

US012127763B2

(12) United States Patent

Pilletere et al.

(54) INSTRUMENT SEAL FOR SURGICAL ACCESS ASSEMBLY

(71) Applicant: Covidien LP, Mansfield, MA (US)

(72) Inventors: **Roy J. Pilletere**, Middletown, CT (US); **Garrett P. Ebersole**, Hamden, CT

(US); Eric Brown, Madison, CT (US); Matthew A. Dinino, Newington, CT (US); Jacob C. Baril, Norwalk, CT (US); Richard C. Hart, Saint Augustine, FL (US); Justin Thomas, New Haven, CT (US); Nicolette R. LaPierre, Windsor Locks, CT (US)

(73) Assignee: Covidien LP, Mansfield, MA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 18/142,650

(22) Filed: May 3, 2023

(65) Prior Publication Data

US 2023/0346426 A1 Nov. 2, 2023

Related U.S. Application Data

- (63) Continuation of application No. 16/823,503, filed on Mar. 19, 2020, now Pat. No. 11,642,153.
- (51) Int. Cl.

 A61B 17/34 (2006.01)
- (52) **U.S. Cl.** CPC *A61B 17/3462* (2

CPC *A61B 17/3462* (2013.01); *A61B 17/3423* (2013.01); *A61B 17/3498* (2013.01); *A61B 2017/3425* (2013.01)

(10) Patent No.: US 12,127,763 B2

(45) Date of Patent: *Oct. 29, 2024

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

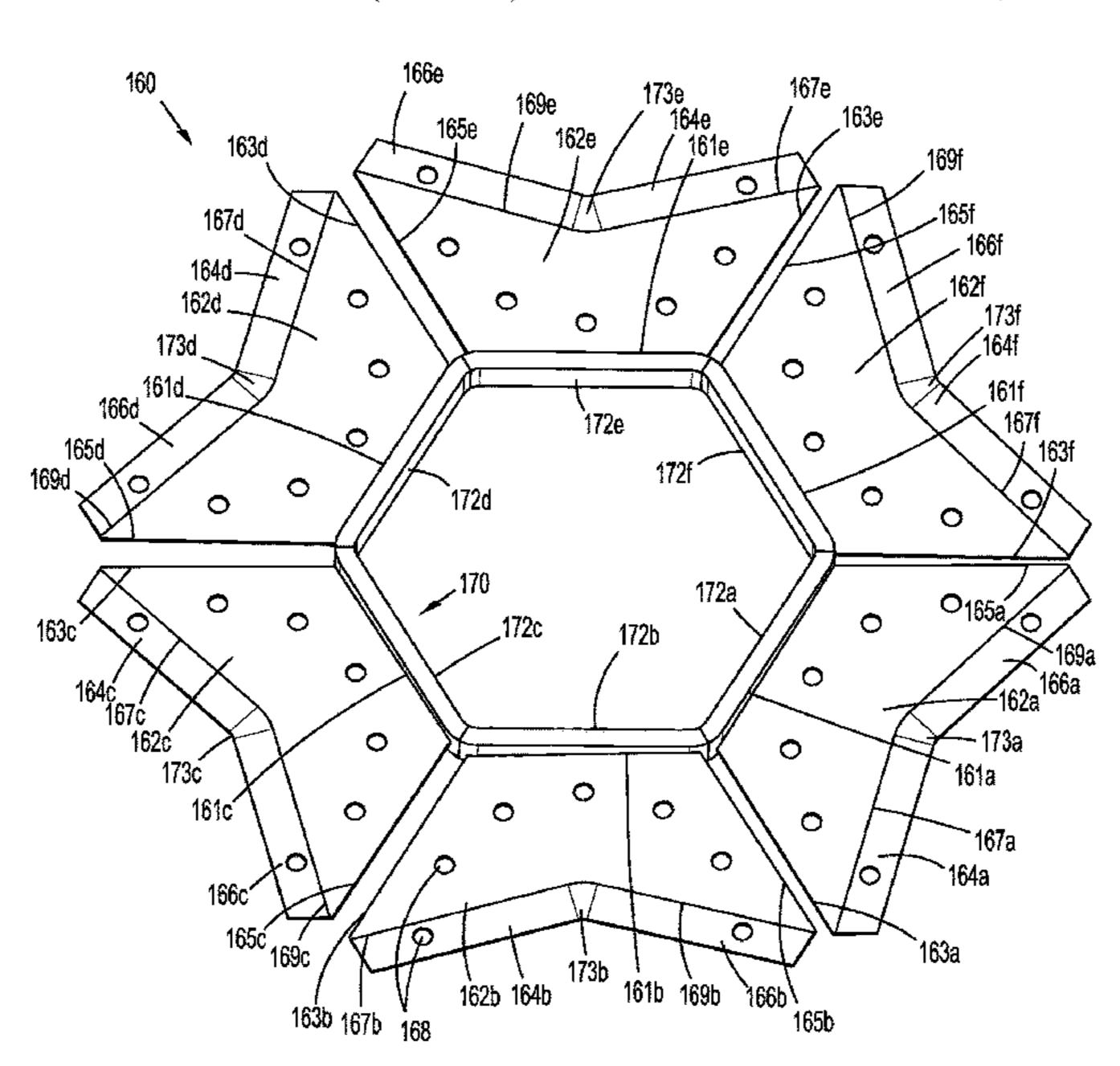
3,402,710	A	9/1968	Paleschuck
3,495,586	A	2/1970	Regenbogen
4,016,884	A		Kwan-Gett
4,112,932	A	9/1978	Chiulli
		(Cont	inued)

FOREIGN PATENT DOCUMENTS

EP	3219268 A1	9/2017
WO	2012131746 A1	10/2012
WO	2016110720 A1	7/2016

OTHER PUBLICATIONS

European Office Action dated Aug. 29, 2023, issued in corresponding EP Application No. 21163414, 5 pages.


(Continued)

Primary Examiner — Darwin P Erezo Assistant Examiner — Brigid K Byrd (74) Attorney, Agent, or Firm — Draft Masters IP, LLC

(57) ABSTRACT

A surgical access assembly includes a housing, a tubular member, and a valve assembly. The tubular member extends from the housing. The valve assembly is positioned in the housing and includes a centering mechanism, a guard assembly disposed on a first side of the centering mechanism, and an instrument seal disposed on a second side of the centering mechanism. The instrument seal including petals that are arrange in an overlapping arrangement.

19 Claims, 11 Drawing Sheets

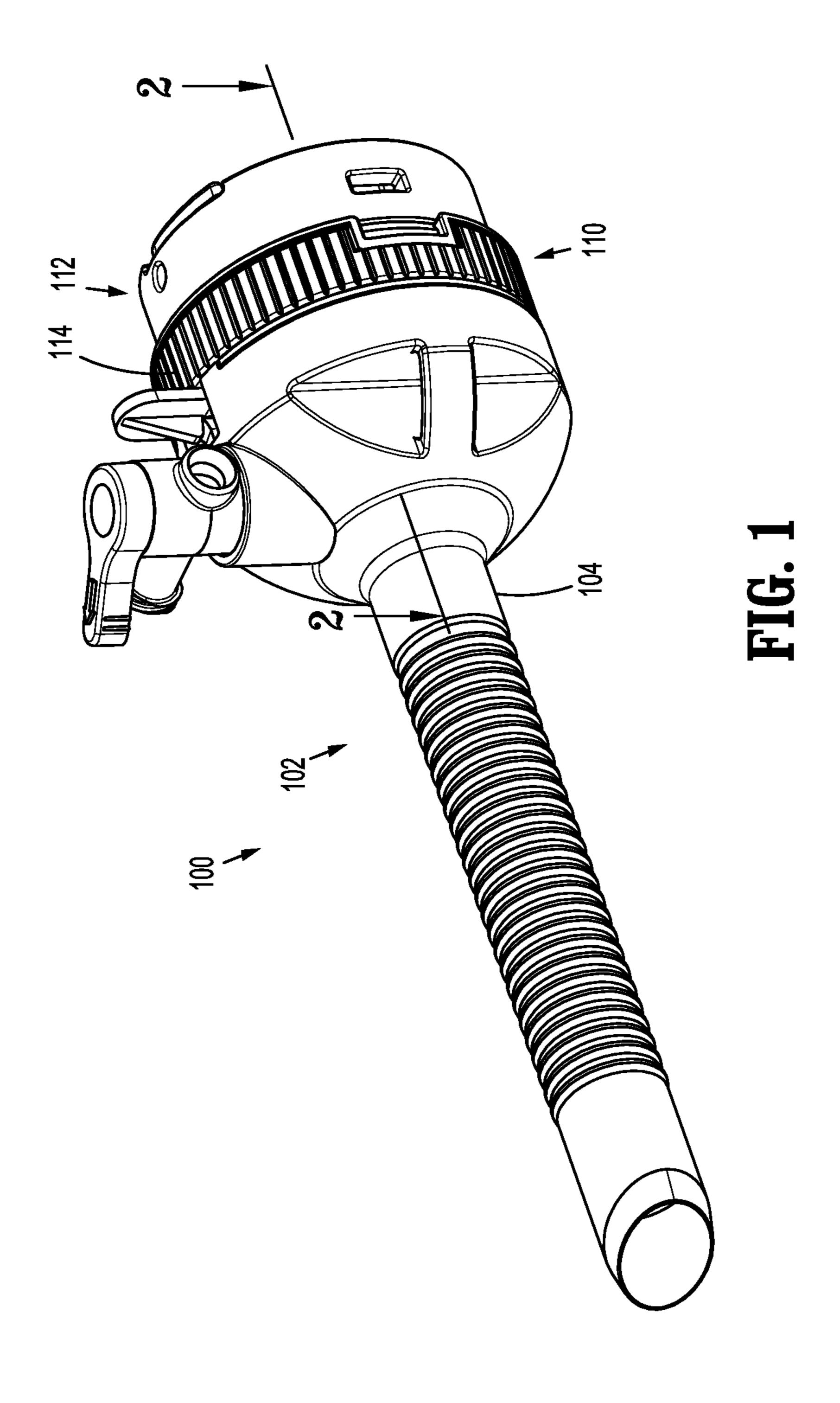
(56)		Referen	ces Cited	5,556,385 5,569,159			Andersen Anderson et al.
	IJS	PATENT	DOCUMENTS	5,569,205			Hart et al.
	0.5.		DOCOMENTS	5,569,291			Privitera et al.
	4,183,357 A	1/1980	Bentley et al.	5,569,292			Scwemberger et al.
	4,356,826 A	11/1982		5,577,993			Zhu et al.
	4,402,683 A		Kopman	5,591,192 5,601,581			Privitera et al. Fogarty et al.
	4,619,643 A 4,653,476 A	10/1986 3/1987	Bonnet	5,609,562		3/1997	O
	4,737,148 A	4/1988		5,624,399	A	4/1997	Ackerman
	4,863,430 A		Klyce et al.	5,634,911			Hermann et al.
	4,863,438 A		Gauderer et al.	, ,			Mollenauer et al.
	4,984,564 A	1/1991		5,643,285 5,649,550		7/1997	Rowden et al. Crook
	5,002,557 A 5,073,169 A	3/1991 12/1991	Hasson Raiken	5,651,771			Tangherlini et al.
	5,082,005 A		Kaldany	5,653,705			de la Torre et al.
	5,122,122 A		Allgood	5,656,013		8/1997	
	5,159,921 A	11/1992		5,672,168			de la Torre et al.
	5,176,697 A		Hasson	5,683,378 5,685,820		11/1997 11/1997	Riek et al.
	5,183,471 A 5,192,301 A	2/1993	Wiik Kamiya et al.	5,685,857			Negus et al.
	5,209,741 A		Spaeth	5,685,862			Mahurkar
	5,209,754 A		Ahluwalia	5,697,946			Hopper et al.
	5,217,466 A		Hasson	5,709,671			Stephens et al.
	5,242,409 A		Buelna	5,709,675 5,713,858			Williams Heruth et al.
	5,242,415 A 5,257,973 A	9/1993	Kantrowitz et al.	5,713,869			Morejon
	5,257,975 A 5,257,975 A	11/1993		5,720,730			Blake, III
	5,269,772 A	12/1993		5,720,761		2/1998	
	5,271,380 A	12/1993	Riek et al.	5,722,962		3/1998	
	5,290,245 A	3/1994		5,728,103 5,730,748			Picha et al. Fogarty et al.
	5,290,249 A		Foster et al.	5,735,791			Alexander, Jr. et al.
	5,308,336 A 5,312,391 A	5/1994 5/1994	Hart et al. Wilk	5,741,298			MacLeod
	5,312,417 A	5/1994		5,752,970		5/1998	
	5,314,417 A	5/1994	Stephens et al.	5,776,112			Stephens et al.
	5,318,516 A		Cosmescu	5,782,817 5,792,113			Franzel et al. Kramer et al.
	5,330,486 A	7/1994		5,795,290			Bridges
	5,334,143 A 5,334,150 A	8/1994	Carroll Kaali	5,800,451			Buess et al.
	5,336,169 A		Divilio et al.	5,803,921	A	9/1998	Bonadio
	5,336,203 A		Goldhardt et al.	5,810,712		9/1998	
	5,337,937 A		Remiszewski et al.	5,813,409			Leahy et al. Hildwein et al.
	5,345,927 A		Bonutti	5,830,191 5,836,871			Wallace et al.
	5,346,459 A 5,360,417 A	9/1994 11/1994	Gravener et al.	5,836,913			Orth et al.
	5,366,478 A		Brinkerhoff et al.	5,840,077	A	11/1998	Rowden et al.
	5,375,588 A	12/1994		5,842,971		12/1998	
	5,378,588 A		Tsuchiya	5,848,992			Hart et al.
	5,380,291 A	1/1995		5,853,417 5,857,461			Fogarty et al. Levitsky et al.
	5,385,552 A 5,385,553 A		Haber et al. Hart et al.	5,865,817			Moenning et al.
	5,391,156 A		Hildwein et al.	5,871,471			Ryan et al.
	5,394,863 A		Sanford et al.	5,871,474			Hermann et al.
	5,395,367 A	3/1995		5,876,413			Fogarty et al.
	5,407,433 A		Loomas	5,893,875 5,894,843			O'Connor et al. Benetti et al.
	5,431,151 A 5,437,683 A		Riek et al. Neumann et al.	5,895,377			Smith et al.
	5,445,615 A	8/1995		5,899,208			Bonadio
	5,451,222 A		De Maagd et al.	5,899,913			Fogarty et al.
	5,460,170 A		Hammerslag	5,904,703		5/1999	_
	5,464,409 A		Mohajer	5,906,577 5,914,415		5/1999 6/1999	Beane et al.
	5,480,410 A		Cuschieri et al.	5,916,198		6/1999	<i>-</i>
	5,490,843 A 5,507,758 A		Hildwein et al. Thomason et al.	5,941,898			Moenning et al.
	5,511,564 A	4/1996		5,951,588			Moenning
	5,514,133 A		Golub et al.	5,957,913			de la Torre et al.
	5,514,153 A		Bonutti	5,964,781			Mollenauer et al.
	5,520,610 A		Giglio et al.	5,976,174 5,997,515		11/1999	de la Torre et al.
	5,520,698 A 5,522,791 A	5/1996 6/1996		6,007,481			Riek et al.
	5,524,501 A		Patterson et al.	6,017,355			Hessel et al.
	5,524,644 A	6/1996		6,018,094		1/2000	
	5,538,509 A		Dunlap et al.	6,024,736			de la Torre et al.
	5,540,648 A	7/1996	-	6,030,402			Thompson et al.
	5,545,150 A		Danks et al.	6,033,426		3/2000	.
	5,545,179 A		Williamson, IV	6,033,428			Sardella
	5,549,565 A		Ryan et al.	6,042,573		3/2000	•
	5,551,947 A	9/1996	Naall	6,048,309	A	4/2000	Flom et al.

