12 United States Patent
Arul Dhas et al.

US012130767B2

US 12,130,767 B2
*Oct. 29, 2024

(10) Patent No.:
45) Date of Patent:

(54) SCALING PERFORMANCE IN A STORAGE
SERVER WITH STORAGE DEVICES

(38) Field of Classification Search
CPC GO6F 13/4068; GO6F 3/06; GO6F 3/0613;
GO6F 3/0635; GO6F 3/0689; GO6F 13/37;

(71) Applicant: SAMSUNG ELECTRONICS CO., ,
LTD., Suwon-si (KR) (Continued)
(72) Inventors: Benixon Arul Dhas, San Jose, CA (56) References Cited
(US); Ramaraj Pandian, San Jose, CA -
(US): Ronald Lee, San Jose, CA (US) U.s. PAIENT DOCUMENTS
2
(73) Assignee: Samsung Electronics Co., Ltd., 0,615,282 Bl 912003 Futral oo Guok ;?/03;23
Yongin-s1 (KR) 6,779,039 Bl 872004 Bommareddy et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35 - -
U.S.C. 154(b) by 0 days, FOREIGN PATENT DOCUMENTS
This patent 1s subject to a terminal dis- CN 109983443 A 712019
claimer. CN 110795469 A 2/2020
(Continued)
(21) Appl. No.: 18/138,386
_ OTHER PUBLICATIONS
(22) Filed: Apr. 24, 2023
_ o Internet Coleman, “Rendezvous Hashing Explained”, Randorithmes,
(65) Prior Publication Data Dec. 26, 2020, 5 pps. https://randorithms.com/2020/12/26/rendevous-
US 2023/0259478 Al Aug. 17, 2023 hashing.html.
Related U.S. Application Data (Continued)
(63) Continuation of application No. 16/886,713, filed on Primary Examiner — Phong H Dang
May 238, 2020, now Pat. No. 11,636,059. (74) Attorney, Agent, or Firm — Lewis Roca Rothgerber
(Continued) Christie LLP
(51) Int. Cl. (57) ABSTRACT
GOOF 15/40 (2006.01) Provided 1s a method of packet processing, the method
GO6IF 3/06 (2006.01)
Contimued including receiving an mput/output (10) request from a host,
(Continued) selecting a drive corresponding to the 10 request using a
(52) US. CL hashing algorithm or a round-robin technique, and estab-
CPC . GO6F 13/4068 (2013.01); GOOF 3/06 lishing a connection between the host and the drive.

(2013.01); GO6F 3/0613 (2013.01);

(Continued) 17 Claims, 4 Drawing Sheets
from hosticlient
_ 104 ?22
] - multipie threads ~_ ., ~
0~ TCP I RDMA 1} Network packel p 116
R processing threads

3} Transient dalato

:

Orocess reques!

o) Data fo be stored

!

e &
PTO0RSS

224

US 12,130,767 B2

Page 2
Related U.S. Application Data 2013/0343378 Al 12/2013 Veteikis et al.
2016/0099810 Al1*™ 4/2016 Li .ovviviiniininnn, HO041. 9/3242
(60) Provisional application No. 63/003,131, filed on Mar. 713/193
31, 2020. 2016/0253212 Al1* 9/2016 Solithin GO6F 11/34
718/104
(51) Int. CL 2017/0149878 Al* 52017 Mutnuru GOG6F 3/0635
a 2018/0253260 Al 9/2018 Marripudi et al.
GO6E 13/37 (2006'02“) 2018/0341665 A1* 11/2018 Basham GO6F 16/22
HO4L 67/1008 (2022.01) 2018/0373580 Al 12/2018 Ertl et al.
HO4L 67/141 (2022.01) 2019/0042440 A1 2/2019 Kumar et al.
HO4L 69/325 (2022.01) 2019/0109949 Al 4/2019 Seetharaman et al.
(52) US. Cl 2019/0243906 Al1* &/2019 Bissoncocovvvennen.. GO6F 16/13
"] 2019/0317901 Al 10/2019 Kach t al.
CPC GOG6F 3/0635 (2013.01); GO6F 3/0689 019/0324660 A1 102010 Vo ot al
(2013.01); GO6F 13/37 (2013.01); HO4L 2020/0065264 A1* 2/2020 GiSSIN .oevvvevvevereee.. GO6F 3/06
6771008 (2013.01); HO4L 677141 (2013.01); 2020/0349079 Al1* 11/2020 Armangau GO6F 13/20
1 er ¢t al.
HO4L 69/325 (2013.01) 2021/0021524 A 1/2021 Alp 1
(58) Field of Classification Search _ _
CPC .. HOAL 67/1008; HO4L 67/141; HO4L 69/325 FORBIGN PAITENT DOCUMENTS
See application file for complete search history. KR 10-2006-0067307 A 6/2006
TW 201614476 A 4/2016
(56) References Cited WO WO 2018/113030 Al 6/2018
U.S. PATENT DOCUMENTS
OTHER PUBLICATIONS
7,580,406 B2 8/2009 Shah et al. _ _ o
10,146,457 B2 12/2018 Pawlowski Chinese Oflice Action for CN Application No. 2021103410949
11,636,059 B2* 4/2023 Arul Dhas HO041. 69/325 dated Sep. 30, 2023, 8 pages.
| 710/105 Korean Office Action dated May 20, 2024, issued in corresponding
2004/0264481 Al ~12/2004 Darling et al. Korean Patent Application No. 10-2021-0011871 (8 pages).
2005/0147126 Al 7/2005 Quu ..., HO041. 69/16 Zhu, Jie, et al., “Detailed Explanation of Big Data Architecture:
.. 370/474 From Data Acquisition to Deep Learning,” Publishing House of
2006/0047902 Al1* 3/2006 Passerini GO6F 3/0656 l . 1 = ’ bl £ Chi
711/114 Electronics Industry, Beijing, People’s Republic of China, Oct.
2006/0195698 Al 8/2006 Pinkerton et al. 2016, 575 pages. o
2008/0285441 Al 11/2008 Abdulla et al. .Talwal.lese Office Action da.ted .Jun. 20, 2024, 1ssued 1n correspond-
2010/0302040 A1 12/2010 Patel et al. ing Tarwanese Patent Application No. 110105422 (7 pages).
2013/0268644 Al 10/2013 Hardin et al.
2013/0336320 Al 12/2013 Rangaraman * cited by examiner

