

US012128697B2

(12) United States Patent

Noda

(54) TAPE CASSETTE

(71) Applicant: BROTHER KOGYO KABUSHIKI

KAISHA, Nagoya (JP)

(72) Inventor: **Kengo Noda**, Inazawa (JP)

(73) Assignee: BROTHER KOGYO KABUSHIKI

KAISHA, Nagoya (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 364 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 17/464,761

(22) Filed: Sep. 2, 2021

(65) Prior Publication Data

US 2022/0055388 A1 Feb. 24, 2022

Related U.S. Application Data

(63) Continuation of application No. 16/293,984, filed on Mar. 6, 2019, now Pat. No. 11,135,862, which is a continuation of application No. 14/742,077, filed on Jun. 17, 2015, now Pat. No. 10,265,982, which is a continuation of application No. 13/430,033, filed on Mar. 26, 2012, now Pat. No. 9,656,495, which is a (Continued)

(51) **Int. Cl.**

B41J 15/04 (2006.01) **B41J 3/407** (2006.01) **B41J 32/00** (2006.01)

(52) **U.S. Cl.**

CPC *B41J 32/00* (2013.01); *B41J 3/4075* (2013.01); *B41J 15/044* (2013.01)

(10) Patent No.: US 12,128,697 B2

(45) Date of Patent: *Oct. 29, 2024

(58) Field of Classification Search

CPC B41J 32/00; B41J 3/4075; B41J 15/044 See application file for complete search history.

(56) References Cited

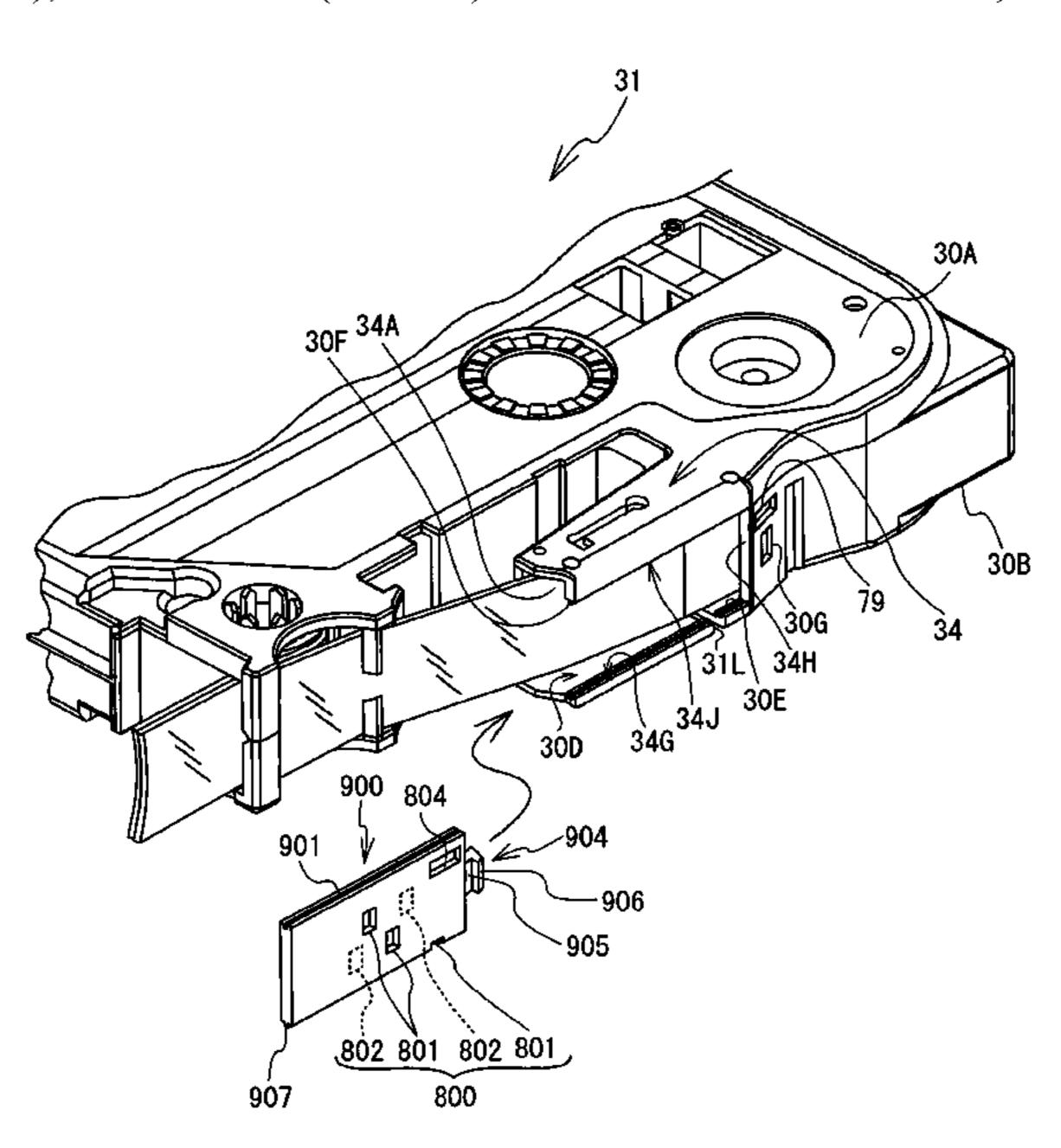
U.S. PATENT DOCUMENTS

3,901,372 A 8/1975 Denley 4,127,883 A 11/1978 Mestdagh (Continued)

FOREIGN PATENT DOCUMENTS

AU 2003294971 A1 7/2004 CA 2108332 A1 4/1994 (Continued)

OTHER PUBLICATIONS


Nov. 27, 2017—(US) Notice of Allowance—U.S. Appl. No. 15/276,474. (Continued)

Primary Examiner — Yaovi M Ameh (74) Attorney, Agent, or Firm — KENEALY VAIDYA LLP

(57) ABSTRACT

A cassette case includes a bottom case and a top case. A tape is housed in the cassette case. A tape discharge portion discharges, from the cassette case, the tape that has been guided in the cassette case along a predetermined feed path. A first indicator portion indicates a type of the tape. A second indicator portion indicates a type of the tape, which is different from that indicated by the first indicator portion. An indicator member is a member independent from the top case and the bottom case, and is provided with the second indicator portion. An attachment portion is provided on the cassette case. The indicator member is removably attached to the attachment portion.

20 Claims, 24 Drawing Sheets

Related U.S. Application Data				5,533,818 A	Bahrabadi	
continuation-in-part of application No. PCT/JP2009/			5,536,092 A 5,538,352 A	7/1996	Yamaguchi Sugiura	
	071812, filed	d on Dec.	28, 2009.	5,540,510 A		Sims et al.
				5,541,796 A		Sawada
(56)		Referen	ces Cited	5,553,952 A		Umbach
				5,564,843 A 5,593,237 A		Kawaguchi Nozaki et al.
	U.S.	PATENT	DOCUMENTS	5,595,237 A 5,595,447 A		Takayama et al.
	4 22 6 5 4 5 4	10/1000	TO 1.1	5,599,119 A		Nunokawa et al.
	4,226,547 A		Bradshaw et al.	5,605,404 A	2/1997	Nunokawa et al.
	4,360,278 A D267,330 S	11/1982 12/1982	-	5,620,268 A		Yamaguchi et al.
	4,391,539 A		Connoy	5,634,728 A		Nunokawa et al.
	4,402,619 A		Paque et al.	5,653,542 A 5,658,083 A		Sugimoto et al. Day et al.
	4,557,617 A		Richardson et al.	5,659,441 A		Eckberg et al.
	4,567,488 A		Moriguchi et al.	5,709,486 A	1/1998	_
	4,678,353 A 4,725,155 A		Richardson et al. Kittel et al.	5,727,888 A		Sugimoto et al.
	4,773,775 A		Bradshaw et al.	5,730,536 A		Yamaguchi
	4,815,871 A		McGourty et al.	5,739,839 A 5,752,777 A		Iwai et al. Nunokawa et al.
	4,815,874 A	3/1989	Richardson et al.	5,755,519 A		Klinefelter
	4,815,875 A		Richardson et al.	5,765,954 A		Nunokawa et al.
	4,832,514 A	5/1989		5,771,803 A	6/1998	Takami
	4,844,636 A 4,880,325 A	7/1989 11/1989	Ueda et al.	5,788,387 A		Takayama et al.
	4,892,425 A		Shimizu et al.	5,795,086 A		Watanabe et al.
	D307,296 S		Ivarson et al.	5,813,773 A 5,813,779 A	9/1998 9/1998	Palmer et al.
	4,915,516 A		Shimizu et al.	5,823,689 A		Nehowig et al.
	4,917,514 A D307,918 S	4/1990 5/1990	Richardson et al.	5,825,724 A		Matsumoto et al.
	4,927,278 A		Kuzuya et al.	5,826,995 A		Day et al.
	4,930,913 A	6/1990		5,857,788 A 5,860,752 A		Gutsell et al. Watanabe et al.
	D311,416 S		Richardson et al.	5,887,993 A		Nunokawa et al.
	4,966,476 A		Kuzuya et al.	5,961,225 A		Nunokawa et al.
	4,983,058 A 5,022,771 A	1/1991 6/1991	•	5,964,539 A		Yamaguchi et al.
	D319,070 S		Lavander	5,967,678 A 5,997,194 A		Nunokawa et al. Nunokawa et al.
	D320,391 S	10/1991	•	6,012,860 A		Nunokawa et al.
	5,056,940 A 5,078,523 A	10/1991	Basile McGourty et al.	6,016,749 A		Tukahara et al.
	5,078,323 A 5,098,208 A		Martinez	6,042,280 A		Yamaguchi et al.
	5,104,247 A		Ohshima	6,048,118 A 6,050,672 A		Martinez et al. Matsuhashi
	5,111,216 A		Richardson et al.	6,050,734 A		Watanabe et al.
	5,188,469 A 5,193,919 A		Nagao et al. Godo et al.	6,059,469 A		Hirumi
	5,195,835 A		Collins	6,106,171 A		Nunokawa et al.
	5,203,951 A	4/1993	Hattori et al.	6,116,796 A 6,126,344 A		Yamaguchi et al. Takayama et al.
	5,223,939 A		Imaizumi et al.	6,132,120 A		Yamaguchi et al.
	5,227,477 A 5,239,437 A		Auerbach et al. Hoge et al.	6,146,034 A		Watanabe et al.
	D342,275 S	12/1993	e e e e e e e e e e e e e e e e e e e	6,149,325 A		Nunokawa et al.
	5,273,272 A		Nakamura et al.	6,160,679 A 6,167,696 B1		Maekawa et al. Maaseidvaag et al
	RE34,521 E		Shimizu et al.	6,168,328 B1		Ueda et al.
	5,277,503 A 5,318,370 A	1/1994 6/1004	Nagao Nehowig	6,190,065 B1	2/2001	Brzuskiewicz
	5,348,406 A		Yoshiaki et al.	6,190,067 B1		Kobayashi et al.
	5,350,243 A		Ichinomiya et al.	6,190,069 B1 6,196,740 B1		Yamaguchi et al. Yamaguchi et al.
	D352,305 S	11/1994	-	6,227,477 B1		Komatsuzaki et al
	5,374,132 A D356,333 S	12/1994	Kımura Pearce et al.	6,232,993 B1		Kobayashi et al.
	5,395,173 A		Ueno et al.	6,247,860 B1		Yanagisawa
	5,399,033 A		Putman	6,270,269 B1 6,317,156 B1		Watanabe et al. Nagasaki et al.
	D357,497 S		Gray et al.	6,334,724 B2		Yamaguchi et al.
	5,411,339 A 5,419,648 A		Bahrabadi et al. Nagao et al.	6,366,425 B1	4/2002	Kletzl et al.
	D359,303 S		Gray et al.	6,386,774 B1		Takayama et al.
	5,424,757 A	6/1995		6,406,202 B1 6,419,648 B1		Unno et al. Vitek et al.
	5,429,443 A		Kobayashi et al.	6,429,443 B1		Mankos et al.
	5,431,504 A 5,435,657 A		Beadman et al. Pearce et al.	6,435,744 B1		Dunn et al.
	5,455,650 A		Yamaguchi	6,476,838 B1	11/2002	
	5,466,076 A		Kobayashi et al.	6,485,206 B1		Takahashi
	5,492,282 A		Okuchi et al.	6,520,696 B2 6,644,876 B2		Huss et al. Carriere et al.
	5,492,420 A 5,494,362 A		Nunokawa et al. Kobayashi et al	D486,853 S		Wilken et al.
	5,494,362 A 5,506,736 A	4/1996	Kobayashi et al. Ota	6,707,571 B1		Kurashina
	5,511,891 A	4/1996	Nehowig et al.	6,709,179 B2		Yamaguchi et al.
	5,518,328 A		Okuchi et al.	6,910,819 B2		Carriere et al.
	D372,044 S	// 1996	Ware et al.	6,929,415 B2	8/2005	wiiken

(56)	Referer	nces Cited	2006/0216100		Minoya et al.
U.S.	PATENT	DOCUMENTS	2006/0233582 2006/0238600		Horiuchi Vandermeulen et al.
			2006/0239743		
6,955,318 B2		Nonomura	2007/0009302		Vandermeulen Harada et al.
D519,522 S			2007/0009306 2007/0031171		Heyse et al.
7,070,347 B2 7,070,348 B2		Carriere et al. Sugimoto et al.	2007/0041772		Harada et al.
7,070,310 B2 7,097,372 B1		•	2007/0070168		Mindler et al.
7,121,751 B2		Harada et al.	2007/0098473		Heyse et al.
7,128,483 B2			2007/0172293 2007/0212149		Vandermeulen Ota et al.
D534,203 S 7,201,522 B2		Harada et al. Bandholz et al.	2007/0212149		Innocenti et al.
D542,334 S		Harada et al.	2007/0231041		Ueda et al.
7,232,268 B2		Sugimoto et al.	2007/0237562		Kato et al.
7,251,044 B1		Kurashina	2007/0264070 2007/0283249		Loo et al. Nose et al.
7,287,715 B2 7,296,941 B2		Ban Suzuki et al.	2007/0283243		Fukui et al.
7,250,541 B2 7,357,585 B2		Kurashina	2008/0029530	A1 2/2008	Yuyama et al.
· · · · · · · · · · · · · · · · · · ·		Sugimoto et al.	2008/0050160		Yamaguchi et al.
D579,942 S		_	2008/0056793 2008/0080922		Yokoyama Vandermeulen
7,503,714 B2		Yamamoto et al.	2008/0080922		Hirota
7,841,790 B2 7,942,594 B2		Yamaguchi et al. Kumazaki et al.	2008/0181703		Ito et al.
7,965,308 B2			2008/0181708		Yamaguchi et al.
8,045,288 B2		Ota et al.	2008/0205958		Moriyama et al.
		Yamaguchi Vandammaulan	2008/0226373 2008/0232886		Yamaguchi et al. Kato et al.
8,162,553 B2 8,164,609 B2		Vandermeulen Liu et al.	2008/0310904		Yamaguchi et al.
8,382,389 B2		Yamaguchi et al.	2009/0016795	A1 1/2009	Caveney et al.
D681,727 S		Van Den Broecke	2009/0085451		Yuyama et al.
8,529,142 B2		Tanaka	2009/0190988 2009/0202283		Vereecken et al. Kumazaki et al.
8,540,444 B2 8,550,393 B2	10/2013	Vandermeulen et al. Tada	2009/0231607		Kurashina
8,562,228 B2		Yamaguchi et al.	2009/0285617		Vandermeulen
8,641,304 B2	2/2014	Yamaguchi et al.	2010/0119280		Vandermeulen Eard at al
8,734,035 B2		Suva et al.	2010/0119281 2010/0166475		Ford et al. Yamaguchi et al.
8,740,482 B2 8,757,907 B2		Yamaguchi et al. Yamaguchi et al.	2010/0166478		Yamaguchi et al.
8,764,326 B2		Yamaguchi et al.	2010/0166479		Yamaguchi B41J 3/4075
	7/2014	Yamaguchi et al.	2010/0222062	A 1 0/2010	400/613
9,498,998 B2		Yamaguchi et al.	2010/0232862 2010/0247208		Vandermeulen Yamaguchi et al.
9,533,522 B2 9,566,808 B2		Yamaguchi et al. Yamaguchi et al.	2010/0247209		Yamaguchi et al.
9,656,495 B2		Noda	2010/0247210		Yamaguchi et al.
9,802,432 B2		Yamaguchi et al.	2010/0250233		Tanaka Van Dritaans at al
9,855,768 B2		Tanizaki Vermagushi et el	2010/0272492 2011/0058884		Van Britsom et al. Kato et al.
9,855,779 B2 10,265,982 B2		Yamaguchi et al. Noda	2011/0030004		Yamaguchi et al.
10,315,442 B2		Sato et al.	2012/0009001	A1 1/2012	Sago et al.
10,391,732 B2		Tanaka	2012/0027485		Suva et al.
10,414,176 B2 10,625,527 B2		Kawai Sato et al.	2012/0027486 2012/0027487		Suva et al. Suva et al.
· · · · · · · · · · · · · · · · · · ·		Yamaguchi et al.	2012/0057917		Van Britsom et al.
		Yamaguchi et al.	2012/0080550		Yamaguchi et al.
		Noda B41J 32/00	2012/0170959 2012/0175454		Vandermeulen et al. Noda
2002/0006303 A1 2002/0012558 A1*		Yamaguchi et al. Huss B41J 15/04	2012/01/3434		Yamaguchi et al.
2002/0012330 711	1/2002	400/191	2012/0189366		Yamaguchi et al.
2002/0047063 A1	4/2002	Kaneda et al.	2012/0201588		Yamaguchi et al.
2002/0085080 A1		Kurashina	2014/0205350 2014/0218458		Yamaguchi et al. Suva et al.
2002/0135938 A1 2003/0081978 A1		Hiraguchi et al. Carriere et al.	2014/0218438		Sakano
2003/0081978 A1 2004/0056143 A1		Nonomura	2017/0100948		Yamaguchi et al.
2004/0062586 A1		Harada et al.	2018/0257400	A1 9/2018	Yamaguchi et al.
2004/0233269 A1	11/2004				
2004/0265027 A1 2005/0036816 A1		Hine et al. Carriere et al.	FO	KEIGN PATE	ENT DOCUMENTS
2005/0030810 A1 2005/0117881 A1		Baba et al.	СН	121073	6/1927
2005/0152732 A1	7/2005	Bandholz et al.	CH	136498	11/1929
2005/0172981 A1		Byun	CN	1063641 A	8/1992
2006/0008608 A1 2006/0088802 A1		Kurashina Akaiwa	CN	1119146 A	3/1996
2006/0088802 A1 2006/0121229 A1		Nagae	CN CN	1143928 A 1146954 A	2/1997 4/1997
2006/0182921 A1*		Hioki B41J 15/044	CN	1140934 A 1148547 A	4/1997
AAA = (A + A = A = A = A	A 1	428/40.1	CN	1148548 A	4/1997
2006/0193669 A1		Takada et al.	CN	1166155 A	11/1997 3/1000
2006/0204304 A1 2006/0216099 A1		Hioki et al. Sakano et al.	CN CN	1209776 A 1289293 A	3/1999 3/2001
2000/0210099 M1	J, 2000	Suxuno VI ai.			J, 2001

(56)	Reference	ces Cited	EP	1829696 A2	9/2007
	FOREIGN PATEN	NT DOCUMENTS	EP EP EP	2059396 A1 2236303 A1 2236304 A1	5/2009 10/2010 10/2010
CN	1313197 A	9/2001	EP	2448762 B1	9/2013
CN	1313198 A	9/2001	IN	1331684 C	8/2007
CN	1085151 C	5/2002	JP JP	S56-20944 U S58-139415 U	2/1981 9/1983
CN CN	1376115 A 1385312 A	10/2002 12/2002	JP	S58-139413 O S58-220783 A	12/1983
CN	1385312 A 1385313 A	12/2002	JP	S59-78879 A	5/1984
CN	1385314 A	12/2002	JP	S60-99692 A	6/1985
CN	1397431 A	2/2003	JP ID	S61-179776 A S62-173944 U	8/1986 11/1987
CN	1415482 A	5/2003 5/2003	JP JP	S63-81063 U	5/1988
CN CN	1415484 A 1415485 A	5/2003 5/2003	JP	S63-166557 A	7/1988
CN	1469811 A	1/2004	JP	S63-203348 A	8/1988
CN	1493462 A	5/2004	JP JP	S63-254085 A H01-195088 A	10/1988 8/1989
CN CN	1636755 A 1642746 A	7/2005 7/2005	JP	H01-193088 A	10/1989
CN	1663807 A	9/2005	JP	H02-56664 U	4/1990
CN	1744993 A	3/2006	JP	H02-56665 U	4/1990
CN	1744994 A	3/2006	JP JP	H02-56666 U H02-147272 A	4/1990 6/1990
CN CN	1762720 A 1785685 A	4/2006 6/2006	JP	H03-14865 A	1/1991
CN	1783083 A 1799850 A	7/2006	JP	H03-93584 A	4/1991
CN	1799851 A	7/2006	JP	H03-120680 A1	5/1991
CN	1820940 A	8/2006	JP JP	H03-151261 A H03-63155 B2	6/1991 9/1991
CN CN	1827386 A 1829607 A	9/2006	JP	H03-03133 B2	12/1991
CN	1829007 A 1835867 A	9/2006 9/2006	JP	H04-16113 U	2/1992
CN	1865012 A	11/2006	JP	H04-37575 A	2/1992
CN	1914045 A	2/2007	JP ID	H04-133756 A	5/1992
CN	1990261 A	7/2007	JP JP	H04-168086 A H05-16342 U	6/1992 3/1993
CN CN	101028771 A 101035683 A	9/2007 9/2007	JP	H05-18853 U	3/1993
CN	101039807 A	9/2007	JP	H05-63067 A	3/1993
CN	101060985 A	10/2007	JP	H05-104840 A	4/1993
CN	101077664 A	11/2007	JP JP	H05-155067 A 5-51662 U	6/1993 7/1993
CN CN	101128324 A 201030694 Y	2/2008 3/2008	JP	H05-54225 U	7/1993
CN	101229724 A	7/2008	JP	H05-78565 U	10/1993
CN	101264701 A	9/2008	JP ID	H05-80765 U	11/1993 11/1993
CN	101264702 A	9/2008	JP JP	H05-294051 A H05-301435 A	11/1993
CN CN	101310989 A 101327696 A	11/2008 12/2008	JP	H06-12053 U	2/1994
CN	101356061 A	1/2009	JP	H06-52560 A	2/1994
CN	101516628 A	8/2009	JP JP	H06-21953 U H06-122239 A	3/1994 5/1994
CN CN	101758676 A 102616025 A	6/2010 8/2012	JP	H06-122249 A	5/1994
CN	202895934 U	4/2013	JP	H06-124406 A	5/1994
EP	214466 A2	3/1987	JP	H06-127094 A	5/1994
EP	0329369 A2	8/1989	JP JP	H06-152907 A H06143761 A	5/1994 5/1994
EP EP	0511602 A1 0593269 A2	11/1992 4/1994	JP	H06-53560 U	7/1994
EP	0629509 A2	12/1994	JP	H06-191081 A	7/1994
EP	0635375 A2	1/1995	JP JP	H06183117 A H06-210889 A	7/1994 8/1994
EP EP	0644506 A2 0684143 A2	3/1995 11/1995	JP	H06-255145 A	9/1994
EP	0703089 A1	3/1996	JP	H06-74348 U	10/1994
EP	734878 A2	10/1996	JP	H06-328800 A	11/1994
EP	0742103 A1	11/1996	JP JP	H07-1782 H07-1805 A	1/1995 1/1995
EP EP	0555954 B1 0760291 A2	3/1997 3/1997	JP JP	H07-1803 A H07-9743 A	1/1993
EP	0863021 B1	9/1998	JP	H07-25122 A	1/1995
EP	0644506 B1	4/1999	JP	H07-25123 A	1/1995
EP	0936076 A2	8/1999	JP JP	H07-47737 A H07-20725 B2	2/1995 3/1995
EP EP	0940263 A2 0958931 A2	9/1999 11/1999	JP	H07-61009 A	3/1995
EP	0938931 A2 0997300 A2	5/2000	JP	H07-68814 A	3/1995
EP	1167049 A1	1/2002	JP	H07-68877 A	3/1995
EP	1170139 A1	1/2002	JP ID	H07-69497 A	3/1995
EP EP	1199179 A1 1284196 A2	4/2002 2/2003	JP JP	H07-89115 A H07-89196 A	4/1995 4/1995
EP EP	1284190 A2 1502758 A1	2/2005	JP	H07-101133 A	4/1993
EP	1516739 A1	3/2005	JP	H07-108702 A	4/1995
EP	1552949 A1	7/2005	JP	H07-108730 A	4/1995
EP	1575781 A1	9/2005	JP	H07-137327 A	5/1995
EP ED	1700705 A1	9/2006 10/2006	JP ID	H07-164680 A	6/1995 7/1995
EP	1707395 A1	10/2006	JP	H07-40456 U	7/1995

(56)	References Cit	ted	JP	2002166605 A	6/2002
	FOREIGN PATENT DO	CUMENTS	JP JP	2002179300 A 2002192769 A	6/2002 7/2002
			JP	2002308481 A	10/2002
JP JP	H07-214876 A 8/19 H07-237314 A 9/19		JP JP	2002308518 A 3357128 B2	10/2002 12/2002
JР	H07-251539 A 10/19		JP	2002367333 A	12/2002
JP	H07-276695 A 10/19		JP JP	2003-011454 A 2003-026164 A	1/2003 1/2003
JP JP	H07-290803 A 11/19 H07-314862 A 12/19		JP	2003-020104 A 2003-506235 A	2/2003
JР	H07-314864 A 12/19		JP	3378622 B2	2/2003
JP JP	H07-314865 A 12/19 H07-314866 A 12/19		JP JP	2003048337 A 2003-072127 A	2/2003 3/2003
JP	H08-25768 A 1/19		JP	2003145902 A	5/2003
JP	H08-39909 A 2/19		JP JP	3426983 B2 2003-251904 A	7/2003 9/2003
JP JP	H08-058211 A 3/19 H08-90887 4/19		JP	2003-251904 A 2003251902 A	9/2003
JP	H08-118738 A 5/19		JP	2003285522 A	10/2003
JP ID	H08-165035 A 6/19		JP JP	2004-018077 A 2004-155150 A	1/2004 6/2004
JP JP	H08-216461 A 8/19 H08-252964 A 10/19		JP	3543659 B2	7/2004
JP	H08-267839 A 10/19		JP JP	2004-255656 A 3564848 B2	9/2004 9/2004
JP JP	H08-290618 A 11/19 H08-290681 A 11/19		JP	3567469 B2	9/2004
JP	H09-39347 2/19		JP	2004291591 A	10/2004
JP	9-76614 A 3/19		JP JP	2004323241 A 3106187 U	11/2004 12/2004
JP JP	H09-85928 A 3/19 2596263 B2 4/19		JP	2005-059504 A	3/2005
JP	H09-109533 A 4/19		JP JP	2005088597 A 2005-178206 A	4/2005 7/2005
JP JP	H09-118044 A 5/19 H09-123579 A 5/19		JP	2005-178200 A 2005231203 A	9/2005
JР	H09-123377 A 5/19		JP	2005-298031 A	10/2005
JP	H09-141986 A 6/19		JP JP	2005280008 A 2005297348 A	10/2005 10/2005
JP JP	H09-141997 A 6/19 H09-188049 A 7/19		JP	2006021432 A	1/2006
JP	H09-188050 A 7/19	97	JP	2006-512224 A	4/2006
JP JP	H09-240158 A 9/19 9-277673 A 10/19		JP JP	2006096030 A 2006142835 A	4/2006 6/2006
JР	H10-56604 A 2/19		JP	2006168974 A	6/2006
JP	H10-181063 A 7/19		JP JP	2006182034 A 2006224675 A	7/2006 8/2006
JP JP	H10-301701 A 11/19 H11-78188 A 3/19		JP	2006-240310 A	9/2006
JР	H11-78189 A 3/19		JP	2006248059 A	9/2006
JP JP	H11-91144 A 4/19 H11-105351 A 4/19		JP JP	2006-264337 A 2006272895 A	10/2006 10/2006
JР	H11-103331 A 4/19 H11-129563 A 5/19		JP	2006272977 A	10/2006
JP	H11-263055 A 9/19		JP JP	2006289991 A 2007070028 A	10/2006 3/2007
JP JP	H11-263056 A 9/19 2000-006481 A 1/20		JP	2007070028 A 2007111863 A	5/2007
JР	2000-006501 A 1/20		JP	2007196654 A	8/2007
JP JP	2000-025316 A 1/20 2998617 B2 1/20		JP JP	2007-230155 2007-268815 A	9/2007 10/2007
JР	2998017 BZ 1/20 2000025251 A 1/20		JP	4003068 B2	11/2007
JP	2000-043337 A 2/20		JP JP	2007296863 A 2007313681 A	11/2007 12/2007
JP JP	2000043336 A 2/20 2000-076372 A 3/20		JP	2007313081 A 2008044180 A	2/2008
JP	2000085224 A 3/20	00	JP	4061507 B2	3/2008
JP JP	3031439 B2 4/20 2000103129 A 4/20		JP JP	2008062474 2008080668 A	3/2008 4/2008
JР	2000103123 A 4/20 2000103131 A 4/20		JP	2008083432 A	4/2008
JP	2000135843 A 5/20		JP JP	2008094103 A 2008509823 A	4/2008 4/2008
JP JP	2000198258 A 7/20 2000-211193 A 8/20		JP	2008-213462 A	9/2008
JP	2000-229750 A 8/20	00	JP	2008-229855 A	10/2008
JP JP	2001011594 A 1/20 2001048389 A 2/20		JP JP	2008254384 A 2008-279678 A	10/2008 11/2008
JР	2001048369 A 2/20 2001088359 A 4/20		JP	2008265180 A	11/2008
JP	2001121797 A 5/20		JP JP	2008265278 A 2008-307703 A	11/2008 12/2008
JP JP	3207860 B2 9/20 2001310540 A 11/20		JP	2009001020 A	1/2009
JP	2001319447 A 11/20	01	JP	2009028976 A	2/2009
JP JP	2002-053248 A 2/20 2002042441 A 2/20		JP JP	2009509812 A 2009184832 A	3/2009 8/2009
JР	3266736 B2 3/20		JР	2009184832 A 2009-214431 A	9/2009
JP	3266739 B2 3/20	02	JP	2009-215083	9/2009
JP ID	2002-103762 A 4/20		JP JP	2010-234697 A 2011-011407 A	10/2010 1/2011
JP JP	2002104568 A 4/20 2002-166606 A 6/20		JP JP	2011-011407 A 2011011401 A	1/2011
JP	2002-167084 A 6/20		JP	2011110843 A	6/2011

References Cited (56)FOREIGN PATENT DOCUMENTS 20111110845 A 6/2011 2011110848 A 6/2011 KR 2007-0091073 A 9/2007 RU 2297333 C2 4/2007 TW 200827179 A 7/2008 WO 96/16812 A1 6/1996 WO 2000032401 A1 6/2000 WO 0110649 A1 2/2001 WO 0232680 A1 4/2002 WO 03080350 A1 10/2003 WO 2004/058509 A1 7/2004 WO 2005101306 A1 10/2005 WO 12/2005 2005/120844 A1 WO 20060013466 A2 2/2006 WO 2006024913 A2 3/2006 WO 2006033431 A1 3/2006 WO 2006033432 A1 3/2006 WO 8/2006 2006090842 A1 WO 2008/029931 A1 3/2008 WO 9/2009 2009107534 A1 WO 10/2010 2010-113782 A1 WO 2010113445 A1 10/2010

OTHER PUBLICATIONS

Jan. 8, 2018—(US) Non-Final Office Action—U.S. Appl. No. 15/226,188.