(56)			Referen	ces Cited	6,811,546			Callas et al.
	J	J.S. 1	PATENT	DOCUMENTS	6,814,078 6,830,578 6,835,201	B2	12/2004	O'Heeron et al. O'Heeron et al.
	0.50 0.16		5/2000	3.6	6,837,893		1/2004	
	,059,816			Moenning Executive et el	6,840,946			Fogarty et al.
	,068,639 ,077,288			Fogarty et al. Shimomura et al.	6,840,951			de la Torre et al.
	,077,288			Termin et al.	6,846,287			Bonadio et al.
	,093,176		7/2000	_	6,855,128	B2	2/2005	Swenson
	,099,505			Ryan et al.	6,863,674	B2	3/2005	Kasahara et al.
	,099,506			Macoviak et al.	6,878,110			Yang et al.
	,110,154			Shimomura et al.	6,884,253			McFarlane
	,142,936			Beane et al.	6,890,295 6,913,609			Michels et al. Yencho et al.
	,156,006 ,162,196			Brosens et al. Hart et al.	6,916,310			Sommerich
	,102,190			Ragsdale	6,916,331			Mollenauer et al.
	,197,002			Peterson	6,929,637	B2	8/2005	Gonzalez et al.
6	,213,957	В1	4/2001	Milliman et al.	6,939,296			Ewers et al.
	,217,555			Hart et al.	6,942,633			Odland
	,228,063			Aboul-Hosn	6,942,671 6,945,932		9/2005 9/2005	Caldwell et al.
	,234,958 ,238,373			Snoke et al. de la Torre et al.	6,958,037			Ewers et al.
	,238,373			Agarwal et al.	6,960,164			O'Heeron
	,251,119		6/2001	<u> </u>	6,972,026	B1	12/2005	Caldwell et al.
	,254,534			Butler et al.	, ,			McGuckin, Jr. et al.
6	,264,604	В1	7/2001	Kieturakis et al.	6,991,602			Nakazawa et al.
	,276,661		8/2001		6,997,909 7,001,397			Goldberg Davison et al.
	,293,952			Brosens et al.	7,001,397			Beane et al.
	,315,770 ,319,246			de la Torre et al. de la Torre et al.	7,011,645			McGuckin, Jr. et al.
	,328,720			McNally et al.	7,014,628			Bousquet
	,329,637			Hembree et al.	7,033,319			Pulford et al.
	,355,028			Castaneda et al.	7,052,454		5/2006	
	,371,968			Kogasaka et al.	7,056,321			Pagliuca et al.
	,382,211		5/2002		7,077,852 7,081,089			Fogarty et al. Bonadio et al.
	,423,036 ,440,061			Van Huizen	7,081,685			Hart et al.
	,440,061			Wenner et al. Beane et al.	7,100,614			Stevens et al.
	,443,957		9/2002		7,101,353	B2	9/2006	Lui et al.
	,447,489		9/2002		7,104,981			Elkins et al.
	,450,983		9/2002		7,153,261			Wenchell
	,454,783		9/2002		7,160,309 7,163,510			Voss Kahle et al.
	,464,686 ,468,292			O'Hara et al. Mollenauer et al.	7,192,436			Sing et al.
	,478,806			McFarlane	7,195,590			Butler et al.
	,485,410		11/2002		7,201,725			Cragg et al.
6	,485,467	В1	11/2002	Crook et al.	7,214,185			Rosney et al.
	,487,806			Murello et al.	7,217,277 7,223,257			Parihar et al. Shubayev et al.
	,488,620			Segermark et al.	7,223,237			Davison et al.
	,488,692 ,524,283			Spence et al. Hopper et al.	7,235,064			Hopper et al.
	,527,787			Fogarty et al.	7,235,084			Skakoon et al.
	,544,210			Trudel et al.	7,238,154			Ewers et al.
	,551,270			Bimbo et al.	7,258,712			Schultz et al.
	,551,282			Exline et al.	7,276,075 7,294,103			Callas et al. Bertolero et al.
	,558,371 ,562,022		5/2003	Hoste et al.	7,300,399			Bonadio et al.
	,569,120			Green et al.	7,300,448			Criscuolo et al.
	,572,631			McCartney	7,316,699			McFarlane
6	,578,577	B2	6/2003	Bonadio et al.	7,320,694			O'Heeron
	,582,364			Butler et al.	7,331,940 7,344,547			Sommerich Piskun
	,589,167			Shimomura et al.	7,344,347			Shimizu et al.
	,589,316 ,592,543			Schultz et al. Wortrich et al.	7,377,898			Ewers et al.
	,613,038			Bonutti et al.	7,390,322	B2	6/2008	McGuckin, Jr. et al.
	,613,952		9/2003		7,393,322			Wenchell
6	,623,426	B2	9/2003	Bonadio et al.	7,412,977			Fields et al.
	,669,674			Macoviak et al.	7,440,661 7,445,597			Kobayashi Butler et al.
	,676,639			Ternstrom	7,452,363		11/2008	_
	,684,405 ,702,787		2/2004 3/2004	Ezdey Racenet et al.	7,473,221			Ewers et al.
	,702,787 ,706,050			Giannadakis	7,481,765			Ewers et al.
	,716,201		4/2004		7,493,703			Kim et al.
	,723,044		4/2004	Pulford et al.	7,494,481	B2	2/2009	Moberg et al.
	,723,088			Gaskill, III et al.	7,513,361			Mills, Jr.
	,725,080			Melkent et al.	7,513,461			Reutenauer et al.
	,736,797			Larsen et al.	7,520,876			Ressemann et al.
	,740,064			Sorrentino et al.	7,537,564			Bonadio et al.
0	,000,084	DZ	10/2004	Davison et al.	7,340,839	DZ	0/2009	Butler et al.

(56)	References Cited		8,403,889 8,480,683			Richard Fowler et al.	
	U.S.	PATENT	DOCUMENTS	8,574,153			Richard
				8,585,632			Okoniewski
	7,559,893 B2		Bonadio et al.	8,597,180 8,961,406			Copeland et al. Ortiz et al.
	7,608,082 B2		Cuevas et al.	10,022,149			Holsten et al.
	7,625,361 B2 7,645,232 B2	1/2019	Suzuki et al. Shluzas	10,568,660		2/2020	
	7,650,887 B2		Nguyen et al.	10,653,449			Main et al.
	7,678,046 B2		White et al.	11,642,153			Pilletere et al.
	7,686,823 B2		Pingleton et al.	2001/0037053 2002/0055714			Bonadio et al. Rothschild
	7,704,207 B2 7,708,713 B2		Albrecht et al. Albrecht et al.	2002/0091410			Ben-David et al.
	7,717,846 B2		Zirps et al.	2002/0173748			McConnell et al.
	7,717,847 B2	5/2010	_	2003/0014076			Mollenauer et al.
	7,721,742 B2		Kalloo et al.	2003/0093104 2003/0109853			Bonner et al. Harding et al.
	7,727,146 B2 7,730,629 B2	6/2010 6/2010	Albrecht et al.	2003/0103833		10/2003	. •
	7,736,306 B2		Brustad et al.	2003/0187397		10/2003	
	7,744,569 B2	6/2010		2003/0233115			Eversull et al.
	7,753,901 B2		Piskun et al.	2003/0236549 2004/0006356		1/2003	Bonadio et al.
	7,758,500 B2		Boyd et al.	2004/0000330		3/2004	
	7,758,603 B2 7,762,995 B2		Taylor et al. Eversull et al.	2004/0059297			Racenet et al.
	7,766,824 B2		Jensen et al.	2004/0073090			Butler et al.
	7,787,963 B2		Geistert et al.	2004/0092795			Bonadio et al.
	7,794,644 B2		Taylor et al.	2004/0102804 2004/0111061		5/2004 6/2004	
	7,798,998 B2 7,811,251 B2		Thompson et al. Wenchell et al.	2004/0138529			Wiltshire et al.
	7,815,567 B2		Albrecht et al.	2004/0186434			Harding et al.
	7,837,612 B2	11/2010	Gill et al.	2004/0204682		10/2004	
	7,846,123 B2		Vassiliades et al.	2004/0204734 2004/0215209			Wagner et al. Almond et al.
	7,850,600 B1 7,850,655 B2	12/2010	Piskun Pasqualucci	2004/0213203			Caldwell et al.
	7,850,667 B2		Gresham	2004/0267204			Brustowicz
	7,867,164 B2		Butler et al.	2005/0010238			Potter et al.
	7,896,889 B2		Mazzocchi et al.	2005/0020884 2005/0033342			Hart et al. Hart et al.
	7,905,829 B2 7,909,760 B2		Nishimura et al. Albrecht et al.	2005/0033342			Albrecht
	7,913,697 B2		Nguyen et al.	2005/0070851			Thompson et al.
	7,918,827 B2	4/2011	<u> </u>	2005/0070935		3/2005	
	7,947,058 B2		Kahle et al.	2005/0070946 2005/0070947			Franer et al. Franer et al.
	7,951,076 B2 7,955,257 B2		Hart et al. Frasier et al.	2005/00/0547		5/2005	
	7,955,237 B2 7,955,313 B2		Boismier	2005/0119525			Takemoto
	7,985,232 B2		Potter et al.	2005/0137459			Chin et al.
	7,998,068 B2		Bonadio et al.	2005/0148823 2005/0192483			Vaugh et al. Bonadio et al.
	8,002,750 B2 8,002,786 B2	8/2011	Smith Beckman et al.	2005/0192485			Skakoon et al.
	8,012,128 B2		Franer et al.	2005/0203346	A1	9/2005	Bonadio et al.
	8,021,296 B2		Bonadio et al.	2005/0209608			O'Heeron
	8,025,670 B2		Sharp et al.	2005/0212221 2005/0222582			Smith et al. Wenchell
	8,029,475 B2 8,038,652 B2		Franer et al. Morrison et al.	2005/0245876			Khosravi et al.
	8,052,653 B2		Gratwohl et al.	2005/0251092			Howell et al.
	8,066,673 B2		Hart et al.	2005/0251190			McFarlane
	8,079,986 B2		Taylor et al.	2005/0277946 2006/0020281		1/2005	Greenhalgh Smith
	8,092,430 B2 8,092,431 B2		Lunn et al.	2006/0020231			Staudner
	8,105,234 B2		Ewers et al.	2006/0129165	A 1	6/2006	Edoga et al.
	8,109,873 B2		Albrecht et al.	2006/0149137			Pingleton et al.
	8,118,735 B2		Voegele	2006/0149306 2006/0161049			Hart et al. Beane et al.
	8,128,590 B2 8,137,318 B2		Albrecht et al. Schweitzer et al.	2006/0161050			Butler et al.
	8,147,453 B2		Albrecht et al.	2006/0211992	A1	9/2006	Prosek
	8,152,828 B2		Taylor et al.	2006/0212063		9/2006	_
	8,157,786 B2		Miller et al.	2006/0217665 2006/0224161		9/2006	Prosek Bhattacharyya
	8,157,817 B2 8,187,177 B2		Bonadio et al. Kahle et al.	2006/0224161		10/2006	
	8,187,177 B2 8,187,178 B2		Bonadio et al.	2006/0247498			Bonadio et al.
	8,206,411 B2	6/2012	Thompson et al.	2006/0247499			Butler et al.
	8,241,209 B2		Shelton, IV et al.	2006/0247500			Voegele et al.
	8,262,568 B2		Albrecht et al.	2006/0247516 2006/0247586			Hess et al.
	8,267,952 B2 8,323,184 B2		Kahle et al. Spiegal et al.	2006/0247586			Voegele et al. Voegele et al.
	8,335,783 B2	12/2012	. •	2006/0247678			Weisenburgh et al
	8,343,047 B2		•	2006/0270911	A1 .	11/2006	Voegele et al.
	8,353,824 B2		Shelton, IV et al.	2006/0276751			Haberland et al.
	8,398,666 B2	3/2013	McFarlane	2007/0088277	Al	4/2007	McGinley et al.

