communications over a PCle bus and the intercon-
nect 202 1s a PCle bus. In alternative embodiments, the [/O
unmit 205 may implement other types of well-known inter-
faces for communicating with external devices.

The I/O unit 205 decodes packets received via the inter-
connect 202. In an embodiment, the packets represent com-
mands configured to cause the PPU 200 to perform various
operations. The I/O unit 205 transmits the decoded com-
mands to various other units of the PPU 200 as the com-
mands may specily. For example, some commands may be

transmitted to the front end unit 215. Other commands may
be transmitted to the hub 230 or other units of the PPU 200
such as one or more copy engines, a video encoder, a video
decoder, a power management unit, etc. (not explicitly
shown). In other words, the I/O unit 2035 1s configured to
route communications between and among the various logi-
cal units of the PPU 200.

In an embodiment, a program executed by the host
processor encodes a command stream 1n a buller that pro-
vides workloads to the PPU 200 for processing. A workload
may comprise several instructions and data to be processed
by those 1nstructions. The bufler 1s a region 1n a memory that
1s accessible (1.e., read/write) by both the host processor and
the PPU 200. For example, the I/O umit 205 may be
configured to access the bufler 1n a system memory con-
nected to the interconnect 202 via memory requests trans-
mitted over the interconnect 202. In an embodiment, the host
processor writes the command stream to the bufler and then
transmits a pointer to the start of the command stream to the
PPU 200. The front end unit 215 receives pointers to one or
more command streams. The front end unit 215 manages the
one or more streams, reading commands {from the streams
and forwarding commands to the various units of the PPU
200.

The front end unit 2135 1s coupled to a scheduler unit 220
that configures the various GPCs 250 to process tasks
defined by the one or more streams. The scheduler unit 220
1s configured to track state information related to the various
tasks managed by the scheduler unit 220. The state may
indicate which GPC 250 a task 1s assigned to, whether the
task 1s active or inactive, a priority level associated with the
task, and so forth. The scheduler unit 220 manages the
execution of a plurality of tasks on the one or more GPCs
250.

The scheduler unit 220 1s coupled to a work distribution
unit 225 that 1s configured to dispatch tasks for execution on
the GPCs 250. The work distribution umt 2235 may track a
number of scheduled tasks received from the scheduler unit
220. In an embodiment, the work distribution unit 225
manages a pending task pool and an active task pool for each
of the GPCs 250. The pending task pool may comprise a
number of slots (e.g., 32 slots) that contain tasks assigned to
be processed by a particular GPC 250. The active task pool
may comprise a number of slots (e.g., 4 slots) for tasks that
are actively being processed by the GPCs 250. As a GPC 250
finishes the execution of a task, that task 1s evicted from the
active task pool for the GPC 2350 and one of the other tasks
from the pending task pool 1s selected and scheduled for
execution on the GPC 250. If an active task has been 1dle on
the GPC 250, such as while waiting for a data dependency
to be resolved, then the active task may be evicted from the
GPC 250 and returned to the pending task pool while

US 12,135,781 B2

7

another task in the pending task pool 1s selected and sched-
uled for execution on the GPC 250.

The work distribution unit 225 communicates with the
one or more GPCs 250 via XBar 270. The XBar 270 1s an
interconnect network that couples many of the umits of the
PPU 200 to other units of the PPU 200. For example, the
XBar 270 may be configured to couple the work distribution
unit 225 to a particular GPC 250. Although not shown
explicitly, one or more other units of the PPU 200 may also
be connected to the XBar 270 via the hub 230.

The tasks are managed by the scheduler umt 220 and
dispatched to a GPC 2350 by the work distribution unit 225.
The GPC 250 1s configured to process the task and generate
results. The results may be consumed by other tasks within
the GPC 250, routed to a diflerent GPC 250 via the XBar
2770, or stored i the memory 204. The results can be written
to the memory 204 wvia the partition units 280, which
implement a memory interface for reading and writing data
to/from the memory 204. The results can be transmitted to
another PPU 200 or CPU wvia the NVLmk 210. In an
embodiment, the PPU 200 includes a number U of partition
units 280 that 1s equal to the number of separate and distinct
memory devices 204 coupled to the PPU 200. A partition
unit 280 will be described 1n more detail below 1n conjunc-
tion with FIG. 3B.

In an embodiment, a host processor executes a driver
kernel that implements an application programming inter-
tace (API) that enables one or more applications executing
on the host processor to schedule operations for execution
on the PPU 200. In an embodiment, multiple compute
applications are simultaneously executed by the PPU 200
and the PPU 200 provides isolation, quality of service
(QoS), and independent address spaces for the multiple
compute applications. An application may generate mstruc-
tions (1.e., API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 200. The driver
kernel outputs tasks to one or more streams being processed
by the PPU 200. Each task may comprise one or more
groups of related threads, referred to herein as a warp. In an
embodiment, a warp comprises 32 related threads that may
be executed 1n parallel. Cooperating threads may refer to a
plurality of threads including instructions to perform the task
and that may exchange data through shared memory.
Threads and cooperating threads are described 1n more detail
in conjunction with FIG. 4A.

FIG. 3A illustrates a GPC 250 of the PPU 200 of FIG. 2,
in accordance with an embodiment. As shown 1n FIG. 3A,
cach GPC 250 includes a number of hardware units for
processing tasks. In an embodiment, each GPC 250 includes
a pipeline manager 310, a pre-raster operations unit (PROP)
315, a raster engine 3235, a work distribution crossbar
(WDX) 380, a memory management unit (MMU) 390, and
one or more Data Processing Clusters (DPCs) 320. It will be
appreciated that the GPC 250 of FIG. 3A may include other
hardware units 1n lieu of or in addition to the units shown in
FIG. 3A.

In an embodiment, the operation of the GPC 250 1s
controlled by the pipeline manager 310. The pipeline man-
ager 310 manages the configuration of the one or more DPCs
320 for processing tasks allocated to the GPC 250. In an
embodiment, the pipeline manager 310 may configure at
least one of the one or more DPCs 320 to implement at least
a portion of a graphics rendering pipeline. For example, a
DPC 320 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 340. The pipeline manager 310 may also be configured
to route packets recerved from the work distribution unit 225

10

15

20

25

30

35

40

45

50

55

60

65

8

to the appropriate logical units within the GPC 250. For
example, some packets may be routed to fixed function
hardware units 1n the PROP 315 and/or raster engine 3235
while other packets may be routed to the DPCs 320 ifor
processing by the primitive engine 335 or the SM 340. In an
embodiment, the pipeline manager 310 may configure at
least one of the one or more DPCs 320 to implement a neural

network model and/or a computing pipeline.

The PROP unit 315 1s configured to route data generated
by the raster engine 325 and the DPCs 320 to a Raster
Operations (ROP) unit, described 1n more detail in conjunc-
tion with FIG. 3B. The PROP unit 315 may also be config-
ured to perform optimizations for color blending, organize
pixel data, perform address translations, and the like.

The raster engine 323 includes a number of fixed function
hardware units configured to perform various raster opera-
tions. In an embodiment, the raster engine 325 includes a
setup engine, a coarse raster engine, a culling engine, a
clipping engine, a fine raster engine, and a tile coalescing
engine. The setup engine receives transformed vertices and
generates plane equations associated with the geometric
primitive defined by the vertices. The plane equations are
transmitted to the coarse raster engine to generate coverage
information (e.g., an X,y coverage mask for a tile) for the
primitive. The output of the coarse raster engine 1s trans-
mitted to the culling engine where fragments associated with
the primitive that fail a z-test are culled, and transmitted to
a clipping engine where fragments lying outside a viewing
frustum are clipped. Those fragments that survive clipping
and culling may be passed to the fine raster engine to
generate attributes for the pixel fragments based on the plane
equations generated by the setup engine. The output of the
raster engine 325 comprises fragments to be processed, for

example, by a fragment shader implemented within a DPC
320.