Sep. 12, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/226,386.

Sep. 22, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/141,673.

Sep. 24, 2014—(JP) Notification of Rejection—App 2013-142488— Eng Tran.

Sep. 24, 2014—(US) Notice of Allowance—U.S. Appl. No. 13/431,277. Sep. 25, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/226,424.

Jan. 3, 2014 (AU) Office Action issued in Australian Patent Application No. 2010231426.

Jan. 17, 2014 (CN) Office Action issued in Chinese Patent Application No. 201210071810.7.

Jan. 22, 2014 (CN) Office Action issued in Chinese Patent Application No. 201010274378.2.

Feb. 5, 2014 (EP) Extended European Search Report issued in European Patent Application No. 09852818.5.

Mar. 10, 2014 (US) Non-Final Office Action issued in U.S. Appl. No. 13/430,080.

Mar. 13, 2014 (CN) Office Action issued in Chinese Application No. 201010150928.

Mar. 25, 2014 (US) Non-Final Office Action issued in U.S. Appl.

No. 13/431,371.

Mar. 26, 2014 (US) Final Office Action issued in U.S. Appl. No.

12/732,457.
Mar. 27, 2014 (US) Notice of Allowance issued in U.S. Appl. No.

13/240,266.
Apr. 1, 2014 (JP) Office Action issued in Japanese Patent Applica-

tion No. 2013-035990. Apr. 2, 2014 (CN) Office Action issued in Chinese Patent Applica-

tion No. 201210070968.

Apr. 10, 2014 (CN) Office Action issued in Chinese Application No. 201010150109.

Apr. 11, 2014 (US) Notice of Allowance issued in U.S. Appl. No. 12/644,572.

Apr. 15, 2014 (AU) Office Action issued in Australian Patent Application No. 2009332345.

Apr. 17, 2014 (RU) Office Action issued in Russian Patent Application No. 2011143817.

Apr. 25, 2014 (MX) Mexican Office Action issued in Mexican Application No. MX/a/2011/013553.

May 6, 2014 (CN) Chinese Office Action issued in Chinese Application No. 201010150878.5.

May 6, 2014 (CN) Chinese Office Action issued in Chinese Application No. 201010150087.2.

May 6, 2014 (US) Notice of Allowance issued in U.S. Appl. No. 13/934,512.

May 7, 2014 (US) Final Office Action issued in U.S. Appl. No. 13/240,216.

May 9, 2014 (VN) Office Action issued in Vietnamese Patent Application No. 1-2011-02491.

May 13, 2014 (CN) Chinese Office Action issued in Chinese Application No. 201080013339.5.

May 21, 2014 (EP) Extended European Search Report issued in European Application No. 10758552.3.

May 22, 2014 (US) Non-Final Office Action issued in U.S. Appl. No. 14/226,256.

Jun. 2, 2014 (AU) Office action issued in Australian Patent Application No. 2010231425.

Jun. 6, 2014 (US) Restriction Requirement issued in corresponding U.S. Appl. No. 13/430,033.

Jun. 10, 2014 (JP) Japanese Office Action issued Japanese Application No. 2013-142488.

Jun. 20, 2014 (CN) Office action issued in Chinese Patent Application No. 201210070147.

Jun. 24, 2014 (JP) Japanese Office Action issued Japanese Application No. 2013-153250.

Jun. 24, 2014 (JP) Japanese Office Action issued Japanese Application No. 2013-153340.

Jun. 27, 2014 (AU) Office Action issued in Australian Patent Application No. 2010231426.

Jul. 7, 2014 (US) Final Office Action issued in U.S. Appl. No. 13/430,080.

Jul. 8, 2014 (CA) Office Action issued in Canadian Patent Application No. 2,755,882.

Jul. 8, 2014 (JP) Office Action issued in Japanese Patent Application

No. 2013-153421. Jul. 8, 2014 (JP) Office Action issued in Japanese Patent Application No. 2013-153495.

Jul. 18, 2014 (US) Office Action in U.S. Appl. No. 13/431,350.

Jul. 16, 2013 (US) Office Action in U.S. Appl. No. 12/817,556.

Dec. 16, 2014—(US) Notice of Allowance—U.S. Appl. No. 13/240,216. Dec. 16, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/226,259.

Jan. 2, 2015—(US) Non-Final Office Action—U.S. Appl. No. 14/226,262.

Jan. 5, 2015—(US) Non-final Office Action—U.S. Appl. No. 14/226,201.

Jan. 22, 2015—(US) Notice of Allowance—U.S. Appl. No. 12/732,457. Jan. 16, 2015—(US) Non-Final Office Action—U.S. Appl. No. 14/226,402.

Jan. 20, 2015—(US) Non-Final Office Action—U.S. Appl. No. 13/431,371.

Jan. 28, 2015—(US) Notice of Allowance—U.S. Appl. No. 13/431,277.

Aug. 13, 2015—(US) Final Office Action—U.S. Appl. No. 13/431,371. Aug. 24, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,402.

Aug. 11, 2015—(AU) Patent Examination Report 1—App 2014221250.

Sep. 1, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/226,259.

Sep. 9, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,386.

Sep. 8, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/141,673. Aug. 6, 2015—(CN) Office Action—App 201410046812.X—Eng Tran.

Sep. 8, 2015—(JP) Office Action—App 2014-210427—Eng Tran. Sep. 22, 2013 (CN) Office Action issued in Chinese Patent Application No. 201010150109.5.

Sep. 25, 2013 (NZ) Office Action issued in New Zealand Patent Application No. 596044.

Sep. 26, 2013 (CN) Office Action issued in Chinese Patent Application No. 201010150090.4.

Sep. 30, 2013 (CN) Office Action issued in Chinese Patent Application No. 201010150088.7.

Oct. 1, 2013 (JP) Office Action issued in Japanese Patent Application No. 2011547222.

Oct. 16, 2013 (US) Non-Final Office Action issued in corresponding U.S. Appl. No. 13/240,266.

OTHER PUBLICATIONS

Oct. 28, 2013 (CN) Office Action issued in Chinese Patent Application No. 200980158165.9.

Nov. 1, 2013 (CN) Office Action Issued in Chinese Patent Application No. 200980161405.0.

Nov. 6, 2013 (EP) European Search Report issued in European Patent Application No. 09842716.4.

Nov. 8, 2013 (NZ) Office Action issued in New Zealand Patent Application No. 596044.

Nov. 12, 2013 (EP) European Search Report issued in European Patent Application No. 10758310.6.

Nov. 13, 2013 (US) Office Action issued in corresponding U.S. Appl. No. 13/240,216.

Nov. 19, 2013 (US) Office Action issued in corresponding U.S. Appl. No. 13/934,512.

Dec. 3, 2013 (JP) Office Action issued in Japanese Patent Application No. 2011-507049.

Dec. 16, 2013 (EP) Extended European Search Report in European Patent Application No. 12160324.5.

Dec. 18, 2013 (EP) Extended European Search Report in European Patent Application No. 12160192.6.

Dec. 19, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262674.8.

Dec. 20, 2013 (EP) Extended European Search Report issued in European Patent Application No. 12161271.7.

Dec. 23, 2013 (US) Final Office Action issued in U.S. Appl. No. 13/431,350.

Dec. 30, 2013 (CN) Office Action issued in Chinese Application No. 201010209208.6.

Dec. 30, 2013 (CN) Office Action issued in Chinese Patent Application No. 201210070147.9.

Aug. 12, 2014—(CN) Notice of Second Office Action—App 201210071810.7—Eng Tran.

Aug. 26, 2014—(CN) Notice of Second Office Action—App 201010274378.2—Eng Tran.

Aug. 28, 2014—(US) Non-Final Office Action—U.S. Appl. No. 13/240,216.

Dec. 5, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/226,325.

Dec. 1, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/226,289.

Feb. 4, 2014 (US) Notice of Allowance issued in U.S. Appl. No. 12/732,404.

Feb. 19, 2014 (US) Notice of Allowance issued in U.S. Appl. No. 12/732,747.

Feb. 24, 2014 (US) Notice of Allowance issued in U.S. Appl. No. 12/644,451.

Jan. 27, 2014 (US) Notice of Allowance issued in U.S. Appl. No. 12/732,828.

Jul. 16, 2014 (US)—Restriction requirement in U.S. Appl. No. 13/848,750.

Jul. 22, 2014 (US) Office Action in U.S. Appl. No. 12/732,257.

Jul. 25, 2014—(CN) Notice of Second Office Action—App 201010150090.4—Eng Tran.

Jul. 28, 2014—(CN) Notice of Second Office Action—App 201010150088.7—Eng Tran.

Jun. 26, 2014—(CN) Office Action—App 200980161405.

Nov. 4, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/226,367.

Nov. 4, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/226,428.

Nov. 5, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/226,373.

Nov. 25, 2014—(US) Notice of Allowance—U.S. Appl. No. 13/934,512. Oct. 2, 2014—(US) Non-Final Office Action—U.S. Appl. No. 13/430,033.

Oct. 10, 2014—(US) Notice of Allowance—U.S. Appl. No. 12/732,457. Oct. 27, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/141,576.

Oct. 30, 2014 (US) Final Office Action App—U.S. Appl. No. 14/226,256.

Sep. 2, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/226,165.

Sep. 9, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/226,380.

Sep. 9, 2014—(US) Non-Final Office Action—U.S. Appl. No. 14/226,417.

Sep. 10, 2014—(US) Notice of Allowance—U.S. Appl. No. 13/934,512. Sep. 11, 2014—(US) Election Requirement—U.S. Appl. No. 13/240,322.

Sep. 11, 2014—(US) Non-Final Office Action—U.S. Appl. No. 13/848,750.

Sep. 12, 2014—(US) Final Office Action—U.S. Appl. No. 13/431,371. Office Action dated Sep. 22, 2023 received in related U.S. Appl. No. 17/538,254.

Notice of Allowance dated Sep. 23, 2021, which issued in a related application, namely, U.S. Appl. No. 16/296,132, filed Feb. 5, 2020. Office Action dated Oct. 21, 2021, which issued in related application, namely, U.S. Appl. No. 16/924,874, filed Jul. 9, 2020.

Office Action dated Oct. 26, 2022 received in related U.S. Appl. No. 17/538,254.

Notice of Allowance dated Oct. 26, 2022 received in related U.S. Appl. No. 17/339,374.

Office Action dated Nov. 9, 2022 received in related U.S. Appl. No. 17/677,455.

Official Action dated Mar. 24, 2022 in a related application, namely, U.S. Appl. No. 17/339,374, filed Jun. 4, 2021.

Supplemental List of Patents or Patent Applications Treated as Related dated Sep. 28, 2022.

Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156357.

Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Applica-

tion No. 2009-156371.

Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156398.

Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156403.

Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-270325.

Apr. 8, 2013 (EP) European Search Report issued in European Patent Application No. 09852278.2.

Apr. 15, 2013 (CN) Office Action issued in Chinese Patent Application No. 201080013099.9.

Apr. 19, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262678.6.

Apr. 23, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-73748.

Apr. 23, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-73750.

Apr. 23, 2013 (US) Office Action in U.S. Appl. No. 13/430,080.

Apr. 26, 2013 (CN)Office Action issued in Chinese Patent Application No. 200910262676.7.

Apr. 26, 2013 (US) Office Action in U.S. Appl. No. 13/755,174.

May 2, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262677.1.

May 2, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262679.0.

May 2, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262680.3.

May 7, 2013 (US) Office Action in U.S. Appl. No. 12/732,404.

May 14, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-073747.

May 14, 2013 (US) Office Action in U.S. Appl. No. 13/431,350.

May 14, 2013 (US) Office Action in U.S. Appl. No. 13/431,371.

May 21, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-154698.

May 21, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-154699.

May 21, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-073749.

May 21, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-073755.

OTHER PUBLICATIONS

- May 21, 2013 (US) Office Action in U.S. Appl. No. 12/732,257.
- May 21, 2013 (US) Office Action in U.S. Appl. No. 12/732,828.
- May 22, 2013 (US) Office Action in U.S. Appl. No. 12/644,413.
- May 22, 2013 (US) Office Action in U.S. Appl. No. 12/873,633.
- May 28, 2013 (JP) Office Action issued in Japanese Patent Appli-
- cation No. 2012 (LIS) Office Action in LLS Appl No. 12/722 247
- May 30, 2013 (US) Office Action in U.S. Appl. No. 12/732,247. Jun. 4, 2013 (CN) Office Action issued in Chinese Patent Application No. 200980161443.6.
- Jun. 4, 2013 (JP) Office Action issued in Japanese Patent Application No. 2010-073754.
- Jun. 19, 2013 (US) Office Action in U.S. Appl. No. 12/644,373.
- Jul. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156281.
- Jul. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156350.
- Jul. 10, 2013 (NZ) (Office Action issued in New Zealand Patent Application No. 596044.
- Jul. 16, 2013 (US) Office Action issued in U.S. Appl. No. 12/817,556. Aug. 1, 2013 (US) Office Action in U.S. Appl. No. 12/732,747.
- Aug. 7, 2013 (CN) Office Action issued in Chinese Patent Application No. 200910262675.2.
- Aug. 9, 2013 (US) Office Action in U.S. Appl. No. 13/431,350.
- Aug. 22, 2013 (CN) Office Action issued in Chinese Patent Application No. 201080013339.5.
- Aug. 27, 2013 (US) Office Action in U.S. Appl. No. 12/644,451.
- Aug. 27, 2013 (US) Office Action in U.S. Appl. No. 12/644,572.
- Sep. 3, 2013 (CN) Office Action issued in Chinese Patent Application No. 201010150928.X.
- Sep. 3, 2013 (JP) Office Action issued in Japanese Patent Application No. 2011507143.
- Sep. 9, 2013 (US) Office Action issued in U.S. Appl. No. 12/732,404.
- Sep. 11, 2013 (US) Office Action in U.S. Appl. No. 13/430,080.
- Sep. 12, 2013 (US) Office Action in U.S. Appl. No. 12/732,457.
- Sep. 12, 2013 (US) Office Action in U.S. Appl. No. 12/732,828. Sep. 17, 2013 (US) Office Action in U.S. Appl. No. 12/732,647.
- Dec. 24, 2015—(US) Non-Final Office Action—U.S. Appl. No.
- 14/226,380.
 Nov. 9, 2015—(US) Notice of Allowance—U.S. Appl. No. 13/848,750.
 Nov. 12 2015—(US) Non Final Office Action—U.S. Appl. No.
- Nov. 9, 2015—(US) Notice of Allowance—U.S. Appl. No. 13/848,750. Nov. 13, 2015—(US) Non-Final Office Action—U.S. Appl. No. 14/226,289.
- Nov. 25, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,256. Nov. 27, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/226,367. Dec. 4, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/226,325.
- Dec. 10, 2015—(US) Non-Final Office Action—U.S. Appl. No. 14/755,141.
- Nov. 20, 2015—(KR) Office Action—App 10-2015-7006347.
- Nov. 20, 2015—(KR) Office Action—App 10-2011-7017238.
- Dec. 11, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/226,165. Dec. 17, 2015—(US) Non-Final Office Action—U.S. Appl. No. 14/920,398.
- Dec. 21, 2015—(US) Notice of Allowance—U.S. Appl. No. 13/934,512. Dec. 23, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,417. Oct. 27, 2015—(CN) Office Action—App 201410195767.4.
- Jul. 4, 2017—(CN) Office Action—App 201510714069.5 with English Translation.
- Notice of Allowance dated Jun. 10, 2022 in a related application, namely, U.S. Appl. No. 16/924,874, filed Jul. 9, 2020.
- Apr. 27, 2018—(US) Non-Final Office Action—U.S. Appl. No. 15/832,531.
- Mar. 5, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/007088.
- Mar. 16, 2010 (PCT) International Search Report and Written Opinion issued in International Application No. PCT/JP2009/071812.
- Mar. 16, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/050253.
- Mar. 23, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/070971.

- Mar. 23, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/071568.
- May 20, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/007085.
- May 20, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/007086.
- May 20, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/007087.
- May 21, 2010 (PCT) International Search Report in International Application No. PCT/JP2009/007089.
- May 21, 2010 Extended European Search Report in European Patent Application No. 09180351.
- May 21, 2010 Extended European Search Report in European Patent Application No. 09180354.
- Jun. 22, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/055305.
- Jun. 22, 2010 (PCT) International Search Report in International
- Application No. PCT/JP2010/055310.

 Jun. 22, 2010 (PCT) International Search Report in International
- Application No. PCT/JP2010/055311.

 Jun. 22, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/055324.
- Jun. 22, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/055326.
- Jun. 28, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/002170.
- Jul. 2, 2010 Extended European Search Report in European Patent Application No. 10157994.
- Jul. 12, 2010 Extended European Search Report in European Patent Application No. 10158024.
- Jul. 30, 2010 (PCT) International Search Report in International Application No. PCT/JP2010/002165.
- Jul. 30, 2010 (PCT) International Search Report in International
- Application No. PCT/JP2010/002169. Aug. 3, 2010 (PCT) International Search Report in International
- Application No. PCT/JP2010/002154.

 Aug. 3, 2010 (PCT) International Search Report in International
- Application No. PCT/JP2010/002161.

 Aug. 24, 2010 (PCT) International Search Report in International
- Application No. PCT/JP2010/004076.
 Oct. 12, 2010 Extended European Search Report in European Patent
- Application No. 10155348.

 Dec. 3, 2010 Extended European Search Report in European Patent
- Application No. 10175769.

 Oct. 11, 2011 (JP) Office Action issued in Japanese Patent Appli-
- cation No. 2008-331634. Oct. 11, 2011 (JP) Office Action issued in Japanese Patent Appli-
- cation No. 2009-088227. Oct. 11, 2011 (JP) Office Action issued in Japanese Patent Appli-
- cation No. 2009-088238.
 Oct. 11, 2011 (JP) Office Action issued in Japanese Patent Application No. 2009-088441.
- Oct. 11, 2011 (JP) Office Action issued in Japanese Patent Application No. 2009-088460.
- Oct. 11, 2011—(JP) Office Action issued in Japanese Patent Application No. 2009-088440.
- Nov. 15, 2011 (JP) Office Action issued in Japanese Patent Application No. 2009-088241.
- Nov. 15, 2011 (PCT) International Preliminary Report on Patentability issued in PCT/JP2009/071568.
- Nov. 15, 2011 (PCT) International Preliminary Report on Patentability issued in PCT/JP2010/050253.
- Nov. 15, 2011 (PCT) International Preliminary Report on Patentability issued in PCT/JP2010/055324.
- Nov. 15, 2011 (PCT) International Preliminary Report on Patentability issued in PCT/JP2010/055326.
- Jan. 17, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-088456.
- Feb. 14, 2012 (PCT) International Preliminary Report on Patentability in International Application No. PCT/JP2010/055305.
- Feb. 14, 2012 (PCT) International Preliminary Report on Patentability in International Application No. PCT/JP2010/055311.
- Mar. 7, 2012 (US) Office Action issued in U.S. Appl. No. 12/732,404.

OTHER PUBLICATIONS

Mar. 8, 2012 (US) Office Action issued in U.S. Appl. No. 12/732,247. Mar. 9, 2012 (US) Office Action issued in U.S. Appl. No. 12/732,257. Mar. 26, 2012 (US) Office Action issued in U.S. Appl. No. 12/732,457. Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2008-331638.

Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2008-331639.

Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-156405.

Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-156406.

Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-156407.

Mar. 27, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-270221.

Feb. 16, 2016—(US) Non-Final Office Action—U.S. Appl. No. 14/867,877.

Feb. 24, 2016—(US) Non-Final Office Action—U.S. Appl. No. 14/226,262.

Feb. 25, 2016—(US) Non-Final Office Action—U.S. Appl. No. 14/141,568.

Feb. 22, 2016—(US) Non-Final Office Action—U.S. Appl. No. 14/226,386.

Mar. 4, 2016—(US) Notice of Allowance—U.S. Appl. No. 14/643,865. Mar. 29, 2016—(US) Notice of Allowance—U.S. Appl. No. 13/431,350. Mar. 29, 2016—(US) Notice of Allowance—U.S. Appl. No. 14/641,681. Sep. 17, 2015—(US) Non-Final Office Action—U.S. Appl. No. 14/226,424.

Sep. 18, 2015—(US) Non-Final Office Action—U.S. Appl. No. 14/226,428.

Oct. 1, 2015—(US) Notice of Allowance—U.S. Appl. No. 12/732,457. Oct. 5, 2015—(US) Notice of Allowance—U.S. Appl. No. 12/644,572. Oct. 5, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/141,673.

Oct. 7, 2015—(US)—Final Office Action—U.S. Appl. No. 13/240,322. Oct. 13, 2015—(US) Notice of Allowance—U.S. Appl. No. 13/430,033.

Oct. 20, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/226,201. Oct. 22, 2015—(US) Final Office Action—U.S. Appl. No. 14/641,681. Sep. 2, 2015—(CN) Notification of First Office Action—App

201410200475.5.
Oct. 23, 2015—(US) Final Office Action—U.S. Appl. No. 13/431,350.
Oct. 26, 2015—(US)—Non-Final Office Action—U.S. Appl. No.

Oct. 30, 2015—(US)—Non-Final Office Action—U.S. Appl. No. 14/226,373.

14/643,865.

Nov. 3, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/226,259. Nov. 6, 2017—(CN) Office Action—App 201610344359.X with English Translation.

Supplemental List of Patents or Patent Applications Treated as Related dated Feb. 23, 2022.

Mar. 30, 2012 (US) Office Action issued in U.S. Appl. No. 12/644,451. Apr. 11, 2012 (PCT) International Preliminary Report on Patentability issued in PCT/JP2010/055310.

Apr. 11, 2012 (US) Office Action in U.S. Appl. No. 12/644,572. May 8, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-086239.

May 10, 2012 (US) Office Action in U.S. Appl. No. 13/431,371. May 22, 2012 (JP) Japanese Office Action issued in Japanese Patent Application No. 2010-041323.

Jun. 4, 2012 (US) Office Action in U.S. Appl. No. 13/431,350.

Jun. 6, 2012 (US) Office Action in U.S. Appl. No. 12/732,747.

Jun. 8, 2012 (US) Office Action in U.S. Appl. No. 13/431,277.

Jun. 12, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-086222.

Jun. 12, 2012 (JP) Office Action issued in Japanese Patent Application No. 2010-084499.

Jun. 12, 2012 (US) Office Action in U.S. Appl. No. 12/732,828.

Jun. 15, 2012 (US) Office Action in U.S. Appl. No. 12/732,404.

Jul. 3, 2012 (JP) Office Action issued in Japanese Patent Application No. 2010-084500.

Jul. 3, 2012 (JP) Office Action issued in Japanese Patent Application No. 2010-084501.

Jul. 3, 2012 (JP) Office Action issued in Japanese Patent Application No. 2010-084502.

Jul. 10, 2012 (PCT) International Preliminary Report on Patentability issued in PCT/JP2009/070971.

Jul. 13, 2012 (US) Office Action in U.S. Appl. No. 12/644,413.

Jul. 20, 2012 (US) Office Action in U.S. Appl. No. 12/817,556.

Jul. 30, 2012 (US) Final Office Action in U.S. Appl. No. 12/732,247. Aug. 3, 2012 (US) Office Action in U.S. Appl. No. 12/644,373.

Aug. 14, 2012 (PCT) International Preliminary Report on Patentability issued in PCT/JP2009/071812.

Aug. 27, 2012 (US) Office Action in U.S. Appl. No. 12/644,572.

Aug. 28, 2012 (US) Office Action in U.S. Appl. No. 12/644,451.

Aug. 28, 2012 (US) Office Action in U.S. Appl. No. 12/732,257.

Aug. 28, 2012 (US) Office Action in U.S. Appl. No. 12/732,457.

Aug. 30, 2012 (US) Office Action in U.S. Appl. No. 12/732,647.

Sep. 6, 2012 (EP) European Communication issued in European Patent Application No. 10711477.9.

Sep. 11, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-086172.

Sep. 11, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-088449.

Sep. 28, 2012 (NZ) Examination Report issued in New Zealand Patent Application No. 596044.

Oct. 16, 2012 (US) Office Action in U.S. Appl. No. 12/873,633.

Oct. 23, 2012 (US) Office Action in U.S. Appl. No. 12/732,404.

Nov. 13, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-270056.

Nov. 13, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-297502.

Dec. 18, 2012 (JP) Office Action issued in Japanese Patent Application No. 2009-156369.

Nov. 22, 2013 (EP) Office Action issued in European Patent Application No. 10711776.4.

Nov. 26, 2013 (JP) Office Action issued in Japanese Patent Application No. 2011-507142.

Jan. 17, 2013 (US) Office Action in U.S. Appl. No. 12/732,747.

Jan. 22, 2013 (US) Office Action in U.S. Appl. No. 12/732,247.

Jan. 29, 2013 (JP) Office Action issued in Japanese Patent Application No. 2011-506968.

Jan. 30, 2013 (US) Office Action in U.S. Appl. No. 13/431,277.

Feb. 28, 2013 (US) Office Action in U.S. Appl. No. 12/817,556.

Mar. 1, 2013 (US) Office Action in U.S. Appl. No. 12/732,647.

Mar. 8, 2013 (CN) Office Action issued in Chinese Patent Appli

Mar. 8, 2013 (CN) Office Action issued in Chinese Patent Application No. 200980158165.9.

Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156399.

Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156404.

Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156281.

Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156350.

Apr. 2, 2013 (JP) Office Action issued in Japanese Patent Application No. 2009-156355.

Notice of Allowance dated Oct. 7, 2021 received in related application, namely, U.S. Appl. No. 16/923,690.

Notice of Allowance dated Nov. 22, 2021 in related application, namely, U.S. Appl. No. 16/782,368, filed Feb. 5, 2020.

Supplemental List of Patents or Patent Applications Treated as Related dated Dec. 7, 2021.

Sep. 22, 2016—(KR) Notice of Final Rejection—App 10-2011-

7021961, Eng Tran.
Office Action dated Mar. 7, 2023 received in related U.S. Appl. No.

17/570,849. Office Action dated Mar. 7, 2023 received in related U.S. Appl. No. 17/943,869.

U.S. Appl. No. 12/644,373, filed Dec. 22, 2009, Abandoned.

U.S. Appl. No. 12/644,413, filed Dec. 22, 2009, Abandoned.

U.S. Appl. No. 12/644,451, filed Dec. 22, 2009, Patented.

U.S. Appl. No. 12/644,481, filed Dec. 22, 2009, Patented.

U.S. Appl. No. 12/644,525, filed Dec. 22, 2009, Patented.