(56)	Referen	ices Cited		2010/0286706	A1*	11/2010	Judson A61B 17/3462 606/108
U.S	S. PATENT	DOCUMENTS		2010/0298646 2010/0312063			Stellon et al. Hess et al.
2007/0093695 A1	4/2007	Bonadio et al.		2011/0009704			Marczyk et al.
2007/0118175 A1		Butler et al.		2011/0021877			Fortier et al.
2007/0151566 A1		Kahle et al.		2011/0028891			Okoniewski
2007/0185453 A1 2007/0203398 A1		Michael et al. Bonadio et al.		2011/0034778 2011/0054257			Kleyman Stopek
2007/0203336 A1 2007/0208312 A1		Norton et al.		2011/0054258			O'Keefe et al.
2007/0225650 A1		Hart et al.		2011/0054260			Albrecht et al.
2007/0239108 A1		Albrecht et al.	A C1D 17/24C2	2011/0082341 2011/0082343			Kleyman et al. Okoniewski
2007/0255218 A	.* 11/2007	Franer	604/167.02	2011/0082345			Stopek
2007/0270654 A1	11/2007	Pignato et al.	004/10/.02	2011/0087159	A 1	4/2011	Parihar et al.
2007/0270882 A1	11/2007	Hjelle et al.		2011/0087168			Parihar et al.
2008/0009826 A1 2008/0021360 A1		Miller et al.		2011/0087169 2011/0118553			Parihar et al. Stopek
2008/0021300 A1 2008/0027476 A1		Fihe et al. Piskun		2011/0118833			Reichenbach et al.
2008/0048011 A1		Weller		2011/0124968			Kleyman
2008/0051739 A1		McFarlane		2011/0124969 2011/0124970			Stopek Kleyman
2008/0058723 A1 2008/0091143 A1		Lipchitz et al. Taylor et al.		2011/0125186			Fowler et al.
2008/0097162 A1		Bonadio et al.		2011/0166423			Farascioni et al.
2008/0097332 A1		Greenhalgh et al.		2011/0190592 2011/0201891			Kahle et al. Smith et al.
2008/0119868 A1 2008/0146884 A1		Sharp et al.		2011/0201891			Duke et al.
2008/0140884 A1		Beckman et al. Insignares		2011/0251463			Kleyman
2008/0161826 A1		Guiraudon		2011/0251464			Kleyman
2008/0177265 A1		Lechot		2011/0251465 2011/0251466			Kleyman Kleyman et al.
2008/0188868 A1 2008/0194973 A1		Weitzner et al. Imam		2011/0251460			Tal et al.
2008/0200767 A1		Ewers et al.		2011/0251560			Albrecht et al.
2008/0208222 A1		Beckman et al.		2011/0251633		10/2011	
2008/0249475 A1		Albrecht et al.		2011/0276002 2011/0313250			Bierman Kleyman
2008/0255519 A1 2008/0319261 A1		Piskun et al. Lucini et al.		2012/0010569			Parihar
2009/0012477 A1		Norton et al.		2012/0041371			Tal et al.
2009/0036738 A1		Cuschieri et al.		2012/0059640 2012/0065590			Roy et al. Bierman et al.
2009/0036745 A1 2009/0093752 A1		Bonadio et al. Richard et al.		2012/0109064			Fischvogt et al.
2009/0093835 A1		Heinrich et al.		2012/0130177		5/2012	
2009/0093850 A1		Richard		2012/0130181 2012/0130182		5/2012	Davis Rodrigues, Jr. et al.
2009/0105635 A1 2009/0131751 A1		Bettuchi et al. Spivey et al.		2012/0130182			Barnes
2009/0131731 A1 2009/0137879 A1		Ewers et al.		2012/0130184	A 1	5/2012	Richard
2009/0182279 A1		Wenchell et al.		2012/0130185			Pribanic Standar at al
2009/0182288 A1 2009/0187079 A1		Spenciner Albrecht et al.		2012/0130186 2012/0130187			Stopek et al. Okoniewski
2009/018/079 A1 2009/0204067 A1		Abu-Halawa		2012/0130188			Okoniewski
2009/0221968 A1	9/2009	Morrison et al.		2012/0130190			Kasvikis
2009/0227843 A1		Smith et al.		2012/0130191 2012/0149987			Pribanic Richard et al.
2009/0234293 A1 2009/0275880 A1		Albrecht et al. Pasqualucci		2012/0157777			Okoniewski
2009/0326330 Al		Bonadio et al.		2012/0157779			Fischvogt
2009/0326332 A1				2012/0157780 2012/0157781			Okoniewski et al. Kleyman
2010/0016800 A1 2010/0030155 A1		Rockrohr Gyrn et al.		2012/0157782		6/2012	*
2010/0030133 A1		Smith et al.		2012/0157783			Okoniewski et al.
2010/0063450 A1		Smith et al.		2012/0157784			Kleyman et al.
2010/0063452 A1		Edelman et al.	1 CAT A T (2 A 2 2	2012/0157785 2012/0157786			Kleyman Pribanic
2010/0081881 A1	* 4/2010	Murray		2012/0190931			Stopek
2010/0100043 A1	4/2010	Racenet	600/203	2012/0190932			Okoniewski
2010/0113886 A1		Piskun et al.		2012/0190933 2012/0209077			Kleyman Racenet
2010/0222801 A1		Pingleton et al.		2012/0209078			
2010/0228090 A1		Weisenburgh, II		2012/0245427			Kleyman
2010/0228094 A1 2010/0228096 A1		Ortiz et al. Weisenburgh, II e	et al.	2012/0245429 2012/0245430		9/2012 9/2012	Smith Kleyman et al.
2010/0220090 A1		Richard		2012/0243430			Kleyman
2010/0249516 A1	9/2010	Shelton, IV et al.		2012/0316596			Taylor et al.
2010/0249523 A1		Spiegal et al.		2013/0225930		8/2013	
2010/0249524 A1 2010/0261975 A1		Ransden et al. Huey et al.		2013/0225931 2013/0245373			
2010/0261973 A1 2010/0262080 A1		Shelton, IV et al.		2013/0243373			Fowler et al.
2010/0280326 A1		,		2013/02/13/3			
2010/0286484 A1				2014/0018632			
2010/0286506 A1	11/2010	Kansden et al.		2015/0025477	Al	1/2015	Evans

(56) References Cited


U.S. PATENT DOCUMENTS

2015/0065808 A1		Van Wyk et al.
2015/0223833 A1	8/2015	Coffeen et al.
2018/0021063 A1*	1/2018	Main A61B 17/3474
		604/167.01
2018/0085145 A1*	3/2018	Okoniewski A61B 17/3462
2019/0059938 A1	2/2019	Holsten
2019/0059944 A1	2/2019	Holsten
2020/0246043 A1	8/2020	Holsten et al.
2021/0213269 A1*	7/2021	Venskytis A61B 34/30

OTHER PUBLICATIONS

Partial European Search Report dated Jul. 21, 2021 issued in corresponding EP Appln. No. 21163414.2. Extended European Search Report dated Nov. 25, 2021 issued in corresponding EP Appln. No. 21163414.2.

^{*} cited by examiner

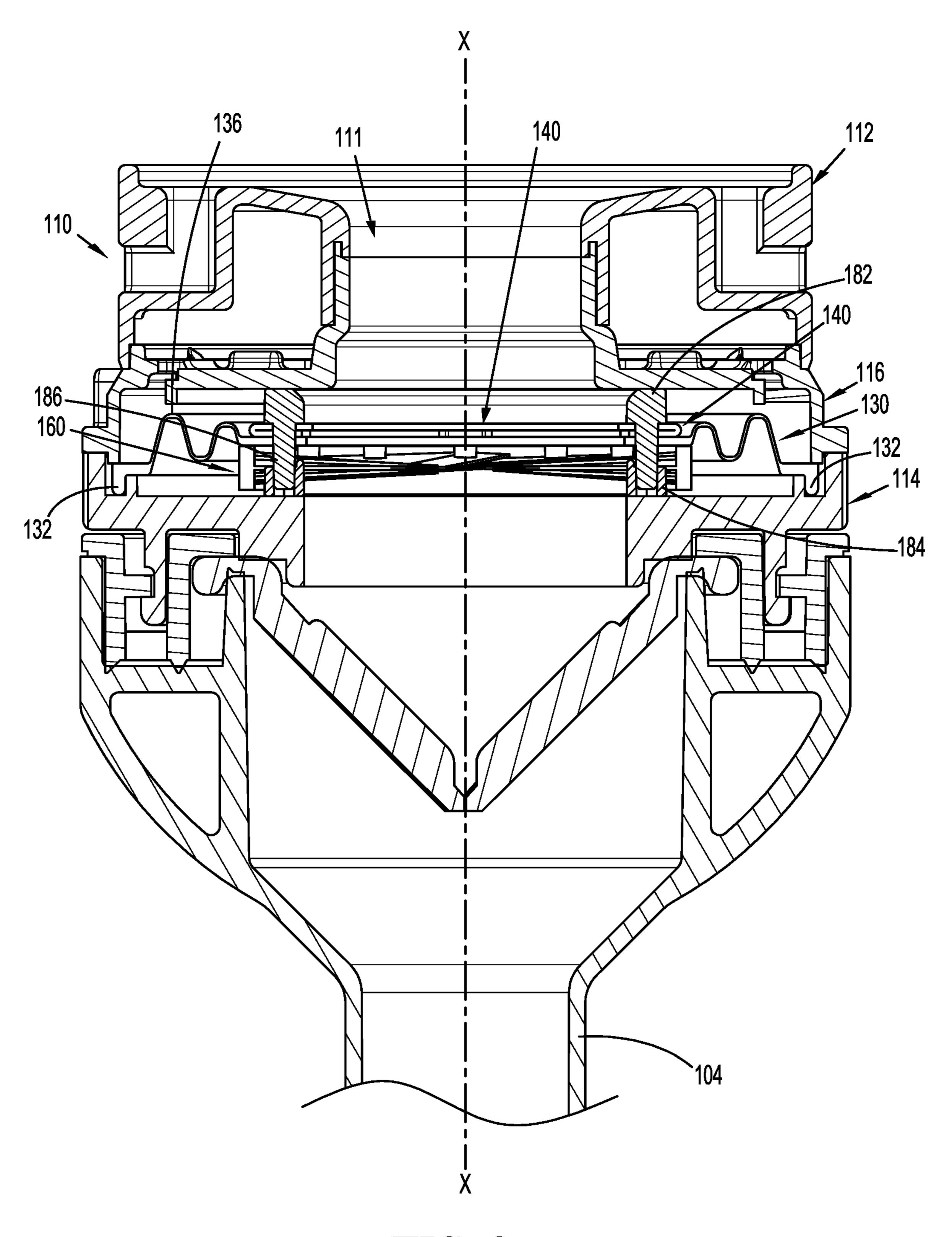
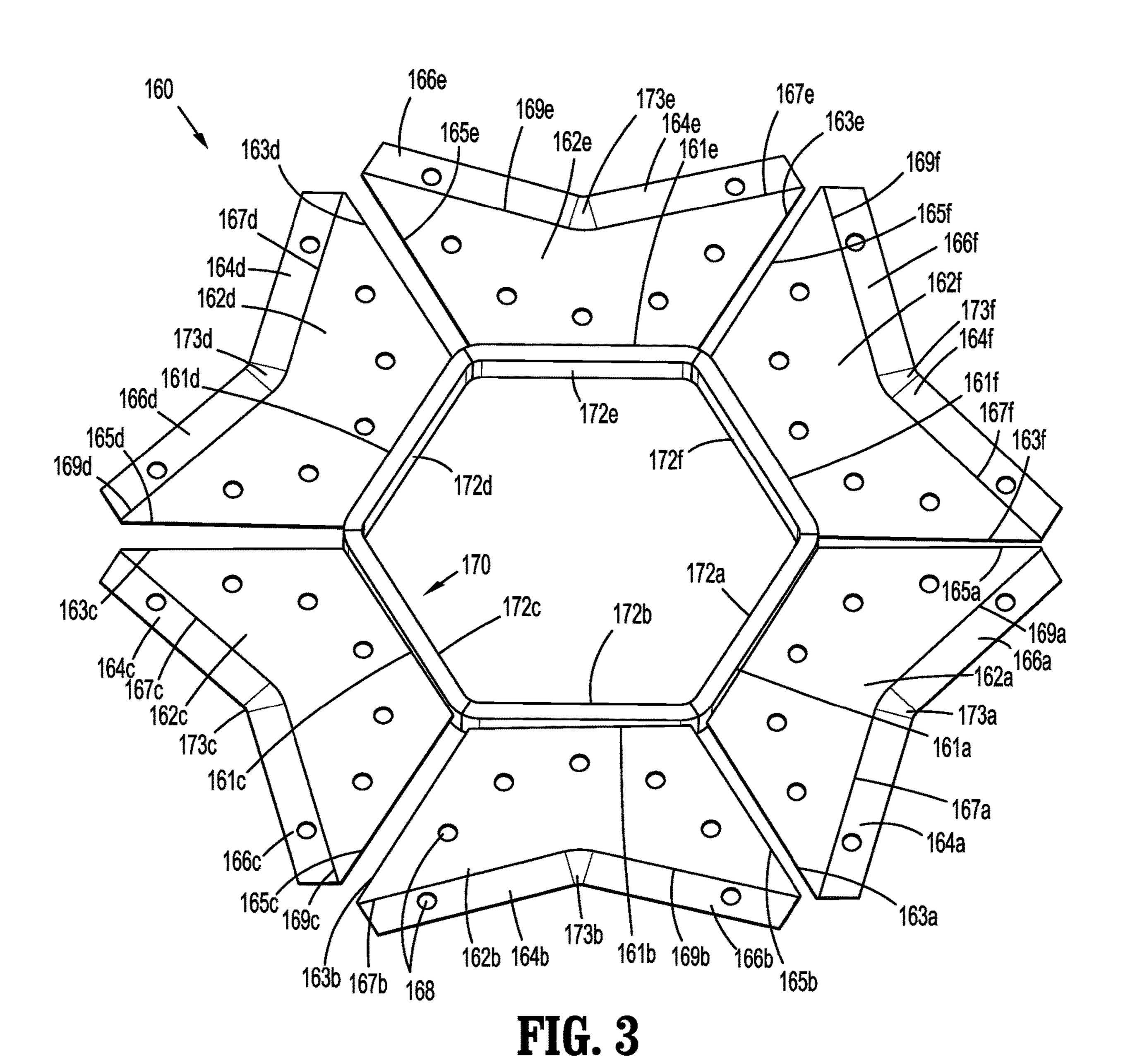
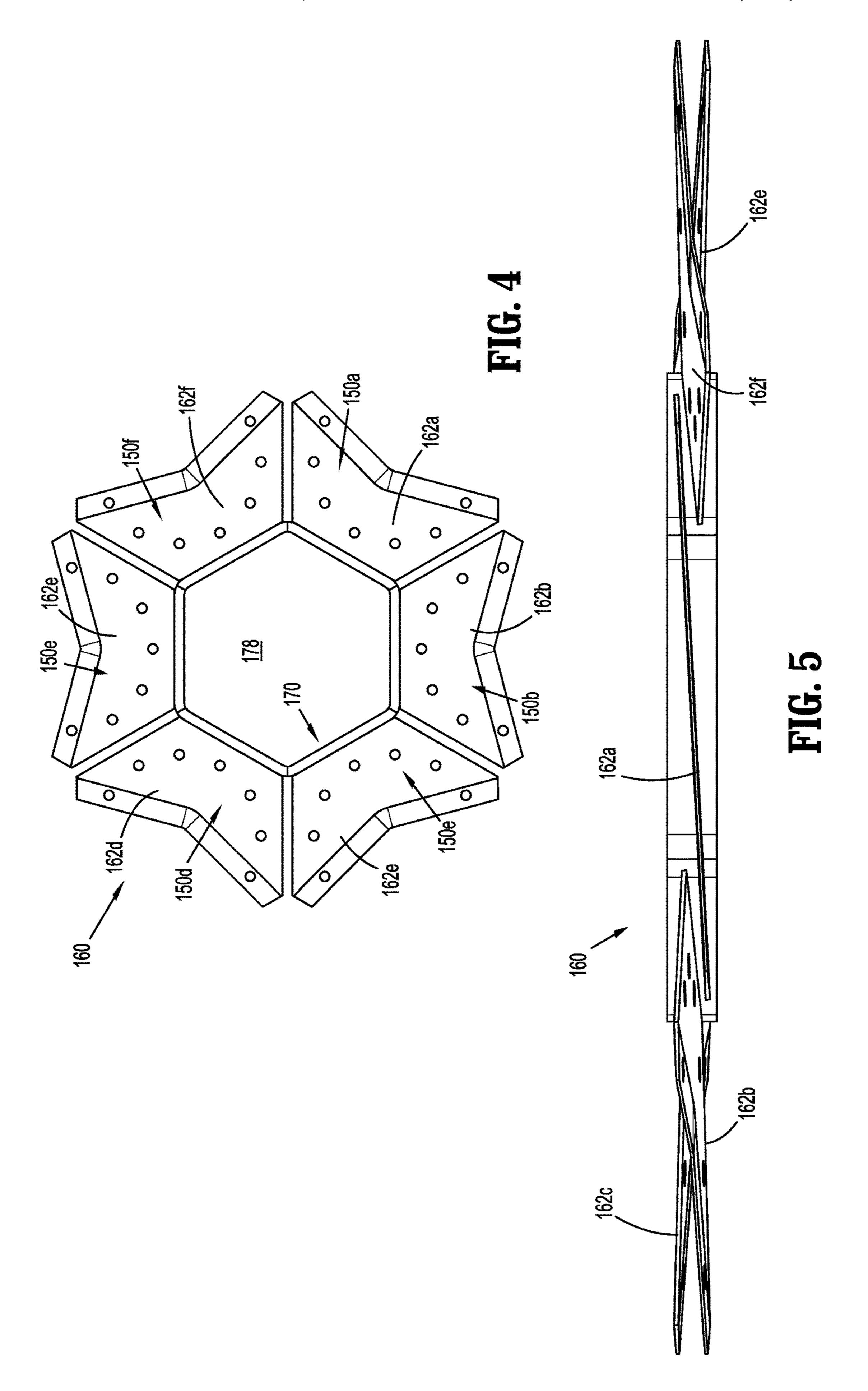