S. Patent ct. 29, 2024 Sheet 1 of 4 S 12.130.767 B2

T3
—— L
bt .
m% 3
2 =5 >
— O3 ..
O 9 -
L2 0
-
m% B
e
= 5
i T o
2

— multiple threadS‘\\“

T T T T TTTTTTTTTTTTTTTTTTTTTTTT T T

hreads

DIOCESSINg

i
e vl
3
)
-
™
-
=
e

-G, 1

- !
L
-
T"—.‘-‘ -
-
-
-
-
-
-
-
-
-
b -
-
E
- ——
o ——————
-
T
>y r r T T T T > T T T T T TTTTTTTTTTTTTYTTTTTTTTTYTTYTTT T T T T T ToT oo
.
-
-
-—-E J
-
C——— -
y E—
iy -

U.S. Patent Oct. 29, 2024 Sheet 2 of 4 US 12.130.767 B2

20

o

*fr*TTTTTTTTTTTTTITTITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT frTTTTTTTTrTTTITTTTITYTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

4 4 4 4 4

T T

. T
T r T T T

4 4 4 4 4 4 4 4 4 4 4 4 4 4 444 4444 44

-r'i-

4 4 4 4 4 4 4 4 44 44444444

4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 44 d 444 d 4 d 44 dd 4 d 44 d 44 d 449

P S

Gri¢ ehig

US 12,130,767 B2

- SaMIp 10}
S fuisseooid jsanbay Jo)
- LOIROO] Y 8107 - |
: eo0iiy8i0] - -] M , 208
7 W
DEaIL) UISse00id u -m
J0j0 oM -
& JONEd0Iy 8100 - ¥/ |
=
=
&
>
S

NCHPROLO Y 728
Nl SSB0Aq U
k.som Emm

4
3IN08YIL0LY BouBldaY aCRIOIS NN

U.S. Patent

U.S. Patent Oct. 29, 2024 Sheet 4 of 4 US 12,130,767 B2

rrr

- Recenve e 10 request at a nefwork-processing module
. associated with a processor for establishing the connectior

oelect a arive comesponding to the 10 request using a hashing aigontam ¢
Or & foUnd-fobin fechnigue |
. L : | T 8 !
~stanlish a connection between the host and the selected anve o
e N | .
-orwara the 10 reguest from the network-processing moale ;
assoclaled with the processor (o a drive-processing modue 1 1 .---5404

- assoclated with the processor that is configured to seiect the drive
corresponding fo the 10 request using the hasniag aigonthm

e e e s e e e e e
¥

j
d
:
:
:
:
:
i
.
d
:
:
:
:
:
.
:
d
:
:
:
:
-
.
.
d
!
:
:
:
B
!
B
g
!
:
:
:
:
g
B
i
!
i

Use a remote airect memory access protocot by the
nefwork-processing module for processing the 10 request

IR FAFE PR MM WM AMAE A
¥

¥
}
:
:
¢
{
:
}
}
:
:
:
¢
i
:
3
}
;
:
:
:
:
-

ans 2 ans 1nn nn i n . AN ans an A n A A A e 8 S an
A
%
§
t
i
CAD
=
-
T

:
:
:
:
:
{
:
:
:
:
g
g
j
{
J
:
:
B
:
B
g
:"ﬂﬂ
:
:
B
B
B
f
{
:
:
:
:
:
B
g
{
:
:
:
B
:
4

Use transmission conirol protocol by the drive-processing
modie for processing data corresponaing to the 10 reques!

mmﬂ.“ﬂn‘lﬂ“

:
B
{
:
:
:
:
:
B
g
{
:
:
:
:
:
B
i
i
{
:
:
:
:
:
B
i
{
:
:
:
:
g
B
i
{
:
:
:
:
;
.
!
{
:
:
:
B
:
B
g
{
:
:

Assign other 1O requests to respactive cores of the processor Using the
ounc-ropin technique to balance connections between one or more nosts and
One OF more arives and to balance a loading of {he cores of the CPU

US 12,130,767 B2

1

SCALING PERFORMANCE IN A STORAGE
SERVER WITH STORAGE DEVICES

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application 1s a continuation application which
claims priority to and the benefit of U.S. application Ser. No.

16/886,713, filed May 28, 2020, now U.S. Pat. No. 11,636,
059, entitled SCALING PERFORMANCE IN ASTORAGE
SERVER WITH STORAGE DEVICES, which claims pri-
ority to, and the benefit of U.S. Provisional Application Ser.
No. 63/003,151, filed Mar. 31, 2020, entitled LINEARLY
SCALING PE RﬁORMANCE IN A NON-VOLATILE
MEMORY EXPRESS (NVME) OVER FABRICS STOR-
AGE SERVER WITH NVME KEY VALUE DRIVES, the
entire contents of both being incorporated herein 1n their
entirety.