OTHER PUBLICATIONS

```
U.S. Appl. No. 12/644,555, filed Dec. 22, 2009, Patented.
U.S. Appl. No. 12/644,572, filed Dec. 22, 2009, Patented.
U.S. Appl. No. 12/718,129, filed Mar. 5, 2010, Patented.
U.S. Appl. No. 12/732,247, filed Mar. 26, 2010, Abandoned.
U.S. Appl. No. 12/732,257, filed Mar. 26, 2010, Patented.
U.S. Appl. No. 12/732,404, filed Mar. 26, 2010, Patented.
U.S. Appl. No. 12/732,457, filed Mar. 26, 2010, Patented.
U.S. Appl. No. 12/732,647, filed Mar. 26, 2010, Patented.
U.S. Appl. No. 12/732,747, filed Mar. 26, 2010, Patented.
U.S. Appl. No. 12/732,828, filed Mar. 26, 2010, Patented.
U.S. Appl. No. 12/817,556, filed Jun. 17, 2010, Abandoned.
U.S. Appl. No. 12/873,633, filed Sep. 1, 2010, Abandoned.
U.S. Appl. No. 13/240,216, filed Sep. 22, 2011, Patented.
U.S. Appl. No. 13/240,266, filed Sep. 22, 2011, Patented.
U.S. Appl. No. 13/240,322, filed Sep. 22, 2011, Patented.
U.S. Appl. No. 13/430,033, filed Mar. 26, 2012, Patented.
U.S. Appl. No. 13/430,080, filed Mar. 26, 2012, Abandoned.
U.S. Appl. No. 13/431,277, filed Mar. 27, 2012, Patented.
U.S. Appl. No. 13/431,350, filed Mar. 27, 2012, Patented.
U.S. Appl. No. 13/431,371, filed Mar. 27, 2012, Patented.
U.S. Appl. No. 13/755,174, filed Jan. 31, 2013, Patented.
U.S. Appl. No. 13/848,750, filed Mar. 22, 2013, Patented.
U.S. Appl. No. 13/934,512, filed Jul. 3, 2013, Patented.
U.S. Appl. No. 14/141,568, filed Dec. 27, 2013, Patented.
U.S. Appl. No. 14/141,576, filed Dec. 27, 2013, Patented.
U.S. Appl. No. 14/141,673, filed Dec. 27, 2013, Patented.
U.S. Appl. No. 14/226,165, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,201, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,256, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,259, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 17/226,262, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,289, filed Mar. 26, 2014, Abandoned.
U.S. Appl. No. 14/226,325, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,367, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,373, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,380, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,386, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,402, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,411, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,417, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/226,424, filed Mar. 26, 2014, Abandoned.
U.S. Appl. No. 14/226,428, filed Mar. 26, 2014, Patented.
U.S. Appl. No. 14/641,681, filed Mar. 9, 2015, Patented.
U.S. Appl. No. 14/643,865, filed Mar. 10, 2015, Patented.
U.S. Appl. No. 14/742,077, filed Jun. 17, 2015, Patented.
U.S. Appl. No. 14/755,141, filed Jun. 30, 2015, Patented.
U.S. Appl. No. 14/867,877, filed Sep. 28, 2015, Patented.
U.S. Appl. No. 14/920,398, filed Oct. 22, 2015, Patented.
U.S. Appl. No. 15/130,109, filed Apr. 15, 2016, Patented.
U.S. Appl. No. 15/226,188, filed Aug. 2, 2016, Pending.
U.S. Appl. No. 15/250,310, filed Aug. 29, 2016, Patented.
U.S. Appl. No. 15/276,474, filed Sep. 26, 2016, Patented.
U.S. Appl. No. 15/276,599, filed Sep. 26, 2016, Patented.
U.S. Appl. No. 15/357,004, filed Nov. 21, 2016, Patented.
U.S. Appl. No. 15/389,497, filed Dec. 23, 2016, Patented.
U.S. Appl. No. 15/715,329, filed Sep. 26, 2017, Pending.
U.S. Appl. No. 15/832,531, filed Dec. 5, 2017, Allowed.
U.S. Appl. No. 15/866,000, filed Jan. 9, 2018, Patented.
U.S. Appl. No. 15/981,465, filed May 16, 2018, Allowed.
U.S. Appl. No. 16/160,343, filed Oct. 15, 2018, Patented.
U.S. Appl. No. 16/256,604, filed Jan. 24, 2019, Allowed.
U.S. Appl. No. 16/293,984, filed Mar. 6, 2019, Pending.
U.S. Appl. No. 16/286,132, filed Feb. 26, 2019, Pending.
U.S. Appl. No. 16/782,368, filed Feb. 5, 2020, Pending.
U.S. Appl. No. 16/796,463, filed Feb. 20, 2020, Pending.
U.S. Appl. No. 16/866,950, filed May 5, 2020, Pending.
U.S. Appl. No. 16/923,690, filed Jul. 8, 2020, Pending.
U.S. Appl. No. 16/924,874, filed Jul. 9, 2020, Pending.
```

U.S. Appl. No. 17/339,374, filed Jun. 4, 2021, Pending.

```
Jun. 17, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,325.
Jun. 18, 2015—(US) Notice of Allowance—U.S. Appl. No. 12/732,457.
Notice of Reasons for Refusal dated Aug. 30, 2022 received in
Japanese Patent Application No. JP 2021-156029 together with
English language translation.
Nov. 27, 2015—(CN) Office Action—App 201410311930.9.
Dec. 3, 2015—(CN) Office Action—App 201510088644.5.
Jan. 12, 2016—(US) Notice of Allowance—U.S. Appl. No. 13/431,371.
Jan. 15, 2016—(US) Notice of Allowance—U.S. Appl. No. 12/732,257.
Jan. 29, 2016—(US) Notice of Allowance—U.S. Appl. No. 14/226,411.
Dec. 24, 2015—(TW) Decision of Rejection—App 101110368—
Eng Tran.
Feb. 5, 2016—(US) Non-Final Office Action—U.S. Appl. No.
13/240,322.
Explanation of Proofs submitted in Nullification Appeal for JP
Patent 5233800 dated Feb. 17, 2022 together with English language
translation.
Nov. 12, 2014 (MX) Office Action in Application No. MX/a/2011/
013553.
Dec. 26, 2014—(CN) Office Action in Application No. 201080013339.
Jan. 22, 2015—(US) Non-Final Office Action—U.S. Appl. No.
14/226,411.
Feb. 10, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/226,380.
Feb. 12, 2015—(US) Final Office Action—U.S. Appl. No. 12/732,257.
Feb. 12, 2015—(US) Final Office Action—U.S. Appl. No. 13/431,350.
Feb. 12, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,417.
Feb. 13, 2015—(US) Non-Final Office Action—U.S. Appl. No.
13/240,322.
Feb. 17, 2015—(US) Final Office Action—U.S. Appl. No. 14/141,673.
Mar. 4, 2015—(US) Final Office Action—U.S. Appl. No. 14/141,576.
Mar. 4, 2015—(US) Non-Final Office Action—U.S. Appl. No.
14/226,386.
Mar. 6, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,424.
Feb. 6, 2015—(EP) Extended Search Report—App. 14189221.6.
Jan. 29, 2015—(TW) Office Action—App 099132599.
Mar. 17, 2015—(US) Notice of Allowance—U.S. Appl. No. 13/848,750.
Apr. 1, 2015—(US) Notice of Allowance—U.S. Appl. No. 12/732,457.
Apr. 1, 2015—(US) Notice of Allowance—U.S. Appl. No. 13/430,033.
Apr. 10, 2015—(US) Non-Final Office Action—U.S. Appl. No.
13/430,080.
Apr. 9, 2015—(US) Notice of Allowance—U.S. Appl. No. 13/431,277.
Jan. 23, 2015 (AU) Office Action in Application No. 2010231426.
Mar. 6, 2015 (AU) Office Action in Application No. 2010231425.
Mar. 10, 2015 (JP) Office Action in Application No. 2014-095027.
Mar. 13, 2015 (US) Notice of Allowance in U.S. Appl. No.
14/226,165.
Mar. 12, 2015 (EP) Search Report in Application No. 14156840.2.
Feb. 19, 2015 (CA) Office Action in Application No. 2755885.
Mar. 2, 2015 (TW) Office Action in Application No. 101110368.
Mar. 23, 2015 (US) Notice of Allowance in U.S. Appl. No.
13/934,512.
Apr. 14, 2015—(US) Notice of Allowance—U.S. Appl. No. 13/240,266.
Apr. 9, 2015—(US) Non-Final Office Action—U.S. Appl. No.
14/641,681.
Apr. 17, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,367.
Apr. 21, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,428.
May 1, 2015—(US) Notice of Allowance—U.S. Appl. No. 12/644,572.
May 6, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,259.
May 6, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,373.
Apr. 20, 2015 (AU) Office Action in Application No. 2010231426.
Apr. 7, 2015 (TW) Office Action in U.S. Appl. No. 99/132,600.
Apr. 2, 2015 (EP) Office Action in Application No. 10711776.4.
May 19, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,289.
May 19, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/226,201.
May 20, 2015—(US) Notice of Allowance—U.S. Appl. No. 13/848,750.
May 22, 2015—(US) Non-Final Office Action—U.S. Appl. No.
12/732,257.
May 29, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/226,165.
Jun. 2, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,262.
```

Jun. 5, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/226,380.

Jun. 2, 2015—(US) Non-Final Office Action—U.S. Appl. No.

14/226,256.

OTHER PUBLICATIONS

Jun. 9, 2015—(US) Non-Final Office Action—U.S. Appl. No. 14/226,256.

Apr. 13, 2015—(CN) Notification of Third Office Action—App 201210071810.7—Eng. Tran.

Apr. 9, 2015—(TW) Office Action—App 099132598—Eng. Tran. May 26, 2015—(CN) Office Action—App 201310659625.4.

Jun. 25, 2015—(US) Non-Final Office Action—U.S. Appl. No. 13/431,350.

May 29, 2015—(MY) Substantive Examination Adverse Report—App. PI 2013702520—Eng Tran.

Jun. 1, 2015—(CN) Notification of First Office Action—App 201310717842.4—Eng Tran.

Jun. 1, 2015—(CN) Notification of First Office Action—App 201310717871.0—Eng Tran.

Jul. 7, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/141,673. Jul. 16, 2015—(US) Non-Final Office Action—U.S. Appl. No. 14/226,417.

Jun. 19, 2015 (CN) Notification of First Office Action—App 201310659875.8—Eng Tran.

Aug. 4, 2015—(US) Notice of Allowance—U.S. Appl. No. 14/141,576. Jul. 31, 2015—(US) Final Office Action—U.S. Appl. No. 14/226,411. Jan. 6, 1993, figures and photographs of a TX cassette, Ichinomiya et al.

Dec. 28, 1988, figures and photographs of a TC cassette, Kuzuya. Apr. 20, 2018—(US) Non-Final Office Action—U.S. Appl. No. 14/742,077.

Chinese Office Action dated Jun. 3, 2019 in Chinese Patent Application No. 201711461753.2.

Office Action dated May 20, 2019 received in U.S. Appl. No. 15/226,188.

German Official Action dated Oct. 12, 2020 in a related application 10 2010 012 892.9 together with English language translation.

Office Action dated Jun. 5, 2019 in related application, namely, U.S. Appl. No. 15/981,465, filed May 16, 2018.

Final Office Action dated Jul. 29, 2020 in related application, namely, U.S. Appl. No. 16/286,132, filed Feb. 26, 2019.

Extended European Search Report dated Aug. 29, 2019 received from the European Patent Office in related EP 19173286.6.

Notice of Allowance dated Nov. 5, 2019 in related application, namely, U.S. Appl. No. 16/160,343.

Office Action dated Nov. 12, 2019 in related application, namely, U.S. Appl. No. 15/981,465.

Office Action dated Oct. 24, 2019 in related application, namely, U.S. Appl. No. 15/715,329.

Notification of Reasons for Rejection dated Oct. 29, 2019 received from the Japanese Patent Office in application JP 2018-246396 together with an English language translation.

Notice of Allowance dated Dec. 3, 2019 in related application, namely, U.S. Appl. No. 16/256,604.

Office Action dated Dec. 9, 2019 in related application, namely, U.S. Appl. No. 16/286,132.

Notice of Allowance dated Apr. 8, 2020 in related application, namely, U.S. Appl. No. 16/796,463, filed Feb. 20, 2020.

Final Office Action dated Jul. 1, 2020, received in related U.S. Appl. No. 15/715,329, filed Sep. 26, 2017.

Office Action dated Oct. 6, 2020, received in related U.S. Appl. No. 16/866,950, filed May 5, 2020.

Office Action dated Nov. 24, 2020 received in related U.S. Appl. No. 16/782,368, filed Feb. 5, 2020.

Office Action dated Dec. 14, 2020, received in related U.S. Appl. No. 15/715,329, filed Sep. 26, 2017.

Office Action dated Jan. 7, 2021 received in parent U.S. Appl. No. 16/293,984.

Final Office Action dated Jul. 29, 2020 received in related application, namely, U.S. Appl. No. 16/286,132.

Final Office Action dated Apr. 22, 2021 received in related application, namely, U.S. Appl. No. 15/715,329.

Notice of Allowance dated Jun. 2, 2021 received in parent U.S. Appl. No. 16/293,984.

Final Office Action dated Jul. 1, 2021 received in related application, namely, U.S. Appl. No. 16/782,368.

List of Patents or Patent Applications Treated as Related dated Sep. 2, 2021.

Notice of Allowance dated Mar. 5, 2019 from related application, namely, U.S. Appl. No. 15/832,531.

Notice of Allowance dated Jun. 5, 2019 from related application, namely, U.S. Appl. No. 15/832,531.

Notice of Allowance dated Sep. 30, 2019 from related application, namely, U.S. Appl. No. 15/832,531.

Notice of Allowance dated Jan. 21, 2021 from related application, namely, U.S. Appl. No. 15/832,531.

Notice of Allowance dated Mar. 4, 2021 from related application, namely, U.S. Appl. No. 16/866,950.

Notice of Allowance dated Aug. 31, 2021 from related application, namely, U.S. Appl. No. 15/715,329.

* cited by examiner

FIG. 1

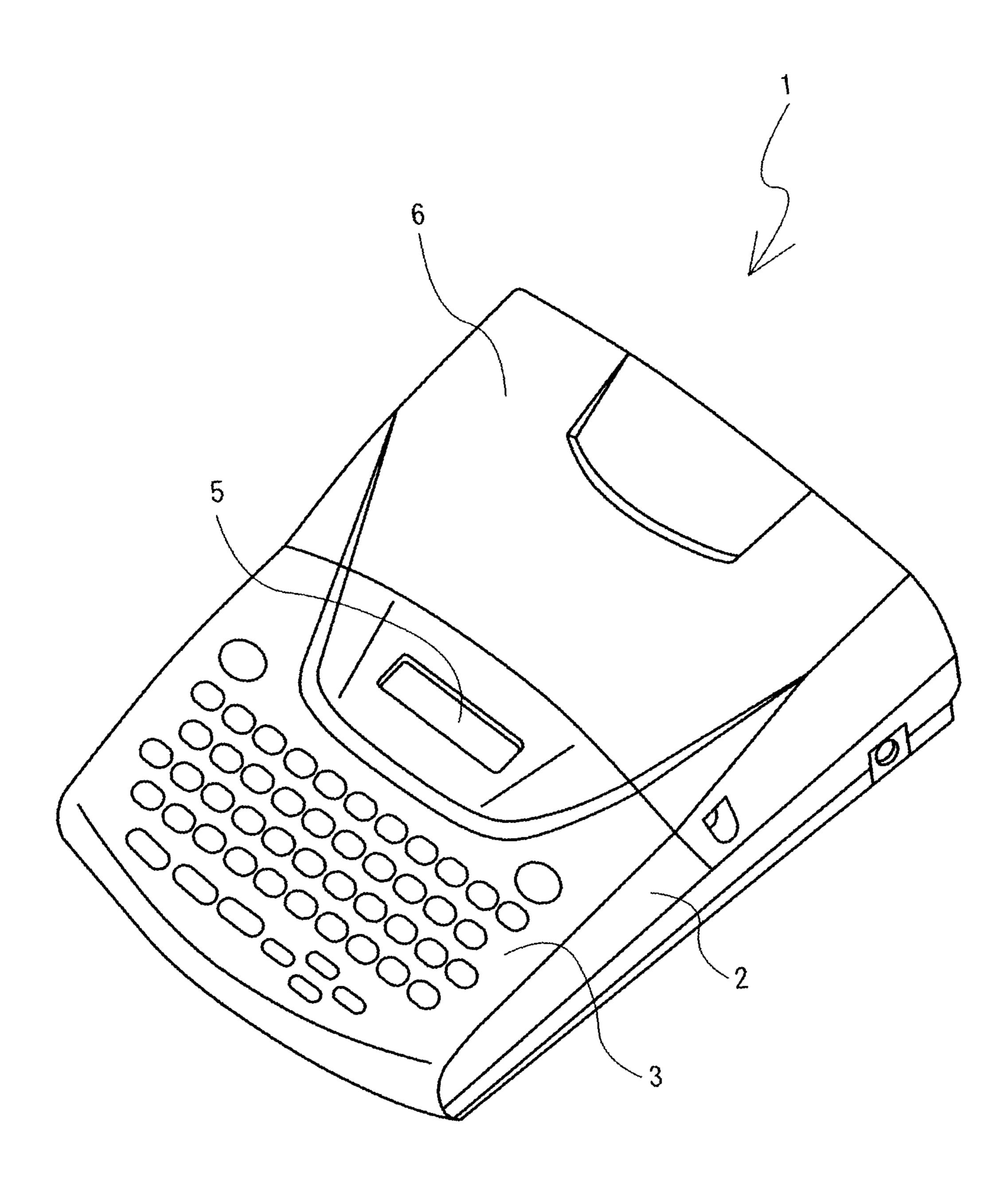


FIG. 2

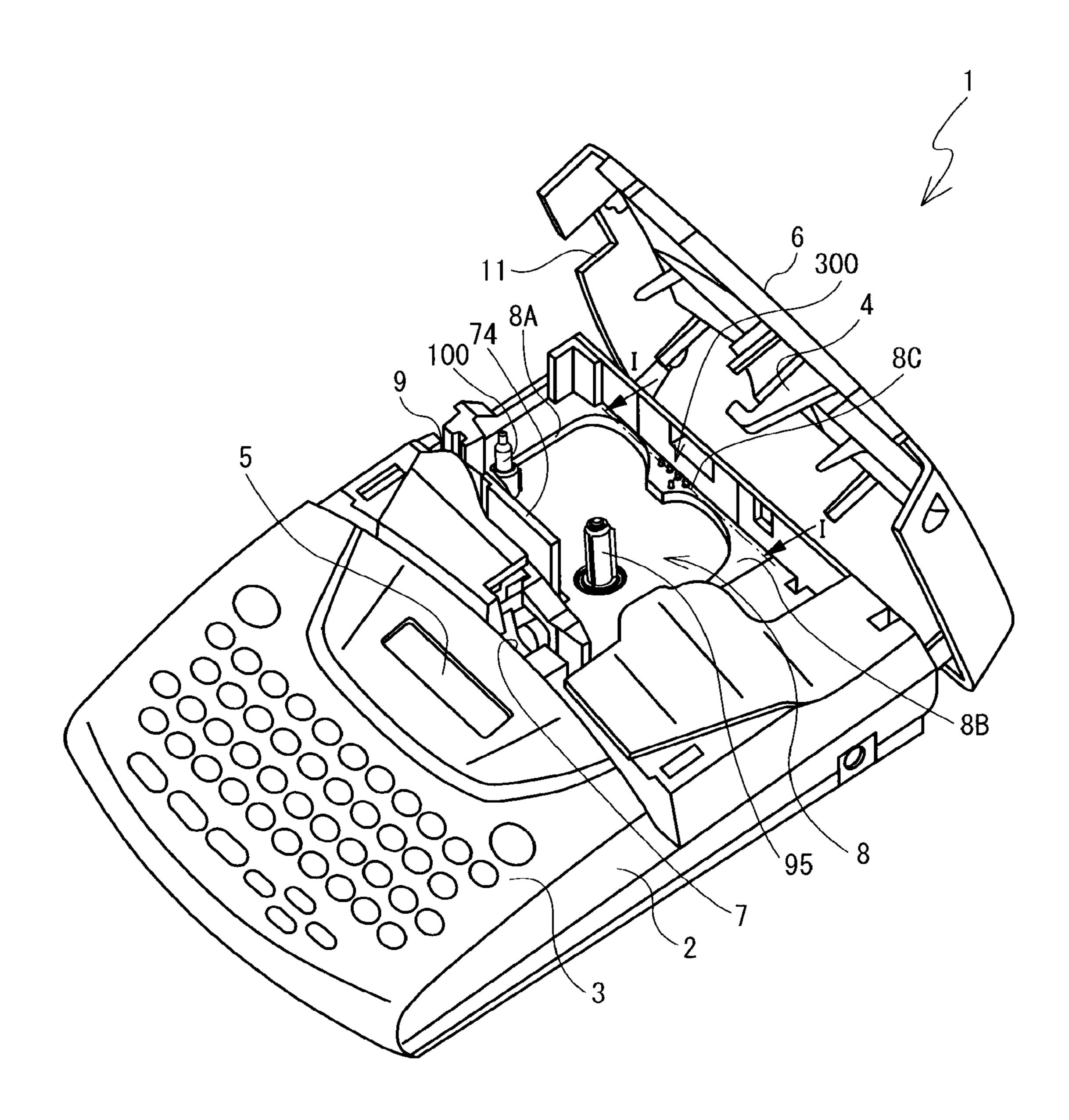
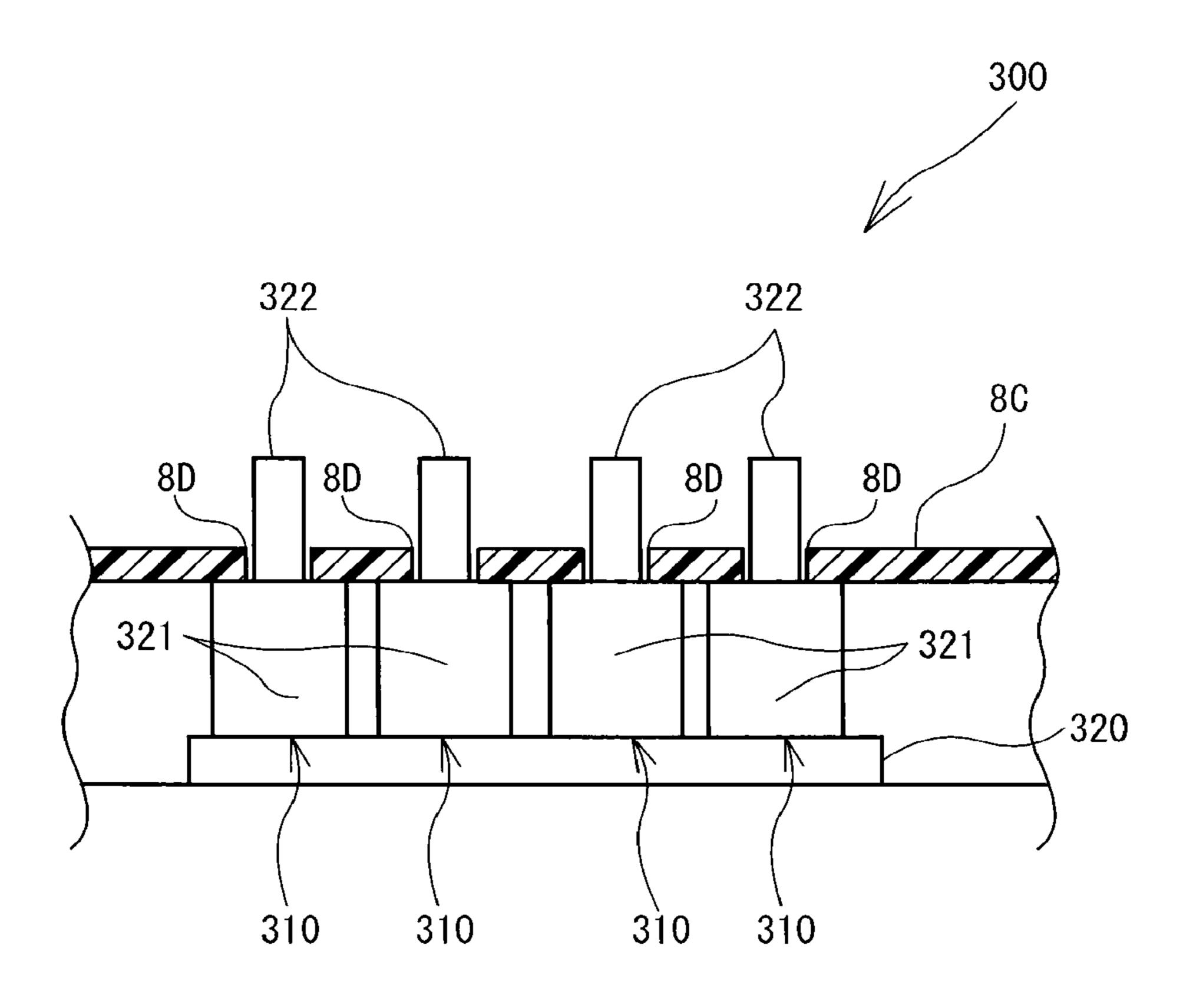