FIG. 2

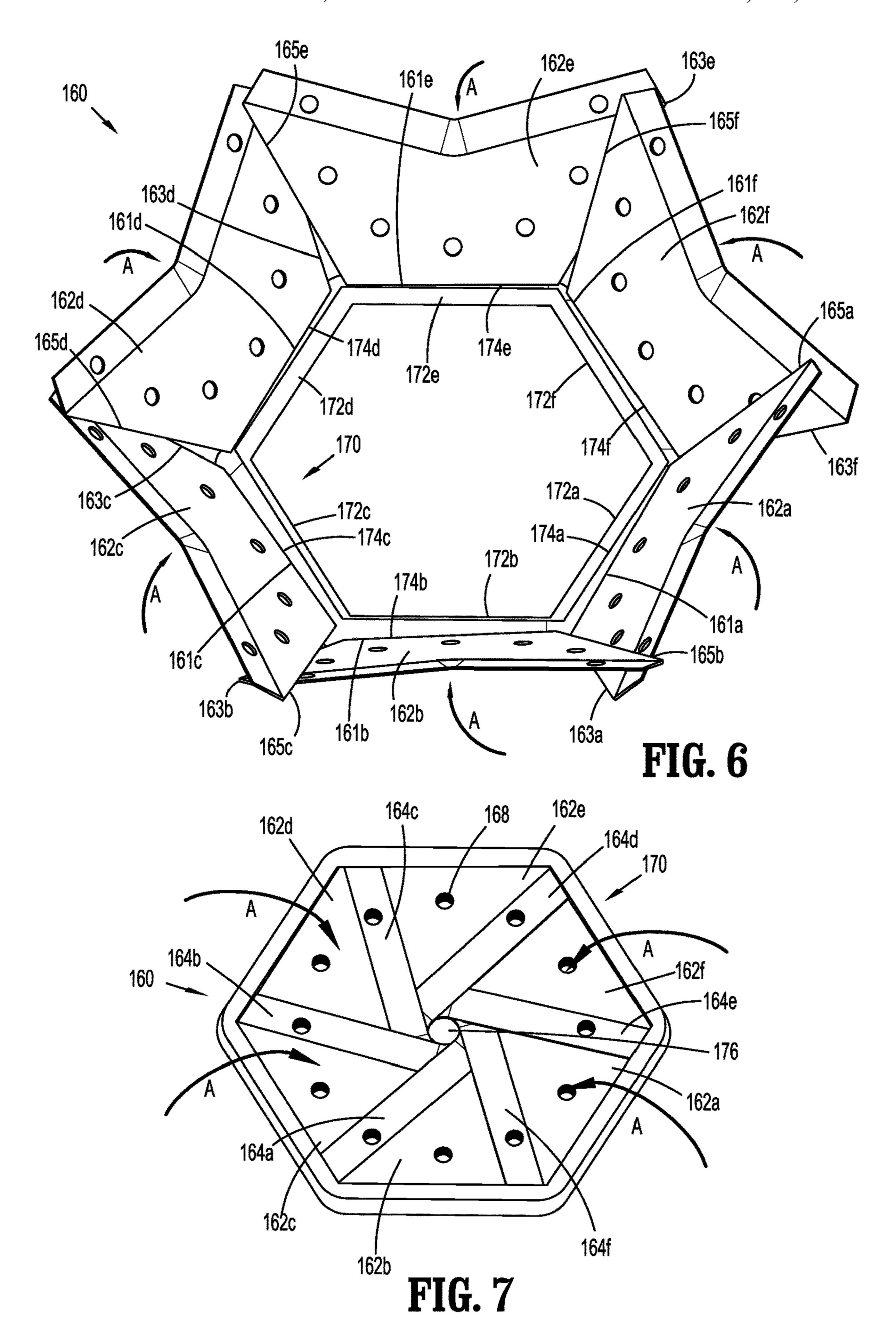


FIG. 9

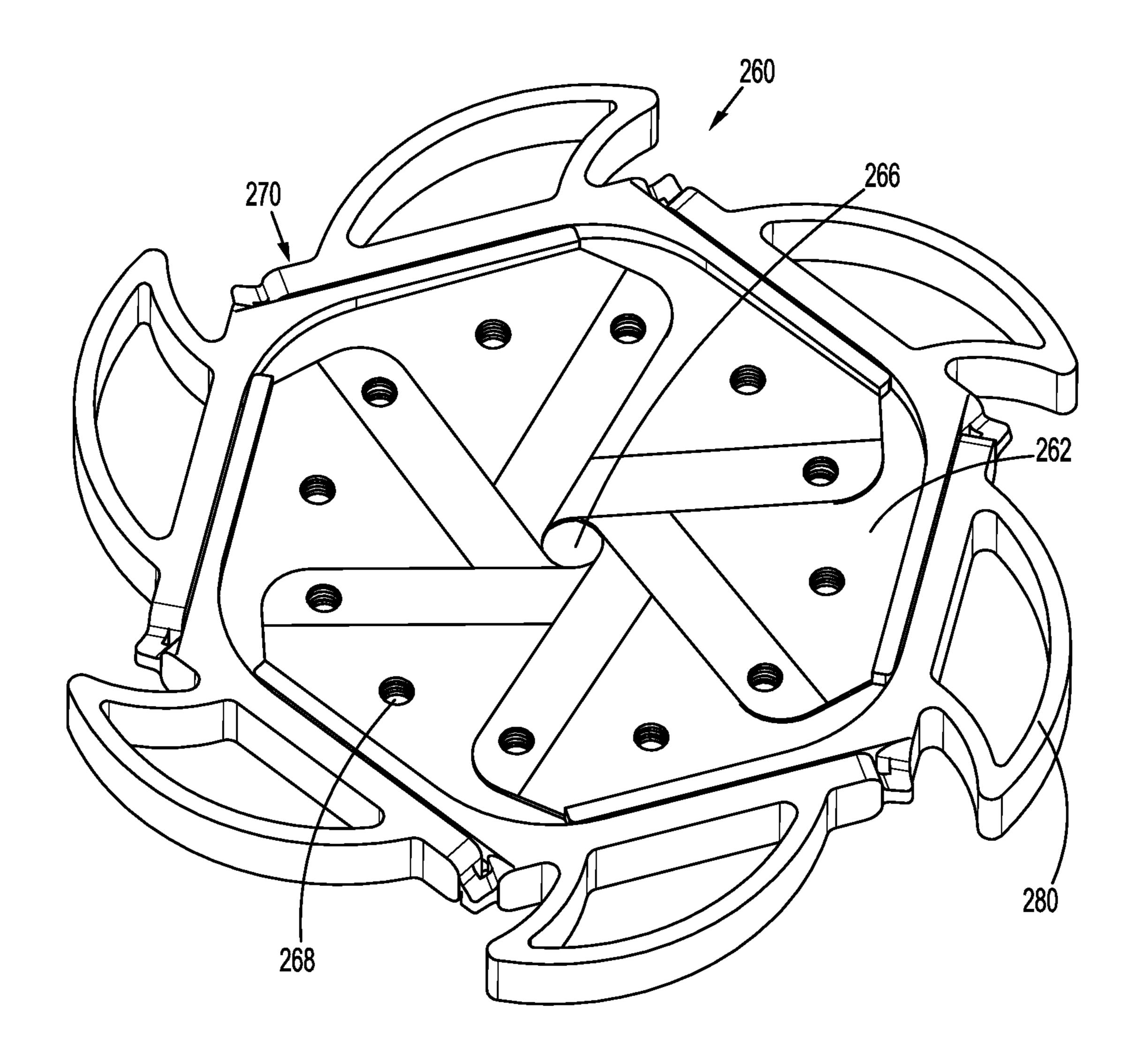
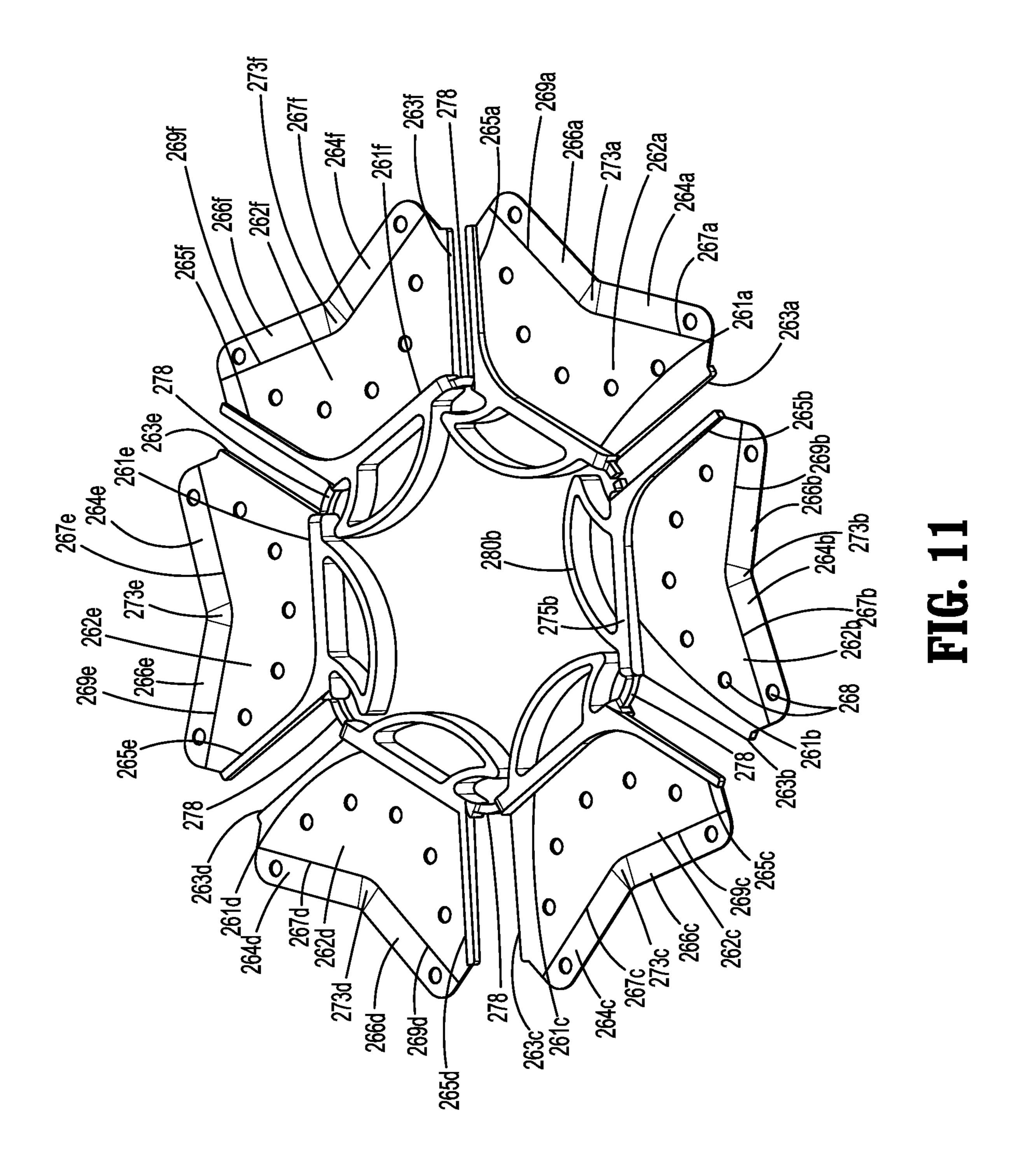
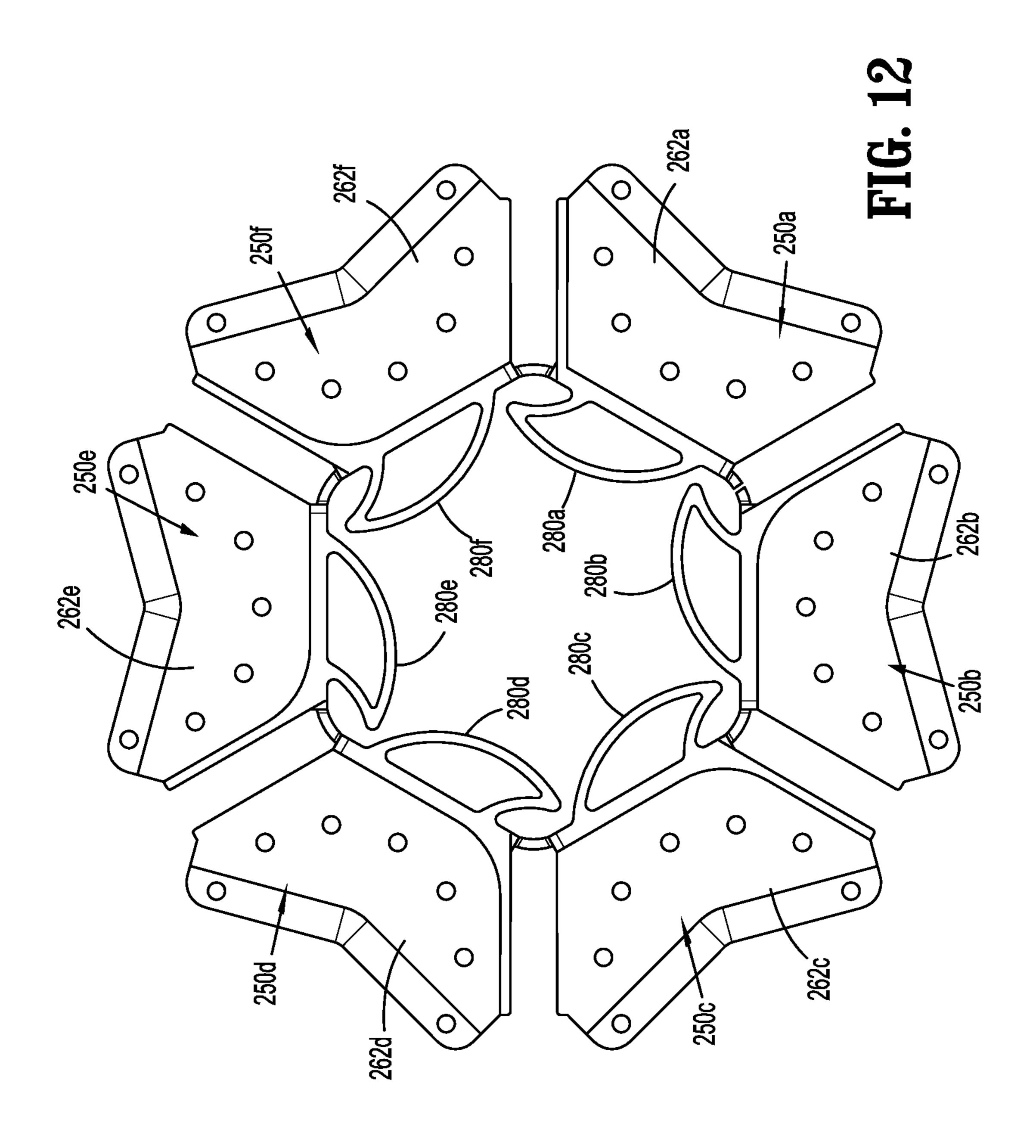
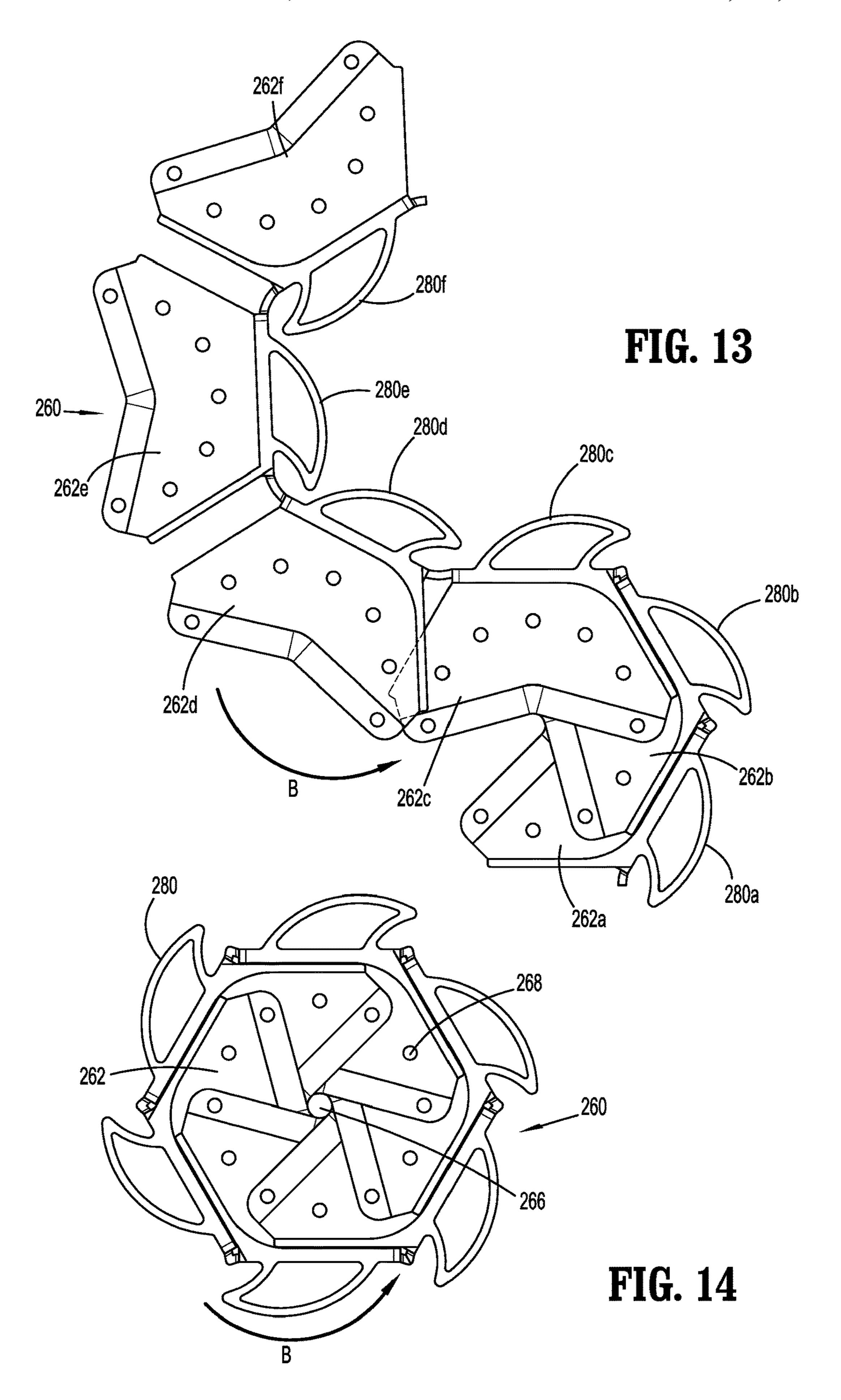





FIG. 10