FIELD

One or more aspects of embodiments of the present
disclosure relate generally to data storage, and to improving
performance of a storage server having storage devices.

BACKGROUND

As data storage devices continue to advance, such as with
key-value based drives including key-value solid state drives
(KVSSDs), the speed at which the storage devices are able
operate continues to increase. The speed of these storage
devices has may limait the rate at which a data storage system
(e.g., a non-volatile memory express (NVME) over fabrics
storage server) 1s able to operate. However, due to the
improved performance of the storage devices, and also due
to the increased scale at which storage systems must operate,
one or more central processing units (CPUs) may be over-
loaded. The CPUs may be for processing input/output (10)
requests and for coordinating data transier within the system
among multiple storage devices and multiple clients and
hosts. The overloading of the CPUs may cause a bottleneck
in the system at the CPU.

The above nformation disclosed in this Background
section 1s only for enhancement of understanding of the
background of the disclosure, and therefore may contain
information that does not form the prior art.

SUMMARY

Embodiments described herein provide improvements to
data storage.

According to embodiments of the present disclosure,
there 1s provided a method of packet processing, the method
including receiving an mput/output (10) request from a host,
selecting a drive corresponding to the 10 request using a
hashing algorithm or a round-robin technique, and estab-
lishing a connection between the host and the dnive.

The hashing algorithm that 1s used may be a Rendezvous
hashing algorithm based on a key corresponding to the 10
request, and a drive ID of the drive.

Receiving the 10 request from the host may include
receiving the IO request at a network-processing module
associated with a processor for establishing the connection.

The method may further include forwarding the 10
request from the network-processing module associated
with the processor to a drive-processing module associated

10

15

20

25

30

35

40

45

50

55

60

65

2

with the processor that 1s configured to select the drive
corresponding to the IO request using the hashing algorithm.

The method may further include using a remote direct
memory access protocol by the network-processing module
for processing the IO request, and using a transmission
control protocol by the drive-processing module for pro-
cessing data corresponding to the 10 request.

The method may further include forwarding the IO
request between the network-proces smg module and a drive-
processing module using an atomic rmg builer.

The method may further include assigning one or more
other IO requests to one or more respective cores of the
processor using the round-robin technique to balance one or
more connections between one or more hosts and one or
more drives, and to balance a loading of the cores of the
Processor.

According other embodiments of the present disclosure,
there 1s provided a system for packet processing, the system
including a processor including a plurality of cores, and a
drive-processing module, wherein one of the cores 1s con-
figured to receive an input/output (I0) request from a host,
the drive-processing module 1s configured to select a drive
corresponding to the 10 request using a hashing algorithm or
a round-robin technique, and the processor 1s configured to
establish a connection between the host and the drive.

The hashing algorithm that 1s used may be a Rendezvous
hashing algorithm based on a key corresponding to the 10
request, and a drive ID of the drive.

The system may further include a network-processing
module, wherein the one of the cores 1s configured to receive
the 10 request from the host by recerving the 10 request at
the network-processing module for establishing the connec-
tion.

The network-processing module may be configured to
forward the IO request to the drive-processing module,
which 1s further configured to select the drive corresponding
to the 10 request using the hashing algorithm.

The network-processing module may be further config-
ured to use a remote direct memory access protocol for
processing the 10 request, and the drive-processing module
may be further configured to use a transmission control
protocol for processing data corresponding to the 10 request.

The system may further include an atomic ring builer that
1s configured to forward the IO request between the net-
work-processing module and a drive-processing module.

The network-processing module may be further config-
ured to assign one or more other 10 requests to one or more
respective cores ol the processor using the round-robin
technique to balance one or more connections between one
or more hosts and one or more drives, and to balance a
loading of the cores of the processor.

According to yet other embodiments of the present dis-
closure, there 1s provided a non-transitory computer read-
able medium 1mplemented on a system for packet process-
ing, the non-transitory computer readable medium having
computer code that, when executed on a processor, imple-
ments a method of packet processing, the method including
receiving an input/output (I0) request from a host, selecting
a drive corresponding to the IO request using a hashing
algorithm or a round-robin technique, and establishing a
connection between the host and the drive.

The hashing algorithm that 1s used may be a Rendezvous
hashing algorithm based on a key corresponding to the 10
request, and a drive ID of the drive.

Receiving the 10 request from the host may include
receiving the IO request at a network-processing module
associated with a processor for establishing the connection.

US 12,130,767 B2

3

The computer code, when executed by the processor, may
be further configured to implement the method of packet
processing by causing the network-processing module asso-
ciated with the processor to forward the IO request to a
drive-processing module associated with the processor, and
by causing the drive-processing module to select the drive
corresponding to the IO request using the hashing algorithm.

The computer code, when executed by the processor, may
be further configured to implement the method of packet
processing by causing an atomic ring bufler to forward the
10 request between the network-processing module and a
drive-processing module.

The computer code, when executed by the processor, may
be further configured to implement the method of packet
processing by causing the network-processing module to
assign one or more other 10 requests to one or more
respective cores ol the processor using the round-robin
technique to balance one or more connections between one
or more hosts and one or more drives, and to balance a
loading of the cores of the processor.

Accordingly, the system and method of embodiments of
the present disclosure 1s able reduce or eliminate CPU
bottlenecking to improve data storage by balancing loads
among CPU cores and storage devices.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the
present embodiments are described with reference to the
tollowing figures, wherein like reference numerals refer to
like parts throughout the various views unless otherwise
specified.