FIG. 3

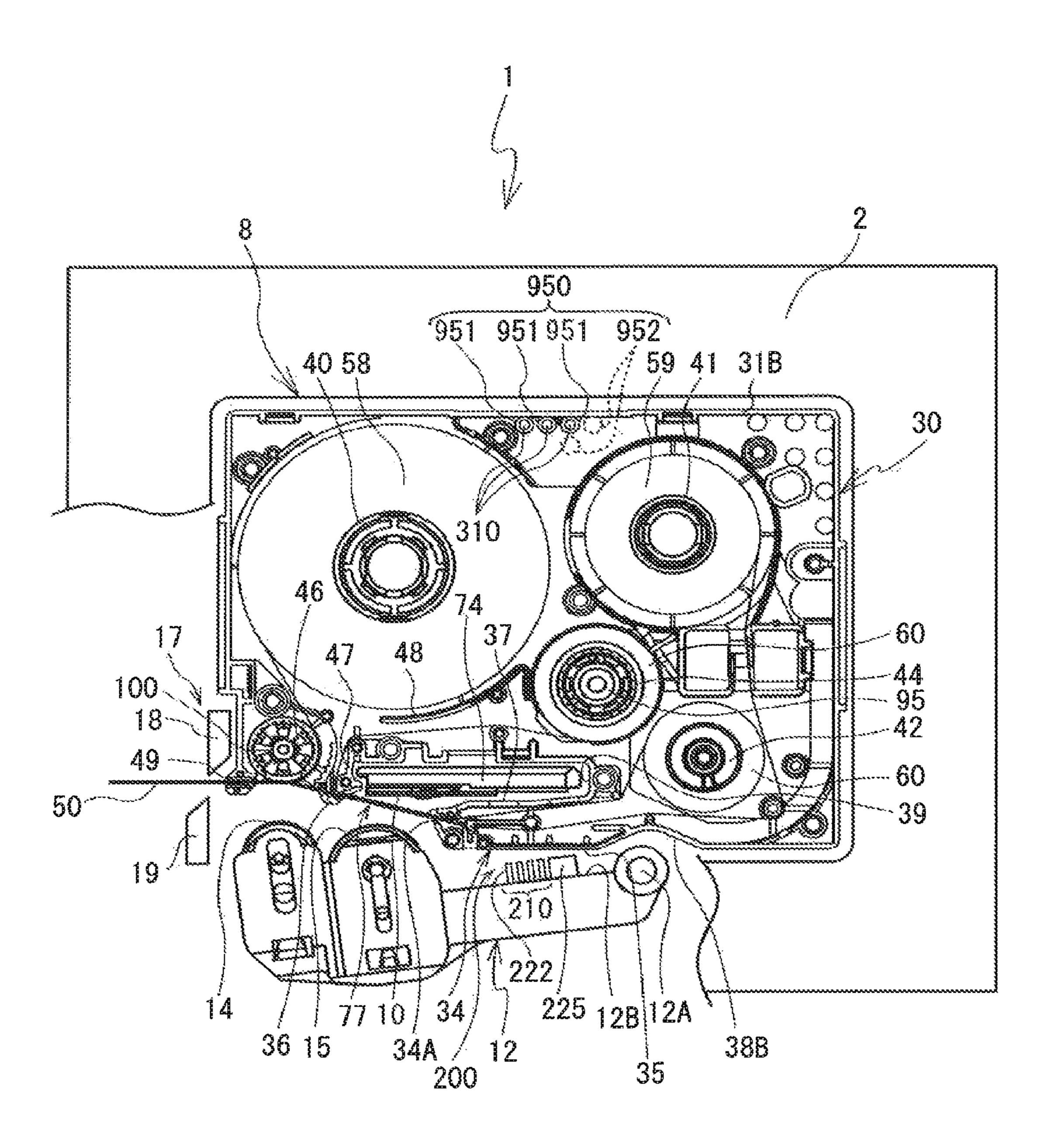


FIG. 5

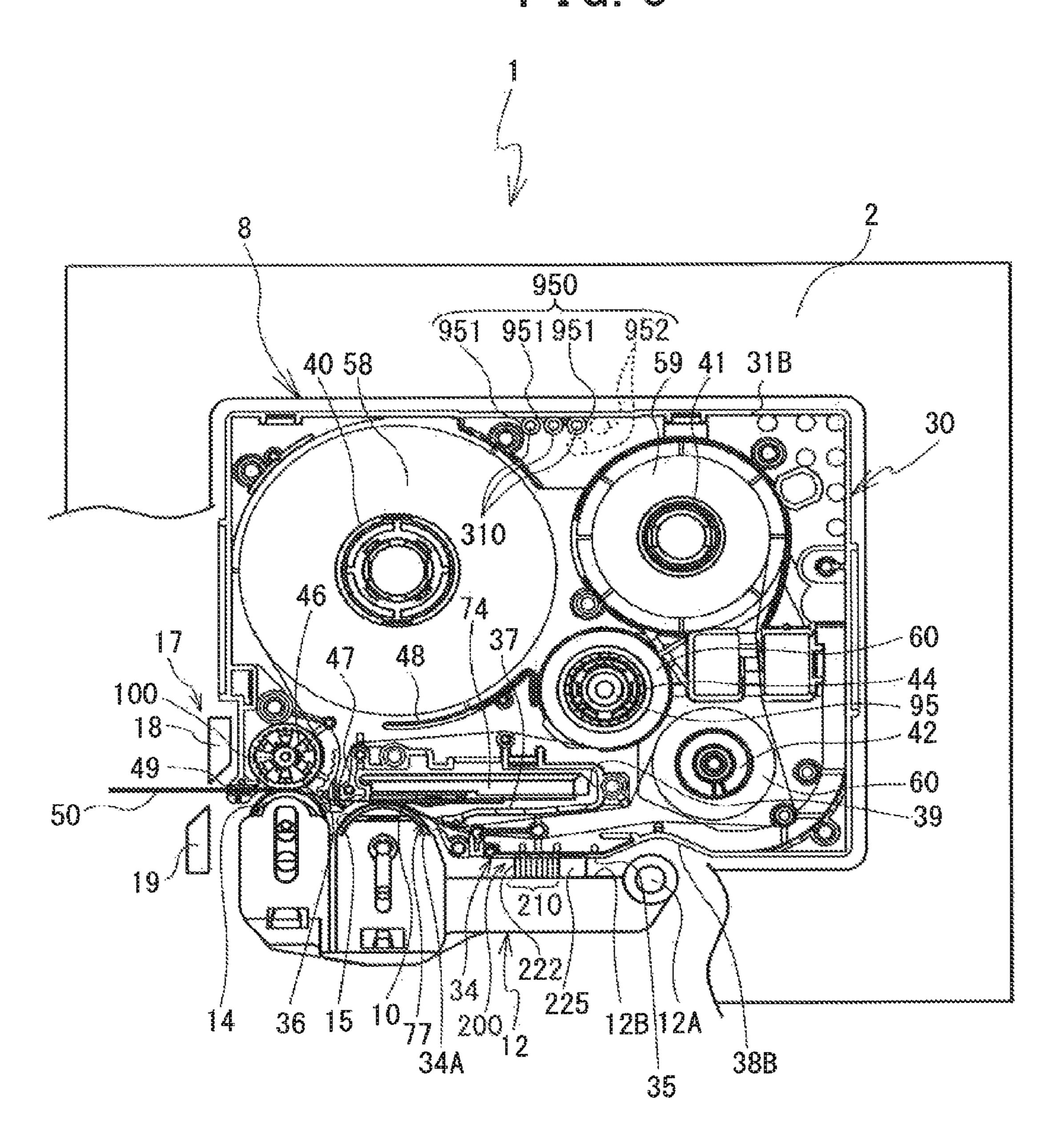


FIG. 6

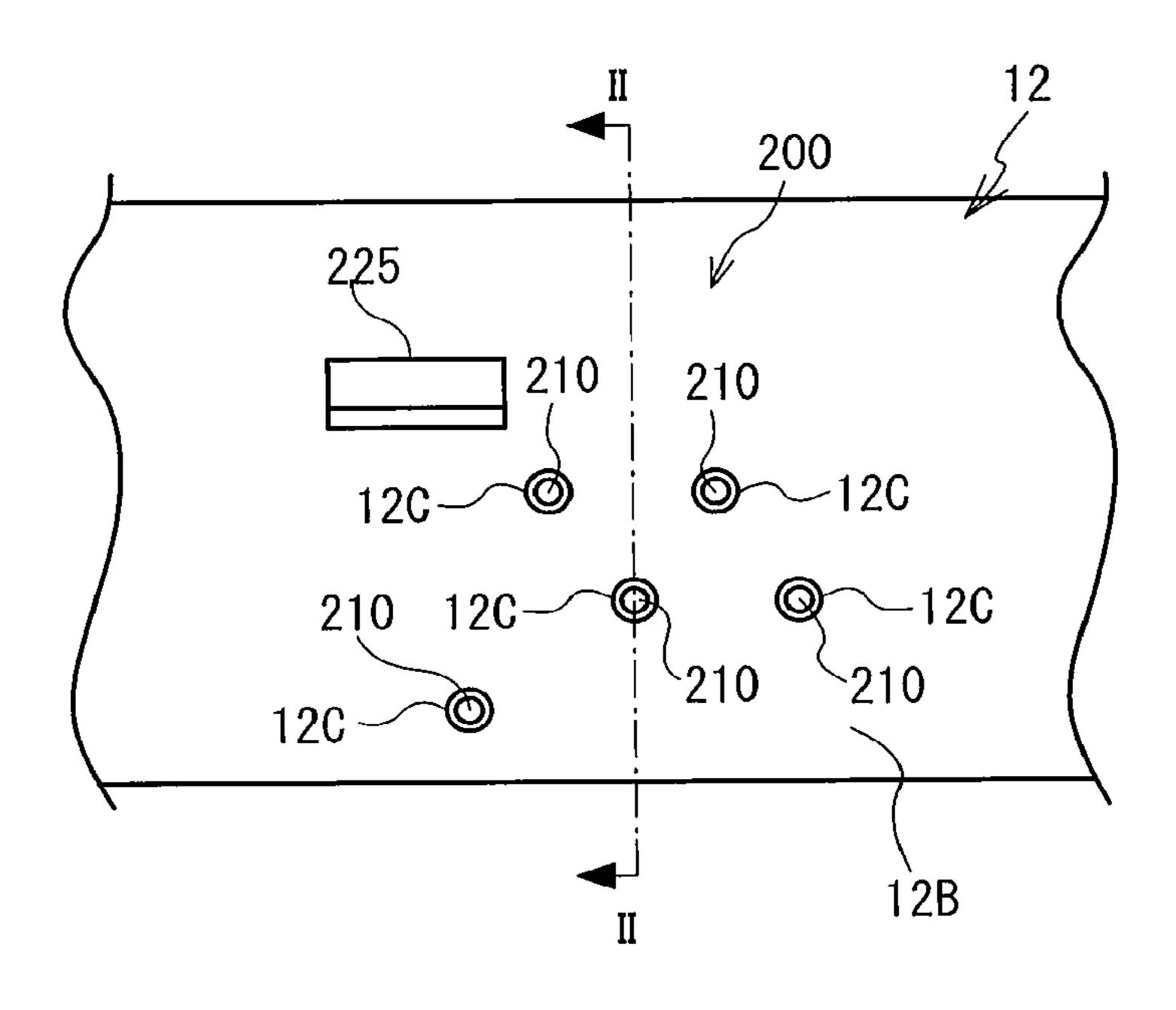


FIG. 7

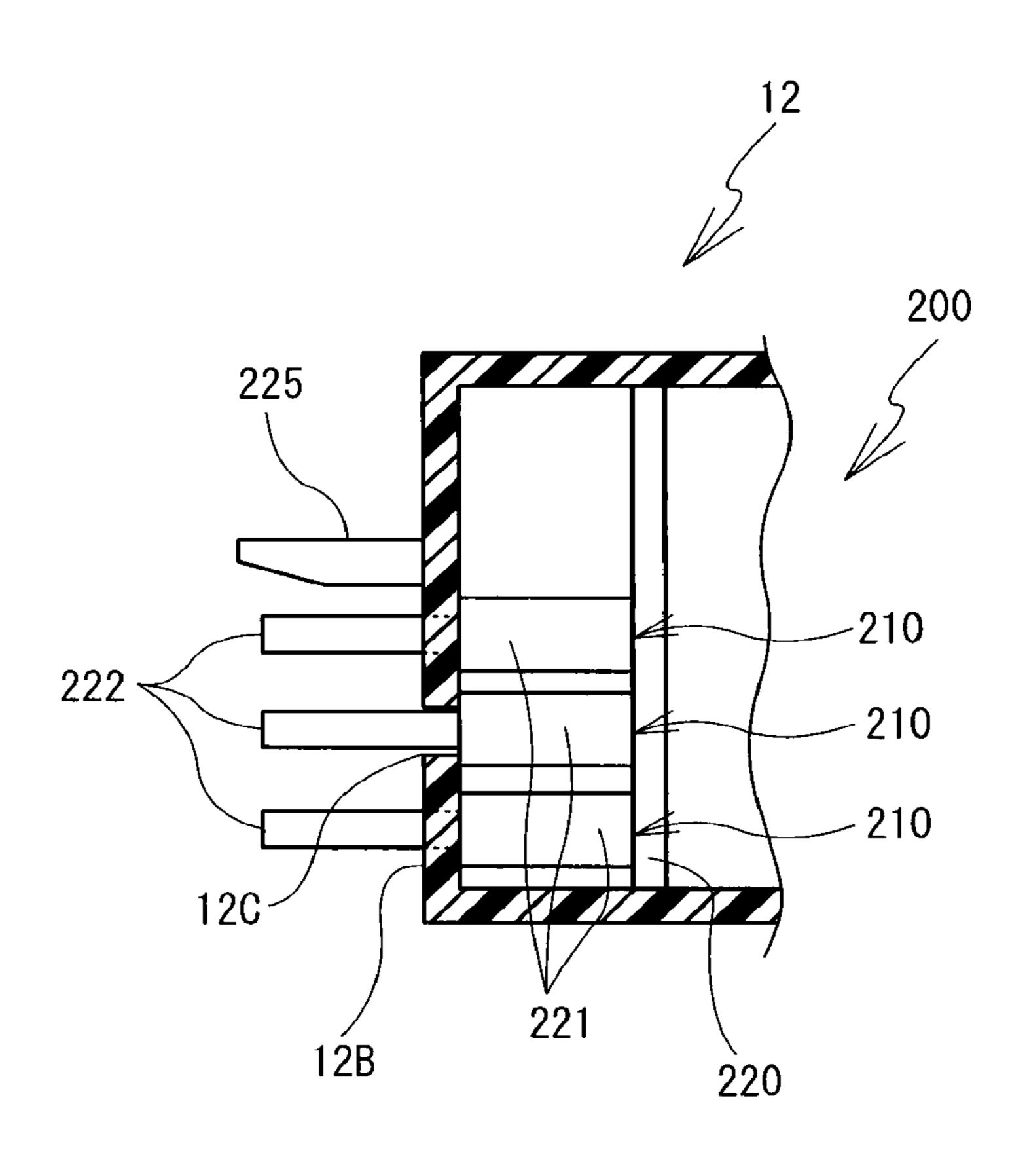
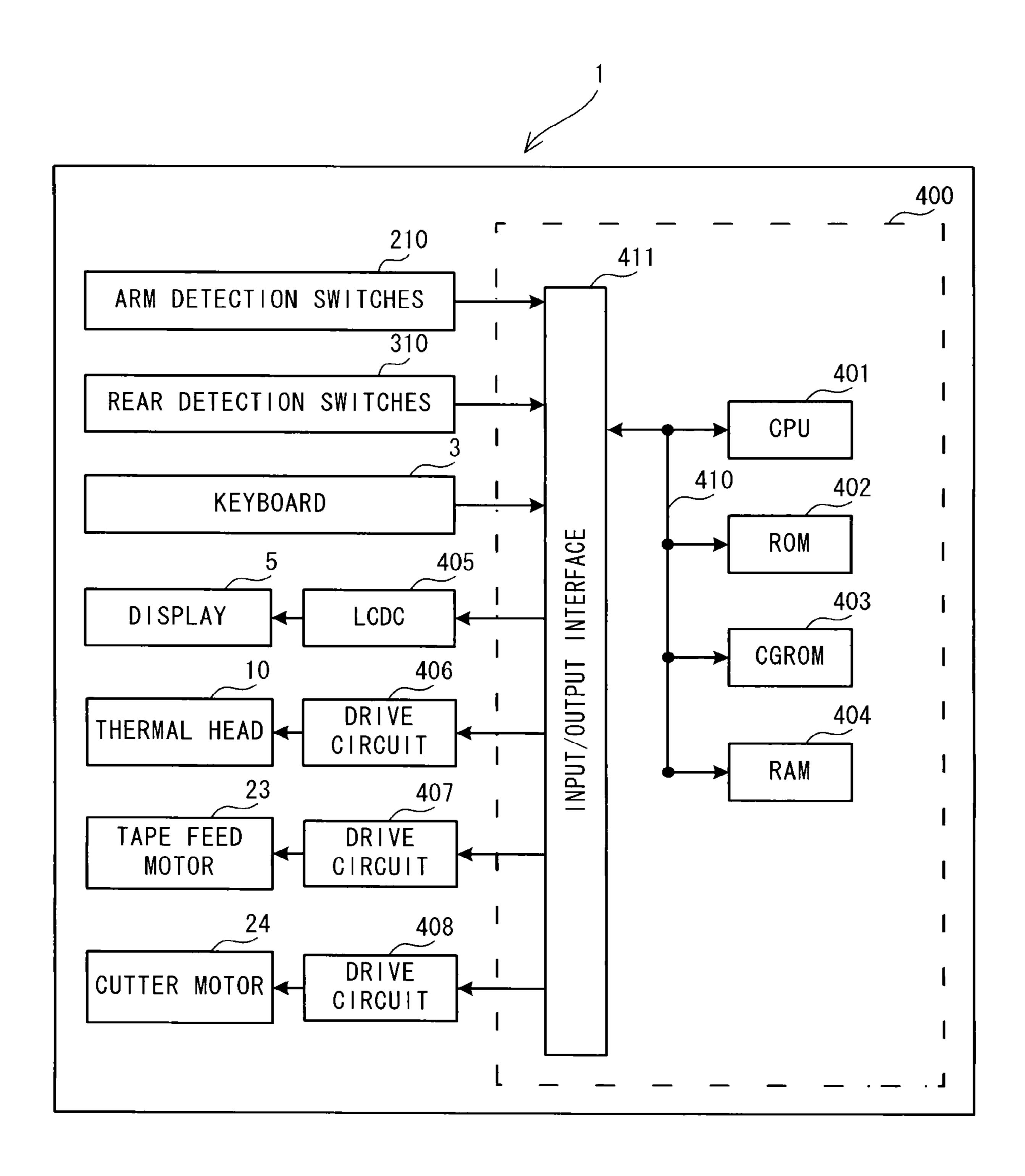
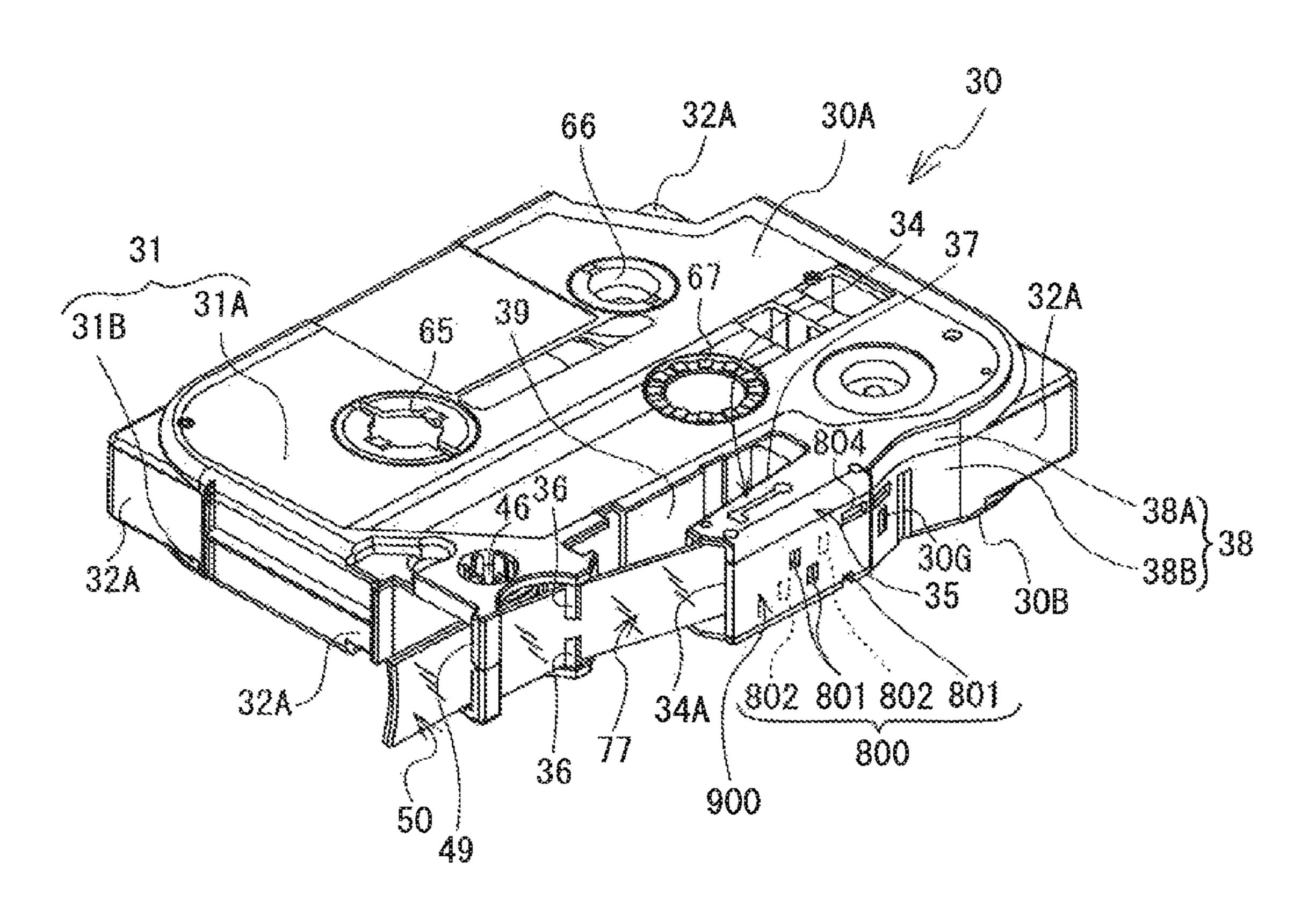
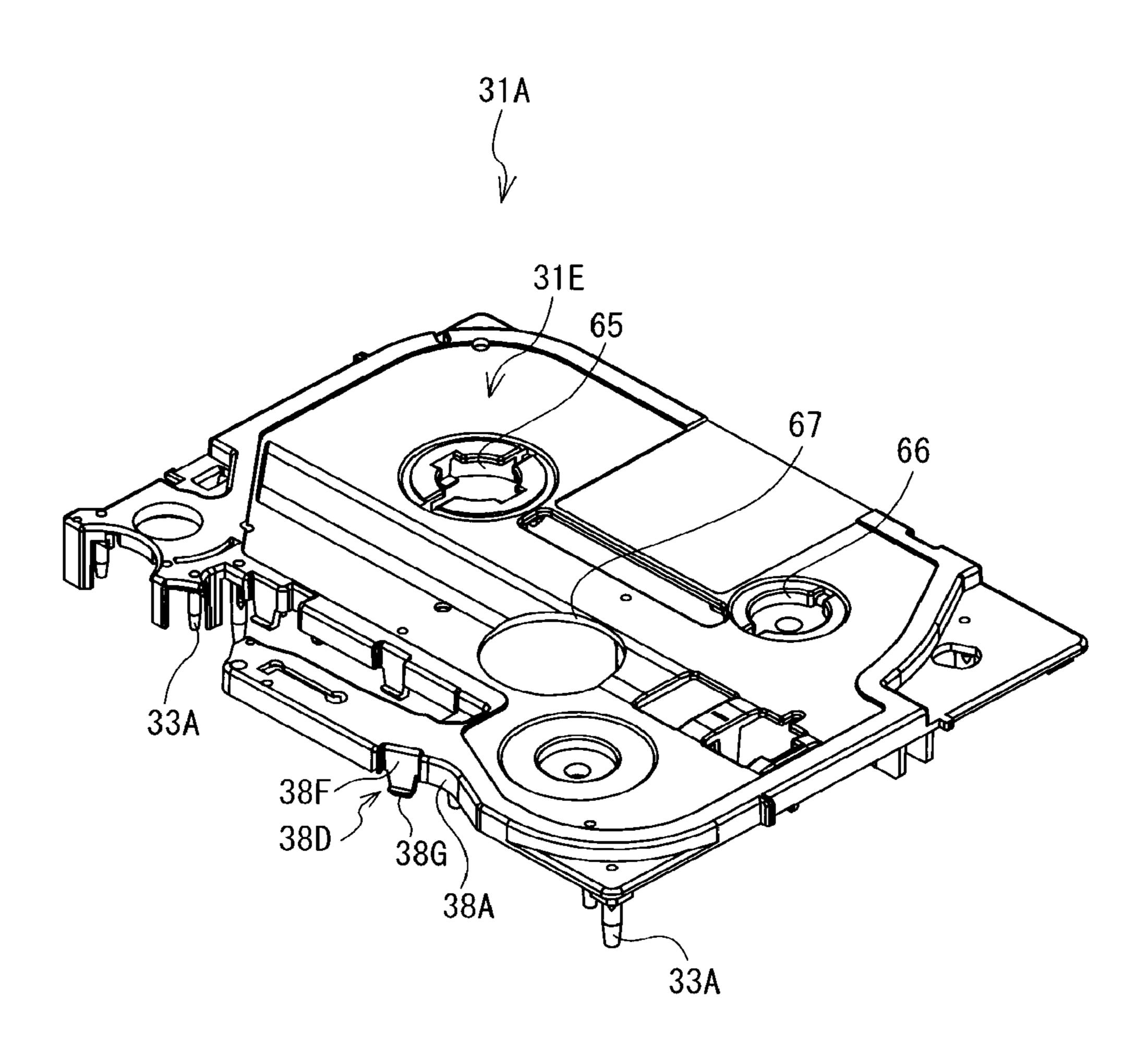
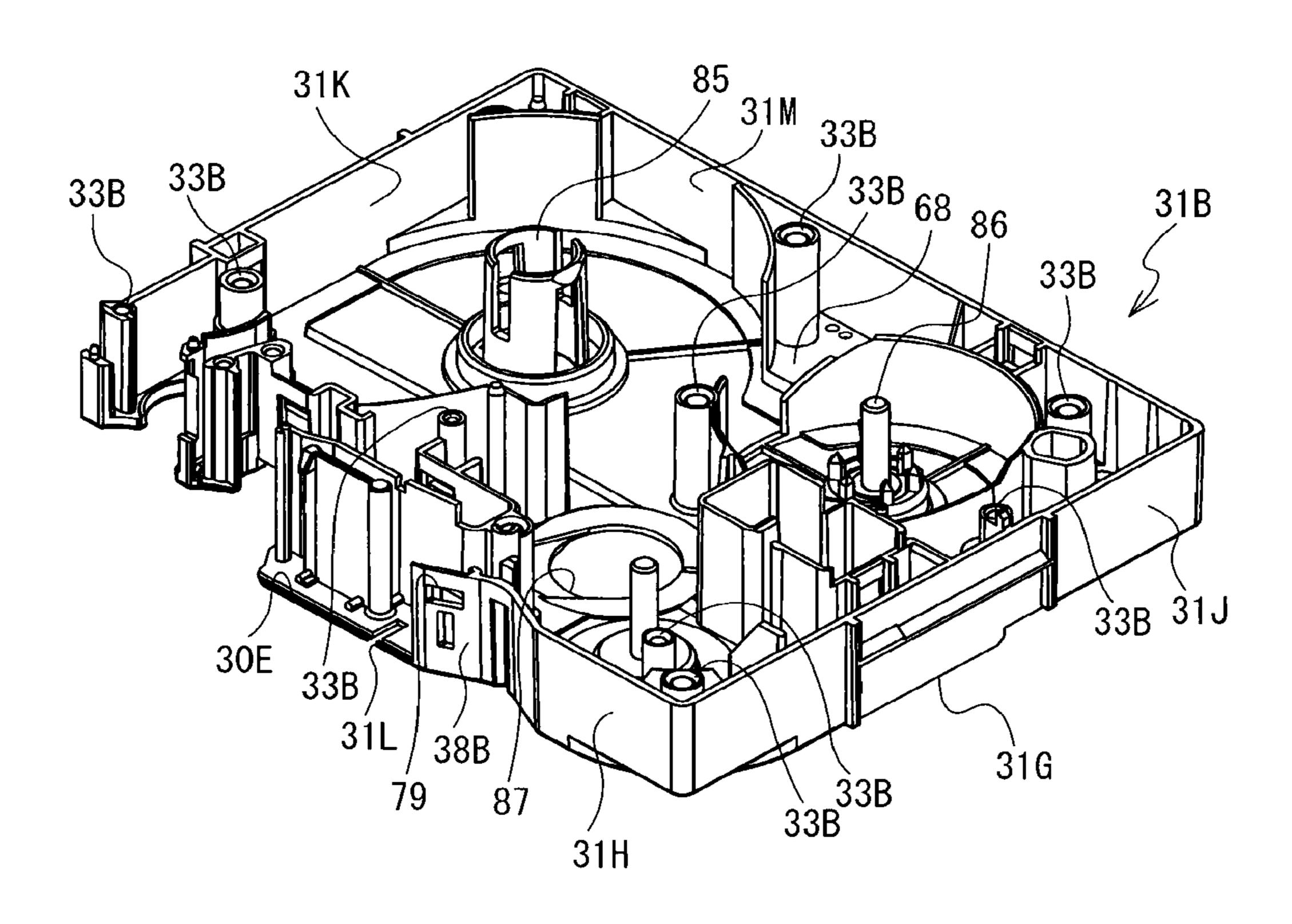
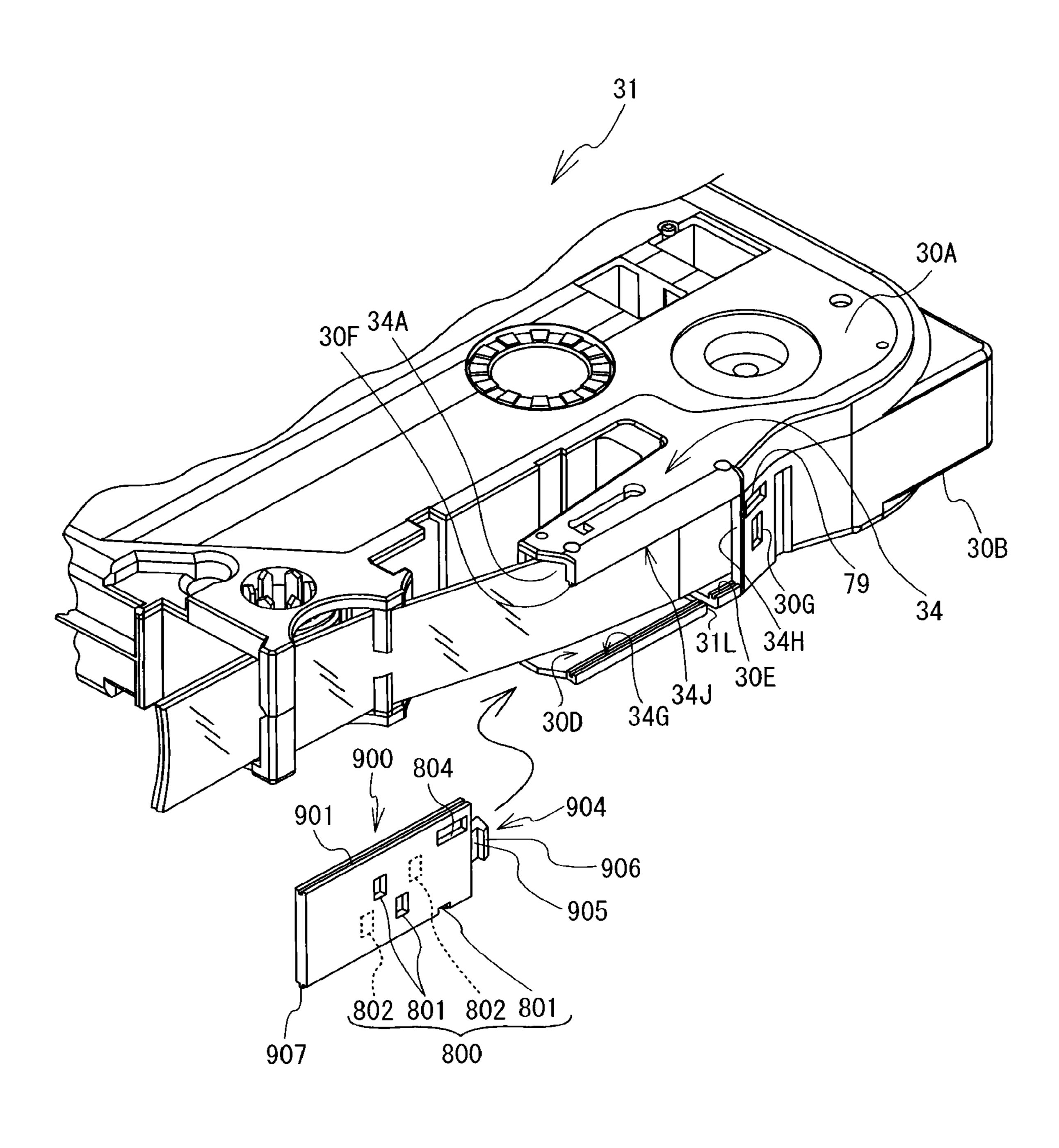
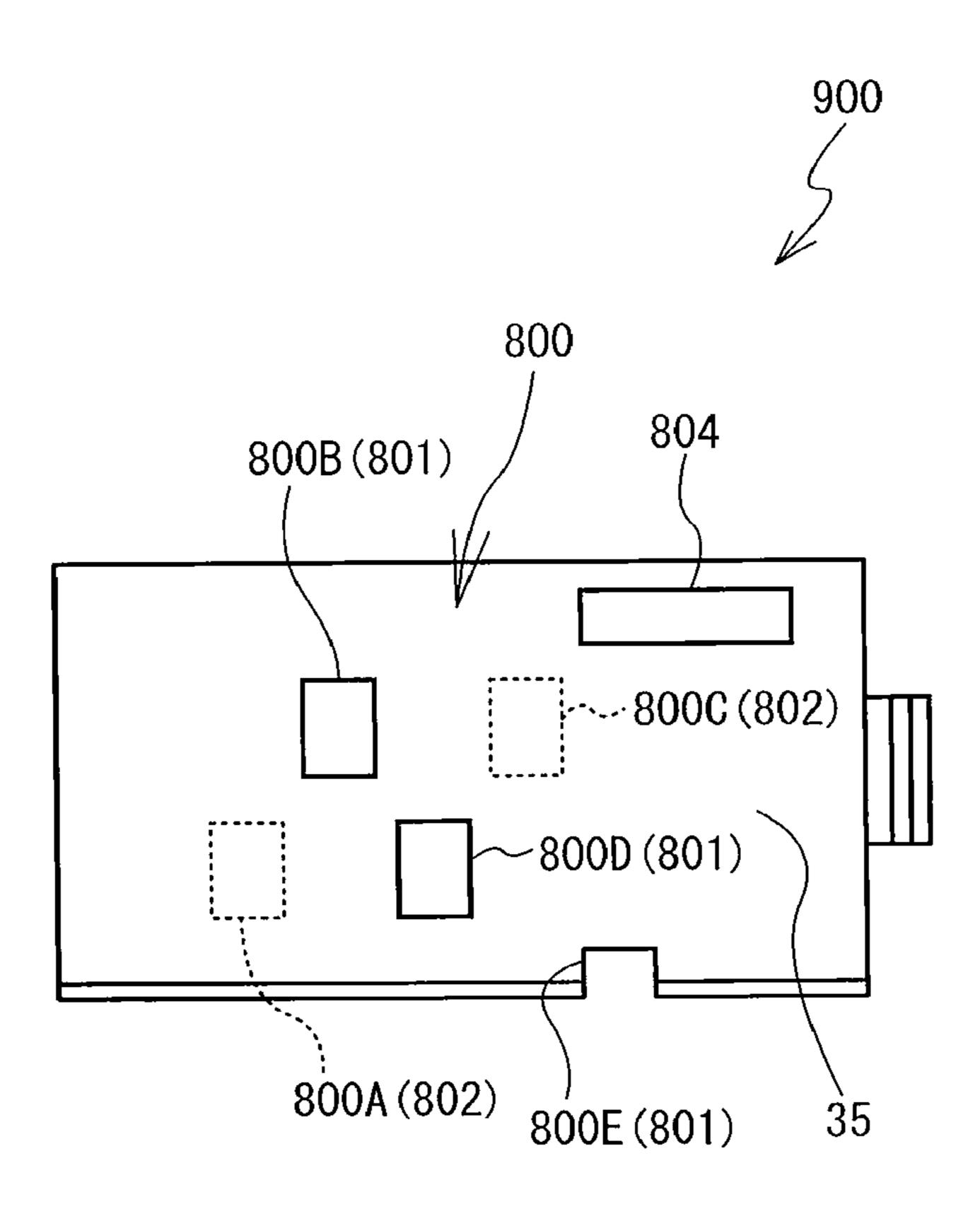