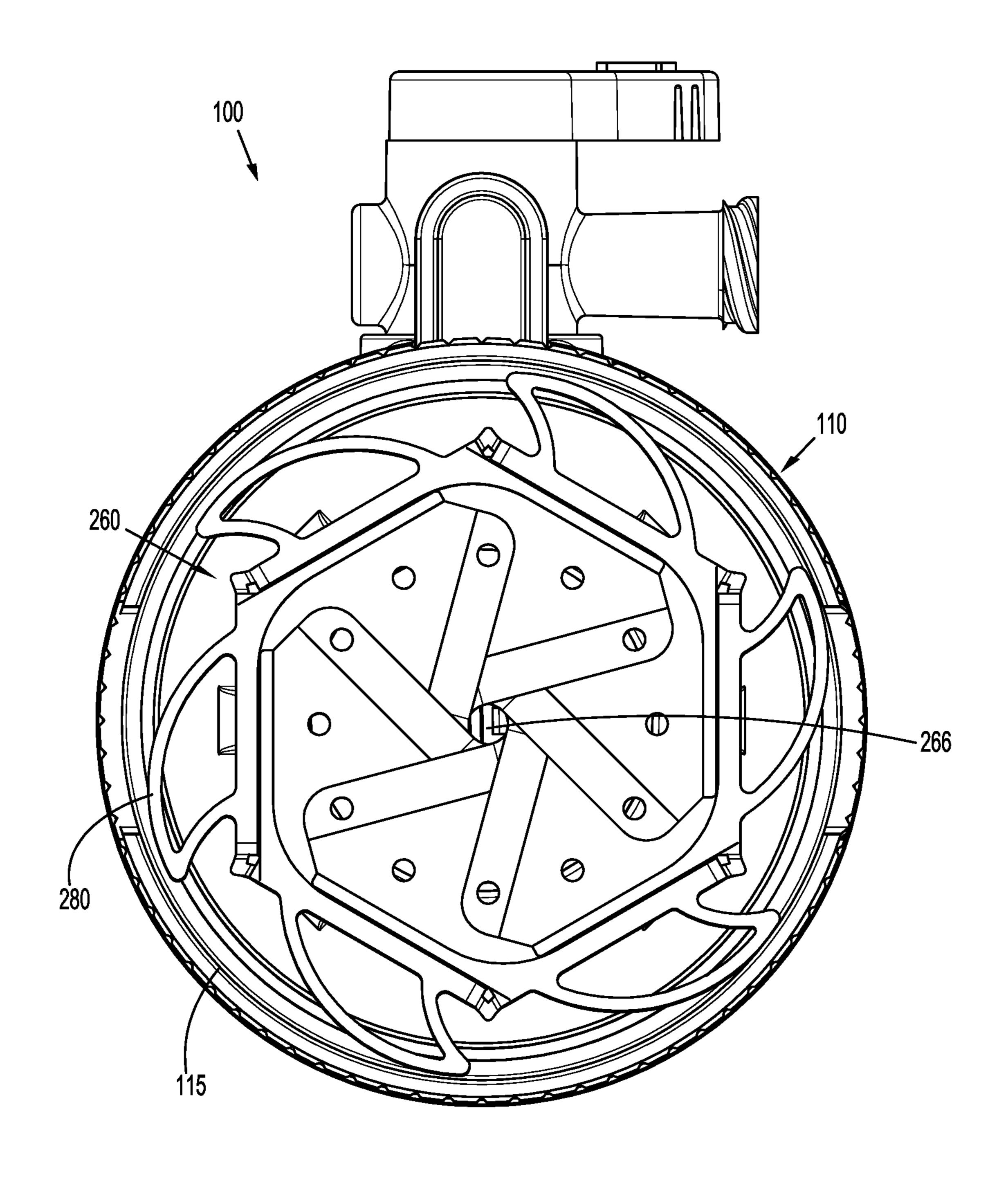


FIG. 15

INSTRUMENT SEAL FOR SURGICAL ACCESS ASSEMBLY

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 16/823,503, filed on Mar. 19, 2020, the entire contents of which are incorporated by reference herein.