Each DPC 320 included in the GPC 250 includes an
M-Pipe Controller (MPC) 330, a primitive engine 335, and
one or more SMs 340. The MPC 330 controls the operation
of the DPC 320, routing packets received from the pipeline
manager 310 to the appropriate units 1n the DPC 320. For
example, packets associated with a vertex may be routed to
the pnmitive engine 335, which 1s configured to fetch vertex
attributes associated with the vertex from the memory 204.
In contrast, packets associated with a shader program may
be transmitted to the SM 340.

The SM 340 comprises a programmable streaming pro-
cessor that 1s configured to process tasks represented by a
number of threads. Each SM 340 i1s multi-threaded and
configured to execute a plurality of threads (e.g., 32 threads)
from a particular group of threads concurrently. In an
embodiment, the SM 340 mmplements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
in a group of threads (1.e., a warp) 1s configured to process
a different set of data based on the same set of instructions.
All threads 1n the group of threads execute the same 1nstruc-
tions. In another embodiment, the SM 340 implements a
SIMT (Single-Instruction, Multiple Thread) architecture
where each thread 1n a group of threads i1s configured to
process a diflerent set of data based on the same set of
instructions, but where individual threads in the group of
threads are allowed to diverge during execution. In an
embodiment, a program counter, call stack, and execution
state 1s maintained for each warp, enabling concurrency
between warps and serial execution within warps when
threads within the warp diverge. In another embodiment, a
program counter, call stack, and execution state 1s main-
tamned for each individual thread, enabling equal concur-

US 12,135,781 B2

9

rency between all threads, within and between warps. When
execution state 1s maintained for each individual thread,
threads executing the same instructions may be converged
and executed i parallel for maximum efliciency. The SM
340 will be described 1n more detail below 1n conjunction
with FIG. 4A.

The MMU 390 provides an interface between the GPC
250 and the partition unit 280. The MMU 390 may provide
translation of wvirtual addresses into physical addresses,
memory protection, and arbitration of memory requests. In
an embodiment, the MMU 390 provides one or more trans-
lation lookaside buflers (1LB s) for performing translation
of virtual addresses into physical addresses in the memory
204.

FIG. 3B illustrates a memory partition unit 280 of the
PPU 200 of FIG. 2, 1n accordance with an embodiment. As
shown 1n FIG. 3B, the memory partition umt 280 includes a
Raster Operations (ROP) unit 350, a level two (L2) cache
360, and a memory interface 370. The memory interface 370
1s coupled to the memory 204. Memory interface 370 may
implement 32, 64, 128, 1024-bit data buses, or the like, for
high-speed data transier. In an embodiment, the PPU 200
incorporates U memory interfaces 370, one memory inter-
tace 370 per pair of partition units 280, where each pair of
partition units 280 1s connected to a corresponding memory
device 204. For example, PPU 200 may be connected to up
to Y memory devices 204, such as high bandwidth memory
stacks or graphics double-data-rate, version 5, synchronous
dynamic random access memory, or other types of persistent
storage.

In an embodiment, the memory interface 370 implements
an HBM2 memory interface and Y equals half U. In an
embodiment, the HBM2 memory stacks are located on the
same physical package as the PPU 200, providing substan-
tial power and area savings compared with conventional
GDDRS5 SDRAM systems. In an embodiment, each HBM2
stack includes four memory dies and Y equals 4, with HBM2
stack 1including two 128-bit channels per die for a total of 8
channels and a data bus width of 1024 bits.

In an embodiment, the memory 204 supports Single-Error
Correcting Double-Error Detecting (SECDED) Error Cor-
rection Code (ECC) to protect data. ECC provides higher
reliability for compute applications that are sensitive to data
corruption. Reliability 1s especially important in large-scale
cluster computing environments where PPUs 200 process
very large datasets and/or run applications for extended
periods.

In an embodiment, the PPU 200 implements a multi-level
memory hierarchy. In an embodiment, the memory partition
unit 280 supports a umfied memory to provide a single
unified virtual address space for CPU and PPU 200 memory,
enabling data sharing between virtual memory systems. In
an embodiment the frequency of accesses by a PPU 200 to
memory located on other processors 1s traced to ensure that
memory pages are moved to the physical memory of the
PPU 200 that 1s accessing the pages more frequently. In an
embodiment, the NVLink 210 supports address translation
services allowing the PPU 200 to directly access a CPU’s
page tables and providing full access to CPU memory by the
PPU 200.

In an embodiment, copy engines transier data between
multiple PPUs 200 or between PPUs 200 and CPUs. The
copy engines can generate page faults for addresses that are
not mapped 1nto the page tables. The memory partition unit
280 can then service the page faults, mapping the addresses
into the page table, after which the copy engine can perform
the transfer. In a conventional system, memory 1s pinned

10

15

20

25

30

35

40

45

50

55

60

65

10

(1.e., non-pageable) for multiple copy engine operations
between multiple processors, substantially reducing the
available memory. With hardware page faulting, addresses
can be passed to the copy engines without worrying if the
memory pages are resident, and the copy process 1s trans-
parent.

Data from the memory 204 or other system memory may
be fetched by the memory partition unit 280 and stored 1n the
.2 cache 360, which 1s located on-chip and 1s shared
between the various GPCs 250. As shown, each memory
partition unit 280 includes a portion of the L2 cache 360
associated with a corresponding memory device 204. Lower
level caches may then be implemented in various units
within the GPCs 250. For example, each of the SMs 340
may 1mplement a level one (LL1) cache. The L1 cache 1s
private memory that 1s dedicated to a particular SM 340.
Data from the L2 cache 360 may be fetched and stored 1n
cach of the L1 caches for processing 1n the functional units
of the SMs 340. The L2 cache 360 1s coupled to the memory
intertace 370 and the XBar 270.

The ROP umt 350 performs graphics raster operations
related to pixel color, such as color compression, pixel
blending, and the like. The ROP unit 350 also implements
depth testing in conjunction with the raster engine 325,
receiving a depth for a sample location associated with a
pixel fragment from the culling engine of the raster engine
325. The depth 1s tested against a corresponding depth 1n a
depth bufler for a sample location associated with the
fragment. If the fragment passes the depth test for the sample
location, then the ROP umit 350 updates the depth bufler and
transmits a result of the depth test to the raster engine 325.
It will be appreciated that the number of partition units 280
may be different than the number of GPCs 250 and, there-
fore, each ROP unit 350 may be coupled to each of the GPCs
250. The ROP unit 350 tracks packets received from the
different GPCs 250 and determines which GPC 250 that a
result generated by the ROP unit 350 is routed to through the
Xbar 270. Although the ROP unit 350 1s included within the
memory partition unit 280 in FI1G. 3B, in other embodiment,
the ROP unit 350 may be outside of the memory partition
umt 280. For example, the ROP unit 350 may reside in the
GPC 250 or another unat.

FIG. 4A 1llustrates the streaming multi-processor 340 of
FIG. 3A, 1n accordance with an embodiment. As shown 1n
FIG. 4A, the SM 340 includes an instruction cache 405, one
or more scheduler units 410(K), a register file 420, one or
more processing cores 450, one or more special function
units (SFUs) 452, one or more load/store units (LSUs) 454,
an interconnect network 480, a shared memory/LL1 cache
470.