FIG. 8

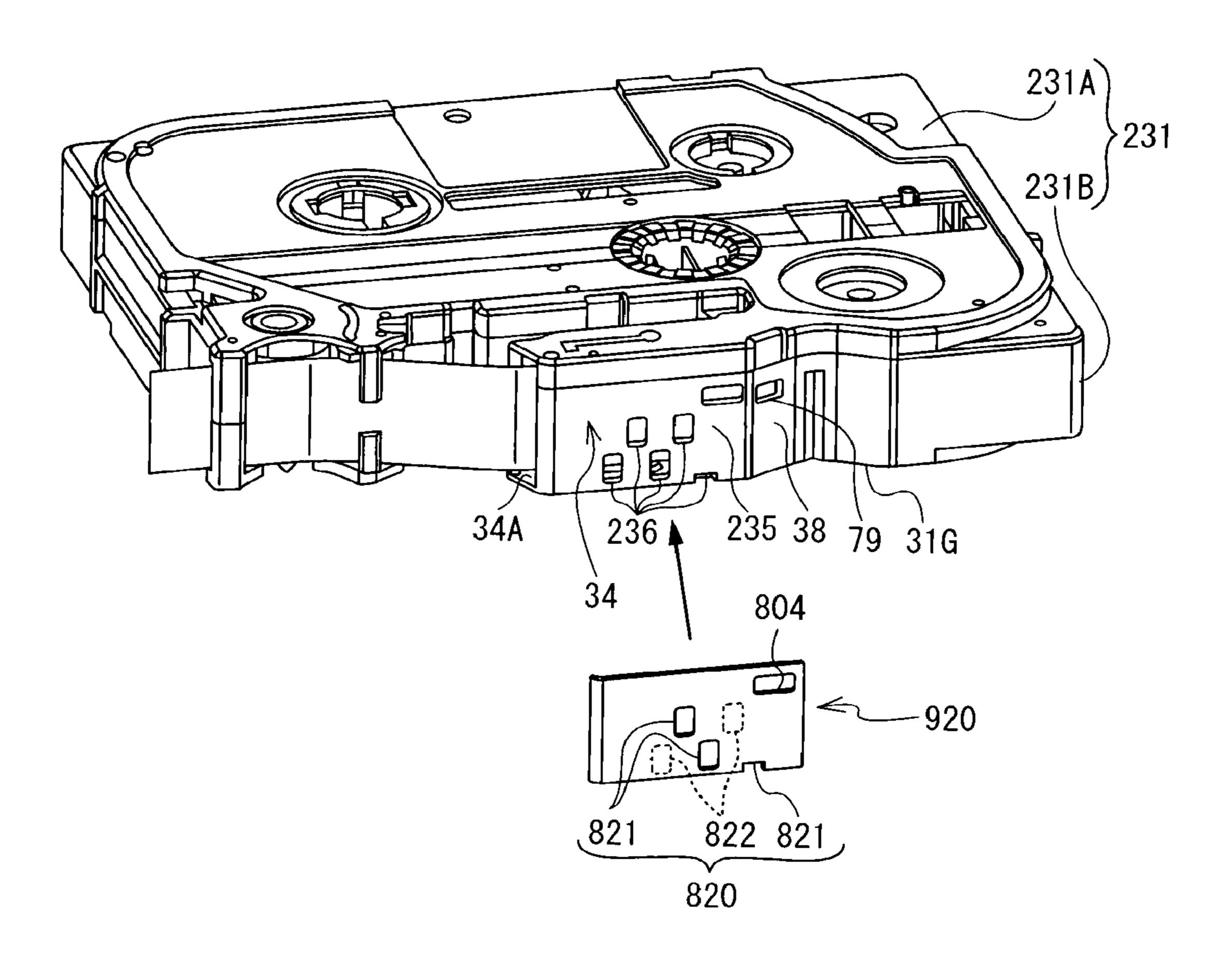





FIG. 9


F1G. 10


F1G. 11

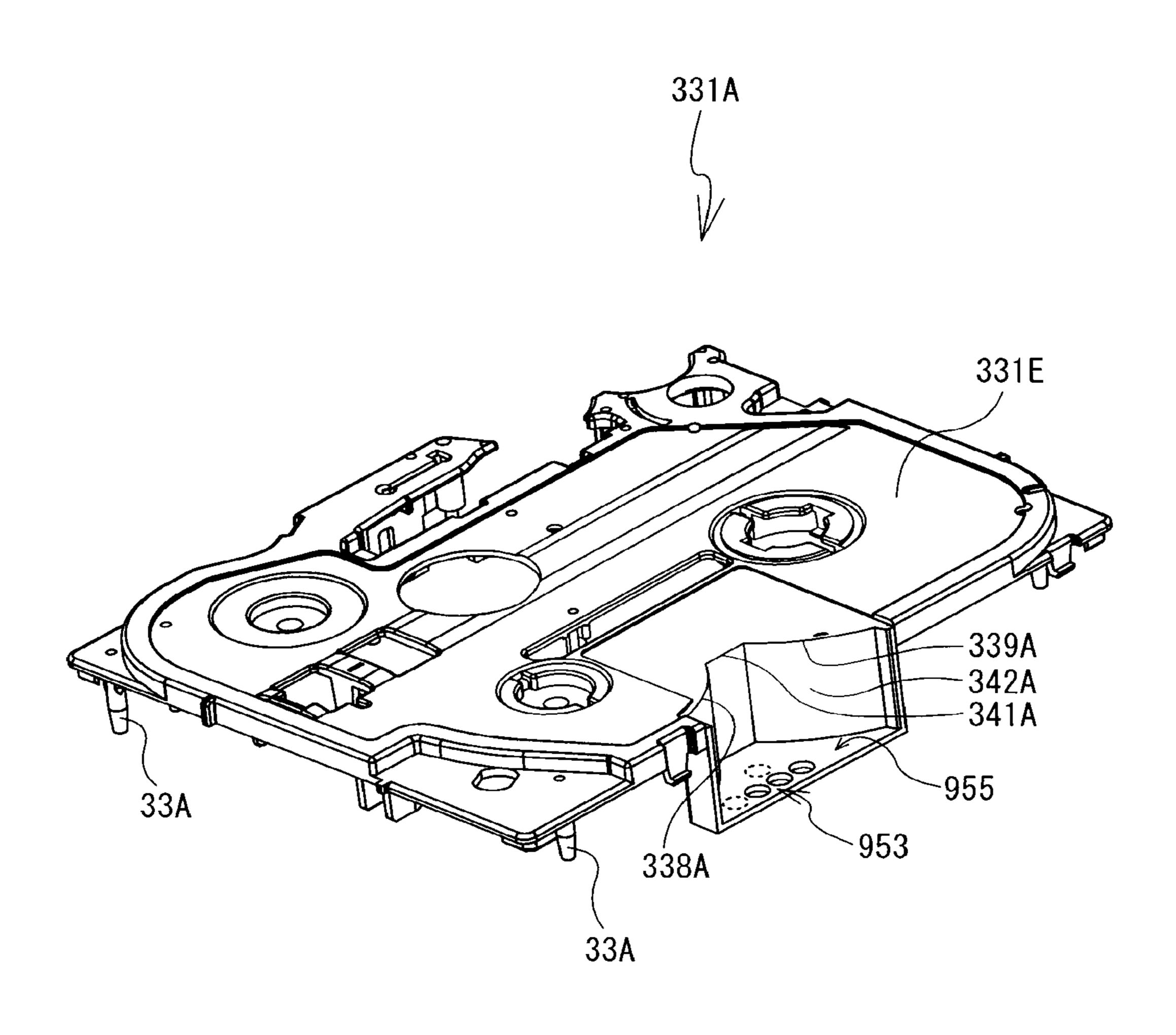
F1G. 12



F1G. 13



F1G. 14



F1G. 15

F1G. 16

F1G. 17

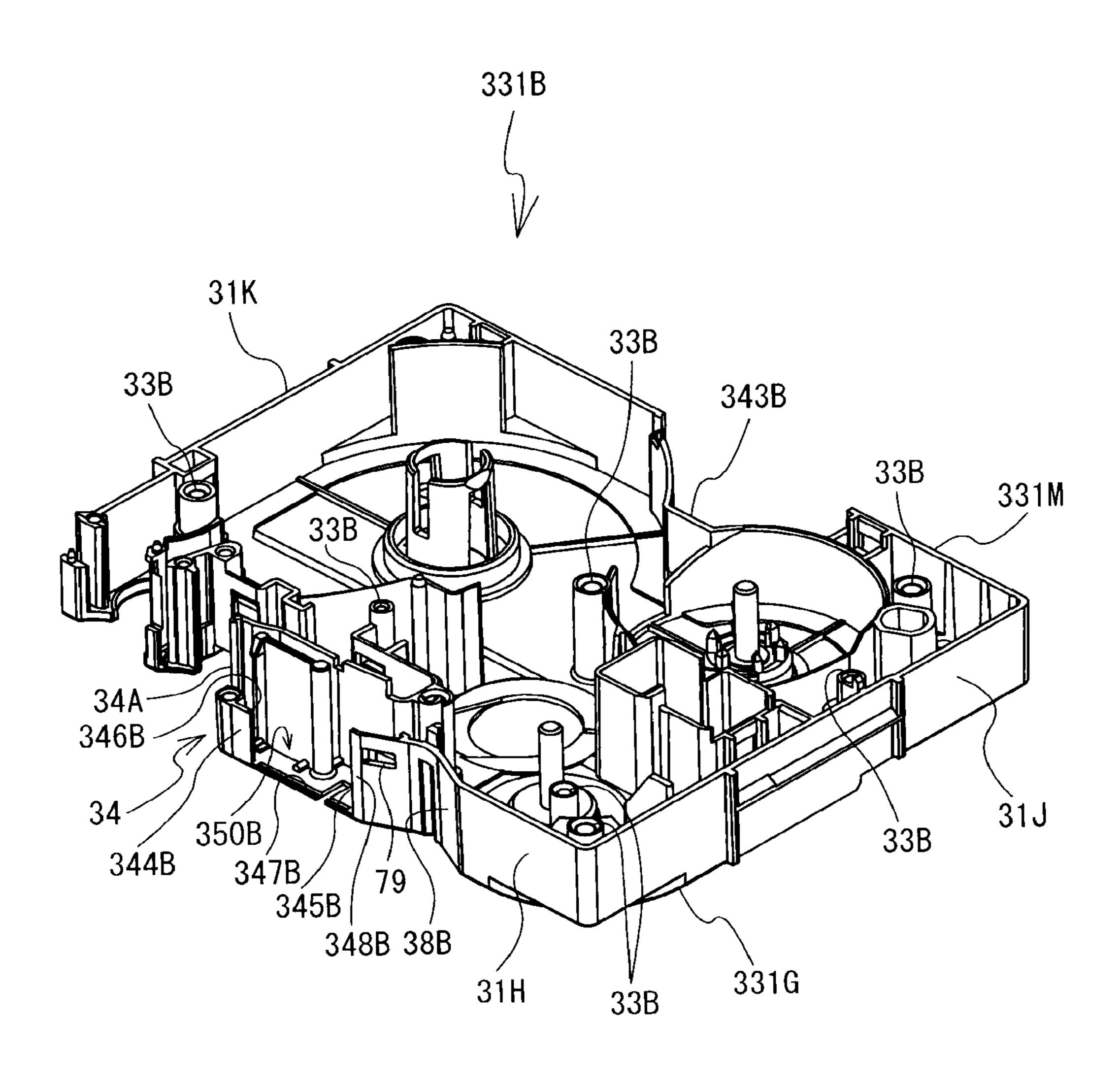
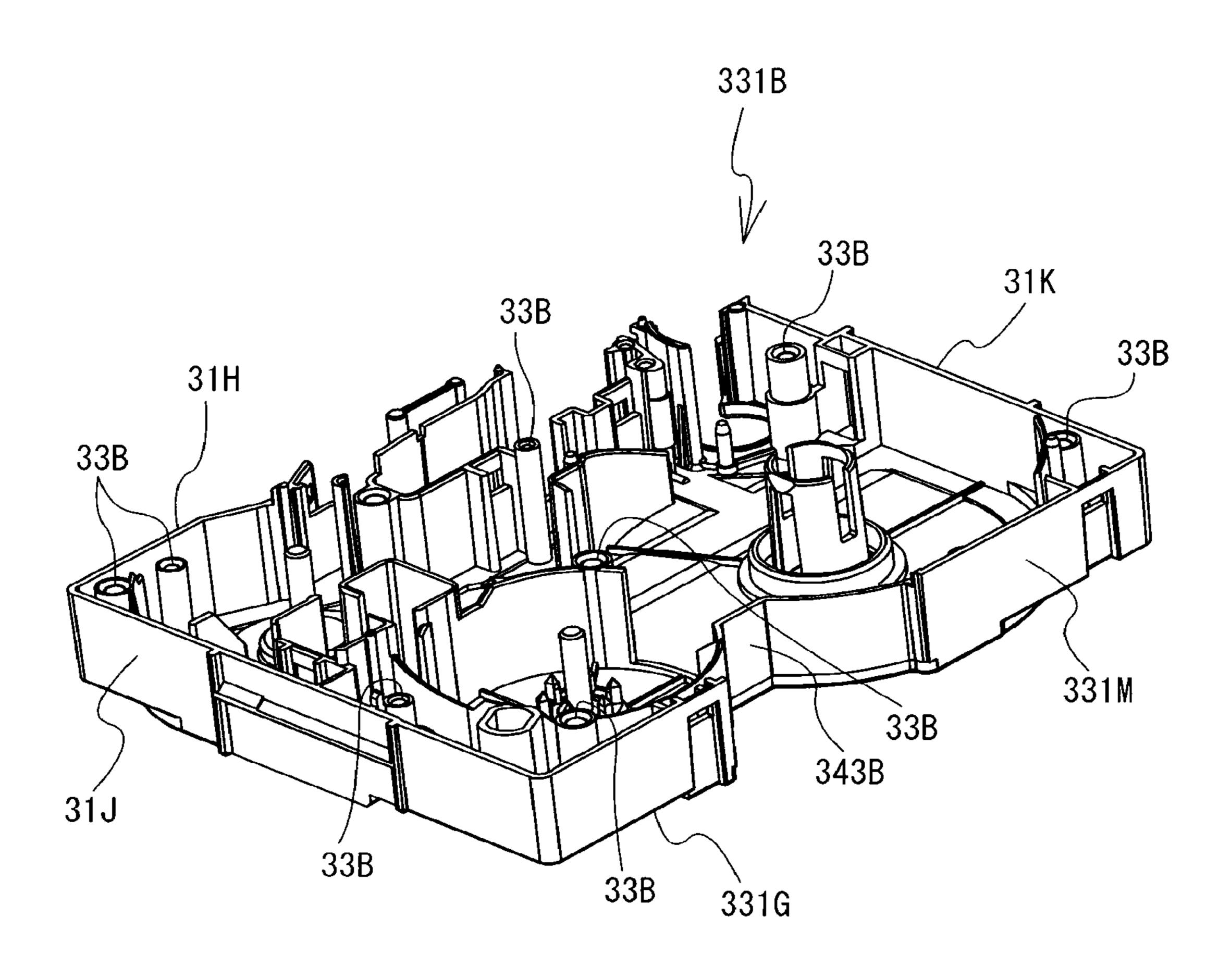
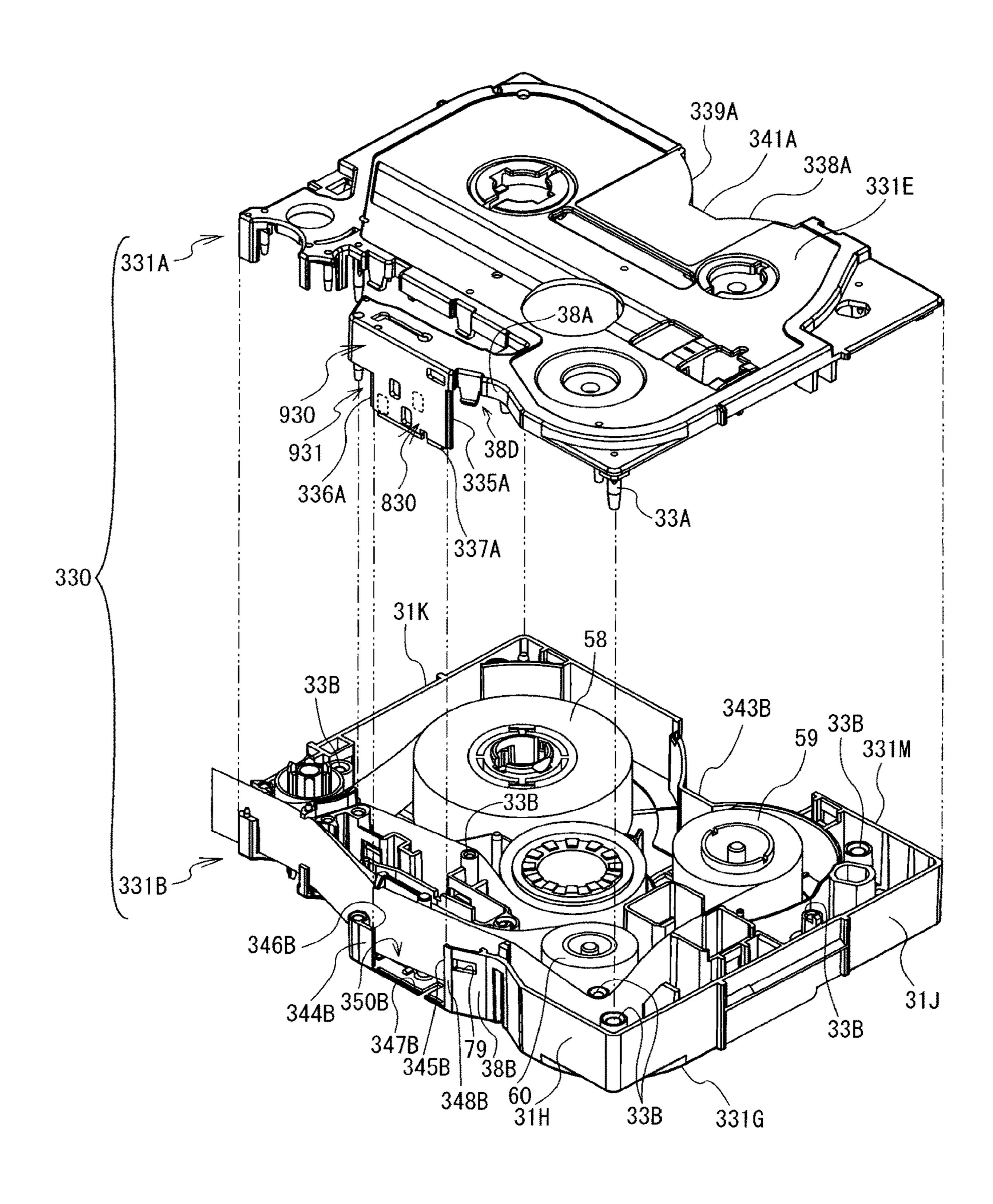
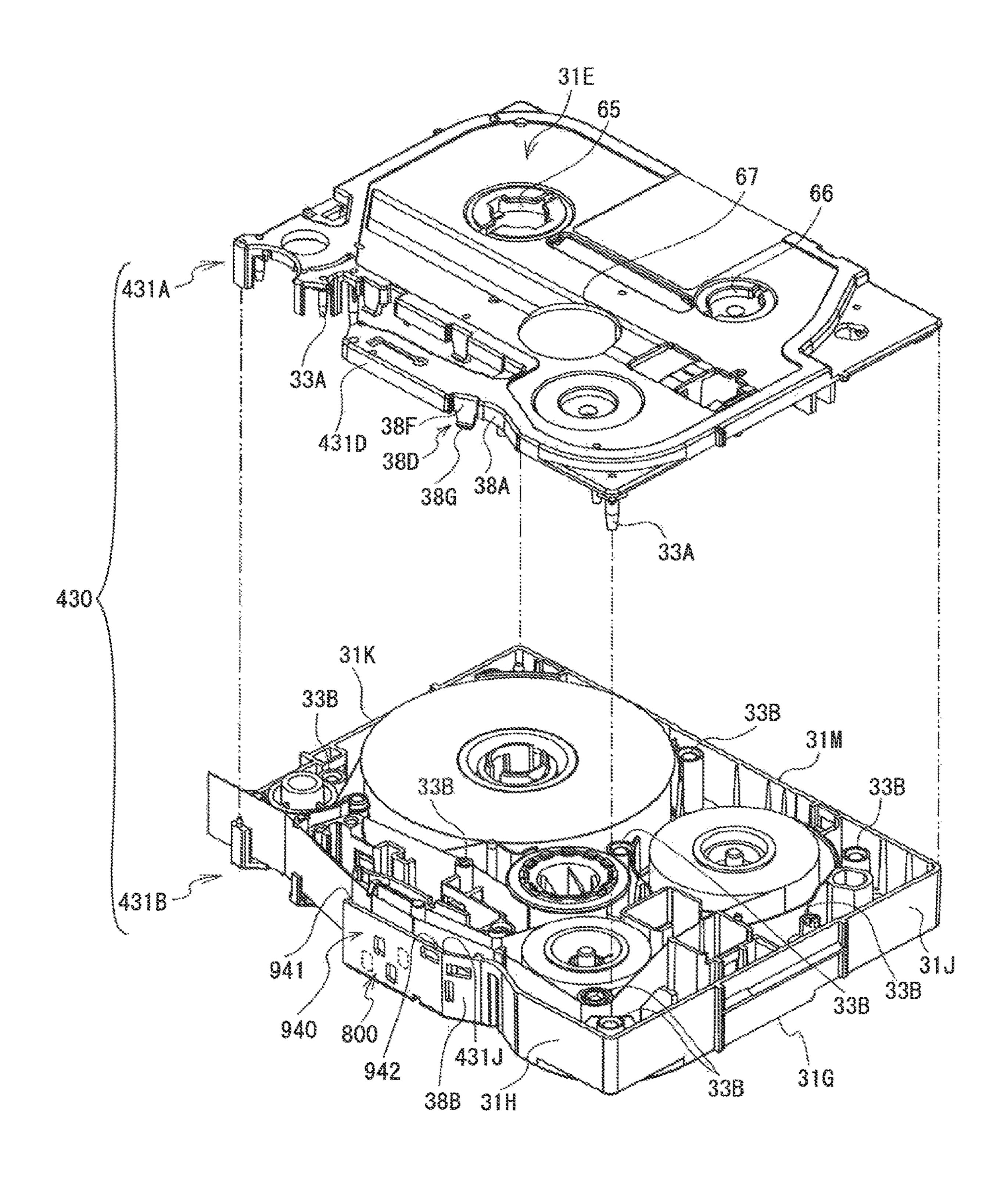
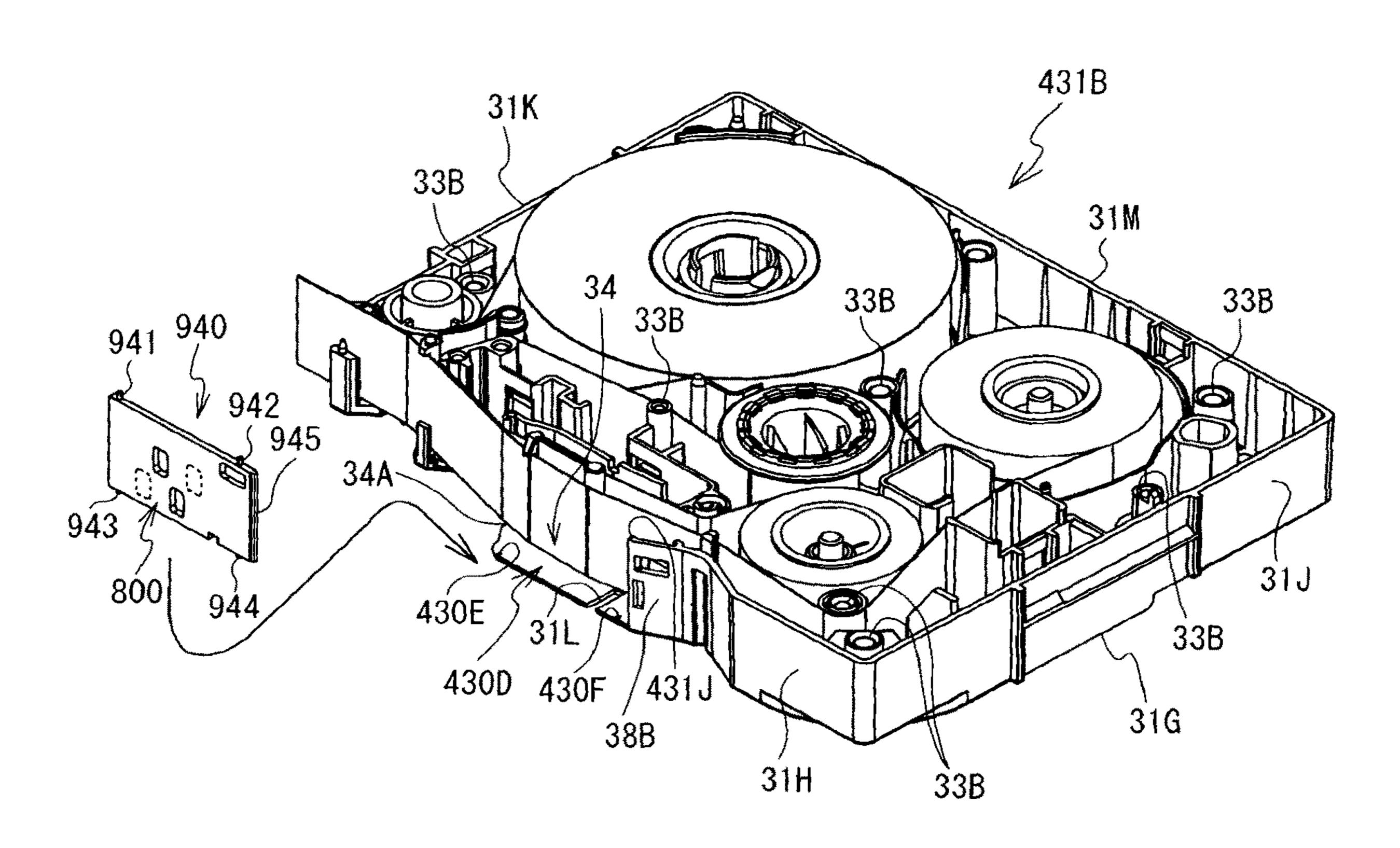
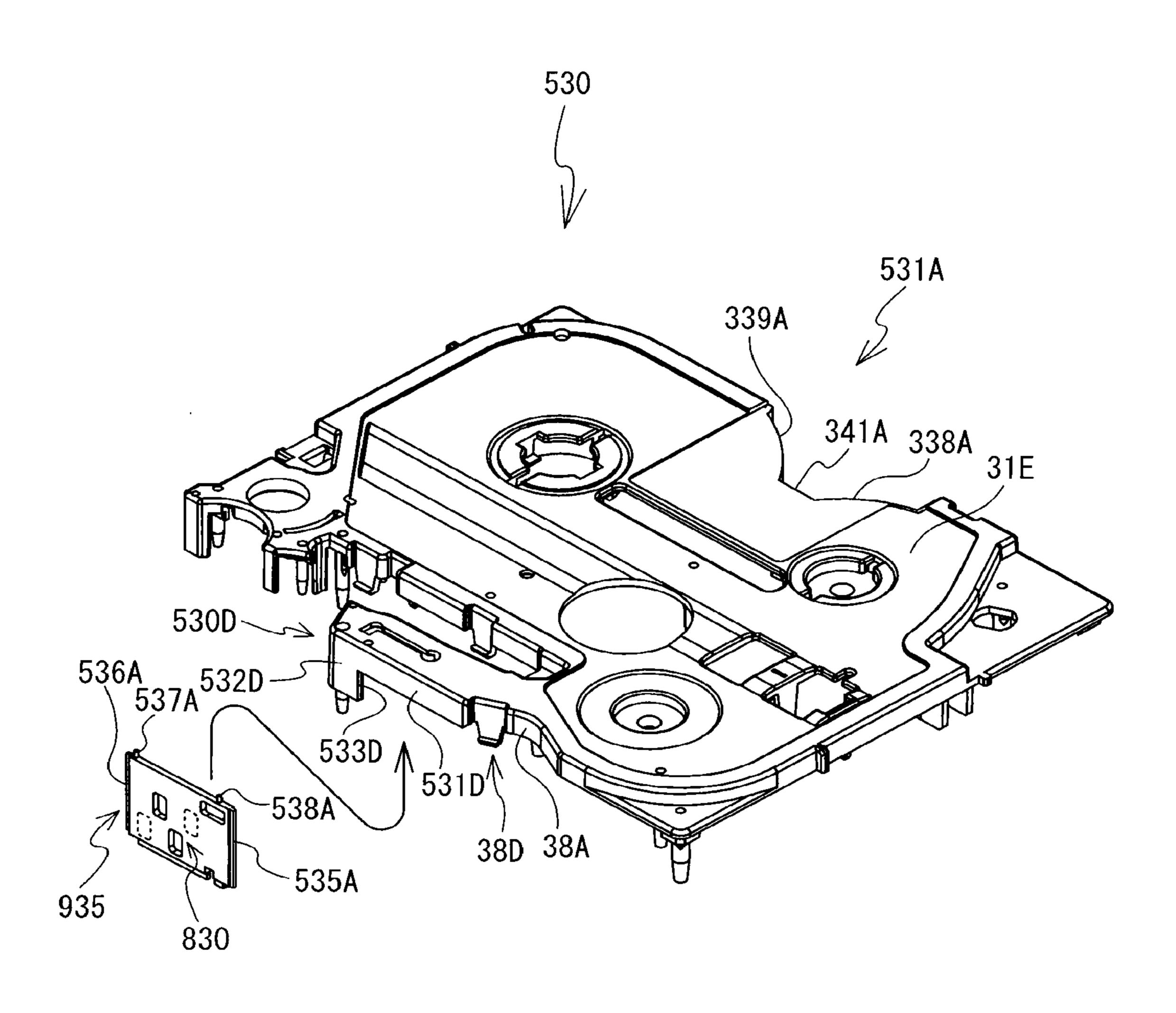
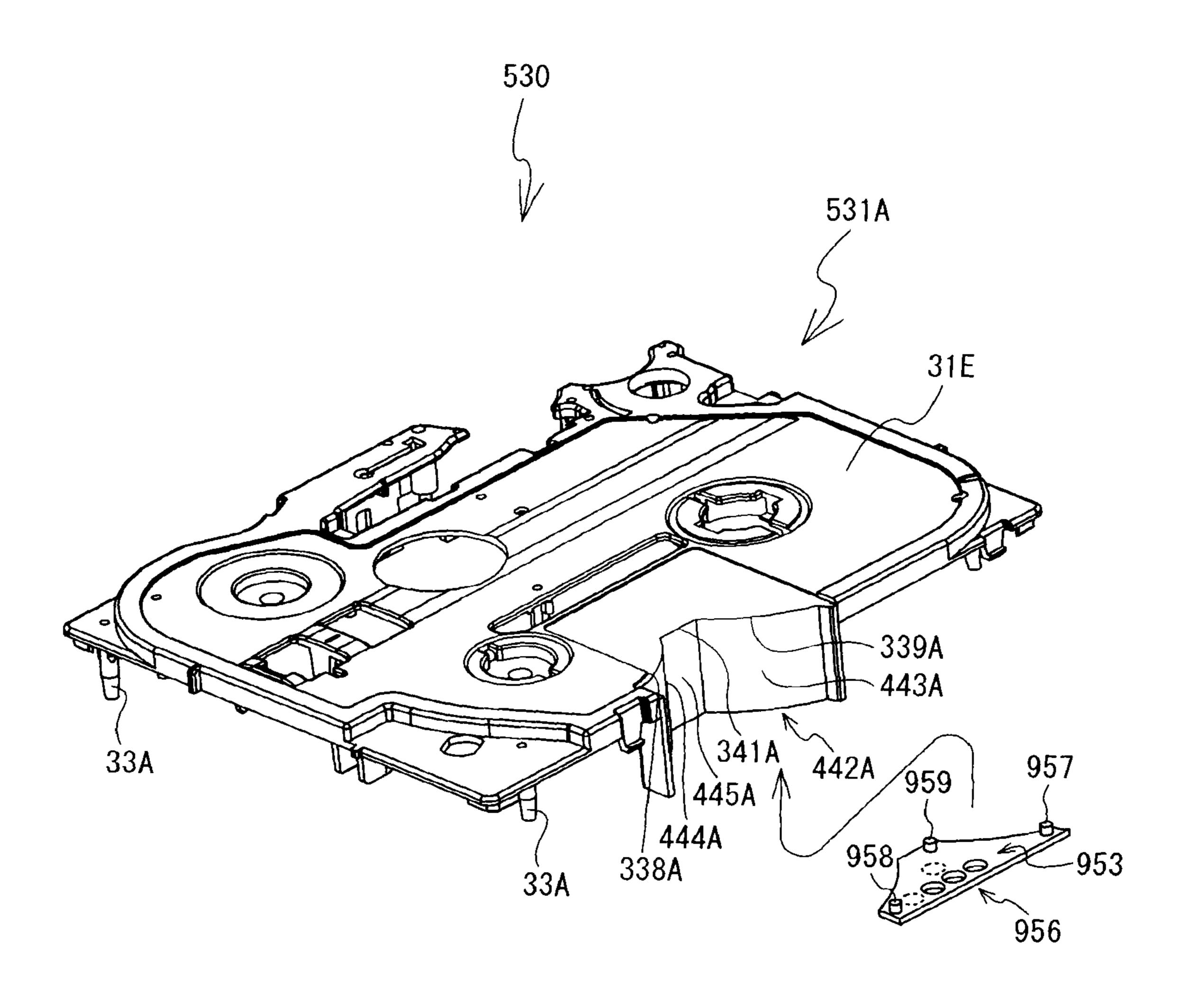