FIG. 1 shows a block diagram depicting a connection
between a host and a storage device using a multi-CPU
storage appliance for storing data on multiple storage
devices, according to some embodiments of the present
disclosure:

FIG. 2 shows a block diagram of a server including two
CPUs 1 a multi-CPU storage appliance for storing data on
multiple storage devices, according to some embodiments of
the present disclosure;

FIG. 3 depicts an architecture for a multi-CPU storage
appliance for storing data on multiple storage devices,
according to some embodiments of the present disclosure;
and

FIG. 4 shows a flowchart depicting a method of packet
processing.

Corresponding reference characters indicate correspond-
ing components throughout the several views of the draw-
ings. Skilled artisans will appreciate that elements 1n the
figures are 1llustrated for simplicity and clarity, and have not
necessarily been drawn to scale. For example, the dimen-
sions of some of the elements, layers, and regions 1n the
figures may be exaggerated relative to other elements,
layers, and regions to help to improve clarity and under-
standing of various embodiments. Also, common but well-
understood elements and parts not related to the description
of the embodiments might not be shown 1n order to facilitate
a less obstructed view of these various embodiments and to
make the description clear.

DETAILED DESCRIPTION

Features of the inventive concept and methods of accom-
plishing the same may be understood more readily by
reference to the detailed description of embodiments and the
accompanying drawings. Hereinafter, embodiments will be

10

15

20

25

30

35

40

45

50

55

60

65

4

described in more detail with reference to the accompanying
drawings. The described embodiments, however, may be
embodied 1n various different forms, and should not be
construed as being limited to only the 1llustrated embodi-
ments herein. Rather, these embodiments are provided as
examples so that this disclosure will be thorough and
complete, and will fully convey the aspects and features of
the present inventive concept to those skilled in the art.
Accordingly, processes, elements, and techniques that are
not necessary to those having ordinary skill in the art for a
complete understanding of the aspects and features of the
present inventive concept may not be described.

Unless otherwise noted, like reference numerals denote
like elements throughout the attached drawings and the
written description, and thus, descriptions thereof will not be
repeated. Further, parts not related to the description of the
embodiments might not be shown to make the description
clear. In the drawings, the relative sizes of elements, layers,
and regions may be exaggerated for clanty.

In the detailed description, for the purposes of explana-
tion, numerous speciiic details are set forth to provide a
thorough understanding of various embodiments. It 1s appar-
ent, however, that various embodiments may be practiced
without these specific details or with one or more equivalent
arrangements. In other instances, well-known structures and
devices are shown 1n block diagram form 1n order to avoid
unnecessarily obscuring various embodiments.

It will be understood that, although the terms “first,”
“second,” ““third,” etc., may be used herein to describe
various elements, components, regions, layers and/or sec-
tions, these elements, components, regions, layers and/or
sections should not be limited by these terms. These terms
are used to distinguish one element, component, region,
layer or section from another element, component, region,
layer or section. Thus, a first element, component, region,
layer or section described below could be termed a second
clement, component, region, layer or section, without
departing from the spirit and scope of the present disclosure.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the present disclosure. As used herein, the
singular forms “a” and “an” are intended to include the
plural forms as well, unless the context clearly indicates
otherwise. It will be further understood that the terms
“comprises,” “comprising,” “have,” “having,” “includes,”
and “including,” when used 1n this specification, specily the
presence of the stated features, integers, steps, operations,
clements, and/or components, but do not preclude the pres-
ence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof. As used herein, the term “and/or” includes any and
all combinations of one or more of the associated listed
items.

As used herein, the term “substantially,” “about,”
“approximately,” and similar terms are used as terms of
approximation and not as terms of degree, and are intended
to account for the inherent deviations in measured or cal-
culated values that would be recognized by those of ordinary
skill 1n the art. “About” or “approximately,” as used herein,
1s 1nclusive of the stated value and means within an accept-
able range of deviation for the particular value as determined
by one of ordinary skill in the art, considering the measure-
ment 1n question and the error associated with measurement
of the particular quantity (1.e., the limitations of the mea-
surement system). For example, “about” may mean within
one or more standard deviations, or within +30%, 20%,
10%, 5% of the stated value. Further, the use of “may” when

US 12,130,767 B2

S

describing embodiments of the present disclosure refers to
“one or more embodiments of the present disclosure.”

When a certain embodiment may be implemented differ-
ently, a specific process order may be performed differently
from the described order. For example, two consecutively
described processes may be performed substantially at the
same time or performed 1n an order opposite to the described
order.

The electronic or electric devices and/or any other rel-
evant devices or components according to embodiments of
the present disclosure described herein may be implemented
utilizing any suitable hardware, firmware (e.g. an applica-
tion-specific integrated circuit), software, or a combination
of software, firmware, and hardware. For example, the
various components of these devices may be formed on one
integrated circuit (IC) chip or on separate 1C chips. Further,
the various components of these devices may be imple-
mented on a flexible printed circuit film, a tape carrier
package (TCP), a printed circuit board (PCB), or formed on
one substrate.

Further, the various components of these devices may be
a process or thread, running on one or more processors, 11
one or more computing devices, executing computer pro-
gram 1nstructions and interacting with other system compo-
nents for performing the various functionalities described
herein. The computer program instructions are stored in a
memory which may be implemented 1n a computing device
using a standard memory device, such as, for example, a
random access memory (RAM). The computer program
instructions may also be stored in other non-transitory
computer readable media such as, for example, a CD-ROM,
flash drive, or the like. Also, a person of skill in the art
should recognize that the functionality of various computing
devices may be combined or integrated into a single com-
puting device, or the functionality of a particular computing,
device may be distributed across one or more other com-
puting devices without departing from the spirit and scope of
the embodiments of the present disclosure.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which the present inventive concept belongs. It will be
further understood that terms, such as those defined in
commonly used dictionaries, should be interpreted as having
a meaning that 1s consistent with theirr meaning 1n the
context of the relevant art and/or the present specification,
and should not be mnterpreted in an idealized or overly
formal sense, unless expressly so defined herein.