As described above, the work distribution unit 225 dis-
patches tasks for execution on the GPCs 250 of the PPU 200.
The tasks are allocated to a particular DPC 320 within a
GPC 250 and, if the task 1s associated with a shader
program, the task may be allocated to an SM 340. The
scheduler unit 410(K) receives the tasks from the work
distribution unit 225 and manages nstruction scheduling for
one or more thread blocks assigned to the SM 340. The
scheduler unit 410(K) schedules thread blocks for execution
as warps of parallel threads, where each thread block 1is
allocated at least one warp. In an embodiment, each warp
executes 32 threads. The scheduler umit 410(K) may manage
a plurality of different thread blocks, allocating the warps to
the different thread blocks and then dispatching instructions
from the plurality of different cooperative groups to the
various functional units (1.e., cores 450, SFUs 452, and

L.SUs 454) during each clock cycle.

US 12,135,781 B2

11

Cooperative Groups 1s a programming model for orga-
nizing groups of communicating threads that allows devel-
opers to express the granularity at which threads are com-
municating, enabling the expression of richer, more eflicient
parallel decompositions. Cooperative launch APIs support
synchronization amongst thread blocks for the execution of
parallel algorithms. Conventional programming models pro-
vide a single, simple construct for synchronizing cooperat-
ing threads: a barrier across all threads of a thread block (i.e.,
the syncthreads()function). However, programmers would
often like to define groups of threads at smaller than thread
block granularities and synchromize within the defined
groups to enable greater performance, design tlexibility, and
soltware reuse 1n the form of collective group-wide function
interfaces.

Cooperative Groups enables programmers to define
groups of threads explicitly at sub-block (1.e., as small as a
single thread) and multi-block granularities, and to perform
collective operations such as synchronization on the threads
in a cooperative group. The programming model supports
clean composition across software boundaries, so that librar-
ies and utility functions can synchronize safely within their
local context without having to make assumptions about
convergence. Cooperative Groups primitives enable new
patterns of cooperative parallelism, including producer-con-
sumer parallelism, opportunistic parallelism, and global
synchronization across an entire grid of thread blocks.

A dispatch unit 4135 1s configured to transmit 1nstructions
to one or more of the functional units. In the embodiment,
the scheduler unit 410(K) includes two dispatch umits 415
that enable two different instructions from the same warp to
be dispatched during each clock cycle. In alternative
embodiments, each scheduler unit 410(K) may include a
single dispatch unit 415 or additional dispatch units 415.

Each SM 340 includes a register file 420 that provides a
set of registers for the functional units of the SM 340. In an
embodiment, the register file 420 1s divided between each of
the functional units such that each functional unit 1s allo-
cated a dedicated portion of the register file 420. In another
embodiment, the register file 420 1s divided between the
different warps being executed by the SM 340. The register
file 420 provides temporary storage for operands connected
to the data paths of the functional units.

Each SM 340 comprises L processing cores 450. In an
embodiment, the SM 340 includes a large number (e.g., 128,
etc.) of distinct processing cores 450. Fach core 450 may
include a fully-pipelined, single-precision, double-precision,
and/or mixed precision processing unit that includes a
floating point arithmetic logic unit and an integer arithmetic
logic umit. In an embodiment, the floating point arithmetic
logic units mmplement the IEEE 734-2008 standard for
floating point arithmetic. In an embodiment, the cores 450
include 64 single-precision (32-bit) tloating point cores, 64
integer cores, 32 double-precision (64-bit) floating point
cores, and 8 tensor cores.

Tensor cores configured to perform matrix operations,
and, 1n an embodiment, one or more tensor cores are
included in the cores 450. In particular, the tensor cores are
configured to perform deep learning matrix arithmetic, such
as convolution operations for neural network training and
inferencing. In an embodiment, each tensor core operates on

a 4x4 matrix and performs a matrix multiply and accumulate
operation D=AxB+C, where A, B, C, and D are 4x4 matri-
ces.

In an embodiment, the matrix multiply mnputs A and B are
16-bit floating point matrices, while the accumulation matri-
ces C and D may be 16-bit floating point or 32-bit tloating

5

10

15

20

25

30

35

40

45

50

55

60

65

12

point matrices. Tensor Cores operate on 16-bit floating point
input data with 32-bit floating point accumulation. The
16-bit floating point multiply requires 64 operations and
results 1n a full precision product that 1s then accumulated
using 32-bit tloating point addition with the other interme-
diate products for a 4x4x4 matrix multiply. In practice,
Tensor Cores are used to perform much larger two-dimen-
sional or higher dimensional matrix operations, built up
from these smaller elements. An API, such as CUDA 9 C++
API, exposes specialized matrix load, matrix multiply and
accumulate, and matrix store operations to efliciently use
Tensor Cores from a CUDA-C++ program. At the CUDA
level, the warp-level interface assumes 16x16 size matrices
spanning all 32 threads of the warp.

Each SM 340 also comprises M SFUs 452 that perform
special functions (e.g., attribute evaluation, reciprocal
square root, and the like). In an embodiment, the SFUs 452
may include a tree traversal unit configured to traverse a
hierarchical tree data structure. In an embodiment, the SFUs
452 may 1nclude texture unit configured to perform texture
map filtering operations. In an embodiment, the texture units
are configured to load texture maps (e.g., a 2D array of
texels) from the memory 204 and sample the texture maps
to produce sampled texture values for use in shader pro-
grams executed by the SM 340. In an embodiment, the
texture maps are stored 1n the shared memory/L1 cache 370.
The texture units implement texture operations such as
filtering operations using mip-maps (1.e., texture maps of
varying levels of detail). In an embodiment, each SM 240
includes two texture units.

Each SM 340 also comprises N LSUs 454 that implement
load and store operations between the shared memory/L1
cache 470 and the register file 420. Each SM 340 includes
an 1interconnect network 480 that connects each of the
functional units to the register file 420 and the LSU 454 to
the register file 420, shared memory/LL1 cache 470. In an
embodiment, the interconnect network 480 1s a crossbar that
can be configured to connect any of the functional units to
any of the registers in the register file 420 and connect the
L.SUs 454 to the register file and memory locations in shared
memory/LL1 cache 470.

The shared memory/LL1 cache 470 1s an array of on-chip
memory that allows for data storage and communication
between the SM 340 and the primitive engine 335 and
between threads in the SM 340. In an embodiment, the
shared memory/LL1 cache 470 comprises 128 KB of storage
capacity and 1s 1n the path from the SM 340 to the partition
unit 280. The shared memory/LL1 cache 470 can be used to
cache reads and writes. One or more of the shared memory/
.1 cache 470, L2 cache 360, and memory 204 are backing
stores.

Combining data cache and shared memory functionality
into a single memory block provides the best overall per-
formance for both types of memory accesses. The capacity
1s usable as a cache by programs that do not use shared
memory. For example, 11 shared memory 1s configured to use
half of the capacity, texture and load/store operations can use
the remaiming capacity. Integration within the shared
memory/L1 cache 470 enables the shared memory/L1 cache
4’70 to function as a high-throughput conduit for streaming
data while simultaneously providing high-bandwidth and
low-latency access to frequently reused data.

When configured for general purpose parallel computa-
tion, a simpler configuration can be used compared with
graphics processing. Specifically, the fixed function graphics
processing units shown in FIG. 2, are bypassed, creating a
much simpler programming model. In the general purpose

US 12,135,781 B2

13

parallel computation configuration, the work distribution
unit 225 assigns and distributes blocks of threads directly to
the DPCs 320. The threads 1in a block execute the same
program, using a unique thread ID 1n the calculation to
ensure each thread generates unique results, using the SM
340 to execute the program and perform calculations, shared
memory/L1 cache 470 to communicate between threads, and
the LSU 454 to read and write global memory through the
shared memory/L1 cache 470 and the memory partition unit
280. When configured for general purpose parallel compu-
tation, the SM 340 can also write commands that the
scheduler unit 220 can use to launch new work on the DPCs
320.