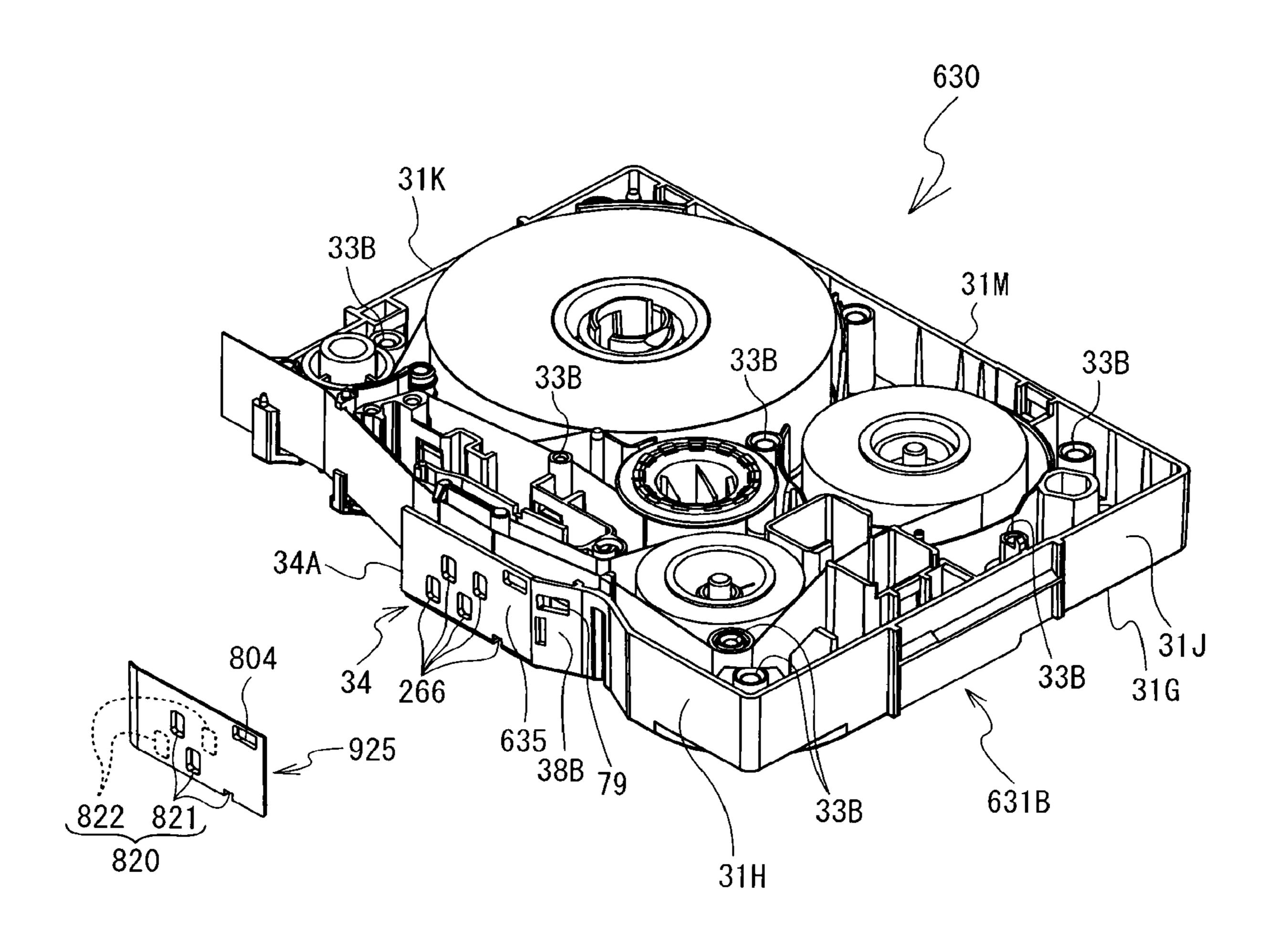
FIG. 18


FIG. 19


T 1 G. 20


F1G. 21


F1G. 22

F1G. 23

F1G. 24

1

TAPE CASSETTE

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation application of U.S. Ser. No. 16/293,984 filed on Mar. 6, 2019, which is a continuation application of U.S. Ser. No. 14/742,077 filed on Jun. 17, 2015, now U.S. Pat. No. 10,265,982 granted on Apr. 23, 2019, which is a continuation application of U.S. Ser. No. 10 13/430,033, filed on Mar. 26, 2012, now U.S. Pat. No. 9,656,495 granted on May 23, 2017, which is a continuation-in-part of International Application No. PCT/JP2009/071812, filed Dec. 28, 2009. The disclosures of the foregoing applications are hereby incorporated by reference in 15 their entirety.

BACKGROUND

The present disclosure relates to a tape cassette that can be 20 freely inserted into and removed from a tape printer.

In related art, a tape cassette is known which is structured to be freely inserted into and removed from a cassette housing portion of a tape printer, and which includes a cassette case in which a tape as a print medium is housed. 25 The cassette case is provided with a bottom case and a top case that is attached to an upper side of the bottom case. Via a print head, the tape printer prints characters, such as letters, on the tape that is pulled out from the cassette case. A plurality of types of tape cassette are prepared corresponding 30 to types (a tape width, a printing format and the like, for example) of the tape that is housed in the cassette case.

A tape cassette is known that, when it is inserted in a cassette housing portion, causes a tape printer to detect a type of a tape housed in the cassette case. In more detail, a 35 cassette detection portion, in which through holes are formed in a pattern corresponding to the type of the tape, is provided in a portion of a lower surface of the tape cassette. A plurality of detection switches that protrude upward are provided in the cassette housing portion. When the tape 40 cassette is inserted in the cassette housing portion, the plurality of detection switches are selectively pressed in accordance with the pattern of the through holes formed in the cassette detection portion. The tape printer detects the type of the tape in accordance with a combination of 45 pressing and non-pressing of the plurality of detection switches.

SUMMARY

In related art, the cassette detection portion is formed on the bottom case, and it is therefore necessary to prepare a same number of the bottom cases as the number of types of the tape. In this case, when the tape cassette is manufactured, component management for the bottom cases may become 55 complicated. In addition, since it is necessary to prepare dies that respectively correspond to the plurality of types of bottom cases, there is a possibility that manufacturing costs of the bottom cases are increased.

In addition, the pattern of the through holes and non- 60 through portions provided in the cassette detection portion is a random pattern. Therefore, even if a person visually checks the cassette detection portion, the type of the tape cannot be recognized. For this reason, there is a risk that the type of the tape housed in the cassette case by an operator is different 65 from the type of the tape indicated by the cassette detection portion.

2

Various embodiments of the broad principles derived herein provide a tape cassette that can be manufactured accurately at a low cost.

The embodiments provide a tape cassette that includes a cassette case, a tape, a tape discharge portion, a first indicator portion, a second indicator portion, an indicator member, and an attachment portion. The cassette case includes a bottom case and a top case that is attached to an upper side of the bottom case, and includes a top surface, a bottom surface, a front surface and a pair of side surfaces. The tape is housed in the cassette case. The tape is a print medium. The tape discharge portion discharges, from the cassette case, the tape that has been guided in the cassette case along a predetermined feed path, at least part of which extends in parallel with the front surface. The first indicator portion indicates a type of the tape. The second indicator portion indicates a type of the tape, which is different from that indicated by the first indicator portion. The indicator member is a member independent from the top case and the bottom case, and is provided with the second indicator portion. The attachment portion is provided on the cassette case. The indicator member is removably attached to the attachment portion.

The embodiments also provide a tape cassette that is configured to be installed in and removed from a tape printer having a printhead and a plurality of detecting switches. The tape cassette includes a cassette case, a tape, a first indicator portion, a second indicator portion, an indicator member, an attachment portion, a head insertion portion, and an arm portion. The cassette case includes a bottom case and a top case that is attached to an upper side of the bottom case, and includes a top surface, a bottom surface, a front surface and a pair of side surfaces. The tape is housed in the cassette case. The tape is a print medium. The first indicator portion includes at least one hole and indicates a type of the tape. The second indicator portion includes at least one hole and at least one surface portion and indicates a type of the tape, which is different from that indicated by the first indicator portion. The indicator member is a member independent from the top case and the bottom case, and is provided with the second indicator portion. The attachment portion is provided on the cassette case. The indicator member is removably attached to the attachment portion. The head insertion portion is a space extending through the cassette case in a vertical direction. The printhead is inserted into the head insertion portion when the tape cassette is installed in the tape printer. The arm portion includes a part of the front surface, guides feeding of the tape, and discharges the tape toward the printhead that is inserted into the head insertion 50 portion. The first indicator portion is formed in the part of the front surface included in the arm portion. The second indicator portion is formed in the bottom surface, opposes the plurality of detecting switches that protrude toward the bottom surface when the tape cassette is installed in the tape printer, and selectively presses a part of the plurality of detecting switches that oppose to the at least one surface portion without pressing the at least one switch that opposes to the at least one hole of the second indicator portion.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be described below in detail with reference to the accompanying drawings in which:

FIG. 1 is a perspective view of a tape printer 1, as seen from above, when a cassette cover 6 is in a closed state.

FIG. 2 is a perspective view of the tape printer 1, as seen from above, when the cassette cover 6 is in an open state.

FIG. 3 is a cross-sectional view in a direction of arrows taken along a line I-I in FIG. 2.

FIG. 4 is a plan view of a cassette housing portion 8 in which a tape cassette 30 has been inserted, in a case where a platen holder 12 is in a stand-by position.

FIG. 5 is a plan view of the cassette housing portion 8 in which the tape cassette 30 has been mounted, in a case where the platen holder 12 is in a print position.

FIG. 6 is a partially enlarged view of a cassette-facing surface **12**B that is provided with an arm detection portion 10 **200**.

FIG. 7 is a cross-sectional view in the direction of arrows taken along a line II-II in FIG. 6.

FIG. 8 is a block diagram showing an electrical configuration of the tape printer 1.

FIG. 9 is a perspective view of the tape cassette 30 according to a first embodiment.

FIG. 10 is a perspective view of a top case 31A.

FIG. 11 is a perspective view of a bottom case 31B.

FIG. 12 is a view in which a first indicator member 900 20 is attached to an open portion 30D.

FIG. 13 is an enlarged front view of an arm front surface **35**.

FIG. 14 is a view in which a first indicator member 920 is attached to a wall portion 235 according to a second 25 embodiment.

FIG. 15 is a perspective view of a top case 331A according to a third embodiment, as seen from the front right side.

FIG. 16 is a perspective view of the top case 331A as seen from the rear right side.

FIG. 17 is a perspective view of a bottom case 331B as seen from the front right side.

FIG. 18 is a perspective view of the bottom case 331B as seen from the rear right side.

330.

FIG. 20 is an exploded perspective view of a tape cassette 430 according to a first modified example.

FIG. 21 is a view in which a first indicator member 940 is attached to an attachment portion 430D.

FIG. 22 is a view in which a first indicator member 935 is attached to an attachment portion 530D according to a second modified example.

FIG. 23 is a view in which a second indicator member 956 is attached to an extended plate portion 442A.

FIG. 24 is a view in which a first indicator member 925 is attached to a wall portion 635 according to a third modified example.

DETAILED DESCRIPTION

Hereinafter, various embodiments of the present disclosure will be explained with reference to the drawings. Note that in the explanation that follows, a video conference system that includes conference terminal devices that trans- 55 mit and receive audio data and video data will be explained as an example of a conference system, but the present disclosure can also be applied to an audio conference system that includes conference terminal devices that transmit and receive audio data only.

A tape printer 1 and a tape cassette 30 according to a first embodiment will be explained hereinafter with reference to FIG. 1 to FIG. 13. In the explanation of the present embodiment, the lower left side, the upper right side, the lower right side and the upper left side in FIG. 1 respectively correspond 65 to the front side, the rear side, the right side and the left side of the tape printer 1. The lower right side, the upper left side,

the upper right side and the lower left side in FIG. 9 respectively correspond to the front side, the rear side, the right side and the left side of the tape cassette 30.

Note that, in FIG. 4 and FIG. 5, although walls that form a periphery around a cassette housing portion 8 are shown, these drawings are simply schematic diagrams, and the walls shown in the drawings are depicted as thicker than they are in actuality. Further, in FIG. 4 and FIG. 5, the states in which the tape cassette 30 is inserted in the cassette housing portion 8 are shown with a top case 31A removed.

First, an outline structure of the tape printer 1 according to the first embodiment will be explained. The tape printer 1 is a general purpose tape printer, in which various types of tape cassette can be used, such as a thermal type, a receptor type, a laminated type and a heat sensitive laminated type. Hereinafter, an example will be described in which a laminated tape having a print surface that is laminated is created.

As shown in FIG. 1 and FIG. 2, the tape printer 1 is provided with a main unit cover 2 that has a rectangular shape in a plan view. A keyboard 3 is provided on the front side of the main unit cover 2, the keyboard 3 including character keys such as characters, symbols and numerals, a variety of function keys and so on. On the rear side of the keyboard 3 is positioned a display 5 that can display input characters and symbols. On the rear side of the display 5 is provided a cassette cover 6 that can be opened and closed when replacing the tape cassette 30 (refer to FIG. 4). A discharge slit 9 is provided to the rear of the left side of the main unit cover 2, from which a printed tape is discharged to the outside. A discharge window 11 is formed on the left side surface of the cassette cover 6, such that, when the cassette cover 6 is in a closed state, the discharge slit 9 is exposed to the outside. A hook shaped engaging lock 4, FIG. 19 is an exploded perspective view of a tape cassette 35 which protrudes downward from a lower surface, is provided substantially in the center of the front surface of the cassette cover 6. A lock hole 7 is provided in the main unit cover 2, in a position corresponding to the engaging lock 4. When the cassette cover 6 is closed, the engaging lock 4 is latched into the lock hole 7, thus inhibiting the cassette cover **6** from spontaneously opening.

> An internal structure of the main unit cover 2 that corresponds to the cassette cover 6 will be explained with reference to FIG. 2 to FIG. 7. As shown in FIG. 2, the cassette housing portion 8, which is an area in which the tape cassette 30 can be freely inserted or removed, is provided inside the main unit cover 2 that corresponds to the cassette cover 6. The cassette housing portions 8 is an area in which the tape cassette 30 can be freely inserted or removed, and 50 includes a cavity **8A** and a cassette support portion **8B**. The cavity 8A is formed as a depression that substantially corresponds to the shape of a bottom surface 30B (refer to FIG. 9) of a cassette case 31 that will be described later, and has a flat bottom surface. The cassette support portion 8B is a flat surface portion extending horizontally from outer edges of the cavity 8A.

> The shape of the cassette support portion 8B in a plan view substantially corresponds to the shape of the tape cassette 30 in a plan view, and is a rectangular shape that is longer in a left-right direction. A rear edge portion of the cavity 8A has such a shape that two arcs are arranged side by side in the left-right direction in a plan view. A portion of the cassette support portion 8B that is located between the two arcs is referred to as a rear support portion 8C. The rear support portion 8C is a portion that faces a rear indicator portion 950 (refer to FIG. 4) of the tape cassette 30 that is inserted in the cassette housing portion 8.

As shown in FIG. 2, the rear support portion 8C is provided with a rear detection portion 300. The rear detection portion 300 is provided with rear detection switches 310 that are a plurality of detection switches.

A detailed structure of the rear detection switches 310 will 5 be explained with reference to FIG. 3. Each of the rear detection switches 310 is provided with a substantially cylindrically-shaped main body portion 321 that is provided below the rear support portion 8C, and a rod-shaped switch terminal 322 that can advance from and retract into one end of each of the main body portions 321 in an axial line direction. Each of the main body portions 321 is installed in the interior of the main unit cover 2 such that the other end is fixed to a switch support plate 320. On the one end of each 15 moves in the left direction and the platen holder 12 moves of the main body portions 321, the switch terminals 322 can advance and retract through a plurality of through holes 8D formed in the rear support portion 8C. Normally, the switch terminals 322 are each maintained in a state of protruding from the main body portions 321 by spring members (not 20 shown in the drawings) that are provided in the interiors of the main body portions 321. When the switch terminals 322 are not being pressed, they are in the state of protruding from the main body portions 321 (an off state), and when the switch terminals **322** are being pressed, they are in the state 25 of being pushed into the main body portions 321 (an on state).

As shown in FIG. 2, when the tape cassette 30 is not inserted in the cassette housing portion 8, the respective rear detection switches 301 are separated from the tape cassette 30 **30**, and thus they are all in the off state. As shown in FIG. 4 and FIG. 5, when the tape cassette 30 is inserted in the cassette housing portion 8, the respective rear detection switches 310 face the bottom surface 30B of the tape indicator portion 950. The tape printer 1 detects the type of the tape (hereinafter referred to as the tape type) housed in the tape cassette 30, based on a combination of the on and off states of the respective rear detection switches **310**. The detection of the tape type by the rear detection portion 300 40 will be separately described later.

The cassette housing portion 8 is provided with a feeding mechanism that pulls out the tape from the tape cassette 30 and feeds it, a printing mechanism that prints characters etc. on a surface of the tape, and the like. As shown in FIG. 3 to 45 FIG. 5, a ribbon take-up shaft 95 is provided in the cassette housing portion 8 in a standing manner in order to rotatably drive a ribbon spool 42, which will be described later. On the front left side of the ribbon take-up shaft 95, a head holder 74 that has a substantially rectangular shape in a front view 50 is provided in a standing manner. On the left side of the head holder 74, a tape drive shaft 100 is provided in a standing manner in order to rotatably drive a tape drive roller 46, which will be described later.

As shown in FIG. 4 and FIG. 5, a thermal head 10 that 55 prints characters etc. on a film tape 59 is attached to a front surface of the head holder 74. An arm-shaped platen holder 12 is provided in front of the head holder 74 and is supported such that the platen holder 12 can swing around a shaft support portion 12A. A platen roller 15 and a movable feed 60 roller 14 are both rotatably supported on the leading end side of the platen holder 12. The platen roller 15 faces the thermal head 10 and is able to come into contact with and separate from the thermal head 10. The movable feed roller 14 faces the tape drive roller 46 that fits with the tape drive shaft 100 65 by insertion, and is able to come into contact with and separate from the tape drive roller 46.

A release lever (not shown in the drawings), which moves in the left-right direction in response to the opening and closing of the cassette cover 6, is coupled to the platen holder 12. When the cassette cover 6 is opened, the release lever moves in the right direction, and the platen holder 12 moves toward the stand-by position shown in FIG. 4. In the stand-by position shown in FIG. 4, the platen holder 12 has moved in the direction separating it from the cassette housing portion 8, and the tape cassette 30 can therefore be inserted into or removed from the cassette housing portion 8. The platen holder 12 is constantly elastically urged to remain in the stand-by position by a coil spring that is not shown in the drawings.

When the cassette cover 6 is closed, the release lever toward the print position shown in FIG. 5. In the print position shown in FIG. 5, the platen holder 12 has moved in the direction that brings it into proximity with the cassette housing portion 8. Then, when the tape cassette 30 is inserted in the cassette housing portion 8, the platen roller 15 applies pressure to the thermal head 10 via the film tape 59 and an ink ribbon 60. The movable feed roller 14 applies pressure to the tape drive roller 46 via a double-sided adhesive tape **58** and the film tape **59**. In the print position shown in FIG. 5, printing can be performed using the tape cassette 30 inserted in the cassette housing portion 8. The double-sided adhesive tape 58, the film tape 59 and the ink ribbon 60 will be described in detail later.

A feed path, through which a laminated tape 50 is fed, is provided from a tape discharge opening 49 of the tape cassette 30 to the discharge slit 9 (refer to FIG. 2) of the tape printer 1. A cutting mechanism 17 that cuts the laminated tape 50 at a predetermined position is provided on the feed path. The cutting mechanism 17 is formed by a fixed blade cassette 30 and they are selectively pressed by the rear 35 18, and a movable blade 19 that faces the fixed blade 18 and that is supported such that it can move in the forwardrearward direction (in the up-down direction shown in FIG. 4). The movable blade 19 is moved in the forward-rearward direction by a cutter motor **24** (refer to FIG. **8**).

A rear side surface of the platen holder 12, namely, a surface on a side facing the thermal head 10 is provided with an arm detection portion 200 slightly to the right of a middle position in the longitudinal direction of the surface. Hereinafter, the rear side surface of the platen holder 12 is referred to as a cassette-facing surface 12B. The arm detection portion 200 includes arm detection switches 210 that are a plurality of detection switches. A switch terminal 222 of each of the arm detection switches 210 protrudes substantially horizontally from the cassette-facing surface 12B toward the cassette housing portion 8.

In other words, each of the arm detection switches 210 protrudes in a direction that is substantially orthogonal to the direction in which the tape cassette 30 is inserted into and removed from the cassette housing portion 8, and faces a front surface (more specifically, an arm front surface 35 that will be described later) of the tape cassette 30 that is in the cassette housing portion 8. When the tape cassette 30 is inserted in a proper position in the cassette housing portion 8, each of the arm detection switches 210 is provided at a height position corresponding to the arm indicator portion 800 (refer to FIG. 9) that will be described later.

A detailed arrangement and structure of the arm detection switches 210 provided on the platen holder 12 will be explained with reference to FIG. 6 and FIG. 7. As shown in FIG. 6, five through holes 12C are provided, arranged in three rows in the up-down direction, in the cassette-facing surface 12B of the platen holder 12. Specifically, they are

arranged as two holes in a top row, two holes in a middle row and one hole in a bottom row. The positions of the through holes 12C in the left-right direction are different from each other. Specifically, the five through holes 12C are arranged in a zigzag pattern, from the right side (the left side in FIG. 6) of the cassette-facing surface 12B, in order from the bottom row, the right side of the top row, the right side of the middle row, the left side of the top row, and the left side of the middle row. The five arm detection switches 210 are provided corresponding to these through holes 12C.

As shown in FIG. 7, the arm detection switches 210 are provided with substantially cylindrically-shaped main body portions 221 that are installed in the interior of the platen holder 12, and with the rod-shaped switch terminals 222 that can advance from and retract into one end of each of the 15 main body portions **221** in the axial line direction. The other end of each of the main body portions 221 is fastened to a switch support plate 220 in the interior of the platen holder 12. On the one end of each of the main body portions 221, the switch terminals **222** can advance and retract through the 20 plurality of through holes 12C formed in the cassette-facing surface 12B of the platen holder 12. Normally, the switch terminals 222 are each maintained in a state of protruding from the main body portions 221 by spring members (not shown in the drawings) that are provided in the interiors of 25 the main body portions 221. When the switch terminals 222 are not being pressed, they are in the state of protruding from the main body portions 221 (an off state), and when the switch terminals 222 are being pressed, they are in the state of being pushed into the main body portions 221 (an on 30 state).

In a case where the tape cassette 30 has been inserted in the cassette housing portion 8, when the platen holder 12 moves toward the stand-by position (refer to FIG. 4), the respective arm detection switches 210 are separated from the 35 tape cassette 30 and thus they are all in the off state. When the platen holder 12 moves toward the print position (refer to FIG. 5), the arm detection switches 210 face the front surface (more specifically, the arm front surface 35 that will be described later) of the tape cassette 30 and are selectively 40 pressed by the arm indicator portion 800 that will be described later. The tape printer 1 detects the type of the tape in the tape cassette 30 based on a combination of the on and off states of the respective arm detection switches 210. Detection of the tape type by the arm detection portion 200 45 will be explained in more detail later.

As shown in FIG. 4 and FIG. 5, a latch projection 225 that is a plate-shaped projecting portion that extends in the left-right direction is provided on the cassette-facing surface 12B of the platen holder 12. The latch projection 225 to cassette. protrudes substantially horizontally from the cassette-facing surface 12B toward the cassette housing portion 8, in the same manner as the switch terminals 222 of the arm detection switches 210. In other words, the latch projection 225 protrudes such that it faces the front surface (more specifically, the arm front surface 35 that will be described later) of the tape cassette 30 is inserted in the proper position in the cassette housing portion 8, the latch projection 225 is provided at a height position corresponding to a latch hole 804 (refer to FIG. 9) that will be described later.

An arrangement and structure of the latch projection 225 on the platen holder 12 will be explained with reference to FIG. 6 and FIG. 7. As shown in FIG. 6, the latch projection 225 is provided on the cassette-facing surface 12B of the 65 platen holder 12 and is positioned above the detection switches 210 in the top row, extending to the right from a

8

position in the left-right direction between the arm detection switch 210 on the right side (the left side in FIG. 6) in the top row and the arm detection switch 210 in the bottom row.

As shown in FIG. 7, the latch projection 225 is integrally formed with the platen holder 12 such that it protrudes toward the rear (the left side in FIG. 7) from the cassette-facing surface 12B of the platen holder 12. A height of protrusion of the latch projection 225 when taking the cassette-facing surface 12B as a reference is substantially the same as or slightly greater than a height of protrusion of each of the switch terminals 222 when taking the cassette-facing surface 12B as a reference. A portion of a lower surface of the latch projection 225 is inclined with respect to the horizontal direction such that the thickness gradually reduces toward the leading end side (the left side in FIG. 7).

