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PROTOCOL STATE FUZZING METHOD AND
SYSTEM FOR SECURITY OF DISTRIBUTED

SOFTWARE-DEFINED NETWORK
CONTROL PLANE

CROSS-REFERENCE TO RELATED
APPLICATIONS

A claim for priority under 35 U.S.C. § 119 1s made to
Korean Patent Application No. 10-2021-0095912 filed on
Jul. 21, 2021, and Korean Patent Application No. 10-2021-
0184576 filed on Dec. 22, 2021, 1n the Korean Intellectual
Property Oflice, the entire contents of which are hereby
incorporated by reference.

BACKGROUND

Embodiments of the mventive concept described herein
relate to a protocol state fuzzing method for security of a
control plane of a distributed software-defined network and
a system therefor, and more particularly, relate to a method
and a system for passively and actively monitoring inter-
communication between instances in network operating
systems (NOSs) and generating a possible attack scenario
for distributed NOSs to automatically infer operation states
of the distributed NOSs.

The software-defined network (SDN) has received con-
siderable interest from academia and industry. The SDN 1s
currently used in data centers and communication and
enterprise environments. The SDN paradigm supports sepa-
rating network intelligence (or a control plane) from a data
transier function of a network device (or a data plane) and
placing the network intelligence on a centralized SDN
controller (or a network operating system (NOS)). Such a
controller may perform expansion through an SDN appli-
cation (or an application plane). In general, this facilitates
communication between planes using standard application
programming interfaces (APIs) known as northbound and
southbound interfaces. By means of this architecture, the
SDN provides network operators with significant benefits
such as centralized network control and management and an
improved network programming function.

In the early days of the SDN paradigm, 1t 1s expected that
the SDN controller will be a single point of failure capable
of causing serious problems in terms of safety, security (e.g.,
a demial of service attack), latency, or scalability. However,
East and West interfaces for supporting communication
between controllers other than the northbound interface and
the southbound interface are included 1n the SDN paradigm.
It 1s common for network operators to develop control plane
functions in the network depending on a SDN controller
cluster (1.e., one main controller and multiple replicas) using
these interfaces. Thus, when a fault occurs or will occur 1n
the default SDN controller, the replica may be replaced
immediately, leading to a more robust network. Likewise, to
reduce latency and increase scalability, network operators
often divide large networks into various subnetworks and
manage each network by means of a different SDN control-
ler. In this case, the SDN controllers may be far apart from
cach other to form a so-called software-defined wide area
network (SD-WAN). Two representative examples ol SD-
WAN are used to interconnect globally distributed data
centers (refer to FIG. 1), with the main goal being to achieve
consistent network link utilization.

The SDN causes new security challenges and attack
vectors, despite 1ts significant benefits. Several researchers
have demonstrated that adversaries are able to launch attacks
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against applications, control planes, and data planes. Among
the attacks proposed so far, the attack targeting the controller
1s most dangerous. In other words, the controller 1s the brain
ol the network.

Although there are widespread attacks against the SDN
controller, these attacks only consider a network with a
single controller and are mitiated through the southbound or
northbound interface. However, the security of the protocols
used on the East and West interfaces for SDN controller
clusters to communicate with each other has not yet been
investigated. Because the East-West protocol 1s used to
perform 1mportant functions within a controller cluster, for
example, selecting a leader SDN controller, selecting a
controller for controlling each networking device, and
applying network policies, security 1s very important for the
correct operation of the network. When an attacker discovers
and exploits a vulnerability from one of the East-West
protocols, he or she may control a cluster of controllers and
may launch a number of attacks to disrupt the network,
obtain important network information, or damage the state
of the network. The results of such an attack may be much
greater than that of an attack executed against a single SDN
controller. For example, in the case of the SD-WAN,
enemies located in one subnetwork may perform remote
attacks on other subnetworks far away from them.

Thus, the secunity threats and risks of SDN networks
using several controllers remain unexamined. In this regard,
thoroughly examining the security 1ssues of the East-West
interface 1s an important 1ssue for operators to establish a
reliable cluster. There are several test tools which are
adjusted to suit SDN environments, but they are not suitable
for the distributed SDN. An up-to-date distributed NOS
includes a variety of East and West protocols, so traditional
tools need a significant time to discover vulnerabilities in
complex scenarios. Furthermore, unlike the SDN south-
bound interface (1.e., OpenFlow), there 1s no standard speci-
fication for the East-West protocol. Thus, it 1s diflicult to
plan test tools because the protocol operation 1s likely to be
heterogeneous for different NOSs. As a result, a black box
fuzzer does not work unless 1t learns to implement the
protocol properly.

To address the above-mentioned problems, embodiments
of the mventive concept are to design and implement an
ambusher for performing protocol state fuzzing for a dis-
tributed NOS environment. The protocol state fuzzing 1s
known as an eflective fuzzing method which facilitates
exploration of many system states to find abnormal cases.

SUMMARY

Embodiments of the inventive concept provide an
ambusher which 1s a test tool for passively and actively
monitoring intercommunication between NOS instances and
generating a possible attack scenario for distributed NOSs to
automatically infer operation states of the distributed NOSs.

According to an exemplary embodiment, a protocol state
tuzzing method for security of a control plane of a distrib-
uted software-defined network may include receiving input
alphabets being abstract symbols of a protocol message 1n an
ambusher of a distributed network operating system (NOS),
converting the input alphabets into the protocol message,
and sending the protocol message to a cluster, monitoring,
by the cluster, intercommunication between instances 1n the
distributed NOS, and selecting a set of sequences executable
in the cluster and searching a cluster log for an output by
executing the sequence to generate an attack result.
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The transmitting of the protocol message to the cluster
may include receiving the input alphabets, generating a
query to deliver the query to a proxy, converting the query
into the protocol message, and sending the protocol message
to a target cluster by a dummy arbiter generated in the
cluster, and sending a response message to a learner to
output a message 1dentical to the response message, when
the proxy searches for the response message.