FIELD

The present disclosure relates generally to access assemblies including seals for minimally invasive surgery. More particularly, the present disclosure relates to instrument seals for surgical access assemblies.

BACKGROUND

In order to facilitate minimally invasive surgery, a working space must be created at a surgical site. An insufflation fluid, typically CO₂, is introduced into the abdomen of the patient to create an inflated state called pneumoperitoneum. Surgical access assemblies are utilized to allow the introduction of surgical instrumentation and endoscopes (or other visualization tools). These surgical access assemblies maintain the pressure for the pneumoperitoneum, as they have one or more seals that adapt to the surgical instrumentation. Typically, a "zero-seal" in the surgical access assembly seals the surgical access assembly in the absence of a surgical instrument in the surgical access assembly, and an instrument seal seals around a surgical instrument that has been inserted through the surgical access assembly.

The breadth of surgical instrumentation on the market today requires a robust seal capable adjusting to multiple sizes and withstanding multiple insertions and withdrawals of surgical instrumentation. Some of the surgical instrumentation can include sharp edges that can tear or otherwise damage seals. Therefore, it would be beneficial to have an access assembly with improved seal durability.

SUMMARY

In an embodiment, a surgical access assembly includes a housing, a tubular member extending from the housing, and a valve assembly disposed in the housing. The valve assembly includes a centering mechanism, a guard assembly, and an instrument seal. The centering mechanism has a central 50 opening. The guard assembly has a central orifice that is alignable with the central opening of the centering mechanism. The guard assembly is disposed on a first side of the centering mechanism. The instrument seal includes a central hole alignable with the central opening of the centering 55 mechanism and is disposed on a second side of the centering mechanism opposite the first side of the centering mechanism and proximate the tubular member. The instrument seal includes petals that are arranged such that a portion of one petal covers a portion of a first adjacent petal and is covered 60 by a portion of a second adjacent petal.

The surgical access assembly may also include a retainer having first and second rings. The first ring may be disposed on the first side of the centering mechanism and the second side may be disposed on the second side of the centering 65 mechanism. The retainer may sandwich the centering mechanism between the guard assembly and the instrument

2

seal. The first ring may include pins extending therefrom and the second ring may include openings for receiving the pins therein.

The central opening of the centering mechanism may be circumscribed by a lip with pores extending therethrough, the guard assembly may include a ring with bores extending therethrough, and the instrument seal may include holes extending therethrough. The pins of the first ring may extend through the bores of the guard assembly, the pores of the centering mechanism, and the holes of the instrument seal to maintain the guard assembly, the centering mechanism, and the instrument seal in an aligned relationship. The pins of the first ring may be received in the openings of the second ring.

The instrument seal may have a frame that defines the central hole. The petals may be flexibly coupled to the frame. The petals may be coupled to the frame with living hinges.

In embodiments, a surgical access assembly has a housing, a tubular member extending from the housing, and a valve assembly disposed in the housing. The valve assembly includes a guard assembly with a central orifice and an instrument seal having a central hole aligned with the central orifice of the guard assembly. The instrument seal includes a frame with petals that are flexibly coupled to the frame. The instrument seal has an unfolded configuration defined by the petals extending away from a center of the frame and a folded configuration defined by the petals folded towards the central hole of the instrument seal such that each petal at least partially overlaps an adjacent petal such that the petals interlock.

The folded configuration of the instrument seal may define a diameter of the central hole that is configured to seal against a surgical instrument.

The petals may be flexibly coupled to the frame with living hinges.

The folded configuration of the instrument seal may allow the petals to flex relative to the frame while the frame may remain axially stationary relative to the housing.

The valve assembly may include a centering mechanism with a central opening. The guard assembly may be disposed on a first side of the centering mechanism and the instrument seal may be disposed on a second side of the centering mechanism that is opposite the first side.

The valve assembly may also include a retainer with first and second rings. The first ring may be disposed on the first side of the centering mechanism and the second ring may be disposed on the second side of the centering mechanism. The retainer may sandwich the centering mechanism between the guard assembly and the instrument seal.

The first ring of the retainer may include pins and the second ring of the retainer may include openings for receiving the pins. The pins of the first ring may be insertable through bores of the guard assembly, pores of the centering mechanism, and holes of the instrument seal to maintain the guard assembly, the centering mechanism, and the instrument seal in an aligned relationship.

In another embodiment, a surgical access assembly has a housing, a tubular member extending from the housing, and a valve assembly disposed in the housing. The valve assembly includes a centering mechanism with a central opening and an instrument seal in an abutting relationship with the centering mechanism. The instrument seal has a frame and petals. A first end of each petal is flexibly coupled to an outer surface of the frame and a second end of each petal is repositionable between a first position where the second end is outside a perimeter of the frame and a second position

where the second end is inside the perimeter of the frame. Each petal partially overlaps an adjacent petal such that the petals interlock.

The instrument seal may have a central hole defined by the second position of the petals. The central hole may define a diameter configured to seal against a surgical instrument. The central hole of the instrument seal may be alignable with the central opening of the centering mechanism.

The valve assembly may also include first and second rings. The first ring may be disposed adjacent the centering mechanism and the second ring may be disposed adjacent the instrument seal. The centering mechanism and the instrument seal may be sandwiched between the first and second rings.

The first ring may have pins extending therefrom and the second ring may have openings for receiving the pins therein.

The valve assembly may also include a guard assembly with a central orifice. The guard assembly may be disposed 20 between the first ring and the centering mechanism.

In a further embodiment, a surgical access assembly includes a housing, a tubular member extending from the housing, and an instrument seal disposed in the housing. The instrument seal has a frame with a plurality of frame arms. 25 3; Each frame arm of the plurality of frame arms is flexibly coupled to at least one other frame arm of the plurality of frame arms. The instrument seal also includes a plurality of petals corresponding to the plurality of frame arms. The plurality of petals is arranged such that a portion of a first 30 petal of the plurality of petals covers a portion of a first adjacent petal of the plurality of petals and is covered by a portion of a second adjacent petal of the plurality of petals. Each petal of the plurality of petals is flexibly coupled to the corresponding frame arm of the plurality of frame arms. The 35 instrument seal further includes a plurality of fins flexibly coupled to the plurality of frame arms. Each fin of the plurality of fins is biased away from the corresponding frame arm of the plurality of frame arms. The plurality of fins is configured to engage an inner surface of the housing. 40

The plurality of fins may be configured to urge the instrument seal towards a center of the housing.

Movement of the instrument seal relative to a central longitudinal axis of the housing may compress one or more of the fins of the plurality of fins.

The instrument seal may further include a central hole aligned with a central longitudinal axis of the housing. The central hole may be configured to seal against a surgical instrument.

The surgical access assembly may further include a guard ssembly with a central orifice. The guard assembly may be disposed on a first side of the instrument seal.

The surgical access assembly may further include a retainer. The retainer may have first and second discs sandwiching the guard assembly and the instrument seal 55 therebetween.

The instrument seal may include orifices extending through each petal of the plurality of petals and the guard assembly may include bores extending therethrough.

The first disc may include pins and the second disc may 60 include openings for receiving the pins. The pins may be insertable through the bores and the orifices to maintain the guard assembly and the instrument seal in an aligned relationship.

Each petal of the plurality of petals may be adapted to flex 65 relative to the frame while the frame remains axially stationary relative to the housing.

4

BRIEF DESCRIPTION OF DRAWINGS

Embodiments of an instrument seal are disclosed herein with reference to the drawings, wherein:

FIG. 1 is a perspective view of a surgical access assembly according to an embodiment of the present disclosure;

FIG. 2 is a cross-sectional view of the surgical access assembly of FIG. 1 taken along section line 2-2 of FIG. 1;

FIG. 3 is a top perspective view of an instrument seal in an unfolded configuration according to an embodiment of the present disclosure;

FIG. 4 is a top plan view of the instrument seal of FIG. 3; FIG. 5 is a side elevational view of the instrument seal of FIG. 4;

FIG. 6 is a top perspective view of the instrument seal of FIG. 4 in a partially folded configuration;

FIG. 7 is a top perspective view of the instrument seal of FIG. 4 in a fully folded configuration illustrating the folding sequence of the petals;

FIG. 8 is a bottom perspective view of a valve assembly according to an embodiment of the present disclosure;

FIG. 9 is an exploded view, with parts separated, of the valve assembly of FIG. 8 including a centering mechanism, a guard assembly, a retainer, and the instrument seal of FIG. 3.

FIG. 10. is a top perspective view of an instrument seal according to an alternate embodiment of the present disclosure;

FIG. 11 is a top perspective view of the instrument seal of FIG. 10 in an unfolded configuration;

FIG. 12 is a top plan view of the instrument seal of FIG. 11 with a link severed;

FIG. 13 is a top plan view of the instrument seal of FIG. 12 in a partially folded configuration illustrating the folding sequence of the petals;

FIG. 14 is a top plan view of the instrument seal of FIG. 12 in a fully folded configuration illustrating the folding sequence of the petals; and

FIG. 15 is a top cross-sectional view of an instrument housing of the surgical access assembly taken along section line 15-15 of FIG. 1 showing the placement of the instrument seal of FIG. 10 disposed therein.

DETAILED DESCRIPTION

Embodiments of the presently disclosed instrument seal for a surgical access assembly will now be described in detail with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views. As is common in the art, the term "proximal" refers to that part or component closer to the user or operator, i.e. surgeon or physician, while the term "distal" refers to that part or component farther away from the user.

Surgical access assemblies are employed during minimally invasive surgery, e.g., laparoscopic surgery, and provide for the sealed access of surgical instruments into an insufflated body cavity, such as the abdominal cavity. The surgical access assemblies of the present disclosure include an instrument valve housing mounted on a cannula tube, and include an obturator (not shown) inserted through the instrument valve housing and cannula tube. The obturator can have a blunt distal end, or a bladed or non-bladed penetrating distal end and can be used to incise the abdominal wall so that the surgical access assembly can be introduced into the abdomen. The handle of the obturator can engage or selectively lock into the instrument valve housing of the surgical access assembly.

Surgical access assemblies with a trocar obturator are employed to tunnel through an anatomical structure, e.g., the abdominal wall, either by making a new passage through the structure or by passing through an existing opening through the anatomical structure. Once the surgical access assembly 5 with the trocar has tunneled through the anatomical structure, the trocar obturator is removed, leaving the surgical access assembly in place. The instrument valve housing of the surgical access assembly includes valves that prevent the escape of insufflation fluid from the body cavity, while also 10 allowing surgical instruments to be inserted into the cavity and minimizing the escape of insufflation fluid.

In various embodiments, a bladeless optical trocar obturator may be provided that permits separation of tissue planes in a surgical procedure and visualization of body 15 tissue fibers as they are being separated, thereby permitting a controlled traversal across a body wall. In other embodiments, the trocar obturator may be bladeless without being optical, e.g., without providing contemporaneous visualization thereof through the distal tip of the obturator. The 20 bladeless obturator may be provided for the blunt dissection of the abdominal lining during a surgical procedure.

Various trocar obturators suitable for use with the surgical access assemblies of the present disclosure are known and include, for example, bladed, bladeless, blunt, optical, and 25 non-optical. For a detailed description of the structure and function of exemplary trocar assemblies, including exemplar trocar obturators and exemplar cannulas, please refer to PCT Publication No. WO 2016/186905 ("the '905 publication"), the content of which is hereby incorporated by reference 30 herein in its entirety.

With initial reference now to FIG. 1, a surgical access assembly according to aspects of the present disclosure is shown generally as cannula assembly 100. The cannula assembly 100 includes a cannula 102 and an instrument 35 valve housing 110 secured to the cannula 102. For a detailed description of an exemplary cannula assembly, please refer to the '905 publication.

With additional reference to FIG. 2, the instrument valve housing 110 of the cannula assembly 100 includes an upper 40 housing section 112, a lower housing section 114, and an inner housing section 116. The upper, lower, and inner housing sections 112, 114, 116 are configured to support a valve assembly 120 on a proximal end of the cannula 102. More particularly, the inner housing section 116 is secured 45 between the upper and lower housing sections 112, 114, and the valve assembly 120 is received between the inner and lower housing sections 116, 114. The upper and lower housing sections 112, 114 of the instrument valve housing 110 may be selectively attachable to, and detachable from, 50 the inner housing section 116. The lower housing section 114 may be releasably or permanently attached to a cannula tube 104 of the cannula assembly 102. In embodiments, either or both of the upper and lower housing sections 112, 114 of the instrument valve housing 110 may include knurls, 55 indentations, tabs, or be otherwise configured to facilitate engagement by a clinician.

The cannula assembly 100 may also include features for the stabilization of the surgical access assembly. For example, the distal end of the cannula tube 104 can carry a 60 balloon anchor or another expandable member that engages the abdomen from the interior side. For example, see U.S. Pat. No. 7,300,448, the entire disclosure of which is hereby incorporated by reference herein. A feature on the opposite side of the abdominal wall can be used to further stabilize 65 the surgical access assembly, such as adhesive tabs or adjustable foam collars.

6

The upper, lower, and inner housing sections 112, 114, 116 of the instrument valve housing 110 define a longitudinal passage 111 for receipt of a surgical instrument (not shown). The valve assembly 120 is supported within the instrument valve housing 110 to provide sealed passage of the surgical instrument through the cannula assembly 100.