Next, an electrical configuration of the tape printer 1 will be explained with reference to FIG. 8. As shown in FIG. 8, the tape printer 1 includes a control circuit 400 formed on a control board. In the control circuit 400, a ROM 402, a CGROM 403, a RAM 404 and an input/output interface 411 are connected, via a data bus 410, to a CPU 401 that controls each instrument.

Various types of programs that are performed by the CPU 401 to control the tape printer 1 are stored in the ROM 402. A table to identify the tape type of the tape cassette 30 inserted in the cassette housing portion 8 is also stored in the ROM 402. Printing dot pattern data for printing characters is stored in the CGROM 403. A plurality of storage areas are provided in the RAM 404 for a text memory, a print buffer and the like.

The arm detection switches 210, the rear detection switches 310, the keyboard 3, a liquid crystal drive circuit (LCDC) 405, drive circuits 406, 407, 408, and the like are connected to the input/output interface 411. The drive circuit 406 is an electronic circuit for driving the thermal head 10. The drive circuit 407 is an electronic circuit for driving a tape feed motor 23. The drive circuit 408 is an electronic circuit for driving the cutter motor 24, which operates the movable blade 19. The liquid crystal drive circuit (LCDC) 405 includes a video RAM (not shown in the drawings) for outputting display data to the display 5.

Next, a structure of the tape cassette 30 according to the present embodiment will be explained with reference to FIG. 4, FIG. 5 and FIG. 9 to FIG. 12. The tape cassette 30 of the present embodiment is a general-purpose tape cassette that can be used as various types of tape cassettes, such as a heat-sensitive type, a receptor type, a laminated type, a heat-sensitive laminated type and the like, and an example is described in which it is used as a laminated type tape cassette

As shown in FIG. 9, the tape cassette 30 includes the cassette case 31 that is overall a substantially cuboid (box shaped) housing with corners that are rounded in a plan view. The cassette case 31 is provided with a bottom case 31B, which includes the bottom surface 30B of the cassette case 31, and a top case 31A, which includes a top surface 30A of the cassette case 31 and which is fixed to an upper portion of the bottom case 31B. Hereinafter, a distance from the bottom surface 30B to the top surface 30A is referred to as a height dimension of the tape cassette 30 or the cassette case 31.

As shown in FIG. 10, the top case 31A is provided with a rectangular-shaped top wall 31E that is longer in the left-right direction in a plan view. The top wall 31E is provided with support holes 65, 66 and 67 that rotatably support spools etc. that will be described later. A lower surface of the top wall 31E is provided with a plurality of

substantially cylinder-shaped pin portions 33A that protrude downward. An upper semi-circular portion 38A, which is recessed in a substantially semi-circular shape in a plan view, is formed on a front edge portion of the top wall 31E. A hook-shaped fixing portion 38D extends downward from a left portion of the upper semi-circular portion 38A. The fixing portion 38D includes an extending portion 38F that extends downward from the top wall 31E, and a tab portion 38G that protrudes from a leading end portion of the extending portion 38F toward the front.

As shown in FIG. 11, the bottom case 31B is formed in a box shape in which an upper portion opens, and is provided with a bottom wall 31G, a right front wall 31H, a right side wall 31J, a left side wall 31K, a back wall 31M and a lower semi-circular portion 38B. The bottom wall 31G is provided with a support hole 87 and support shafts 85 and 86 that rotatably support the spools etc. that will be described later. The bottom wall 31G is provided with a plurality of cylindrically-shaped boss portions 33B that protrude upward from a top surface. The diameter of cylindrical holes provided in the boss portions 33B is substantially the same as the diameter of the pin portions 33A. An upper end position of the boss portions 33B is the same as an upper end position of the right front wall 31H, the right side wall 31J, the left side wall 31K and the back wall 31M.

A rear surface portion **68**, which is a substantially triangular-shaped flat portion in a plan view and which corresponds to the rear support portion **8**C (refer to FIG. **2**), is provided in a substantially central portion, in the left-right direction, of the rear end edge of the bottom wall **31**G. The rear surface portion **68** is located on a same plane (namely, at a same height position) as a lower surface of a corner portion **32**A (refer to FIG. **9**). The rear surface portion **68** is provided with a rear indicator portion **950** (refer to FIG. **4** and FIG. **5**) that will be described later.

The right front wall 31H is extended from a front right corner portion of the bottom case 31B to the left along a front end portion of the bottom wall 31G. The lower semi-circular portion 38B, which is recessed in a substantially semi-circular shape in a plan view, is provided continuously to the left side of the right front wall 31H. The lower semi-circular portion 38B is positioned slightly to the right of the center in the left-right direction of the cassette case 31. An upper left portion of the lower semi-circular portion 38B is provided with a fixing hole 79 that is a 45 horizontally long rectangular through hole in a front view.

When the top case 31A (refer to FIG. 9) is attached to the bottom case 31B, the pin portions 33A are inserted from above into the cylindrical holes of the boss portions 33B. When the top case 31A is pushed downward, the tab portion 50 38G of the top case 31A is fitted into the fixing hole 79 of the bottom case 31B. Thus, the top case 31A is attached to the bottom case 31B and the cassette case 31 is formed. An open portion 30D (refer to FIG. 12) that will be described later is formed in the front surface of the cassette case 31. 55

As shown in FIG. 9, the cassette case 31 has corner portions 32A that are formed to have the same width (the same length in the up-down direction) regardless of the tape type (the tape width, the printing format and the like, for example) of the tape cassette 30. The corner portions 32A 60 protrude to the outside so as to form a right angle in a plan view. However, in the plan view, the front left corner portion 32A does not form a right angle because the tape discharge opening 49 is provided in the corner.

As shown in FIG. 4 and FIG. 5, three types of tape rolls, 65 i.e., the double-sided adhesive tape 58 wound around a first tape spool 40, the transparent film tape 59 wound around a

10

second tape spool 41, and the ink ribbon 60 wound around the ribbon spool 42 are housed in the cassette case 31. The double-sided adhesive tape 58 is a double-sided tape having a surface to which a release paper is adhered, and is adhered to a print surface of the printed film tape 59.

The first tape spool 40, around which the double-sided adhesive tape 58 is wound with the release paper facing the outside, is rotatably arranged in a rear left portion inside the cassette case 31 via the above-described support hole 65.

The second tape spool 41, around which the film tape 59 is wound, is rotatably arranged in a rear right portion inside the cassette case 31 via the above-described support hole 66. The ink ribbon 60 that is wound around the ribbon spool 42 is rotatably arranged in a front right portion inside the cassette case 31.

The rear indicator portion 950 is provided between the double-sided adhesive tape 58 that is wound around the first tape spool 40 and the film tape 59 that is wound around the second tape spool 41. The rear indicator portion 950 is provided in a position that corresponds to the rear detection portion 300 (refer to FIG. 3). The rear indicator portion 950 has a plurality of indicator portions. Each of the indicator portions is either a non-pressing portion 951 that is a hole, whose opening shape is circular, into which the switch terminal 322 can be inserted, or a pressing portion 952 that is a surface portion that comes into contact with the switch terminal 322. The rear indicator portion 950 of the present embodiment includes either the non-pressing portion 951 or the pressing portion 952 in each of five positions corresponding to the five switch terminals 322.

The arrangement pattern of the non-pressing portions 951 and the pressing portions 952 is determined in accordance with information (color information) indicating a tape color and a character color of the tape cassette 30. Note that a data table, in which the combinations of the on and off states of the five rear detection switches 310 are associated with the color information of the tape cassette 30, is stored in the ROM 402 (refer to FIG. 8) of the tape printer 1. In this data table, the off state of the rear detection switch 310 corresponds to the non-pressing portion 951, and the on state of the rear detection switch 310 corresponds to the pressing portion 952.

A ribbon take-up spool 44 is rotatably arranged via the above-described support hole 67 between the first tape spool 40 and the ribbon spool 42 inside the cassette case 31. When the ribbon take-up spool 44 is rotatably driven by the ribbon take-up shaft 95 that is fitted into its interior by insertion, the ribbon take-up spool 44 pulls out the ink ribbon 60 from the ribbon spool 42 and takes up the ink ribbon 60 that has been used for printing characters etc.

As shown in FIG. 9, a semi-circular groove 38 that is a groove portion forming a generally semi-circular shape in a plan view is provided in the front surface of the cassette case 31, and extends across the height direction of the cassette case 31 (in other words, extends from the top surface 30A to the bottom surface 30B). The semi-circular groove 38 is provided with the upper semi-circular portion 38A formed in the top case 31A and the lower semi-circular portion 38B formed in the bottom case 31B. The semi-circular groove 38 is a recess provided such that, when the tape cassette 30 is inserted in the cassette housing portion 8, there is no interference between the shaft support portion 12A (refer to FIG. 4) of the platen holder 12 and the cassette case 31.

Of the front surface of the cassette case 31, the section that extends to the left from the semi-circular groove 38 is referred to as the arm front surface 35. A part that extends from the right portion of the tape cassette 30 in the left

direction and that is defined by the arm front surface 35, and an arm back surface 37 that is positioned separately to the arm front surface 35 in the rearward direction and extending in the height direction, is referred to as an arm portion 34.

As shown in FIG. 4 and FIG. 5, the film tape 59 pulled out from the second tape spool 41 and the ink ribbon 60 pulled out from the ribbon spool 42 are both guided into the arm portion 34. A discharge opening 34A is formed by the arm front surface 35 and the leading end of the arm back surface 37. The film tape 59 and the ink ribbon 60 that have been 10 guided into the arm portion 34 are overlapped at the discharge opening 34A and discharged toward an exposure portion 77 that will be described later.

A space that is defined by the arm back surface 37 and by a peripheral wall surface which is provided continuously 15 from the arm back surface 37, that is a generally rectangular shape in a plan view and that penetrates the tape cassette 30 in the up-down direction, is a head insertion portion 39. The head insertion portion 39 is connected to the outside at the front surface of the tape cassette 30 through the exposure portion 77 that is an opening provided in the front surface of the tape cassette 30. The head holder 74 that supports the thermal head 10 of the tape printer 1 is inserted into the head insertion portion 39. At the exposure portion 77, one of the surfaces of the film tape 59 discharged from the discharge 25 opening 34A of the arm portion 34 is exposed to the front, and the other surface of the film tape **59** faces the thermal head 10 positioned to the rear. In the present embodiment, the other surface of the film tape **59** faces the thermal head 10 with the ink ribbon 60 interposed therebetween. At the 30 exposure portion 77, printing is performed on the film tape 59 by the thermal head 10 using the ink ribbon 60.

The tape drive roller 46 is rotatably and axially supported on a downstream side of the head insertion portion 39, in a feed direction of the film tape 59 and the ink ribbon 60 from 35 the discharge opening 34A of the arm portion 34 to the tape discharge opening 49. When the tape drive roller 46 is rotatably driven by the tape drive shaft 100 that is fitted into its interior by insertion, it pulls out the print tape 59 from the second tape spool 41 by moving in concert with the movable 40 feed roller 14 of the platen holder 12 that faces the tape drive roller 46. At the same time, the double-sided adhesive tape 58 is pulled out from the first tape spool 40 and guided so that it adheres to the print surface of the film tape 59.

As shown in FIG. 4, FIG. 5 and FIG. 9, a pair of upper and lower regulating members 36 are provided on an upstream side of the tape drive roller 46. On a downstream side of the thermal head 10, base portions of the regulating members 36 restrict the printed film tape 59 in the up-down direction (in the tape width direction) and guide it toward the tape 50 discharge opening 49. The film tape 59 and the double-sided adhesive tape 58 are bonded together correctly without generating any positional displacement between them.

A guide wall 47 is provided in a standing manner in the vicinity of the regulating members 36. The guide wall 47 55 separates the used ink ribbon 60, which has been fed via the head insertion portion 39, from the film tape 59 and guides it toward the ribbon take-up spool 44. A second separating wall 48 is provided in a standing manner between the guide wall 47 and the ribbon take-up spool 44. The second 60 separating wall 48 inhibits mutual contact between the used ink ribbon 60 that is guided along the guide wall 47 and the double-sided adhesive tape 58 that is wound on and supported by the first tape spool 40.

As shown in FIG. 9 and FIG. 12, a first indicator member 65 900, which is a plate-shaped member having a horizontally long rectangular shape in a front view, is detachably pro-

12

vided on a front portion of the arm portion 34. The first indicator member 900 is provided with the arm indicator portion 800 that indicates the tape type of the tape cassette 30. As shown in FIG. 12, when the first indicator member 900 is removed from the front portion of the arm portion 34, the open portion 30D, through which the film tape 59 can be visually checked, is formed in the front portion of the arm portion 34. When the first indicator member 900 is attached to the open portion 30D, the arm front surface 35 is formed on the front portion of the arm portion 34.

Structures of the open portion 30D and the first indicator member 900 will be explained with reference to FIG. 12. The open portion 30D is formed continuously from the discharge opening 34A to the right. The open portion 30D has a cutout shape that corresponds to a front shape of the first indicator member 900, and is provided with a lower edge surface 34G, a right edge surface 34H and an upper edge surface 34J.

A groove portion 30E is provided from the left end to the right end of the lower edge surface 34G. The right edge surface 34H is the left end face of the lower semi-circular portion 38B. A notch portion 31L, which is notched from a front edge portion of the bottom wall 31G (refer to FIG. 11) toward the rear, is formed in the lower edge surface 34G slightly to the left of the right edge surface 34H. A convex portion 30F is provided that continuously protrudes downward from the left end to the right end of the upper edge surface 34J. A through hole 30G, whose opening shape is a vertically long rectangular shape, is provided to the right of the open portion 30D.

The first indicator member 900 is formed in a flat plate shape and has a horizontally long rectangular shape in a front view. A groove portion 901 is formed from the left end to the right end of the upper end face of the first indicator member 900. A convex portion 907 is formed that continuously protrudes downward from the left end to the right end of the lower end face of the first indicator member 900.

A hook arm 904 that protrudes to the right is provided on a right end portion of the first indicator member 900. The hook arm 904 is a hook-shaped body that extends to the right using a right rear end portion of the first indicator member 900 as a base portion, and is provided with an extending portion 905 and a hook portion 906. The extending portion 905 is a plate-shaped portion having a thickness thinner than that of the first indictor member 900. The hook portion 906 is a projecting portion which protrudes from a leading end portion of the extending portion 905 toward the front, and which has a substantially triangular shape in a plan view. When the extending portion 905 receives a force from the front to the rear, it deflects to the rear.

A method for attaching and removing the first indicator member 900 to and from the open portion 30D will be explained with reference to FIG. 9 to FIG. 12. When the first indicator member 900 is attached to the open portion 30D, an operator slidingly moves the first indicator member 900 from the discharge opening 34A side to the right side, and thereby pushes the first indicator member 900 into the open portion 30D. At this time, the operator causes the groove portion 901 to slide along the convex portion 30F and also causes the convex portion 907 to slide along the groove portion 30E.

When the leading end (the right end) of the hook arm 904 reaches the right edge surface 34H and enters the rear side of the semi-circular groove 38, the hook portion 906 comes into contact with a rear surface of the semi-circular groove 38 and is pressed rearward. The extending portion 905 deflects to the rear, with the base portion serving as a base

point, because its leading end portion receives a rearward force. When the first indicator member 900 moves further to the right and the hook portion 906 reaches the through hole 30G, the hook portion 906, which is impelled by the extending portion 905, enters the through hole 30G. The position of the hook portion 906 is fixed and the first indicator member 900 is attached to the open portion 30D.

When the first indicator member 900 is removed from the open portion 30D, the operator pushes the hook portion 906 that has entered the through hole 30G toward the rear and releases the fixation of the hook portion 906. In this state, the operator slidingly moves the first indicator member 900 to the left from the inside of the open portion 30D, and thereby pulls out the first indicator member 900 to the discharge opening 34A side. At this time, the groove portion 901 is guided along the convex portion 30F and the convex portion 907 is guided along the groove portion 30E. Thus, the first indicator member 900 is removed from the open portion 30D.

The arm indicator portion 800 that is provided on the first indicator member 900 will be explained with reference to FIG. 13. The arm indicator portion 800 is provided in a position corresponding to the arm detection portion 200 (refer to FIG. 7). The arm indicator portion 800 includes a 25 plurality of indicator portions. Each of the indicator portions is either a non-pressing portion 801 that is a through hole whose opening shape is a vertically long rectangular shape and into which the switch terminal 222 can be inserted, or a pressing portion 802 that is a surface portion that comes 30 into contact with the switch terminal 222. The arm indicator portion 800 of the present embodiment includes either the non-pressing portion 801 or the pressing portion 802 at each of five positions corresponding to the five switch terminals 222.

An arrangement pattern of the non-pressing portions 801 and the pressing portions 802 is determined in accordance with the tape type (in the present embodiment, printing information that indicates the tape width and the printing format) of the tape cassette 30. Note that a data table, in 40 which the combinations of the on and off states of the five arm detection switches 210 are associated with the printing information of the tape cassette 30, is stored in the ROM 402 (refer to FIG. 8) of the tape printer 1. In this data table, the off state of the arm detection switch 210 corresponds to the 45 non-pressing portion 801, and the on state of the arm detection switch 210 corresponds to the pressing portion 802.

Hereinafter, the arrangement pattern of the non-pressing portions **801** and the pressing portions **802** will be explained 50 with reference to FIG. **13**. Note that, when the non-pressing portions **801** and the pressing portions **802** are collectively referred to or when no distinction is made between them, they are simply referred to as indicator portions **800A** to **800**E.

The indicator portion 800A and the indicator portion 800D are provided side by side along the left-right direction, slightly below the center in the vertical direction of the first indicator member 900. The indicator portion 800B and the indicator portion 800C are provided side by side along the 60 left-right direction, slightly above the center in the vertical direction of the first indicator member 900. The indicator portion 800E is provided in a right portion of a lower end portion of the first indicator member 900. In the present embodiment, the positions of the indicator portions 800A to 65 800E in the left-right direction are different from each other. In other words, the indicator portions 800A to 800E are not

14

mutually arranged in rows in the up-down direction, and the respective indicator portions **800**A to **800**E are arranged in a zigzag pattern.

In the present embodiment, the indicator portions 800A, 800B and 800E indicate the width (seven types from 3.5 mm to 36 mm, for example) of the tape that is housed in the tape cassette 30, by a combination of each of the non-pressing portions 801 and the pressing portions 802. A printing format (normal image printing or mirror image printing, for example) of the tape that is housed in the tape cassette 30 is indicated by whether the indicator portion 800C is the non-pressing portion 801 or the pressing portion 802. Other information (whether a tape color is white or a color other than white, for example) relating to the tape that is housed in the tape cassette 30 is indicated by whether the indicator portion 800D is the non-pressing portion 801 or the pressing portion 802.

In the first indicator member 900, the latch hole 804, which is a through hole having a substantially rectangular shape in a front view and which is longer in the left-right direction, is provided in the upper right of the arm indicator portion 800. The latch hole 804 is a hole portion into which the latch projection 225 is inserted when the platen holder 12 moves to the print position (refer to FIG. 5). Note that a section of a lower wall of the latch hole 804 is formed to be inclined with respect to the horizontal direction so that the an opening width of the latch hole 804 in the up-down direction is largest on the arm front surface 35 and the opening width is gradually reduced toward the inside.

When the tape cassette 30 having the above-described structure is assembled, first, as shown in FIG. 4, the operator houses the double-sided adhesive tape 58, the film tape 59 and the ink ribbon 60 respectively in predetermined positions in the bottom case 31B. Next, the operator attaches the top case 31A (refer to FIG. 10) to the bottom case 31B (refer to FIG. 11). When the top case 31A is attached to the bottom case 31B, the open portion 30D is formed in the front portion of the arm portion 34 as shown in FIG. 12. Lastly, the operator attaches the first indicator member 900 to the open portion 30D and thus the assembly of the tape cassette 30 is completed.

When the length in the up-down direction of the first indicator member 900 is smaller than a predetermined width, the length in the up-down direction of the indicator portion 800E, which is provided in the lowest position among the plurality of indicator portions 800A to 800E, may become smaller than that of the other indicator portions 800A to 800D. In this case, regardless of the fact that the indicator portion 800E is the non-pressing portion 801, there is a possibility that the switch terminal 222 of the arm detection switch 210 that faces the indicator portion 800E comes into contact with the bottom wall 31G of the bottom case 31B and the on state is established erroneously.

In the present embodiment, in a case where the indicator portion 800E is the non-pressing portion 801, when the first indicator member 900 is attached to the open portion 30D, the non-pressing portion 801 is communicatively connected to the notch portion 31L in the up-down direction (refer to FIG. 9 and FIG. 13), the notch portion 31L being formed in the open portion 30D of the bottom case 31B. Thus, even when the length in the up-down direction of the indicator portion 800E is smaller than that of the other indicator portions 800A to 800D, the arm detection switch 210 that faces the indicator portion 800E does not come into contact with the bottom wall 31G and is appropriately inserted into the non-pressing portion 801.

On the other hand, when the length in the up-down direction of the first indicator member 900 is larger than the predetermined width, the length in the up-down direction of the indicator portion **800**E is the same as that of the other indicator portions **800**A to **800**D. Therefore, in a case where 5 the indicator portion 800E is the non-pressing portion 801, in a similar way to a case in which the other indicator portions 800A to 800D are the non-pressing portions 801, it can be a hole portion that is open only in the front surface of the tape cassette 30.

A method for identifying the tape type based on the arm indicator portion 800 and the rear indicator portion 950 will be explained below.

Detection of the tape type by the arm detection portion 200 will be explained with reference to FIG. 4, FIG. 5 and 15 FIG. 13. When the tape cassette 30 is inserted in the proper position in the cassette housing portion 8 by a user and the cassette cover 6 is closed, the platen holder 12 moves from the stand-by position shown in FIG. 4 toward the print position shown in FIG. 5. In response to this, the arm 20 detection portion 200 and the latch projection 225 that are provided in the cassette-facing surface 12B of the platen holder 12 move to positions respectively facing the arm indicator portion 800 and the latch hole 804 that are provided in the arm front surface 35 of the tape cassette 30.

Each of the switch terminals **222** (refer to FIG. **6** and FIG. 7) of the five arm detection switches 210 that protrude from the cassette-facing surface 12B respectively faces either the non-pressing portion 801 or the pressing portion 802 that is provided in corresponding position of the arm indicator 30 portion 800, and the switch terminals 222 are selectively pressed. In the example of the tape cassette 30 shown in FIG. 13, the switch terminals 222 that face the indicator portions 800A and 800C in the arm indicator portion 800 are pressed the pressing portions **802**. The switch terminals **222** that face the non-pressing portions 801 in the arm indicator portion 800, namely the indicator portions 800B, 800D and 800E, are inserted into switch holes that are the non-pressing portions 801. Thus, in the arm detection portion 200, the two 40 arm detection switches 210 corresponding to the indicator portions 800A and 800C are in the on state, and the three arm detection switches 210 corresponding to the indicator portions 800B, 800D and 800E are in the off state.

As described above, the data table in which the combi- 45 nations of the on and off states of the arm detection switches 210 are associated with the printing information is stored in the ROM 402 (refer to FIG. 8) of the tape printer 1. The CPU **401** (refer to FIG. **8**) refers to this data table and identifies the printing information corresponding to the combination 50 of the on and off states of the arm detection switches 210. Specifically, the tape width, the printing format and the other information of the tape cassette 30 are identified.

The way in which the tape type is detected by the rear detection portion 300 will be explained with reference to 55 FIG. 4 and FIG. 5. As shown in FIG. 4 and FIG. 5, when the tape cassette 30 is inserted in the proper position in the cassette housing portion 8, the periphery (more specifically, the corner portions 32A) of the cassette case 31 is supported from below by the cassette support portion 8B (refer to FIG. 60 2) of the cassette housing portion 8. At the same time, the rear surface portion 68 of the bottom case 31B is supported from below by the rear support portion 8C (refer to FIG. 2).

The rear detection portion 300 (refer to FIG. 2) provided in the rear support portion 8C (refer to FIG. 2) faces the rear 65 indicator portion 950 of the tape cassette 30. More specifically, the switch terminals 322 (refer to FIG. 3) of the rear

16

detection switches 310 that protrude from the rear support portion 8C respectively face either the non-pressing portion 951 or the pressing portion 952 provided at corresponding positions in the rear indicator portion 950, and are selectively pressed. More specifically, the rear detecting switches 310 that face the non-pressing portions 951 are inserted into the non-pressing portions 951, and are thus in the off state. The rear detecting switches 310 that face the pressing portions 952 are pressed by the pressing portions 952, and 10 are thus in the on state.

As described above, the data table, in which the combinations of the on and off states of the rear detection switches **310** are associated with the color information, is stored in the ROM 402 (refer to FIG. 8) of the tape printer 1. The CPU **401** (refer to FIG. **8**) refers to this data table and identifies the color information corresponding to the combination of the on and off states of the rear detection switches 310.

The tape cassette 30 of the present embodiment is structured such that not only the tape printer 1 can recognize the printing information by detecting the arm indicator portion **800**, but also a person can recognize the printing information by visually checking the arm indicator portion 800. A method for recognizing the printing information by visually checking the arm indicator portion 800 will be explained 25 with reference to FIG. 13.

As described above, whether each of the indicator portions 800A, 800B and 800E is the non-pressing portion 801 or the pressing portion 802 is determined in advance in accordance with the tape width. The operator can ascertain the tape width by visually checking the arm indicator portion 800 and simply confirming whether each of the indicator portions 800A, 800B and 800E is the non-pressing portion **801** or the pressing portion **802**.

Whether the indicator portion 800C is the non-pressing by the surface portions of the arm front surface 35 that are 35 portion 801 or the pressing portion 802 is determined in advance in accordance with the printing format. By simply confirming the indicator portion 800C, the operator can ascertain whether normal image printing or mirror image printing is to be performed. Whether the indicator portion **800**D is the non-pressing portion **801** or the pressing portion **802** is determined in advance in accordance with the other information (whether the tape color is white or not, for example). The operator can ascertain whether the tape color is white or not by simply confirming the indicator portion **800**D.

> In this manner, in the tape cassette 30 of the present embodiment, the arrangement pattern of the non-pressing portions 801 and the pressing portions 802 is determined based on predetermined rules depending on the tape type. Therefore, the tape type (the printing information in the present embodiment) of the tape cassette 30 can be recognized by the person visually checking the arm indicator portion 800.

> Printing operations of the tape printer 1 in which the tape cassette 30 is inserted will be simply explained with reference to FIG. 4 and FIG. 5. When the tape cassette 30 is inserted in the cassette housing portion 8, the tape drive shaft 100 is fittingly inserted into the tape drive roller 46 and the ribbon take-up shaft 95 is fittingly inserted into the ribbon take-up spool 44 (refer to FIG. 4). When the cassette cover 6 is closed, the platen holder 12 moves to the print position, the platen roller 15 faces the thermal head 10, and the movable feed roller 14 presses the tape drive roller 46 (refer to FIG. **5**).

> When printing is performed in the tape printer 1, the tape drive roller 46 that is rotatably driven via the tape drive shaft 100 pulls out the film tape 59 from the second tape spool 41

by moving in concert with the movable feed roller 14. The ribbon take-up spool 44 that is rotatably driven via the ribbon take-up shaft 95 pulls out the unused ink ribbon 60 from the ribbon spool 42 in synchronization with the print speed. The film tape 59 that has been pulled out from the second tape spool 41 is fed along a feed path within the arm portion 34 while passing outside of the ribbon spool 42. Then, the film tape 59 is supplied from the discharge opening 34A to the head insertion portion 39 in a state in which the ink ribbon 60 is joined to the print surface of the film tape 59, and is fed between the thermal head 10 and the platen roller 15 of the tape printer 1.

Then, characters, graphics and symbols etc. are printed onto the print surface of the film tape 59 by the thermal head **10**. Following that, the used ink ribbon **60** is separated from 15 the printed film tape 59 at the guide wall 47 and is taken up by the ribbon take-up spool 44. Meanwhile, the double-sided adhesive tape **58** is pulled out from the first tape spool **40** by the tape drive roller 46 moving in concert with the movable feed roller 14. While being guided and caught between the 20 tape drive roller 46 and the movable feed roller 14, the double-sided adhesive tape 58 is laminated and affixed to the print surface of the printed film tape **59**. The printed film tape 59 to which the double-sided adhesive tape 58 has been affixed (namely, the laminated tape **50**) is fed toward the tape 25 discharge opening 49, and then cut by the cutting mechanism 17. Thus, the printing operations of the tape printer 1 are completed.

Note that, in the present embodiment, the laminated type tape cassette 30 formed from a general purpose cassette is 30 used in the tape printer 1 that is a general purpose machine. Therefore, the single tape printer 1 can be adapted to be used for tape cassettes of various types, such as the heat-sensitive type, the receptor type, the heat-sensitive laminated type and the like.

As explained above, in the tape cassette 30 of the first embodiment, the arm indicator portion 800 to identify the type of the tape housed in the cassette case 31 is provided on the first indicator member 900 that is independent from the top case 31A and the bottom case 31B. Therefore, the 40 common top case 31A and the common bottom case 31B can be used regardless of the type of the tape housed in the cassette case 31. As compared to a case in which the bottom cases 31B and the top cases 31A that are different depending on each tape type are prepared, it is possible to reduce the 45 types of the bottom case 31B and the top case 31A. Thus, component management of the bottom case 31B and the top case 31A during manufacture is simplified. It is possible to reduce dies for manufacturing the bottom case 31B and the top case 31A, and to reduce manufacturing costs of the tape 50 cassette 30.

The arrangement pattern of the non-pressing portions **801** and the pressing portions **802** formed in the first indicator member **900** is determined in advance so that a person can recognize the tape type by visual check. The first indicator 55 member **900** is provided on the upstream side, in the tape feed direction, of the discharge opening **34**A in the arm portion **34**. Therefore, the person can visually check the arm indicator portion **800** as well as the tape in the arm portion **34** from the front of the tape cassette **30**. Accordingly, the 60 operator can verify the type of the tape to be housed in the cassette case **31** against the tape type indicated by the arm indicator portion **800**, and it is therefore possible to accurately manufacture the tape cassette **30**.