The PPU 200 may be included 1n a desktop computer, a
laptop computer, a tablet computer, servers, supercomputers,
a smart-phone (e.g., a wireless, hand-held device), personal
digital assistant (PDA), a digital camera, a vehicle, a head
mounted display, a hand-held electronic device, and the like.
In an embodiment, the PPU 200 1s embodied on a single
semiconductor substrate. In another embodiment, the PPU
200 1s 1included 1n a system-on-a-chip (SoC) along with one
or more other devices such as additional PPUs 200, the
memory 204, a reduced instruction set computer (RISC)
CPU, a memory management unit (MMU), a digital-to-
analog converter (DAC), and the like.

In an embodiment, the PPU 200 may be included on a
graphics card that includes one or more memory devices
204. The graphics card may be configured to interface with
a PCle slot on a motherboard of a desktop computer. In yet
another embodiment, the PPU 200 may be an integrated
graphics processing unmit (1GPU) or parallel processor
included in the chipset of the motherboard.

Exemplary Computing System

Systems with multiple GPUs and CPUs are used 1n a
variety of industries as developers expose and leverage more
parallelism 1n applications such as artificial intelligence
computing. High-performance GPU-accelerated systems
with tens to many thousands of compute nodes are deployed
in data centers, research facilities, and supercomputers to
solve ever larger problems. As the number of processing
devices within the high-performance systems increases, the
communication and data transfer mechanisms need to scale
to support the increased bandwidth.

FIG. 4B 1s a conceptual diagram of a processing system
400 implemented using the PPU 200 of FIG. 2, in accor-
dance with an embodiment. The exemplary system 465 may
be configured to implement the method 100 shown in FIG.
1. The processing system 400 includes a CPU 430, switch
410, and multiple PPUs 200 each and respective memories
204. The NVLink 210 provides high-speed communication
links between each of the PPUs 200. Although a particular
number of NVLink 210 and interconnect 202 connections
are 1llustrated in FIG. 4B, the number of connections to each
PPU 200 and the CPU 430 may vary. The switch 410
interfaces between the iterconnect 202 and the CPU 430.
The PPUs 200, memories 204, and NVLinks 210 may be
situated on a single semiconductor platform to form a
parallel processing module 425. In an embodiment, the
switch 410 supports two or more protocols to interface
between various different connections and/or links.

In another embodiment (not shown), the NVLink 210

provides one or more high-speed communication links
between each of the PPUs 200 and the CPU 430 and the

switch 410 interfaces between the interconnect 202 and each
of the PPUs 200. The PPUs 200, memories 204, and
interconnect 202 may be situated on a single semiconductor
platform to form a parallel processing module 425. In vyet

10

15

20

25

30

35

40

45

50

55

60

65

14

another embodiment (not shown), the terconnect 202
provides one or more communication links between each of

the PPUs 200 and the CPU 430 and the switch 410 interfaces
between each of the PPUs 200 using the NVLink 210 to
provide one or more high-speed communication links
between the PPUs 200. In another embodiment (not shown),
the NVLink 210 provides one or more high-speed commu-
nication links between the PPUs 200 and the CPU 430
through the switch 410. In yet another embodiment (not
shown), the interconnect 202 provides one or more commu-
nication links between each of the PPUs 200 directly. One
or more of the NVLink 210 high-speed communication links
may be implemented as a physical NVLink interconnect or
either an on-chip or on-die interconnect using the same

protocol as the NVLink 210.

In the context of the present description, a single semi-
conductor platform may refer to a sole unitary semiconduc-
tor-based integrated circuit fabricated on a die or chip. It
should be noted that the term single semiconductor platform
may also refer to multi-chip modules with increased con-
nectivity which simulate on-chip operation and make sub-
stantial 1mprovements over utilizing a conventional bus
implementation. Of course, the various circuits or devices
may also be situated separately or in various combinations
of semiconductor platforms per the desires of the user.
Alternately, the parallel processing module 425 may be
implemented as a circuit board substrate and each of the
PPUs 200 and/or memories 204 may be packaged devices.
In an embodiment, the CPU 430, switch 410, and the parallel
processing module 425 are situated on a single semiconduc-
tor platform.

In an embodiment, the signaling rate of each NVLink 210
1s 20 to 25 Gigabits/second and each PPU 200 includes six
NVLink 210 imnterfaces (as shown in FIG. 4B, five NVLink
210 interfaces are included for each PPU 200). Each
NVLink 210 provides a data transfer rate of 25 Gigabytes/
second 1 each direction, with six links providing 300
(Gigabytes/second. The NVLinks 210 can be used exclu-
sively for PPU-to-PPU communication as shown in FIG. 4B,
or some combination of PPU-to-PPU and PPU-to-CPU,
when the CPU 430 also includes one or more NVLink 210
interfaces.

In an embodiment, the NVLink 210 allows direct load/
store/atomic access from the CPU 430 to each PPU’s 200
memory 204. In an embodiment, the NVLink 210 supports
coherency operations, allowing data read from the memories
204 to be stored in the cache hierarchy of the CPU 430,
reducing cache access latency for the CPU 430. In an
embodiment, the NVLink 210 includes support for Address
Translation Services (ATS), allowing the PPU 200 to
directly access page tables within the CPU 430. One or more
of the NVLinks 210 may also be configured to operate 1n a
low-power mode.

FIG. 4C 1illustrates an exemplary system 465 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. The exemplary
system 465 may be configured to implement the method 100
shown 1 FIG. 1.

As shown, a system 463 1s provided including at least one
central processing unit 430 that 1s connected to a commu-
nication bus 475. The communication bus 475 may be
implemented using any suitable protocol, such as PCI (Pe-
ripheral Component Interconnect), PCI-Express, AGP (Ac-
celerated Graphics Port), HyperTransport, or any other bus
or point-to-point communication protocol(s). The system
465 also includes a main memory 440. Control logic (soft-

US 12,135,781 B2

15

ware) and data are stored in the main memory 440 which
may take the form of random access memory (RAM).

The system 465 also includes mput devices 460, the
parallel processing system 425, and display devices 445, 1.¢.
a conventional CRT (cathode ray tube), LCD (liquid crystal
display), LED (light emitting diode), plasma display or the
like. User input may be recerved from the input devices 460,
¢.g., keyboard, mouse, touchpad, microphone, and the like.
Each of the foregoing modules and/or devices may even be
situated on a single semiconductor platform to form the
system 465. Alternately, the various modules may also be
situated separately or 1n various combinations of semicon-
ductor platiforms per the desires of the user.

Further, the system 465 may be coupled to a network
(e.g., a telecommunications network, local area network
(LAN), wireless network, wide area network (WAN) such as
the Internet, peer-to-peer network, cable network, or the
like) through a network interface 435 for communication
pPUrposes.

The system 465 may also include a secondary storage (not
shown). The secondary storage includes, for example, a hard
disk drive and/or a removable storage drive, representing a
floppy disk drive, a magnetic tape drive, a compact disk
drive, digital versatile disk (DVD) drive, recording device,
universal serial bus (USB) flash memory. The removable
storage drive reads from and/or writes to a removable
storage unit 1n a well-known manner.

Computer programs, or computer control logic algo-
rithms, may be stored in the main memory 440 and/or the
secondary storage. Such computer programs, when
executed, enable the system 465 to perform various func-
tions. The memory 440, the storage, and/or any other storage
are possible examples of computer-readable media.