In a storage server, when a host establishes a connection,
one or more cores ol a CPU of the server may be used for
processing all requests from the connection, and may for-
ward all of the requests to a single storage drive. Accord-
ingly, the connection established with the host may be able
to access all of the drives of a storage system. That 1s, once
a connection 1s established with a qualified name, then any
of the multiple drives can be accessed.

Because a large number of drives are being served, the
drives may handle millions of mput/output (I0) requests.
However, the CPU itsell (e.g., the core) may be able to
process only a limited number of requests per second (e.g.,
one million requests per second). Upon reaching this limiut,
the CPU/core may be a bottleneck of the system i1 a client
tries to access the same connection because the CPU 1s
unable to process more requests at the same time. That 1s,
even 1f the system supports a 100 Gigabyte network, such

10

15

20

25

30

35

40

45

50

55

60

65

6

throughput may be unable to be achieved due to the bottle-
neck at the CPU, and some of the available cores may be
underutilized.

Accordingly, some of the embodiments disclosed herein
provide an architecture for providing improved packet pro-
cessing using a message-passing architecture.

FIG. 1 shows a block diagram depicting a connection
between a host and a storage device using a multi-CPU
storage appliance for storing data on multiple storage

devices, according to some embodiments of the present
disclosure.

Retferring to FIG. 1, as mentioned above, as storage
device performance increases, bottlenecks 1n a storage sys-
tem (e.g., a non-volatile memory express (INVME) over
fabrics storage server) may more frequently occur at the
central processing unit(s) (CPU(s)) responsible for coordi-
nating 10 requests and data transfer associated with multiple
10 threads from one or more host applications. As described
below, embodiments of the present disclosure improve data
storage technology by reducing inefliciencies associated
with the coordination handled by the CPU(s), thereby
improving overall network performance.

An example memory application or software, which 1s
used as a target of the some embodiments of the present
disclosure, may be designed for storage devices, such as
block drives 108. As shown, the storage system or network
includes a CPU 103 having multiple cores 102, a network

interface controller (NIC) 104, a memory 106, and multiple
drives 108. The drives 108 may include SSDs, Ethernet

SSDs, KVSSDs, etc., although 1t should be noted that
Ethernet SSDs and KVSSDs are subsets of the different
types of devices that can be used 1n the storage system. The

memory 106 may include multiple volatile dynamic ran-
dom-access memory (DRAM) modules 207 (e.g., see FIG.

2).

When a host establishes a connection via the NIC 104,
one of the cores 102a of the CPU 103 may be used for
processing all of the requests 112 (e.g., 10 requests) from the
connection to the host, and may forward all of the requests
112 to a single drive 108a. Accordingly, the host i1s able to
access all of the drives 108 via the connection. That 1s, once
a connection by the host 1s established with a qualified name,
then any of the multiple drnives 108 can be accessed.

Because a relatively large number of storage devices or
drives 108 may be served, the drives 108 may handle a
quantity (e.g., millions) of 10 requests 112 from various
hosts. However, the CPU 103 1tself (e.g., one or more cores
102 of the CPU 103) may be able to only process a limited
number of requests 112 per second (e.g., up to one million
requests per second). Upon reaching this limait, the CPU 103,
or the core 102, may eflectively become a bottleneck in the
system, because the CPU 103 may be unable to concurrently
process further additional requests 112 11 a client attempts to
access the same connection via the NIC 104. Accordingly,
even 1 the storage system supports, for example, a 100-
(Gigabyte network, such throughput might not be able to be
fully achieved due to the bottleneck at the CPU 103.
Accordingly, even though many cores 102 are available,
some of the cores 102 may be underutilized.

Accordingly, as described below, embodiments of the
present disclosure provide improved methods and systems
for improving latency, and for reducing bottlenecking at the
CPU 103, by using modules having allocated CPU resources
to enable load balancing among CPU cores and storage
devices (e.g., to ensure that none of the CPU cores or storage
devices have significantly higher workloads than others of

US 12,130,767 B2

7

the CPU cores or storage devices while some of the CPU
cores or storage devices are underutilized).

FIG. 2 shows a block diagram of a server including two
CPUs 1 a multi-CPU storage appliance for storing data on
multiple storage devices, according to some embodiments of
the present disclosure, and FIG. 3 depicts an architecture for
a multi-CPU storage appliance for storing data on multiple
storage devices, according to some embodiments of the
present disclosure.

Referring to FIG. 2, 1n the present example, a server 200
may provide hardware architecture representing two difler-
ent non-uniform memory access (NUMA) nodes 214, each
NUMA node 214 corresponding to a NIC 204, a memory
206 comprising multiple memory modules 207 (e.g., DRAM
modules), a CPU 203, and multiple storage devices 208.

NUMA may refer to a method that may be used 1 a
symmetric multiprocessing (SMP) system, where the
memory access time 1s influenced by the location of the
memory relative to the processor. NUMA may allow for
configuring a cluster of microprocessors 1 a multiprocess-
ing system so that the microprocessors can share memory
locally. Under NUMA, a processor may access its own local
memory faster than 1t 1s able to access non-local memory
(e.g., faster than 1t 1s able to access memory that 1s local to
another processor, or memory that 1s shared between pro-
cessors). Benefits of NUMA may be most notable for
workloads on servers where the data 1s often associated
strongly with certain tasks or users. Accordingly, NUMA
may improve performance and enable expansion of the
system to be expanded.