Referring now to FIGS. 3-5, an instrument seal 160, according to an embodiment of the present disclosure, is illustrated. The instrument seal **160**, as illustrated, includes a hexagonal frame 170 that may be integrally formed (i.e., monolithic or unitary) or may be formed from six discrete segments that are joined together to form the frame 170. The segments may be joined to each other by welding, adhesives, mechanical joints, or other techniques as known in the art. The sides or segments 172a-f of the frame 170 form a boundary that defines a passage 178 having a center through the instrument seal 160. The center of the passage 178 is coaxial with a central hole 176 of the instrument seal 160. A corresponding number of petals 162 are attached to the frame 170. Although depicted with six petals 162a-f coupled to a hexagonal frame 170, the instrument seal may include a frame with more sides or discrete segments and a corresponding number of petals (e.g., 8). Alternatively, the presently disclosed instrument seal may include a frame with fewer sides or discrete segments and a corresponding number of petals (e.g., 4). The frame 170 and the petals 162a-fmay be fabricated from a polyisoprene, a liquid silicone rubber, or another suitable polymeric material. The instrument seal 160 may be molded, stamped, or formed in any other suitable manner. Each petal **162***a-f* is flexibly coupled to a side 172a-f of the frame 170 via a living hinge 174a-f. Further, as shown in FIGS. 3 and 5, each petal 162a-f is attached to the corresponding side 172*a-f* of the frame 170 via the living hinge 174a-f such that each petal 162a-f and the corresponding living hinge 174*a-f* define an acute angle with respect to either a top or bottom surface of the side or segment of the frame 170. The acute angle may be in the range of about 3° to about 10° . By angling each petal 162a-f relative to the top or bottom surface of the frame 170, interweaving the petals 162a-f of the instrument seal 160 is easier than if each petal 162a-f was parallel with the top or bottom surface of the frame 170.

Each petal **162***a-f* is a five sided main panel **150***a-f* with holes 168 extending therethrough. Although shown with five sides, each main panel 150a-f may have more or less than five sides. A first or connection side 161a-f is coupled to a side or segment 172a-f of the frame 170 with the corresponding living hinge 174*a-f*. This arrangement allows the petal 162a-f to be transitioned from an unfolded configuration (FIG. 3) to a folded configuration (FIG. 7). Each living hinge 174a-f may be formed from the same material as the frame 170 and the petals 162a-f or may be formed from another suitable polymeric material. In the unfolded configuration, each petal 162a-f extends away from an outer surface of the frame 170 outside a perimeter defined by the frame 170. In the folded configuration, each petal 162a-f is bounded by the frame 170 and is within the perimeter defined by the frame 170. Each main panel 150a-f has angled second and third sides 163a-f, 165a-f that extend from the connection side 161a-f in a divergent manner. Fourth and fifth sides 167a-f, 169a-f of main panels 150a-finterconnect the angled second and third sides 163a-f, 165af. The fourth and fifth sides 167a-f, 169a-f of the main panels 150a-f of each petal 162a-f have equal lengths and are angled towards the corresponding connection side 161a-fsuch that they meet a point that would bisect the connection side 161*a-f*. Additionally, the fourth and fifth sides 167*a-f*,

169*a-f* are oriented such that they define an angle between 120° and 160°. First and second extenders **164***a-f*, **166***a-f* are attached to the fourth and fifth sides 167a-f, 169a-f. Each extender 164a-f, 166a-f includes a hole 168 extending therethrough. The first and second extenders **164***a-f*, **166***a-f* 5 have equal lengths and meet at wedges 173a-f that also is located at a point that would bisect the connection side **161**a-f. The extenders **164**a-f, **166**a-f and the main panels **150***a-f* of each petal **162***a-f* bend at a midpoint between the second and third sides 163a-f, 165a-f of each petal 162a-f 10 such that, when viewed from the end (i.e., from the extenders towards the connection side) (see FIG. 5), the petal **162***a-f* has a slight curvature of about 3° to about 10°. The combination of the petals' 162a-f curvature, the angled relationship between each petal 162a-f and the side or 15 segment 172a-f of the frame 170, and the material of construction, facilitates folding the petals 162a-f in an interlocking pattern when transitioning the instrument seal 160 from the unfolded configuration to the folded configuration.

With reference now to FIGS. 3, 6, and 7, transitioning the instrument seal **160** from the unfolded configuration (FIG. 3) to the folded configuration (FIG. 7) includes folding the petals 162a-f sequentially such that they interlock by having each petal **162***a-f* partially overlap an adjacent petal **162***a-f*. 25 Initially, as seen in FIG. 3, the instrument seal 160 is in the unfolded configuration with the extenders 164a-f, 166a-f of the petals **162***a-f* facing away from the frame **170**. Each petal **162***a-f* is folded along a line defined by the associated living hinge 174*a-f* which defines an angle between the connection 30 side 161a-f of the respective petal 162a-f and the corresponding side or segment 172*a-f* of the frame 170. Thus, the intersection of the connection side 161a-f and the corresponding third side 165a-f of each petal 162a-f is closer to the side or segment 172a-f of the frame 170 than the 35 tions of the guard assembly 140, the centering mechanism intersection of the connection side 161a-f and the second side 163*a-f* of each petal 162*a-f* is to the side or segment 172a-f of the frame 170. The petals 162a-f are folded sequentially in the direction of arrows "A" such that all of the petals 162a-f are in a near vertical orientation (FIG. 6). 40 In this arrangement, the second side 163a-f of one petal **162***a-f* partially overlaps the third side **165***a-f* of the adjacent petal 162a-f. In particular, as illustrated in FIG. 6, the third side 165a of the first petal 162a partially overlaps the second side 163f of the sixth petal 162f, the third side 165b of the 45 second petal 162b partially overlaps the second side 163a of the first petal 162a, the third side 165 of the third petal 162cpartially overlaps the second side of the second petal 162b, the third side 165d of the fourth petal 162d partially overlaps the second side 163c of the third petal 162c, the third side 50 **165***e* of the fifth petal **162***e* partially overlaps the second side **163***d* of the fourth petal **162***d*, the third side **165***f* of the sixth petal 162f partially overlaps the second side 163e of the fifth petal 162e, and the third side 165a of the first petal 162a partially overlaps the second side 163f of the sixth petal 55 **162**f. This defines a partially folded configuration of the instrument seal 160. Subsequently, the user continues to fold the petals 162*a-f* towards a center of the frame 170 in the direction of arrows "A" while maintaining the overlapping arrangement between the second and third sides 163a-f, 60 165a-f of the petals 162a-f. Once all the petals 162a-f are folded such that they are substantially flush with a top surface of the frame 170, the overlapping arrangement of the second and third sides 163a-f, 165a-f of the petals 162a-f maintains the petals 162a-f in contact with one another 65 thereby maintaining the instrument seal 160 in the folded configuration. Further, once all the petals 162a-f are folded

over, the holes 168 of the petals 162a-f are aligned thereby allowing pins **186** of a retainer **180** to pass therethrough as will be discussed in detail hereinbelow. As seen in FIG. 7, the folded configuration of the instrument seal 160 defines a central hole 176 for slidably receiving a surgical instrument therethrough. The central hole 176 may have a diameter between 0.025 inches to 0.100 inches (i.e., 0.0635 cm to 0.254 cm).

With reference now to FIGS. 2, 8, and 9, the valve assembly 120, according to an embodiment of the present disclosure, is illustrated. The valve assembly 120 is located in the instrument valve housing 110 and includes a centering mechanism 130, a guard assembly 140, the instrument seal 160, and a retainer 180. The centering mechanism 130 of the valve assembly 120 permits radial movement of the valve assembly 120 relative to a central longitudinal axis "X" of the instrument valve housing 110 in response to insertion of a surgical instrument (not shown) through the valve assembly 120 and radial movement of the surgical instrument 20 relative to the central longitudinal axis "X". In the absence of a surgical instrument or in the absence of radial movement of a surgical instrument relative to the central longitudinal axis "X", the centering mechanism 130, as will be described in detail hereinbelow, returns the valve assembly 120 to a generally centered position such that a central opening 133 of the centering mechanism 130 and the central longitudinal axis "X" are coaxial. The guard assembly 140 protects the instrument seal 160 during insertion and withdrawal of a surgical instrument through the instrument seal 160, which, as discussed hereinabove, provides for sealed passage of the surgical instrument through the instrument valve housing 110. The retainer 180 includes first and second rings 182, 184 that are located on opposing sides of the centering mechanism 130 for maintaining relative posi-130, and the instrument seal 160. Additionally, the retainer maintains 180 an aligned relationship of the guard assembly 140, the centering mechanism 130, and the instrument seal 160. In particular, the first ring 182 of the retainer 180 includes pins 186 that extend from a bottom surface of the first ring 182 while the second ring 184 of the retainer 180 includes complementary openings 188 for receiving the pins 186 of the first ring 182. The pins 186 may be releasably engaged with the openings 188 or the pins 186 may be secured within the openings 188 by welding, adhesives, friction fit, or other techniques as are known in the art. The pins 186 are insertable through bores 148 of the guard assembly 140, pores 138 of the centering mechanism 130, the holes 168 of the instrument seal 160, and the openings 188 of the second ring 184 of the retainer 180. This arrangement aligns the relative positions of the guard assembly 140, the centering mechanism 130, and the instrument seal 160. Although illustrated with pins 186 extending from the first ring 182 towards openings 188 in the second ring **184**, the retainer may have the pins located on the second ring and the openings on the first ring. Alternatively, the first and second rings may have an alternating arrangement of pins and openings that are complementary such that the pins of one of the rings align with openings of the other of the rings allowing the rings to be attached to one another and define the retainer. The first ring 182 defines a central opening 185 extending therethrough and the second ring 184 defines a central opening 187 extending therethrough.

The centering mechanism 130 of the instrument valve housing 110 is configured to maintain the valve assembly 120 centered within the instrument valve housing 110. More particularly, the centering mechanism 130 includes an outer

annular ring 132, an inner annular ring 134, and a bellows 136 disposed between the outer annular ring 132 and the inner annular ring 134. As shown in FIG. 2, the outer annular ring 132 is received between the inner housing section 116 and the lower housing section 114 to retain the centering 5 mechanism 130 within the instrument valve housing 110. The inner annular ring 134 supports the guard assembly 140. For a detailed description of the structure and function of an exemplary centering mechanism, please refer to U.S. Pat. No. 6,702,787, the content of which is incorporated herein 10 by reference in its entirety.

The guard assembly **140** may be formed from a sheet of a plastic or other suitable polymeric material by stamping with a tool that forms a ring 142 and blades 144a-d. The ring **142** surrounds the blades **144***a*-*d* and includes bores **148** 15 hereinbelow. extending therethrough for slidably receiving the pins 186 of the first ring **182** of the retainer **180**. Further, when the valve assembly 120 is assembled, the guard assembly 140 is positioned between one side of the centering mechanism 130 and the first ring 182 of the retainer 180. The blades 144a-d 20 are configured to flex towards the centering mechanism 130 in response to insertion of a surgical instrument (not shown) through a central orifice **146** of the guard assembly **140** and return to a generally planar configuration (i.e., parallel with the ring) once the surgical instrument is removed. The blades 25 **144***a*-*d* extend towards a center of the ring **142** and define the central orifice **146** which has a diameter greater than an outside diameter of the surgical instrument.

During a surgical procedure utilizing cannula assembly **100**, a surgical instrument (not shown) is introduced into the instrument valve housing 110 through the longitudinal passage 111 in the upper, lower, and inner housing sections 112, 114, 116. As described above, the distal end of the surgical instrument engages one or more of the blades 144a-d of the downward into contact with the petals 162a-f of the instrument seal 160. This causes the central hole 176 of the instrument seal 160 to dilate such that the diameter of the central hole 176 is sufficiently large enough to accommodate passage of the surgical instrument therethrough. The guard 40 assembly 140 minimizes damage to the instrument seal 160 during insertion and/or removal of the surgical instrument through the valve assembly 120. The guard assembly 140 operates to protect the instrument seal 160 and minimizes tearing or other damage as the surgical instrument is 45 received through and withdrawn from the instrument seal **160**.