The architecture and/or functionality of the various pre-
vious ligures may be implemented 1n the context of a general
computer system, a circuit board system, a game console
system dedicated for entertainment purposes, an application-
specific system, and/or any other desired system. For
example, the system 465 may take the form of a desktop
computer, a laptop computer, a tablet computer, servers,
supercomputers, a smart-phone (e.g., a wireless, hand-held
device), personal digital assistant (PDA), a digital camera, a
vehicle, a head mounted display, a hand-held electronic
device, a mobile phone device, a television, workstation,
game consoles, embedded system, and/or any other type of
logic.

While various embodiments have been described above,
it should be understood that they have been presented by
way ol example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only 1n accordance with the following
claims and their equivalents.

Machine Learning

Deep neural networks (DNNs) developed on processors,
such as the PPU 200 have been used for diverse use cases,
from seli-driving cars to faster drug development, from
automatic 1mage captioning i1n online image databases to
smart real-time language translation 1n video chat applica-
tions. Deep learning 1s a techmque that models the neural
learning process of the human brain, continually learning,
continually getting smarter, and delivering more accurate
results more quickly over time. A child 1s initially taught by
an adult to correctly identily and classily various shapes,
eventually being able to identily shapes without any coach-
ing. Similarly, a deep learning or neural learning system
needs to be trained 1n object recognition and classification

10

15

20

25

30

35

40

45

50

55

60

65

16

for 1t get smarter and more eflicient at identifying basic
objects, occluded objects, etc., while also assigning context
to objects.

At the simplest level, neurons in the human brain look at
various 1nputs that are recerved, importance levels are
assigned to each of these mputs, and output 1s passed on to
other neurons to act upon. An artificial neuron or perceptron
1s the most basic model of a neural network. In one example,
a perceptron may receive one or more inputs that represent
various features of an object that the perceptron 1s being
trained to recognize and classity, and each of these features
1s assigned a certain weight based on the importance of that
teature 1n defining the shape of an object.

A deep neural network (DNN) model includes multiple
layers of many connected perceptrons (e.g., nodes) that can
be trained with enormous amounts of mput data to quickly
solve complex problems with high accuracy. In one
example, a first layer of the DLL model breaks down an
input 1mage of an automobile 1nto various sections and looks
for basic patterns such as lines and angles. The second layer
assembles the lines to look for higher level patterns such as
wheels, windshields, and mirrors. The next layer identifies
the type of vehicle, and the final few layers generate a label

for the mput 1mage, i1dentitying the model of a specific
automobile brand.

Once the DNN 1s trained, the DNN can be deployed and
used to 1dentily and classity objects or patterns in a process
known as inference. Examples of inference (the process
through which a DNN extracts useful information from a
given mput) include identifying handwritten numbers on
checks deposited into ATM machines, identifying images of
friends 1n photos, delivering movie recommendations to
over fifty million users, 1dentitying and classiiying different
types of automobiles, pedestrians, and road hazards in
driverless cars, or translating human speech 1n real-time.

During training, data flows through the DNN 1n a forward
propagation phase until a prediction 1s produced that indi-
cates a label corresponding to the iput. If the neural
network does not correctly label the mnput, then errors
between the correct label and the predicted label are ana-
lyzed, and the weights are adjusted for each feature during
a backward propagation phase until the DNN correctly
labels the mput and other inputs 1n a training dataset.
Training complex neural networks requires massive
amounts of parallel computing performance, including float-
ing-point multiplications and additions that are supported by
the PPU 200. Inferencing 1s less compute-intensive than
training, being a latency-sensitive process where a tramned
neural network 1s applied to new inputs it has not seen before
to classily images, translate speech, and generally infer new
information.

Neural networks rely heavily on matrix math operations,
and complex multi-layered networks require tremendous
amounts of floating-point performance and bandwidth for
both efliciency and speed. With thousands of processing
cores, optimized for matrix math operations, and delivering
tens to hundreds of TFLOPS of performance, the PPU 200
1s a computing platform capable of delivering performance
required for deep neural network-based artificial intelligence
and machine learning applications.

Exemplary Compiler-Based Environment

FIG. 5 illustrates an exemplary compiler-based memory
safety 1implementation 500, according to one exemplary
embodiment. As shown, source code 502 1s mput nto a
compiler 5304. The compiler 504 may perform one or more
operations on the source code 502 to convert the source code

US 12,135,781 B2

17

502 to an executable 506 (e.g., 1n binary) that 1s received and
run by a graphics processing umt (GPU) 508.

Additionally, 1n one embodiment, the compiler may per-
form compiling operations by converting the source code
502 into one or more intermediate representations before
performing a final conversion to create the executable 506.
In another embodiment, during the compiling of the source
code 502 by the compiler 504, instructions for maintaining
a metadata table may be inserted into the source code to
create the executable 506. During the execution of the
executable 506 by the GPU 508, a runtime library 510 may
intercept memory allocations sent during the execution and
may extract a size of a bufler and a start address of the bufler
from each memory allocation.

Further, 1n one embodiment, for each memory allocation
made during the execution of the executable 506, the run-
time library 510 may store metadata including the extracted
bufler size and start address for the memory allocation 1n a
device-side memory, and may add a location of this stored
metadata to the memory allocation 1itself (e.g., as an index
within unused bits of the memory address pointer, etc.).

Also, 1 one embodiment, the compiler 504 may also
insert additional information 1nto the executable 506 during
the creation of the executable 506. This additional informa-
tion may perform a memory safety check during each
memory access request within the executable 506 during
execution by the GPU 508.

For example, when the executable 506 1s being executed
by the GPU 308, in response to 1identifying a memory access
request within the executable 506, the executable may
initiate an out-of-bounds (OOB) check for the memory
access request. In response to the OOB check, an index
within a memory address pointer included within the
memory access request may be 1dentified and used to obtain
the bufler size and start address for the associated memory
allocation. The bufller size and start address may then be
compared to the memory access request to confirm that the
pointer to the memory address included within the memory
access request points to a valid region of memory.

In this way, the compiler 504 may integrate memory
safety checks into 1ts generated executable 506, where such
memory checks may use metadata stored in device-side

memory to identily and avoid unsale memory operations
during the implementation of the executable 506 by the GPU
508.

A Compiler-Based Memory Safety Solution on GPUs

A compiler-based memory safety solution may include a
runtime software mechanism for detecting memory safety
violations in programs being compiled and run by a GPU.
The compiler-based memory safety solution may be imple-
mented as a compiler pass and a runtime library that
involves multiple steps. First, extra instructions may be
inserted to intercept memory allocations of all software
buflers (e.g., cudaMalloc allocations on the heap and stack
resident arrays). The base address returned by the memory
allocator and the size of the allocation may be stored 1n a
soltware-managed in-memory data structure called the Base
and Size Table (BST).

The BST may include N segments. Fach segment may
consist of a plurality of entries. A BST entry may include a
three-tuple: {base address, size, valid}. The top log 2N bits
of the base address (returned by the memory allocator) may
be used to select the appropriate BST segment. An invalid
entry may then be chosen (e.g., by linear/random search)
from the segment. The index within the BST segment may

10

15

20

25

30

35

40

45

50

55

60

65

18

then be stored 1n the unused upper 15 bits of the base address
(which are normally zero) and returned back to the user
program.

Additionally, extra instructions may be inserted where a
pointer 1s {irst loaded from memory or passed as a device-
function argument. The upper bits of the pointer may hold
the index of the BST segment. The compiler may insert extra
instructions to retrieve the base and size from the appropri-
ate BST. The base and size may be propagated to all loads
and stores that use the pointer as an address within the
function scope.

Further, the compiler also may insert extra instructions
before each load/store to compare whether the load/store
address 1s within the valid range as specified in the BST.
Depending on the architecture, further instructions may be
required to clear the upper bits 1n the pointer before execut-
ing the load/store nstruction (if the architecture requires the
upper bits to be zero).