Accordingly, the server 200 may have multiple CPU cores
at each of the respective CPUs 203 and multiple storage
devices 208 (e.g., drives). As described further with respect
to FIG. 3, some embodiments of the present disclosure
provide one or more protocols or mechanisms that may be
implemented to ensure that the workload experienced by the
cores and the storage 1s balanced. That 1s, as described
below, the disclosed embodiments prevent one or more of
the cores and/or one or more of the storage devices 208 from
being overloaded as a result of multiple IO requests while
others of the cores and/or storage devices 208 are unused or
underutilized. By avoiding the overloading of some cores
and/or storage devices 208 and the underutilization of other
cores and/or storage devices 208, bottlenecks at the corre-
sponding CPU 203 that may otherwise restrict data flow may
be reduced or eliminated.

Referring to FIG. 3, embodiments of the present disclo-
sure¢ may provide a software architecture for providing
high-performance packet processing using a message-pass-
ing architecture using the hardware architecture shown in
FIGS. 1 and 2. A system of embodiments of the present
disclosure may include multiple CPU sockets. The CPU
sockets have memory 306 that 1s bound to each NUMA
socket to ensure that each IO request 312 1s processed
despite bottleneck 1n the CPU 203. In the present example,
a server for implementing embodiments of the present
disclosure may have two NUMA sockets. However, it
should be noted that the design disclosed herein could be
extended to a server including additional NUMA sockets.

Soltware for implementing embodiments of the present
disclosure may be designed to process packets from the
network including a storage system. Also, the software may
be distributed across multiple NVME dnives 308. For
example, for KV-based drives, a drive 308 may be selected
by a drive-processing module 324 (described turther below)
of the CPU 303 using any suitable hashing algorithm such
as a Rendezvous hashing algorithm (e.g., a highest random

5

10

15

20

25

30

35

40

45

50

55

60

65

8

weight (HRW) algorithm). The Rendezvous hashing algo-
rithm may use two parameters—a key (e.g., an object key
corresponding to a value to be stored on a drive 308), and a
drive ID (e.g., a unique identifier or an input/output (10)
identification corresponding to the drive 308 on which the
data 1s to be stored). The suitable hashing algorithm may be
used when an associated request processing has associated
metadata that 1s sought to be preserved across multiple 10
request to a same key.

For example, there may be a list of storage devices or
drives 308, with one of the drives 308 to be ultimately
selected for use for access or storage of a given Kkev.
Accordingly, for each drive 308, there may be an 1dentifi-
cation/string that represents the drive 1d, each drive 308
having a unique drive 1d. To select a drive 308 for storing the
key, a Rendezvous hash may be calculated for each of the
drives 308 on the list based on the input of the key and each
respective drive ID. Similarly, for any incoming request 312,
the request 312 may be identified by the hash calculated by
the Rendezvous hashing algorithm, which will be unique for
every key-drnive combination. Accordingly, the system can
avoild implementing a separate table stored on a drive for
mapping which drives store which keys, thereby further
improving system efliciency.

Accordingly, it data 1s written, and a readback command
for the data 1s 1ssued, the Rendezvous hashing algorithm
ensures that the same data 1s accessed by ensuring access the
same drive 308. In more detail, this may be accomplished by
computing a number (€.g., a number between O and 1) for
cach drive 308 corresponding to a hash of a combination of
the key of the 10 request 312 and the respective drive 1D of
cach drive 308, by then comparing all of the numbers, and
by then selecting the highest computed number as corre-
sponding to the drive 308 that 1s to be selected for that
particular 10 request 312. Although a Rendezvous hashing
algorithm 1s discussed herein, it should be noted that other
hashing algorithms or functions may be used 1n accordance
with other embodiments of the present disclosure.

The software running on the CPU 303 may be sub-divided
into different components. Each component may be tasked
with the responsibility of perform a given action or set of
actions on all of the packets processed 1n the storage system.
Two main components may be 1) the module 322 that
processes the 10 requests 312 arriving at the NIC 304 (e.g.,
for performing network processing), and 2) the module 324
that processes the NVME queues of the drives 308 (e.g., for
performing drive processing or drive 10 processing). Herein,
these modules may be respectively referred to as a network-
processing module 322 and a drive-processing module 324.
The network-processing module 322 may use an RDMA
(remote direct memory access) protocol for processing
requests, while the drive-processing module 324 may use
TCP (transmission control protocol) for data processing.

Accordingly, by using the individual modules, embodi-
ments of the present disclosure may improve 10O perior-
mance by reducing a likelihood of a bottleneck restricting
data tflow due to the limitations of the CPU 303. Each of the
modules 322, 324 may use an amount (e.g., a speciiied
amount) of bounded CPU resources. That 1s, each of the
modules 322, 324 may allocate a respective set of cores 302
to be used by the modules 322, 324 to achieve improved or
optimized performance.

For instance, in the present example, each NIC 304 may
use about four cores running at 2.10 GHz to provide the full
throughput of a 100G network while transferring 2 MB
objects using NVME over TCP. It should be noted, however,

US 12,130,767 B2

9

that the number used 1n the present example may change
according to the specifications of the system.

For mbound network connections, a given number of
cores 302 of the CPU 303 may be preallocated for an NIC
304 with athinity to a NUMA node 314 at which the NIC 304
1s attached. The NUMA nodes 314 may be referred to as a

respective CPU-memory couples. For example, the CPU
socket and the selected memory 306/bank of drives 308
build a respective NUMA node 314. Conventionally, when-
ever a CPU sought to access the memory of a different
NUMA node, the CPU could not directly access the memory
of the other NUMA node, and was instead required to access
the memory of the other NUMA node by going through a
separate CPU that owned the memory.