With reference now to FIGS. 10-12, an alternate embodiment of an instrument seal is illustrated and identified generally as instrument seal 260. Instrument seal 260 may be 50 a direct replacement for both the instrument seal 160 and the centering mechanism 130 in valve assembly 120 as illustrated in the previous embodiment. The instrument seal 260, as illustrated, includes a frame 270 having six sides 272*a-f*. The frame 270 may have fewer sides (e.g., 4) or more sides 55 (e.g., 8). Each side 272a-f is generally rectangular and extends along a length of a corresponding petal 262a-f. The number of petals 262 is equal to the number of sides 272 of the frame 270. Links 278 extend between adjacent side 272 defining a plurality of living hinges. In particular, links 278 60 define living hinges between sides 272a-b, between sides 272b-c, between sides 272c-d, between sides 272d-e, and between sides 272*e-f*. A gap is defined between sides 272*a* and 272f allowing sides 272a and 272f to move relative to each other. This arrangement facilitates folding the seal 270 65 thereby transitioning the seal 270 from the unfolded or initial configuration as shown in FIG. 12 to the folded or

10

final configuration as shown in FIG. 10. Since sides 272a and 272f have a gap therebetween and lack a living hinge, one of sides 272a or 272f may be repositioned without disturbing the position of the other of sides 272a or 272f. The instrument seal 260 also includes a plurality of fins **280***a-f* that extends from respective sides **272***a-f* on the side of the side 272*a-f* opposite that of the petals 262*a-f*. Each fin **280***a-f* is a flexible and resilient structure that is normally biased towards a center of the unfolded instrument seal **260** (FIG. 12) and normally biased away from the center of the folded instrument seal 260 (FIG. 14). The biasing and resilience of the fins **280***a-f* acts to center the instrument seal 260 when the instrument seal is positioned in the valve housing 110 (FIG. 15) as will be discussed in further detail

Each petal **262***a-f* is a five sided main panel **250***a-f* with holes 268 extending therethrough. Although shown with five sides, each main panel 250a-f may have more or less than five sides. A first or connection side 261a-f is coupled to a side or segment 272*a-f* of the frame 270. In the unfolded configuration (FIGS. 11 and 12), each petal 262a-f extends away from an outer surface of the frame 270 outside a perimeter defined by the frame 270. In the folded configuration (FIGS. 10 and 14), each petal 262a-f is bounded by the frame 270 and is within the perimeter defined by the frame 270. Each main panel 250a-f has angled second and third sides 263a-f, 265a-f that extend from the connection side **261***a-f* in a divergent manner. Fourth and fifth sides **267***a-f*, **269***a-f* of main panels **250***a-f* interconnect the angled second and third sides 263a-f, 265a-f. The fourth and fifth sides 267a-f, 269a-f of the main panels 250a-f of each petal 262a-f have equal lengths and are angled towards the corresponding connection side **261***a-f* such that they meet a point that would bisect the connection side 261a-f. Addiguard assembly 140 causing the blades 144a-d to flex 35 tionally, the fourth and fifth sides 267a-f, 269a-f are oriented such that they define an angle between 120° and 160°. First and second extenders 264a-f, 266a-f are attached to the fourth and fifth sides 267a-f, 269a-f. Each extender 264a-f, **266***a-f* includes a hole **268** extending therethrough. The extenders 264a-f, 266a-f and the main panels 250a-f of each petal 262*a-f* bend at a midpoint between the second and third sides 263a-f, 265a-f of each petal 262a-f such that, when viewed from the end (i.e., from the extenders towards the connection side) (similar to FIG. 5), the petal 62a-f has a slight curvature of about 5° to about 10°.

The first petal **262***a* is folded by pivoting the first side **272***a* and the first petal **262***a* about the living hinge defined by the link 278 that is disposed between the first and second sides 272a, 272b in the direction of arrow "B". As such, the first petal 262a partially overlaps the second petal 262b. Subsequently, the first and second petals 262a, 262b are pivoted by pivoting the second side 272b about the living hinge defined by the link 278 that is disposed between the second side 272b and the third side 272c such that the second petal 262b partially overlaps the third petal 262c(FIG. 13). Next, the first, second, and third petals 262a-c are pivoted by pivoting the third side 272c about the living hinge defined by the link 278 that is disposed between the third side 272c and the fourth side 272d such that the third petal **262**c partially overlaps the fourth petal **262**d. Subsequently, the first, second, third, and fourth petals 262a-d are pivoted by pivoting the fourth side 272d about the living hinge defined by the link 278 that is disposed between the fourth side 272d and the fifth side 272e such that the fourth petal **262***d* partially overlaps the fifth petal **262***e*. The first, second, third, fourth, and fifth petals 262a-e are pivoted by pivoting the fifth side 272e about the living hinge defined by the link

278 that is disposed between the fifth side 272e and the sixth side 272f such that the fifth petal 262e partially overlaps the sixth petal 262f and the sixth petal 262f partially overlaps the first petal 262a. The fully folded seal 260 is illustrated in FIG. 14. All the folds occur in the direction identified by 5 arrow "B".

After all the petals 262*a-f* are folded, a center orifice 266 is defined and is configured to engage an outer surface of a surgical instrument (not shown) inserted through the seal **260** such that the center orifice **266** surrounds the surgical 10 instrument in a sealing manner to inhibit the passage of insufflation fluids and defines a fluid tight barrier. Further, once the petals 262a-f are folded over, the holes 268 of the petals 262a-f are aligned thereby allowing pins 186 of the retainer 180 to pass through the holes 268. In this embodiment, the pins 186 are insertable through bores 148 of the guard assembly 140, the holes 268 of the instrument seal, and the openings 188 of the second ring 184 of the retainer **180**. This arrangement aligns the relative positions of the guard assembly 140 and the instrument seal 260. Although 20 illustrated with pins 186 extending from the first ring 182 towards openings 188 in the second ring 184, the retainer may have the pins located on the second ring and the openings on the first ring. Alternatively, the first and second rings may have an alternating arrangement of pins and 25 openings that are complementary such that the pins of one of the rings align with openings of the other of the rings allowing the rings to be attached to one another and define the retainer.

As each petal 262a-f at least partially overlaps a first 30 adjacent petal 262 and is at least partially overlapped by a second adjacent petal 262, the petals 262a-f of the seal are interwoven. This interwoven arrangement of the petals 262a-f facilitates the seal 260 maintaining its shape during insertion and withdrawal of a surgical instrument through 35 the center orifice **266**. For example, with additional reference to FIG. 2, the seal 260 would replace the seal 160 and the centering mechanism 130. FIG. 15 illustrates the placement of the instrument seal 260 in vale housing 110 of the cannula assembly 100. During insertion of the surgical 40 instrument through the valve housing 110 of the surgical access assembly 100, a shaft of the surgical instrument passes through the central opening 185 of the first ring 182, the central orifice 146 of the guard assembly 140, the center orifice 266 of the instrument seal 260, and the central 45 opening 187 of the second ring 184. As the shaft of the surgical instrument passes through the center orifice 266 of the seal 260 during insertion, the petals 262a-f of the seal 260 flex towards the second ring 184 and surround an outer surface of the shaft of the surgical instrument providing a 50 fluid tight barrier between the petals 262a-f of the seal 260 and the shaft of the surgical instrument. During withdrawal of the surgical instrument, the petals 262a-f of the seal 260 flex towards a proximal portion of the valve housing 110 in response to proximal movement of the shaft of the surgical 55 instrument. The petals 262a-f of the seal 260 resiliently return to their initial or rest configuration (FIG. 10) once the shaft of the surgical instrument is removed from the center orifice 266 of the seal 260. Due to the petals 262a-f being interwoven, they return to their initial configuration. In the 60 event that the petals 262a-f have slightly different rates of movement, the interwoven arrangement of the petals 262*a-f* results in the slowest moving petal 262 acting as a governor and limiting the rate of movement of the remaining petals 262. This tends to maintain contact between the petals 65 **262***a-f* and the outer surface of the shaft of the surgical instrument thereby maintaining the fluid tight boundary of

12

the seal 260 with respect to the surgical instrument during movement of the shaft relative to the seal 260.

Referring now to FIG. 15, the instrument seal 260 is positioned in the valve housing 110 and the fins 280a-fcontact an inner wall 115 of the valve housing 110. In an initial state, the normal biasing force exerted by the fins **280***a-f* act to center the instrument seal **260** in the valve housing 110 such that the center orifice 266 is aligned with the central longitudinal axis "X" of the cannula assembly 100 (FIG. 2). When a surgical instrument is inserted through the valve housing 110 and the center orifice 266, any radial movement of the surgical instrument relative to the longitudinal axis "X" moves the instrument seal 260 in the same radial direction. This results in the center orifice **266** being radially offset from the central longitudinal axis "X". In particular, when the instrument seal 260 is moved radially, the fins **280***a-f* in the direction of movement are compressed more while the fins 280a-f on the opposing side a relaxed more. Thus, when the force is removed, the compressed fins **280***a-f* will move towards their initial position and return the instrument seal 260 to its at rest position where the center orifice **266** is aligned with the central longitudinal axis "X". It is contemplated that all of the fins 280a-f will be slightly compressed when the instrument seal 260 is disposed within the valve housing 110.

Each petal **262***a-f* is connected to a corresponding side 272a-f of the frame 270 along a first or connection side **261***a-f*. Each petal **262***a-f* also includes angled second and third sides 263a-f, 265a-f that extend from the corresponding connection side 261a-f in a divergent manner. Fourth and fifth sides 267a-f, 269a-f of each petal 262a-f interconnect the angled second and third sides 263a-f, 265a-f. The fourth and fifth sides 267a-f, 269a-f of the petals 262a-f have equal lengths and are angled towards the corresponding connection side **261***a-f* such that they meet at a point that would bisect the connection side **261***a-f*. The fourth and fifth sides are oriented such that they that they define an angle of 150°. The fourth and fifth sides may define an angle between about 120° and about 165°. First and second extenders 262a-f, **264**a-f are attached to the fourth and fifth sides **267**a-f, **269***a-f*. The first and second extenders **262***a-f*, **264***a-f* have equal lengths and meet at a taper 273a-f that also is located at a point that would bisect the corresponding connection side **261***a-f*.

It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

What is claimed is:

- 1. A surgical access assembly comprising:
- a housing; and
- an instrument seal disposed in the housing, the instrument seal including:
 - a frame having connected linear segments, the connected linear segments defining a polygonal configuration of the frame, and
 - a plurality of petals, each petal of the plurality of petals attached to a corresponding linear segment of the linear segments and defining an acute angle with respect to a top surface of the corresponding linear segment of the linear segments, the plurality of petals arranged such that a portion of one petal of the plurality of petals covers a portion of a first adjacent petal of the plurality of petals and is covered by a portion of a second adjacent petal of the plurality of

petals such that the plurality of petals define a central hole of the instrument seal.

- 2. The surgical access assembly of claim 1, further including a bellows having a first side and a second side, the first side of the bellows facing a first side of the instrument 5 seal.
- 3. The surgical access assembly of claim 2, further including a first ring disposed on a second side of the instrument seal, a guard disposed on the second side of the bellows, and a second ring disposed adjacent to the guard, 10 the guard, the bellows, and the instrument seal sandwiched between the first ring and the second ring.
- 4. The surgical access assembly of claim 3, wherein the guard includes bores, the bellows includes pores, and the instrument seal includes peripheral holes.
- 5. The surgical access assembly of claim 4, wherein one of the first ring or the second ring includes pins and the other one of the first ring or the second ring includes openings for receiving the pins, the pins insertable through the bores of the guard, the pores of the bellows, and the peripheral holes 20 of the instrument seal to maintain the guard, the bellows, and the instrument seal in an aligned relationship.
- 6. The surgical access assembly of claim 1, wherein the instrument seal has an unfolded configuration defined by the plurality of petals extending away from a center of the frame 25 and a folded configuration defined by the plurality of petals folded towards a center of the instrument seal.
- 7. The surgical access assembly of claim 6, wherein the folded configuration of the instrument seal allows the plurality of petals to flex relative to the frame while the frame 30 remains axially stationary relative to the housing.
 - 8. A surgical access assembly comprising:
 - a housing; and
 - an instrument seal having a central hole and a polygonal frame, the polygonal frame having a plurality of segments and a plurality of petals flexibly coupled to corresponding segments of the plurality of segments such that each petal of the plurality of petals defines an acute angle with respect to a top surface of the corresponding segment of the plurality of segments, the 40 instrument seal having an unfolded configuration defined by the plurality of petals extending away from a center of the frame and a folded configuration defined by the plurality of petals folded towards the center of the frame wherein each petal of the plurality of petals at least partially overlaps an adjacent petal of the plurality of petals interlock.
- 9. The surgical access assembly of claim 8, wherein the folded configuration of the instrument seal defines the 50 central hole that is configured to seal against a surgical instrument.
- 10. The surgical access assembly of claim 8, wherein each petal of the plurality of petals is flexibly coupled to the corresponding segment of the plurality of segments with a 55 living hinge.
- 11. The surgical access assembly of claim 8, wherein the folded configuration of the instrument seal allows the plurality of petals to flex relative to the frame while the frame remains axially stationary relative to the housing.

14

- 12. The surgical access assembly of claim 8, further including a bellows and a retainer, the retainer having a first ring disposed on a first side of the bellows and a second ring disposed on a second side of the bellows, the retainer sandwiching the bellows between the first ring and the second ring to maintain the bellows and the instrument seal in an aligned relationship.
- 13. The surgical access assembly of claim 12, further including a guard having a central orifice, the guard disposed between the bellows and one of the first ring or the second ring.
- 14. The surgical access assembly of claim 13, wherein the first ring includes pins and the second ring of the retainer includes openings for receiving the pins, the pins of the first ring insertable through bores of the guard, pores of the bellows, and peripheral holes of the instrument seal to maintain the guard, the bellows, and the instrument seal in the aligned relationship.
- 15. The surgical access assembly of claim 8, wherein the folded configuration of the instrument seal defines a diameter of the central hole that is configured to seal against a surgical instrument.
 - 16. A surgical access assembly comprising:
 - a housing;
 - a tubular member extending from the housing; and an instrument seal disposed in the housing, the instrument seal having:
 - a frame having a plurality of segments, each segment of the plurality of segments attached to another segment of the plurality of segments and defining an obtuse angle between adjacent segments of the plurality of segments, and
 - a plurality of petals corresponding to the plurality of segments, the plurality of petals arranged such that a portion of a first petal of the plurality of petals covers a portion of a first adjacent petal of the plurality of petals and is covered by a portion of a second adjacent petal of the plurality of petals, each petal of the plurality of petals flexibly coupled to the corresponding segment of the plurality of segments by a living hinge;
 - wherein at least one petal of the plurality of petals defines an acute angle with respect to a top surface of at least one segment of the plurality of segments.
- 17. The surgical access assembly of claim 16, wherein the plurality of segments defines a polygonal configuration of the frame.
- 18. The surgical access assembly of claim 16, further including a bellows having a first side and a second side, the first side of the bellows facing a first side of the instrument seal.
- 19. The surgical access assembly of claim 18, further including a first ring disposed on a second side of the instrument seal, a guard disposed on the second side of the bellows, and a second ring disposed adjacent to the guard, the first ring and the second ring sandwiching the guard, the bellows, and the instrument seal between the first ring and the second ring.

* * * *