Further still, extra instructions may be 1nserted to detect
temporal memory safety by intercepting free()calls. The
extra instructions clear the contents of the BST entry. This
way any dangling pointer, which used to point to the freed
allocation, will be detected when a spatial memory safety
check 1s performed (e.g., see the comparison of the load/
store address against the base and size information in the
BST above). If the BST entry 1s all zero, then a temporal
memory safety violation has occurred.

Also, extra mstructions may be inserted to update the
valid bit of the oldest deleted BST entry when the BST 1s full
in order to reuse these entries for new allocations. The logic
for updating the valid bits may be implementation-specific.

While a compiler compiles source code to create an
executable binary, code 1s added into the compiled source
code that, when executed, identifies and stores 1n a metadata
table base and bounds information associated with memory
allocations. Additionally, additional code 1s added into the
compiled source code that performs memory satety checks
during execution. This updated compiled source code auto-
matically determines a safety of memory access requests
during execution by performing an out-of-bounds (OOB)
check using the base and bounds information retrieved and
stored 1n the metadata table. This enables the 1dentification
and avoidance of unsafe memory operations during the
implementation of the executable by a GPU.

The compiler-based memory safety solution may be
implemented as a compiler pass and a runtime library 1n a
predetermined infrastructure. The compiler-based memory
safety solution may detect both heap and stack-based over-
flows 1n test programs.

Compared to existing GPU-based memory safety solu-
tions, the compiler-based memory safety solution may use
base and size information to protect memory allocations
whereas other techniques rely on software canaries to guard
the allocation boundaries. Thus, the compiler-based memory
safety solution provides stronger security guarantees as
canaries cannot detect out-of-bounds reads and can be
bypassed 1f their size 1s known.

Second, the compiler-based memory safety solution 1s a
compiler-based solution that operates at the program 1inter-
mediate representation (IR) whereas prior techniques, such
as memcheck, operate at the binary level. This design choice
allows the compiler-based memory safety solution to per-
form better optimizations and have lower runtime over-
heads.

Hardware-Based Implementation

While a compiler compiles source code to create an

executable binary, code 1s added into the compiled source

US 12,135,781 B2

19

code that, when executed, identifies and stores 1n a metadata
table base and bounds information associated with memory
allocations. Additionally, additional code 1s added into the
compiled source code that enables hardware to determine a
safety of memory access requests during an implementation
of the compiled source code by performing an out-of-bounds
(OOB) check 1n hardware using the base and bounds infor-
mation stored in the metadata table. This enables the 1den-
tification and avoidance of unsate memory operations during,
the implementation of the executable by a GPU.

FIG. 6 1llustrates a tlowchart of a method 600 for imple-
menting hardware-based memory saiety for a graphic pro-
cessing unit (GPU), in accordance with an embodiment.
Although method 600 1s described 1n the context of a
processing unit, the method 600 may also be performed by
a program, custom circuitry, or by a combination of custom
circuitry and a program. For example, the method 600 may
be executed by a GPU (graphics processing unit), CPU
(central processing unit), or any processing element. Fur-
thermore, persons of ordinary skill 1in the art will understand
that any system that performs method 600 1s within the
scope and spirit of embodiments of the present invention.

As shown 1n operation 602, a metadata table 1s maintained
for memory allocations made during an execution of com-
piled source code. In one embodiment, the source code may
be presented 1n a predetermined programming language. In
another embodiment, the source code may be iput into a
compiler, and the compiler may convert the source code to
an executable (e.g., compiled source code 1n binary) to be
run by a graphics processing umt (GPU).

Also, 1n one embodiment, istructions for maintaining the
metadata table may be inserted into the source code during
a compiling of the source code. For example, at compile
time, memory allocation APIs may be added within the
source code being compiled, and additional 1instructions may
be inserted within the source code that will create and
populate Base and Size Table (BST) entries 1 response to
memory allocations made at runtime (e.g., during the execu-
tion of the source code).

Additionally, 1n one embodiment, each of the memory
allocations may return a pointer to a beginning of a
requested bufler. For example, each pointer may be returned
by an application programming interface (API) in response
to a memory allocation (e.g., bufler creation) request made
to the API. In another example, the memory allocations may
include explicit and/or implicit memory allocations on the
stack.

Further, in one embodiment, the memory may include any
memory accessed by a GPU to perform one or more opera-
tions (e.g., dynamic random-access memory (DRAM),
scratch pad memory, local memory, global memory, etc.). In
another embodiment, the pointer may be i1dentified within
the API, or may be intercepted. In yet another embodiment,
the 1dentification/interception of the pointer may be per-
formed during the execution of the compiled source code
(e.g., by a runtime library). For example, the runtime library
may include routines used by the compiler to mnvoke behav-
1ors of a runtime environment (e.g., by mserting calls to the
runtime library to the executable binary).

Further still, 1n one embodiment, for each memory allo-
cation made during the execution of the compiled source
code, a size of the buller and a start address of the buller may
be 1dentified from the associated identified/intercepted
pointer. In another embodiment, for each memory alloca-
tion, the size of the bufler and the start address of the bufler
may be stored within the metadata table. For example, the
metadata table may include a device-side metadata table. In

10

15

20

25

30

35

40

45

50

55

60

65

20

another example, the metadata table may include a base and
s1ze table (BST) containing a plurality of entries, and each
of the plurality of entries may include a three-tuple including
a base address, a size, and a validity indicator. In yet another
example, the size of the bufler and the start address of the
bufler may be stored as base and bounds metadata within the
metadata table. The base metadata may correspond to the
start address of the bufler, and the bounds metadata may
correspond to the size of the bufler.

Also, 1n one embodiment, for each memory allocation, the
runtime library may perform the identification and storage of
the size of the bufler and the start address of the butler within
the metadata table. In another embodiment, the pointer for
cach memory allocation may be modified (e.g., by the
runtime library) to include an index (e.g., another pointer)
that points to a location within the metadata table that
contains the size of the builer and the start address of the
bufler for the memory allocation. For example, the index
may be added within unused bits within the pointer for each
memory allocation.

In this way, during the execution of compiled source code
at runtime, a metadata table may be created by the runtime
library that logs base and bound metadata for each memory
allocation made during the runtime.

Also, 1n one embodiment, a hardware memory safety
cache may store recently-retrieved entries within the meta-
data table (e.g., 1n order to improve a speed of retrieval of
the recently-retrieved entries, etc.).

Furthermore, in one embodiment, an arithmetic logic unit
(ALU) may be adjusted to maintain these unused bits during
compiling after pointer arithmetic operations are performed
on the pointer. This may ensure that the index 1s maintained
alter these operations are performed. In this way, during the
running of the compiled source code, a hardware memory
safety cache may be created by the runtime library that
caches recently retrieved base and bound metadata from the
metadata table.

Also, as shown 1n operation 604, a safety of memory
access requests 1s determined 1n hardware during an execu-
tion of the compiled source code, utilizing the metadata
table. In one embodiment, the memory access requests may
be included within the executable (e.g., the compiled source
code). In another embodiment, one or more of the memory
access requests may include a request to store a value to an
address.

Additionally, 1n one embodiment, determining the safety
of memory access requests may include performing, 1n
hardware, an out-of-bounds (OOB) check for such memory
access requests during the implementation (e.g., execution)
of the executable by the GPU. In another embodiment, when
the executable 1s being executed by the GPU, 1n response to
identifying a memory access request within the executable,
a hardware load/store unit may identily an associated load/
store address included within the memory access request.
For example, the load/store address may include a pointer
that was previously modified (e.g., during a memory allo-
cation) to include an index that points to a location within
the hardware memory safety cache that contains the size of
the bufler and the start address of the buller for the memory
allocation. In another embodiment, during the compiling of
the source code, specific load/store instructions may be
inserted within the compiled source code that implement the
OOB check 1n hardware.