In embodiments of the present disclosure, however, all
connections may be processed by using a set of preallocated
cores 302 of the CPU 303. The network-processing module
322 for processing the requests 312 arrniving at the NIC 304
may respectively allocate all of the connections by using a
round-robin allocation scheme combined with usage moni-
toring (e.g., for monitoring the number of connections on
cach core 302) to enable stateless processing. That 1s, each
of the connections corresponding to the requests 312 may be
assigned to the cores 302 on a round-robin basis to balance
the loading of the cores 302 to thereby improve bandwidth
from the drives 108. If the drive-processing module 324
determines that a given core 302 1s underperforming or 1s
otherwise unable to handle any additional connections, the
drive-processing module can ensure no additional connec-
tions are mode with the given core 302. Accordingly, assum-
ing each client 1s trying to share the bandwidth of the
network equally, the storage system can ensure that the load
1s balanced across all available cores 302.

Similarly, for processing the requests 312 to the NVME
queues, a respective drive-processing module 324 may run
on a dedicated set of cores 302 on both of the NUMA sockets
of the server (e.g., in the storage server, the drives 308 will
be on both of the NUMA sockets). Because each request 312
may be distributed to any drive 308, some otherwise unde-
sirable cross-NUMA memory copying by the drives 308
may occur (e.g., between the memory 306 of the first
NUMA node 314q and the drives 308 of the second NUMA
node 314b, and vice versa). However, because the Rendez-
vous hashing algorithm 1s used for selecting the drive 308,
the distribution may be balanced for normal usage scenarios.

Accordingly, a system with cross-NUMA transfer band-
width (corresponding to cross-NUMA transier requests 320)
that 1s more than half of the NIC bandwidth (corresponding,
to the IO requests 312) may be able to run without degra-
dation 1 system performance. An IO module (e.g., the
drive-processing module 324) may handle requests to the
drives 308 from all of the connections. Also, the drive-
processing module 324 may use a bounded number of CPU
cores 302, which may be based on the number of available
drives 308 on the server.

Further, the requests 312 that are forwarded to 10 threads
316 (e.g., the threads 116 shown i FIG. 1) may be selected
by any suitable algorithm such as a round-robin algorithm.
For example, the requests 312 may be forwarded between
the network-processing module 322 and the drive-process-
ing module 324 using an atomic ring bufler 116 (see FIG. 1).
That 1s, once one of the modules 322, 324 has completed
processing of data of a request 312 1n accordance with its
role, the request 316 may be forwarded to the other one of
the modules 322, 324. The atomic ring bufller 116 enables a
lockless design, thereby achieving relatively high through-

10

15

20

25

30

35

40

45

50

55

60

65

10

put. The atomic ring bufler 116 uses a co-operative thread-
scheduling without blocking calls 1n any function.
Embodiments of the present disclosure may also accom-
modate the addition of other modules for performing other
tasks. Further, a diflerent algorithm may be used to distribute
the requests 312 across the threads 316 of a given module.
Also, an entirety of a design of embodiments of the present
disclosure may be based on a logical framework that allows
different modules to run on the same core 302, which may
be useful if the core 302 has a suflicient number of CPU
cycles allotted for processing a number of requests 312 that

exceeds that which 1s required by the module.

As described above, because each 10 thread 316 can
communicate directly to all of the queues of the drives 308,
and because there may be another set of queues for each core
308, embodiments of the present disclosure are able to omit
locking synchronization that would otherwise may be
needed, as each IO thread 316 1s able to access its own
individual queues to the drives 308.

Further, when any new 10 request 312 occurs, the system
1s able to select between the numerous 10 cores 302. In a
NUMA-based system, according to some embodiments,
selection of one of the 10 cores 302 having a smallest
physical distance to the corresponding memory/DRAM 306
may be a criteria to help ensure suflicient performance.

Accordingly, by going in a round robin fashion, or by
balancing across all of the cores 302, improved bandwidth
of the drives 308 may be achieved.

Additionally, because each CPU 303 1s provided with a
channel to access each associated memory 306 and bank of
drives 308, the system 1s able to avoid the limited bandwidth
otherwise associated with the bottlenecking that comes with
cross-NUMA channel access 320.

FIG. 4 shows a flowchart depicting a method of packet
processing.

Referring to FIG. 4, at S401, a core of a processor may
receive an mput/output (1I0) request from a host (e.g., one of
the cores 102a of the CPU 103 of FIG. 1 may receive the 10
request 312 of FIG. 3). The core of the processor may
receive the IO request at a network-processing module
associated with a processor for establishing the connection
(e.g., the network-processing module 322 of FIG. 3). At
S402, a drive-processing module (e.g., the drive-processing,
module 324 of FIG. 3) may select a drive corresponding to
the 10 request (e.g., one of the drives 108 or 308 of FIGS.
1 and 3) using a hashing algorithm or a round-robin tech-
nique. In some embodiments, the hashing algorithm that 1s
used may be a Rendezvous hashing algorithm based on a key
corresponding to the 10 request and a drive 1D of the drive.
At 5403, a connection may be established between the host
and the selected drive.

At S404, the network-processing module may forward the
IO request associated with the processor to the drive-
processing module associated with the processor that 1s
configured to select the drive corresponding to the 10
request using the hashing algorithm. At S405, the network-
processing module may use a remote direct memory access
protocol for processing the 10 request. At S406, the drive-
processing module may use a transmission control protocol
for processing data corresponding to the 10 request.