The operator can visually check the film tape **59** housed 65 in the tape cassette **30**, at the open portion **30**D to which the first indicator member **900** is attached. The operator can

18

attach the first indicator member 900 to the open portion 30D while confirming the film tape 59 from the open portion 30D.

Since the first indicator member 900 is slidingly attached to the open portion 30D, it can be easily attached. The operator also can remove the first indicator member 900 from the open portion 30D. Therefore, even in case of a combination error of the tape type and the first indicator member 900, it is sufficient to replace only the first indicator member 900. Therefore, even if there is an assembly error of the tape or the first indicator member 900, it is possible to omit a useless process, such as disassembling the cassette case 31.

A tape cassette 230 of a second embodiment will be explained with reference to FIG. 14. In the tape cassette 230 of the second embodiment, a first indicator member 920 in the form of a film is adhered to a wall portion 235 that is formed on the upstream side, in the tape feed direction, of the discharge opening 34A in the arm portion 34. Note that the tape cassette 230 is the same as the tape cassette 30 according to the first embodiment except for some of the structural components. Therefore, the same structural components and processes are denoted with the same reference numerals and an explanation thereof is omitted or simplified.

The tape cassette 230 includes a cassette case 231 that is provided with a top case 231A and a bottom case 231B. The semi-circular groove 38 is formed in a front surface of the cassette case 231, in a similar way to the cassette case 31 of the first embodiment. The tape cassette 230 is provided with the wall portion 235 which extends from a left end portion of the semi-circular groove 38 to the discharge opening 34A and which blocks the front portion of the arm portion 34. The wall portion 235 is provided with five detection holes 236.

In the present embodiment, four of the five detection holes 236 are through holes whose opening shape is a vertically long rectangular shape, and one of them is open continuously from a right portion of a lower end portion of the wall portion 235 to the bottom wall 31G. In a state in which the tape cassette 230 is inserted in the cassette housing portion 8 of the tape printer 1, the detection holes 236 are arranged respectively at positions facing the switch terminals 222 of the arm detection switches 210. The first indicator member 920 in the form of a film is adhered to a front surface of the wall portion 235.

The first indicator member 920 will be explained with reference to FIG. 14. The first indicator member 920 is a film having a rectangular shape in a plan view, and adhesive is applied to one of its surfaces. An arm indicator portion 820 is formed in the first indicator member 920. The arm indicator portion 820 is provided with communication holes 821 and blocking portions 822 that are formed in an arrangement pattern corresponding to the type of the tape cassette 230. When the first indicator member 920 is adhered to the front surface of the wall portion 235, the communication holes 821 and the blocking portions 822 are formed in positions that respectively correspond to the plurality of detection holes 236 formed in the wall portion 235.

The plurality of communication holes 821 have an opening width that is slightly larger than that of the detection holes 236. In the present embodiment, among the plurality of communication holes 821, the communication hole 821 that is formed in a position corresponding to one of the indicator portions 800A to 800D (refer to FIG. 13) of the first embodiment is a hole whose opening shape is a vertically long rectangular shape. The communication hole 821 that is formed in a position corresponding to the indicator portion

800E (refer to FIG. **13**) of the first embodiment is a cutout portion having a convex shape that is cut out upward from a lower edge portion.

When the first indicator member 920 is affixed to the wall portion 235, the detection holes 236 that face the communication holes **821** are exposed via the communication holes 821. Therefore, the switch terminals 222 of the arm detection switches 210 can be inserted. In other words, the arm detection switches 210 that face the detection holes 236 that are exposed via the communication holes 821 are in the off state because the switch terminals 222 are inserted into the detection holes 236.

The blocking portions 822 are surface portions where the indicator member 920 is affixed to the wall portion 235, the detection holes 236 that face the blocking portions 822 are covered by the blocking portions **822**. Therefore, the switch terminals 222 of the arm detection switches 210 cannot be inserted. In other words, the arm detection switches **210** that 20 face the detection holes 236 covered by the blocking portions **822** are in the on state because the switch terminals **222** come into contact with the blocking portions 822.

An arrangement pattern of the communication holes **821** and the blocking portions **822** that are formed in the first 25 indicator member 920 is determined in advance based on predetermined rules depending on the tape type, in a similar way to the non-pressing portions 801 and the pressing portions **802** in the first embodiment. Therefore, not only the tape printer 1 can recognize the tape type by detecting the 30 first indicator member 920, but also a person can recognize the tape type by visually checking the first indicator member **920**.

As explained above, in the tape cassette 230 of the second to the wall portion 235, it is possible to change the arm indicator portion 820 that is formed on the wall portion 235. Therefore, the common top case 231A and the common bottom case 231B can be used regardless of the type of the tape housed in the cassette case 231. Further, since the first 40 indicator member 920 is a member in the form of a film, it can be formed by press working at a low cost. It is therefore possible to reduce manufacturing costs of the tape cassette 230. Note that the first indicator member 920 may be a member in the form of a sheet.

A tape cassette 330 of a third embodiment will be explained with reference to FIG. 15 to FIG. 19. In the tape cassette 330 of the third embodiment, an arm indicator portion 830 and a rear indicator portion 953 are formed on a top case 331A. Note that the tape cassette 330 is the same 50 as the tape cassette 30 according to the first embodiment except for some of the structural components. Therefore, the same structural components are denoted with the same reference numerals and an explanation thereof is omitted or simplified.

As shown in FIG. 19, the tape cassette 330 is provided with the top case 331A and a bottom case 331B. The top case 331A will be explained with reference to FIG. 15 and FIG. 16. The top case 331A is provided with a top wall 331E that left-right direction in a plan view. A rear edge portion of the top wall 331E is provided with a left arc portion 339A, which is formed in a substantially quarter arc shape that bulges toward the rear right in a plan view, and a right arc portion 338A, which is formed in a substantially quarter arc 65 shape that bulges toward the rear left in the plan view, such that they are arranged side by side in the left-right direction.

20

A middle portion 341A that extends linearly in the left-right direction is formed between the right arc portion 338A and the left arc portion 339A.

As shown in FIG. 16, a plate-shaped protruding plate portion 342A is provided that protrudes downward from the left arc portion 339A, the right arc portion 338A and the middle portion 341A. A height dimension (a dimension in the up-down direction) of the protruding plate portion 342A is the same as the height dimension from the top surface 30A of the tape cassette 330 to the lower surface of the corner portions 32A (refer to FIG. 9).

A second indicator plate portion 955, which extends in a direction orthogonal to a surface of the protruding plate portion 342A, is formed on the lower end of the protruding communication holes 821 are not formed. When the first 15 plate portion 342A, the second indicator plate portion 955 being a flat surface portion that has a substantially triangular shape in a plan view and that corresponds to the rear support portion 8C (refer to FIG. 2). The second indicator plate portion 955 is provided with the rear indicator portion 953. The rear indicator portion 953 is similar to the rear indicator portion 950 of the first embodiment and an explanation thereof is thus omitted.

> As shown in FIG. 15, a plate-shaped first indicator plate portion 930 is provided protruding downward from a central portion of the front end of the top wall 331E of the top case 331A. The first indicator plate portion 930 is formed in a substantially rectangular plate shape that is horizontally long in a front view. The first indicator plate portion 930 is a portion of the front surface of the arm portion 34 that is provided on the top case 331A.

A cutout portion 931, which is cut out in a vertically long rectangular shape in a front view, is formed in a lower left corner portion of the first indicator plate portion 930. A convex portion 335A that continuously protrudes to the right embodiment, since the first indicator member 920 is affixed 35 is provided from an upper end portion to a lower end portion of the right end face of the first indicator plate portion 930. A convex portion 336A that continuously protrudes to the left is provided from a central portion in the up-down direction to a lower end portion of the left end face of the first indicator plate portion 930. A convex portion 337A that continuously protrudes downward is provided from a left end portion to a right end portion of the lower end face of the first indicator plate portion 930. A height dimension (a dimension in the up-down direction) of the first indicator plate portion 930 is the same as the height dimension of the tape cassette 330. The first indicator plate portion 930 is provided with the arm indicator portion 830. The arm indicator portion 830 is similar to the arm indicator portion **800** of the first embodiment and an explanation thereof is thus omitted.

> Note that the pin portions 33A are provided protruding downward from a lower surface of the top wall 331E, in a similar way to the first embodiment. A height dimension of the pin portions 33A is smaller than the height dimension of 55 the first indicator plate portion 930 and the height dimension of the protruding plate portion 342A.

The bottom case 331B will be explained with reference to FIG. 17 and FIG. 18. The bottom case 331B is formed in a box shape in which an upper portion opens. A rear edge is formed in a rectangular shape that is longer in the 60 portion of a bottom wall 331G has a shape in which two substantially quarter arcs are provided side by side in a plan view in a central portion, corresponding to the shape of the rear edge portion of the top wall 331E. A central portion in the left-right direction of a back wall 331M is provided with a recessed portion 343B that is recessed toward the front in the up-down direction. The recessed portion 343B is a concave portion that is recessed in a substantially triangular

shape corresponding to the above-described second indicator plate portion 955 in a plan view.

A right guide wall 348B, which is a wall portion provided continuously to the lower semi-circular portion 38B, is provided on the left side of the lower semi-circular portion 5 38B. A groove portion 345B that is continuous from the upper end to the lower end is formed in the left end face of the right guide wall 348B. The right guide wall 348B is a portion of the front surface of the arm portion 34 that is provided on the upstream side, in the tape feed direction, of 10 the discharge opening 34A in the bottom case 331B.

On the left side of the right guide wall **348**B, a left guide wall 344B, which is a wall portion formed in a vertically long rectangular plate shape in a front view, is provided in a standing manner on the bottom wall 331G away from the 15 right guide wall **348**B. The left guide wall **344**B is a portion of the front surface of the arm portion 34 that is provided in the vicinity of the discharge opening 34A in the bottom case 331B. A groove portion 346B that is continuous from the upper end to the lower end is formed in the right end face of 20 the left guide wall **344**B.

A cutout space that opens upwardly and that is surrounded by the right guide wall **348**B, the left guide wall **344**B and the bottom wall 331G is an indicator plate attachment portion 350B to which the above-described first indicator 25 plate portion 930 is attached. In a portion of the bottom wall 331G between the right guide wall 348B and the left guide wall 344B, a groove portion 347B is formed along the left-right direction of the indicator plate attachment portion 350B.

A method for assembling the tape cassette 330 having the above-described structure will be explained with reference to FIG. 19. The operator houses the double-sided adhesive tape 58, the film tape 59 and the ink ribbon 60 respectively the operator puts the top case 331A on the bottom case 331B from above. At this time, the first indicator plate portion 930 is inserted between the right guide wall 348B and the left guide wall **344**B, namely, into the indicator plate attachment portion 350B. At the same time, the second indicator plate 40 portion 955 is inserted into the recessed portion 343B.

When the operator presses the top case 331A downward onto the bottom case 331B, the first indicator plate portion 930 slidingly moves downward in the indicator plate attachment portion 350B while being guided between the right 45 guide wall 348B and the left guide wall 344B. Specifically, the convex portion 336A slidingly moves along the groove portion 346B, and the convex portion 335A slidingly moves along the groove portion **345**B. At the same time, the second indicator plate portion 955 slidingly moves downward in the 50 recessed portion 343B while being guided by the back wall 331M.

The plurality of pin portions 33A that are provided on the top case 331A are respectively fitted into the cylindrical holes of the plurality of boss portions 33B that are provided 55 in the bottom case 331B. When the top case 331A is moved further downward, the fixing portion 38D of the top case 331A is fitted into the fixing hole 79 of the bottom case 331B. When the first indicator plate portion 930 is fitted into the indicator plate attachment portion 350B and the second 60 indicator plate portion 955 is fitted into the recessed portion 343B, the convex portion 337A of the top case 331A is joined to the groove portion 347B of the bottom case 331B. This completes the attachment of the top case 331A to the bottom case 331B.

When the top case 331A is attached to the bottom case 331B, the second indicator plate portion 955 is included in

a portion of the bottom wall 331G in a similar way to the above-described rear surface portion 68 (refer to FIG. 11). The second indicator plate portion 955 is on the same plane (i.e., at the same height position) as the lower surface of the corner portions 32A (refer to FIG. 9). Therefore, when the tape cassette 330 is inserted in the cassette housing portion 8 (refer to FIG. 2), the second indicator plate portion 955 is supported from below by the rear support portion 8C and the rear indicator portion 953 is detected by the rear detection portion 300, in a similar way to the first embodiment.

As explained above, according to the tape cassette 330 of the third embodiment, the arm indicator portion 830 and the rear indicator portion 953 are formed on the top case 331A. Therefore, the common bottom case 331B can be used regardless of the type of the tape housed in the tape cassette 330, and it is thus possible to reduce manufacturing costs of the tape cassette **330**. Further, the operator can attach the top case 331A provided with the arm indicator portion 830 to the bottom case 331B while confirming the tape housed in the bottom case 331B. Therefore, assembly errors of the cassette case 331 are reduced.

The operator can mount the arm indicator portion 830 and the rear indicator portion 953 on the tape cassette 330 by simply attaching the top case 331A to the bottom case 331B. Therefore, the workability of the tape cassette 330 in a manufacturing process is improved. Further, when the top case 331A is attached to the bottom case 331B, the first indicator plate portion 930 on which the arm indicator portion 830 is formed is guided downward by the right guide wall **348**B and the left guide wall **344**B. The second indicator plate portion 955 that is provided with the rear indicator portion 953 is guided downward by the back wall 331M. Therefore, the operator can accurately inserts the first indicator plate portion 930 into the indicator plate attachin predetermined positions of the bottom case 331B. Next, 35 ment portion 350B, and thus the workability of the tape cassette 330 in the manufacturing process is further improved.

> Note that it is needless to mention that the present disclosure is not limited to the above-described embodiments and various modifications are possible. For example, in the first embodiment, the first indicator member 900 is attached to the open portion 30D that is formed in a state in which the top case 31A is attached to the bottom case 31B. However, as shown in FIG. 21, a bottom case 431B may be provided with an attachment portion 430D to which a first indicator member 940 is attached.

> Hereinafter, a tape cassette 430 of a first modified example, in which the bottom case 431B is provided with the attachment portion 430D to which the first indicator member 940 is attached, will be explained with reference to FIG. 20 and FIG. 21. Note that the tape cassette of the first modified example is structured in a similar way to the first embodiment except that the first indicator member 940 is attached. Therefore, in the following explanation, portions different from those of the first embodiment only will be explained and the other structural components are denoted with the same reference numerals and an explanation thereof will be omitted.

As shown in FIG. 20, the tape cassette 430 of the first modified example is provided with a top case 431A and the bottom case 431B. An extending portion 431D that is formed in a horizontally long rectangular plate shape in a front view is provided on the left side of the upper semicircular portion 38A of the top case 431A. The extending 65 portion 431D extends downward from the front end of the top wall 31E. The lower end face of the extending portion 431D is provided with two concave portions (not shown in

the drawings) that are recessed upward and arranged side by side in the left-right direction.

The bottom case 431B will be explained with reference to FIG. 21. The bottom case 431B includes, on the left side of the lower semi-circular portion 38B, the attachment portion 5 430D that is a space in which the first indicator member 940 can be removably attached. The left end face of the lower semi-circular portion 38B is provided with a groove portion 431J that is continuously formed from the upper end to the lower end. In a front edge portion of a top surface of the 10 bottom wall 31G, two concave portions 430F and 430E that are recessed downward are provided from the lower semicircular portion 38B toward the left such that they are arranged side by side with an interval between them. The front edge of the lower end face of the arm portion 34 in the bottom case 331B.

A structure of the first indicator member 940 will be explained with reference to FIG. 21. The first indicator member **940** is formed in a rectangular flat plate shape that 20 is horizontally long in a front view. The upper end face of the first indicator member 940 is provided with cylindricallyshaped convex portions 941 and 942 that protrude upward such that they are arranged side by side in the left-right direction. The lower end face of the first indicator member 25 940 is provided with cylindrically-shaped convex portions 943 and 944 that protrude downward such that they are arranged side by side in the left-right direction. A convex portion 945 that continuously protrudes to the right is provided from the upper end to the lower end of the right end 30 face of the first indicator member 940. The first indicator member 940 is provided with the arm indicator portion 800, which is the same as that of the first embodiment.

A method for assembling the tape cassette 430 will be in FIG. 21, the operator attaches the first indicator member 940 to the attachment portion 430D of the bottom case **431**B. Specifically, the first indicator member **940** is caused to move downward from above the attachment portion 430D. At this time, the first indicator member 940 is 40 slidingly moved downward so that the convex portion 945 slides along the groove portion **431**J. The convex portions 943 and 944 of the first indicator member 940 are respectively fitted into the concave portions 430E and 430F of the bottom case 431B. Next, as shown in FIG. 20, the operator 45 puts the top case 431A on the bottom case 431B. At this time, the pin portions 33A of the top case 431A are fitted into the boss portions 33B of the bottom case 431B. The convex portions 941 and 942 of the first indicator member 940 are fitted into the two concave portions (not shown in the 50) drawings) provided in the lower end face of the extending portion 431D. This completes the assembly of the tape cassette 430.

According to the tape cassette 430 of the first modified example, the tape housed in the bottom case 431B can be 55 visually checked through the attachment portion 430D. While confirming the tape housed in the bottom case 431B, the operator can attach the first indicator member 940 that indicates the correct tape type to the bottom case 431B, and it is thus possible to suppress assembly errors of the tape 60 cassette 430.

As a modified example of the third embodiment, at least one of the arm indicator portion 830 and the rear indicator portion 953 may be provided on a member that can be attached to and removed from a top case **531**A. Hereinafter, 65 a tape cassette 530 of a second modified example, in which the arm indicator portion 830 and the rear indicator portion

953 are respectively provided on members that can be attached to and removed from the top case 531A, will be explained with reference to FIG. 22 and FIG. 23. Note that the tape cassette 530 of the second modified example is structured in a similar way to the third embodiment except that the arm indicator portion 830 and the rear indicator portion 953 are respectively provided on the members that can be attached to and removed from the top case 531A. Therefore, in the following explanation, portions different from those of the third embodiment only will be explained and the other structural components are denoted with the same reference numerals and an explanation thereof will be omitted.

The top case 531A will be explained with reference to concave portions 430E and 430F are provided along the 15 FIG. 22 and FIG. 23. As shown in FIG. 22, on the left side of the upper semi-circular portion 38A, a plate-shaped attachment portion **530**D is extended downward from a front end portion of the top wall 31E of the top case 531A. When viewed from the front, the attachment portion 530D has a shape obtained by rotating an L-shape by 90 degrees in the clockwise direction. The attachment portion 530D is provided with: a fixing portion 531D which is formed continuously to a left end portion of the upper semi-circular portion 38A and which has a horizontally long rectangular shape in a front view; and a downwardly extending guide portion 532D which is formed continuously to the left side of the attachment portion 530D and which has a vertically long rectangular shape in the front view. The lower end face of the fixing portion 531D is provided with two concave portions (not shown in the drawings) that are recessed upward and arranged side by side in the left-right direction. A groove portion 533D is formed that is continuous from the upper end to the lower end of the right end face of the guide portion 532D. A plate-shaped first indicator member 935 can explained with reference to FIG. 20 and FIG. 21. As shown 35 be attached to and removed from the attachment portion **530**D.

> The first indicator member 935 will be explained with reference to FIG. 22. The first indicator member 935 is formed in a substantially rectangular plate shape that is horizontally long in a front view. The upper end face of the first indicator member 935 is provided with two upwardly protruding convex portions 537A and 538A such that they are arranged side by side in the left-right direction. A convex portion 535A that continuously protrudes to the right is provided from the upper end to the lower end of the right end face of the first indicator member 935. A convex portion **536**A that continuously protrudes to the left is provided from the upper end to the lower end of the left end face of the first indicator member 935. The first indicator member 935 is provided with the arm indicator portion 830, which is the same as that of the third embodiment.

> A method for attaching the first indicator member 935 to the attachment portion 530D will be explained with reference to FIG. 22. The operator moves the first indicator member 935 upward from below the attachment portion 530D. At this time, the first indicator member 935 is slidingly moved upward so that the convex portion 536A slides along the groove portion **533**D. The convex portions 537A and 538A of the first indicator member 935 are respectively fitted into the two concave portions of the top case 531A. This completes the attachment of the first indicator member 935 to the top case 531A.

> As shown in FIG. 23, a plate-shaped extending plate portion 442A is provided that extends downward from the left arc portion 339A, the right arc portion 338A and the middle portion 341A of the top case 531A. The extending plate portion 442A is formed by a left plate portion 443A

that extends downward from the left arc portion 339A, a right plate portion 444A that extends downward from the right arc portion 338A, and a middle plate portion 445A that extends downward from the middle portion 341A. A height dimension (a dimension in the up-down direction) of the extending plate portion 442A is the same as the height dimension from the top surface 30A of the tape cassette 530 to the lower surface of the corner portions 32A (refer to FIG. 9). A left end portion of the lower end face of the left plate portion 443A, a right end portion of the lower end face of the right plate portion 444A, and a right end portion of the lower end face of the middle plate portion 445A are respectively provided with concave portions (not shown in the drawings) that are recessed upward.

As shown in FIG. 23, a second indicator member 956 can 15 be attached to and removed from the extending plate portion 442A. The second indicator member 956 is formed in a flat plate shape and has a substantially triangular shape in a plan view. A right end portion, a left end portion and a front end portion of the second indicator member 956 are respectively 20 provided with convex portions 957, 958 and 959 that protrude upward from a top surface. The second indicator member 956 is provided with the rear indicator portion 953 in a similar way to the third embodiment. When the second indicator member 956 is attached to the extending plate 25 portion 442A, the convex portions 957, 958 and 959 of the second indicator member 956 are respectively fitted into three concave portions that are formed in a lower end portion of the extending plate portion 442A of the top case 531A.

When the tape cassette 530 of the second modified 30 example is assembled, the top case 531A, to which the first indicator member 935 and the second indicator member 956 have been attached, is attached to the bottom case 331B which is the same as that of the third embodiment. In a state in which the top case 531A is attached to the bottom case 35 331B, the second indicator member 956 is included in a portion of the bottom wall 331G (refer to FIG. 19) in a similar way to the above-described second indicator plate portion 955 (refer to FIG. 16). Therefore, when the tape cassette 530 is inserted in the cassette housing portion 8 40 (refer to FIG. 2), the second indicator member 956 is supported from below by the rear support portion 8C, and the rear indicator portion 953 is detected by the rear detection portion 300.

According to the tape cassette **530** of the second modified 45 example, the first indicator member **935** and the second indicator member **956** are provided independently from the top case **531**A and the bottom case **331**B. Therefore, the common top case **531**A and the common bottom case **331**B can be respectively used regardless of the type of the tape 50 housed in the tape cassette.

As shown in FIG. 24, as a modified example of the tape cassette 230 of the second embodiment, after a first indicator member 925 is adhered to a bottom case 631B, a top case may be attached to the bottom case 631B to form a cassette 55 case. A tape cassette 630 of a third modified example, in which the first indicator member 925 is adhered to the bottom case 631B, will be explained with reference to FIG. 24.

The tape cassette 630 of the third modified example is 60 provided with the bottom case 631B that has a substantially box shape. A wall portion 635 that is continuously provided from the lower semi-circular portion 38B to the left is formed in the bottom case 631B along a front end portion of the bottom wall 31G. Detection holes 266 are formed in the 65 wall portion 635 in a similar way to the second embodiment. The first indicator member 925 in the form of a film is

26

adhered to a front surface of the wall portion 635. The first indicator member 925 is provided with the arm indicator portion 820 in a similar way to the second embodiment.

Also in the tape cassette 630 of the third modified example, it is possible to attach the first indicator member 925 to the bottom case 631B while visually checking a surface of the tape housed in the bottom case 631B. The operator can attach the first indicator member 925 that indicates the correct tape type while confirming the type of the tape housed in the bottom case 631B, and it is thus possible to suppress assembly errors of the tape cassette 630.

In the above-described embodiments and modified examples, the arm indicator portions 800, 820 and 830 include the plurality of indicator portions. However, it is sufficient if each indicator portion includes at least one indicator hole (the non-pressing portion 801 in the present embodiment) and indicates the tape type. Although the non-pressing portion 801 is a through hole having a vertically long rectangular shape, the non-pressing portion 801 may have another shape. For example, the non-pressing portion 801 may have any opening shape, such as a square shape, a circular shape or the like, as long as the arm detection switch 210 can be inserted.

Further, although the rear indicator portions 950 and 953 include the plurality of indicator portions, it is sufficient if each indicator portion includes at least one indicator hole (the non-pressing portion 951 in the present embodiment) and indicates the tape type. The non-pressing portion 951 need not necessarily be a circular hole, and it may have a square shape, a rectangular shape or the like as long as the rear detection switch 310 can be inserted.

Although in the first embodiment, the latch hole 804 provided in the arm front surface 35 is provided in the first indicator member 900, it may be provided in the top case 31A. In this case, the first indicator member 900 need not be provided with the latch hole 804. Further, the latch hole 804 may be provided in a boundary portion between the first indicator member 900 and the top case 31A. Further, an upper end position of the indicator portions 800B and 800C may be used as a boundary between the first indicator member 900 and the top case 31A.

In the above-described embodiments and modified examples, the non-pressing portions 801 and the latch hole 804 are independent hole portions. In place of these, the plurality of non-pressing portions 801 may be included in a single continuous hole portion, or the non-pressing portions 801 and the latch hole 804 may be included in a single continuous hole portion.

In the first embodiment, the groove portion 901 is formed on the upper end face of the first indicator member 900, and the convex portion 907 is formed on the lower end face of the first indicator member 900. In the open portion 30D, the convex portion 30F is formed corresponding to the groove portion 901 and the groove portion 30E is formed corresponding to the convex portion 907. In place of these, a convex portion may be formed on the upper end face of the first indicator member 900, and a groove portion corresponding to this convex portion may be formed in the open portion 30D. A groove portion may be formed in the lower end face of the first indicator member 900, and a convex portion corresponding to this groove portion may be provided on the open portion 30D.

In the second embodiment, the first indicator member 920 is provided with the hole portion that corresponds to the latch hole 804. In place of this, the first indicator member 920 may have a size that covers the arm indicator portion 820 only.

The apparatus and methods described above with reference to the various embodiments are merely examples. It goes without saying that they are not confined to the depicted embodiments. While various features have been described in conjunction with the examples outlined above, 5 various alternatives, modifications, variations, and/or improvements of those features and/or examples may be possible. Accordingly, the examples, as set forth above, are intended to be illustrative. Various changes may be made without departing from the broad spirit and scope of the 10 underlying principles.

What is claimed is:

- 1. A tape cassette comprising:
- a cassette case having a first end portion and a second end portion separated from the first end portion in a first 15 direction, and having a third end portion and a fourth end portion separated from the third end portion in a second direction;
- a first spool positioned in the cassette case, the first spool positioned closer to the third end portion of the cassette 20 case than to the fourth end portion in the second direction, the first spool positioned closer to the second end portion than to the first end portion in the first direction;
- a ribbon spool positioned in the cassette case, the ribbon 25 spool positioned closer to the fourth end portion than to the third end portion in the second direction; and
- a tape drive roller rotatable about an axis extending in a third direction, the tape drive roller configured to allow a tape to be discharged from inside of the cassette case, 30 the tape drive roller positioned closer to the first end portion of the cassette case in the first direction than to the second end portion, the tape drive roller positioned closer to the third end portion of the cassette case than the fourth end portion of the cassette in the second 35 direction, wherein
- the cassette case includes an arm positioned at the first end portion, the arm extending in the second direction, the arm having a first outer surface facing a portion of the cassette case in the first direction and a second outer 40 surface facing away from the cassette case in the first direction, and the arm has an exit configured to allow an ink ribbon to be discharged toward the tape drive roller from inside of the cassette case, wherein
- the second outer surface includes a first indicator and a 45 second indicator in a predetermined pattern, a position of the first indicator is different from a position of the second indicator in the second direction and the third direction,
- wherein the second outer surface is detachably attached to 50 the arm.
- 2. The tape cassette according to claim 1, wherein each of the first indicator and the second indicator is one of a hole extending through the second outer surface and a predetermined area of the second outer surface.

28

- 3. The tape cassette according to claim 2, wherein the predetermined area is continuous with the second outer surface.
- 4. The tape cassette according to claim 1, wherein the first indicator is a hole extending through the second outer surface, and
 - wherein the second indicator is a predetermined area of the second outer surface.
- 5. The tape cassette according to claim 4, wherein the predetermined area is continuous with the second outer surface.
- 6. The tape cassette according to claim 1, wherein the second direction is orthogonal to the first direction, and wherein the third direction is orthogonal to the first direction and the second direction.
- 7. The tape cassette according to claim 6, further comprising:
 - a tape wound around the first spool.
 - 8. The tape cassette according to claim 7, wherein the first indicator indicates a width of the tape.
- 9. The tape cassette according to claim 1, further comprising:
 - a tape wound around the first spool.
 - 10. The tape cassette according to claim 9, wherein the first indicator indicates a width of the tape.
- 11. The tape cassette according to claim 4, wherein the second direction is orthogonal to the first direction, and wherein the third direction is orthogonal to the first direction and the second direction.
- 12. The tape cassette according to claim 11, further comprising:
 - a tape wound around the first spool.
- 13. The tape cassette according to claim 12, wherein the first indicator indicates a width of the tape.
- 14. The tape cassette according to claim 4, further comprising:
 - a tape wound around the first spool.
 - 15. The tape cassette according to claim 14, wherein the first indicator indicates a width of the tape.
- 16. The tape cassette according to claim 5, wherein the second direction is orthogonal to the first direction, and wherein the third direction is orthogonal to the first direction and the second direction.
- 17. The tape cassette according to claim 16, further comprising:
 - a tape wound around the first spool.
 - 18. The tape cassette according to claim 17, wherein the first indicator indicates a width of the tape.
- 19. The tape cassette according to claim 5, further com-
- prising: a tape wound around the first spool.
 - 20. The tape cassette according to claim 19, wherein the first indicator indicates a width of the tape.

* * * *