Further, in one embodiment, the hardware load/store unit
may send the load/store address to memory safety hardware
(e.g., a memory safety unit). In another embodiment, 1n
response to recewving the load/store address, the memory

.

US 12,135,781 B2

21

safety hardware may first determine 1f a cached metadata
table entry corresponding to the address exists within the
hardware memory safety cache. In response to determining
that the cached metadata table entry corresponding to the
address exists within the hardware memory safety cache, the
entry may be used to perform an out-of-bounds (OOB)
check. In response to determining that the cached metadata
table entry corresponding to the address does not exist
within the hardware memory safety cache, the memory
safety hardware may add the index from the load/store
address to the base address to obtain an accurate index value
for the metadata table.

Further still, in one embodiment, the memory safety
hardware may then retrieve the size of an allocated bufler
and a start address of the allocated bufler from the metadata
table, utilizing the accurate index value. In another embodi-
ment, an out-of-bounds (OOB) check may then be per-
formed by the memory safety hardware for the memory
address included within the memory access request, utilizing
the retrieved size of the allocated builer and the start address
of the allocated bufler. For example, the OOB check may
confirm that the pointer to the memory address included
within the memory access request points to a valid region of
memory (e.g., a region of memory bounded by the retrieved
size ol the allocated bufler and the start address of the
allocated buliler).

Also, 1n one embodiment, results of the OOB check may
then be returned from the memory safety hardware to the
hardware load/store unit. In another embodiment, 1n
response to determining that the memory access request
points to a valid region of memory, the memory access
request may be implemented by the hardware load/store unit
(e.g., 1n an L1 cache, etc.). In yet another embodiment, 1n
response to determining that the memory access request
points to an invalid region of memory, the memory access
request may be denied by the hardware load/store unit.

In another embodiment, a memory deallocation may be
intercepted, and the hardware memory safety cache may be
updated to reflect the memory deallocation (e.g., by mvali-
dating an associated entry within the hardware memory
safety cache, etc.). In yet another embodiment, a safety of
only a predetermined subset of all memory access requests
made within the system may be determined during the
execution of the compiled source code. For example, a
safety of only a predetermined type of memory access
requests (e.g., read requests, etc.) may be performed. In
another example, a safety of only memory access requests
made by one or more predetermined entities (e.g., entities
other than an operating system, etc.) may be performed.

In this way, memory safety checks (e.g., OOB checks)
may be inserted into a compiled executable and 1mple-
mented 1n hardware during execution of the executable by
the GPU. This may enable the i1dentification and avoidance
ol unsafe memory operations during the implementation of
the executable 1n hardware by the GPU without any perior-
mance overhead, and may therefore improve a security and
performance of the GPU, as well as the hardware environ-
ment 1n which the GPU operates.

In yet another embodiment, the satety determination may
be performed utilizing a parallel processing unit (PPU) such
as the PPU 200 illustrated in FIG. 2.

Exemplary Hardware-Based Environment

FIG. 7 illustrates an exemplary hardware-implemented
memory satety implementation 700, according to one exem-
plary embodiment. As shown, an arithmetic logic umt
(ALU) 702 1s 1n communication with a load/store unit 704.
In one embodiment, in response to a memory access request,

10

15

20

25

30

35

40

45

50

55

60

65

22

the ALU 702 may send a load/store address associated with
the memory access request to the load/store unit 704.

Additionally, 1n one embodiment, the load/store unit 704
may send the address to memory safety hardware 706 to
perform an OOB check. In response to recerving the address,
the memory safety hardware 706 may retrieve a base address
for a hardware memory safety cache 708 from a metadata
base register 710. In response to retrieving the base address,
the memory safety hardware 706 may add an index from the
load/store address to the base address to obtain an accurate
index value for the hardware memory safety cache 708.

Further, 1n one embodiment, the memory safety hardware
may then retrieve the size of an allocated bufler and a start
address of the allocated bufler from the hardware memory
satety cache 708, utilizing the accurate index value. An
out-of-bounds (OOB) check may then be performed by the
memory safety hardware 706 for the memory address
included within the memory access request, utilizing the
retrieved size of the allocated bufler and the start address of
the allocated builer.

Further still, in one embodiment, results of the OOB
check may be returned from the memory safety hardware
706 to the hardware load/store unit 704. In response to
determining that the memory access request points to a valid
region of memory, the memory access request may be
implemented by the hardware load/store unit 704 1n an L1
cache 712.

In this way, memory satety checks may be automatically
implemented via hardware while running an executable,
where such memory checks use metadata stored within the
memory safety cache 708 to identily and avoid unsafe
memory operations during the implementation of the execut-
able by a GPU.

A Hardware-Assisted Memory Safety Solution on GPUs

A hardware-assisted memory safety solution includes a
runtime hardware/software mechanism for detecting
memory safety violations 1n programs that are compiled and
run by GPUs. The hardware-assisted memory safety solu-
tion includes exemplary software changes and hardware
changes as described below.

The hardware-assisted memory safety solution may
include a compiler pass to perform the following steps. First,
extra instructions may be inserted to intercept a memory
allocation of all software buflers (e.g., cudaMalloc alloca-
tions on the heap and stack resident arrays). The base
address returned by the memory allocator and the size of the
allocation are stored 1n a software-managed 1mn-memory data
structure such as a Base and Size Table (BST). In one
example, the BST may consist of N segments. Each segment
consists of a predetermined number of entries. A BST entry
may consist of a three-tuple: {base address, size, valid}.

In one embodiment, the top log 2N bits of the base address
(returned by the memory allocator) are used to select the
appropriate BST segment. An 1nvalid entry 1s then chosen
(e.g., by linear/random search) from the segment. The index
within the BST segment 1s then stored 1n the unused upper
bits of the base address (which may be normally zero) and
1s then returned back to the user program.

The ISA may be extended with new memory safety
load/store 1nstructions and pointer arithmetic instructions.
The compiler pass replaces load/store instructions and
pointer arithmetic instructions with the new memory safety
load/store and pointer arithmetic instructions. In one
embodiment, the instruction set architecture (ISA) may
include additional instructions inserted during compiling
that perform memory saifety by specilying memory mnstruc-
tions to perform a memory saifety check. In another embodi-

US 12,135,781 B2

23

ment, the ISA may include additional instructions mserted
during compiling that perform address computation func-
tionality by ensuring that address bits used to index the
metadata table remain unmodified after arithmetic 1s done to
the address bits.

The hardware-assisted memory safety solution may
include the following hardware changes. The hardware may
be extended with a Memory Safety Unit (MSU) that per-
torms the bounds check by retrieving the BST entry (rather
than using 1nstructions). The MSU 1s consulted in parallel to
accessing the L1 cache (1n the same way virtual to physical
address translation 1s done 1n conventional virtually-indexed
physically-tagged (VIPT) L1 caches). The MSU consists of
a butfler to cache the BST (similar to a TLB) and logic to
ensure the address 1s within legitimate bounds.

The ALUs are extended to support memory safety pointer
arithmetic. Specifically, support may be added to ensure that
the upper bits (storing the BST entry) are not changed by
instructions performing pointer arithmetic. The ALU modi-
fication ensures that upper bits of the address remain
unchanged after the operation (which amounts to adding a
single MUX to the existing ALU operation).

The above software and hardware changes combined
climinate any performance overhead compared to a compiler
approach when evaluated across various workloads.

Compared to existing techniques, the hardware-assisted
memory salfety solution uses the upper pointer bits as an
index to the metadata table whereas other solutions use the
pointer location i memory to derive the address of its
metadata.