At S407, an atomic ring bufler (e.g., the atomic ring builer
116 of FIG. 1) may forward the 10 request between the
network-processing module and a drive-processing module.

At S408, the network-processing module may assign
other 10 requests to respective cores of the processor using
the round-robin technique to balance connections between

US 12,130,767 B2

11

one or more hosts and one or more drives and to balance a
loading of the cores of the CPU.

Thus, embodiments of the present disclosure are able to
reduce or eliminate CPU bottlenecking by using modules
having allocated CPU resources to balance loads among
CPU cores and storage devices, thereby improving data
storage technology.

While the present disclosure has been particularly shown
and described with reference to some example embodiments
thereot, 1t will be understood by those of ordinary skill in the
art that various changes in form and details may be made
therein without departing from the spirit and scope of the
present disclosure as set forth in the following claims and
their equivalents.

What 1s claimed 1s:
1. A method of packet processing, the method comprising:
receiving an input/output (10) request with a network-
processing module associated with a processor;

forwarding the 10 request from the network-processing
module to a drnive-processing module that 1s separate
from the network-processing module, and that 1s asso-
ciated with the processor;

generating, with the drive-processing module, a first indi-

cator based on both an mput of a first drive ID of a first
drive and an input representing data corresponding to
the 10 request;
generating, with the drive-processing module, a second
indicator based on both an mput of a second drive ID
of a second drive and the mput representing the data;

selecting, with the drive-processing module, the first drive
or the second drive based on a comparison of the first
indicator to the second indicator; and

processing the data with the drive-processing module.

2. The method of claim 1, further comprising establishing
a connection between the first drive or the second drive and
a host.

3. The method of claam 2, wherein receiving the 10
request comprises receiving the 10 request at the network-
processing module to establish the connection.

4. The method of claim 3, further comprising transmitting,
the 10 request between the network-processing module and
the drive-processing module using an atomic ring bufler.

5. The method of claim 3, further comprising:

respectively assigning other 10 requests to cores of the

processor based on respective physical distances

between the cores and a corresponding memory; and
balancing connections between one or more hosts and one

or more drives, or balancing a loading of the cores.

6. A system for packet processing, the system comprising
a processor comprising cores, a network-processing module,
and a drive-processing module that 1s separate from the
network-processing module,

wherein the network-processing module 1s configured to:

receive an mput/output (I10) request; and
forward the 10 request to the drive-processing module,
and

wherein the drive-processing module 1s configured to:

generate a first indicator based on both an mmput of a
first drive ID of a first drive and an mput representing
data corresponding to the 10 request;

generate a second indicator based on both an mput of
a second drive ID of a second drive and the input
representing the data; and

select the first drive or the second drive based on a
comparison of the first indicator to the second 1ndi-
cator.

10

15

20

25

30

35

40

45

50

55

60

65

12

7. The system of claim 6, wherein the network-processing,
module 1s configured to establish a connection between the
first drive or the second drive and a host.

8. The system of claim 6, wherein the network-processing,
module 1s configured to transmit the 10 request to the
drive-processing module.

9. The system of claim 8, wherein the network-processing,
module 1s further configured to use a remote direct memory
access protocol for processing the 10 request, and

wherein the drive-processing module 1s further configured

to use a transmission control protocol for processing
the data.

10. The system of claim 6, further comprising an atomic
ring buller that 1s configured to transmit the 10 request
between the network-processing module and the drive-
processing module.

11. The system of claim 6, wherein the network-process-
ing module 1s further configured to:

respectively assign other 10 requests to the cores based on

respective physical distances between the cores and a
corresponding memory; and

balancing connections between one or more hosts and one

or more drives, or balancing a loading of the cores.

12. A non-transitory computer readable medium imple-
mented on a system for packet processing, the non-transitory
computer readable medium having computer code that
implements a method of packet processing, the method
comprising:

recerving an input/output (I0) request by a network-

processing module;

forwarding the 10 request from the network-processing

module to a dnive-processing module;

generating, by the drnive-processing module that 1s sepa-

rate from the network-processing module, a first 1ndi-
cator based on both an iput of a first drive ID of a first
drive and an input representing data corresponding to
the 10 request;

generating, by the drnive-processing module, a second

indicator based on both an mput of a second drive ID
of a second drive and the input representing the data;
and

selecting, by the drive-processing module, the first drive

or the second drive based on a comparison of the first
indicator to the second indicator.

13. The non-transitory computer readable medium of
claim 12, wherein the computer code 1s further configured to
establish a connection between the first drive or the second
drive and a host.

14. The non-transitory computer readable medium of
claim 13, wherein the network-processing module 1s asso-
ciated with a processor for establishing the connection.

15. The non-transitory computer readable medium of
claim 14, wherein the computer code 1s further configured to
implement the method of packet processing by causing the
network-processing module to transmit the IO request to the
drive-processing module associated with the processor.

16. The non-transitory computer readable medium of
claim 14, wherein the computer code 1s further configured to
implement the method of packet processing by causing an
atomic ring bufler to transmit the 10 request between the
network-processing module and the drive-processing mod-
ule.

17. The non-transitory computer readable medium of
claim 14, wherein the computer code 1s further configured to
implement the method of packet processing by:

causing the network-processing module to respectively

assign other 10 requests to cores of the processor based

US 12,130,767 B2
13

on respective physical distances between the cores and
a corresponding memory; and

balancing connections between one or more hosts and one
or more drives, or balancing a loading of the cores.

% x *H % o

14

	Front Page
	Drawings
	Specification
	Claims