Unlike earlier solutions, the hardware-assisted memory
safety solution does not increase the application code foot-
print by adding explicit bounds checking and retrieval
instructions. Instead, all memory safety functionalities are
performed 1 hardware using the same existing program
instructions.

Unlike existing solutions, the hardware-assisted memory
safety solution does not store 4-bit or 8-bit tags per every
allocation 1n physical memory. As a result, no changes to the
data layout in caches and DRAM are required. The hard-
ware-assisted memory safety solution 1s memory-allocator
agnostic and does not require a binning memory allocator.

While various embodiments have been described above,
it should be understood that they have been presented by
way ol example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only 1 accordance with the following
claims and their equivalents.

The disclosure may be described in the general context of
computer code or machine-useable 1nstructions, including
computer-executable mnstructions such as program modules,
being executed by a computer or other machine, such as a
personal data assistant or other handheld device. Generally,
program modules including routines, programs, objects,
components, data structures, etc., refer to code that perform
particular tasks or implement particular abstract data types.
The disclosure may be practiced in a variety of system
configurations, including hand-held devices, consumer elec-
tronics, general-purpose computers, more specialty comput-
ing devices, etc. The disclosure may also be practiced 1n
distributed computing environments where tasks are per-
tormed by remote-processing devices that are linked through
a communications network.

As used herein, a recitation of “and/or” with respect to
two or more elements should be interpreted to mean only
one element, or a combination of elements. For example,

10

15

20

25

30

35

40

45

50

55

60

65

24

“element A, element B, and/or element C” may include only
clement A, only element B, only element C, element A and
element B, element A and element C, element B and element
C, or elements A, B, and C. In addition, “at least one of
clement A or element B” may include at least one of element
A, at least one of element B, or at least one of element A and
at least one of element B. Further, “at least one of element
A and element B” may include at least one of element A, at
least one of element B, or at least one of element A and at
least one of element B.

The subject matter of the present disclosure 1s described
with specificity herein to meet statutory requirements. How-
ever, the description itself 1s not intended to limait the scope
of this disclosure. Rather, the imnventors have contemplated
that the claimed subject matter might also be embodied 1n
other ways, to include different steps or combinations of
steps similar to the ones described in this document, 1n
conjunction with other present or future technologies. More-
over, although the terms *“step” and/or “block™ may be used
herein to connote diflerent elements of methods employed,
the terms should not be interpreted as implying any particu-
lar order among or between various steps herein disclosed
unless and except when the order of individual steps i1s
explicitly described.

What 1s claimed 1s:

1. A method comprising, at a device:

maintaining a metadata table having entries for memory

allocations made during an execution of compiled
source code; and determining, in hardware, a safety of
memory access requests during the execution of the
compiled source code, utilizing the metadata table,
including: when the compiled source code 1s being
executed by a GPU (Graphical Processing Unit), 1n
response to 1dentilying a memory access request within
the compiled source code, a hardware load/store umit
identifies an associated load/store address included
within the memory access request, the hardware load/
store unit sends the load/store address to memory safety
hardware, and 1n response to recerving the load/store
address the memory safety hardware requests a base
address for a hardware memory safety cache from a
metadata base register, where the hardware memory
safety cache caches recently used data from the meta-
data table.

2. The method of claim 1, wherein each of the memory
allocations 1ncludes a pointer to a beginning of a requested
bufler.

3. The method of claim 2, wherein the pointer 1s identified
or intercepted during the execution of the compiled source
code.

4. The method of claim 1, wheremn for each memory
allocation, a size of a buffer and a start address of the bufler
are 1dentified and stored within the metadata table as base
and bounds metadata.

5. The method of claim 1, wherein a pointer for each
memory allocation 1s modified to include an index that
points to a location within a metadata table that contains a
size of a bufller and a start address of the bufler for the
memory allocation.

6. The method of claim 1, wherein during the execution
of the compiled source code, the hardware performs a
memory satety check during each memory access request
within the compiled source code.

7. The method of claim 1, wherein the memory access
requests each include a request to store a value to an address.

8. The method of claim 1, wherein determining the safety
of memory access requests includes performing, in hard-

US 12,135,781 B2

25

ware, an out-of-bounds (OOB) check for such memory
access requests during the execution of the compiled source

code by the GPU.

9. The method of claim 1, wherein the memory safety
hardware adds an index from the load/store address to the
base address to obtain an accurate index value for the
hardware memory safety cache.

10. The method of claim 9, wherein the memory satety
hardware retrieves the size of an allocated bufler and a start
address of the allocated bufler from the hardware memory
safety cache, utilizing the accurate index value.

11. The method of claam 10, wherein an out-of-bounds
(OOB) check 1s performed by the memory safety hardware
for a memory address included within the memory access

request, utilizing the retrieved size of the allocated bufler
and the start address of the allocated builer.

12. The method of claim 11, wherein results of the OOB
check are returned from the memory safety hardware to the
hardware load/store umit, and in response to determining that
the memory access request points to a valid region of
memory, the memory access request 1s implemented by the
hardware load/store unit 1n an L1 cache.

13. The method of claim 1, wherein an instruction set
architecture (ISA) includes additional instructions inserted
during compiling that perform memory safety by specitying
memory instructions to perform a memory satety check.

14. The method of claim 1, wherein an instruction set
architecture (ISA) includes additional instructions inserted
during compiling that perform address computation func-
tionality by ensuring that address bits used to index the
metadata table remain unmodified after arithmetic 1s done to
the address bits.

15. The method of claim 1, wherein:

the memory safety hardware uses the top log 2N bits of

the base address to select a metadata segment,

an mvalid entry 1s chosen from the metadata segment, and

an index within the metadata segment 1s stored 1n an

unused number of bits of the base address.

16. The method of claim 1, wherein the metadata table 1s
a base and size table (BST) containing the entries for the
memory allocation, and wherein each of the entries includes
a base address, a size, and a validity indicator corresponding
to the memory allocation.

17. The method of claim 1, wherein an index pointing to
a location within the metadata table 1s added to a pointer for
cach of the memory allocations.

10

15

20

25

30

35

40

45

26

18. The method of claim 17, wherein the index points to
the location within the metadata table that contains a size of
a buller for the memory allocation and a start address of the

bufler.

19. The method of claim 1, wherein the metadata table 1s
created during the execution of the compiled source code at
runtime.

20. A system comprising;:

a hardware processor of a device that 1s configured to:

maintain a metadata table having entries for memory

allocations made during an execution of compiled
source code; and

determine, i1n hardware, a safety of memory access

requests during the execution of the compiled source

code, utilizing the metadata table
wherein:

the memory satety hardware uses the top log 2N bits of
the base address to select a metadata segment,

an 1nvalid entry 1s chosen from the metadata segment,
and

an mdex within the metadata segment 1s stored 1n an
unused number of bits of the base address.

21. The system of claim 20, wherein each of the memory
allocations 1ncludes a pointer to a beginning of a requested
bufler.

22. The system of claim 21, wherein the pointer 1s
identified or intercepted during the execution of the com-
piled source code.

23. The computer-readable storage medium of claim 20,
wherein each of the memory allocations includes a pointer
to a beginning of a requested butler.

24. A non-transitory computer-readable storage medium
storing 1nstructions that, when executed by a processor of a
device, causes the processor to cause the device to:

maintain a metadata table having entries for memory

allocations made during an execution of compiled
source code; and

determine, in hardware, a safety ol memory access

requests during the execution of the compiled source
code, utilizing the metadata table;

wherein an instruction set architecture (ISA) includes

additional instructions inserted during compiling that
perform address computation functionality by ensuring
that address bits used to index the metadata table
remain unmodified after arithmetic 1s done to the
address bits.

	Front Page
	Drawings
	Specification
	Claims