The receiving may include receiving the mput alphabets
indicating the abstract symbols of the protocol message to
send the input alphabets to a system under learning (SUL)
such that the SUL observes output alphabets for the input
alphabets.

The proxy may convert the mput alphabets into the
protocol message and may use a user-defined protocol for
protocol implementation.

The monitoring of the mtercommunication may include
repeating a loop of transmitting the protocol message to the
cluster, until generating an 1nferred state machine.

The generating of the attack result may include system-
atically generating a test case using the state machine.

The generating of the attack result may include exploring
the state machine to select the set of sequences executable in
a cluster environment, deleting an alphabet which does not
aflect a state transition from the state machine to execute a
message sequence generable in the state machine, and
searching the cluster log for the output to generate the attack
result.

The generating of the attack result may include generating,
a set of cluster message sequences such that the target cluster
transitions to as many states as possible.

The generating of the attack result may include using state
depth-first search (SDFS) of extracting a message sequence.

According to an exemplary embodiment, a protocol state
tuzzing method for security of a control plane of a distrib-
uted software-defined network may include receiving input
alphabets being abstract symbols of a protocol message 1n an
ambusher of a distributed network operating system (NOS),
converting, by a proxy, the input alphabets into the protocol
message and sending, by a dummy arbiter generated 1n a
cluster, the protocol message to a target cluster, sending a
response message to a learner to output a message 1dentical
to the response message, when the proxy searches for the
response message, repeating a loop of the receiving, the
sending of the protocol message to the target cluster, and the
sending of the response message to the learner to generate an
inferred state machine, exploring the state machine to select
a set of sequences executable 1n a cluster environment, and
deleting an alphabet which does not aflect a state transition
from the state machine to execute a message sequence
generable 1n the state machine, and searching a cluster log
for an output by executing the sequence to generate an attack
result.

According to an exemplary embodiment, a protocol state
fuzzing system for security of a control plane of a distributed
soltware-defined network may include a processing unit that
receives input alphabets being abstract symbols of a protocol
message 1n an ambusher of a distributed network operating
system (NOS), converts the input alphabets 1nto the protocol
message, and sends the protocol message to a cluster, a
management umt that monitors 1ntercommunication
between 1nstances 1n the distributed NOS 1n the cluster, and
a result output unit that selects a set of sequences executable
in the cluster and searches a cluster log for an output by
executing the sequence to generate an attack result.

The processing unit may include a reception unit that
receives the input alphabets and a transmission unit that
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generates a query to deliver the query to a proxy, converts
the query into the protocol message, and sends the protocol
message to a target cluster by a dummy arbiter generated in
the cluster. The transmission unit may send a response
message to a learner to output a message identical to the
response message, when the proxy searches for the response.

The reception unit may receive the mput alphabets 1ndi-
cating the abstract symbols of the protocol message to send
the mput alphabets to a system under learning (SUL) such
that the SUL observes output alphabets for the mput alpha-
bets.

The transmission unit may convert the input alphabets
into the protocol message and may use a user-defined
protocol for protocol implementation in the proxy.

The management unit may repeat a loop of the processing,
unit, until generating an inferred state machine.

The result output umit may explore the state machine to
select the set of sequences executable 1n a cluster environ-
ment, may delete an alphabet which does not affect a state
transition from the state machine to execute a message
sequence generable 1n the state machine, and may search the
cluster log for the output to generate the attack result.

The result output unit may generate a set of cluster
message sequences such that the target cluster transitions to
as many states as possible.

The result output unit may use state depth-first search
(SDFS) of extracting a message sequence.

According to an exemplary embodiment, a protocol state
tuzzing system for security of a control plane of a distributed
soltware-defined network may include a state machine
builder that receives imput alphabets being abstract symbols
ol a protocol message from distributed network operating
systems (NOSs), converts the input alphabets into the pro-
tocol message, sends the protocol message to a target cluster
by a dummy arbiter generated 1n a cluster, and generates an
inferred state machine, a state machine fuzzer that explores
the state machine to select a set of sequences executable 1n
a cluster environment, deletes an alphabet which does not
aflect a state transition from the state machine to execute a
message sequence generable in the state machine, search a

cluster log for an output by executing the sequence to
generate an attack result, and a cluster environment manager
that manages clusters.

BRIEF DESCRIPTION OF THE FIGURES

The above and other objects and features will become
apparent from the following description with reference to
the following figures, wherein like reference numerals refer
to like parts throughout the various figures unless otherwise
specified, and wherein:

FIG. 1 1llustrates distributed NOSs distributed for con-
structing an SD-WAN;

FI1G. 2 1llustrates a structure of distributed NOSs:

FIG. 3 illustrates a state machine of a Raft consensus
protocol;

FIG. 4 illustrates a sequence diagram of a SWIM proto-
col:

FIG. 5 illustrates an operational flowchart of a protocol
state fuzzing method according to an embodiment of the
iventive concept;

FIG. 6 1llustrates a structure and an operational flow of an
ambusher according to an embodiment of the inventive
concept;

FIG. 7 1llustrates a state machine builder according to an
embodiment of the inventive concept;
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FIG. 8 illustrates an interaction between a dummy node
and an ONOS/Atomix cluster according to an embodiment

of the mventive concept;

FIG. 9 illustrates an automatically configured Mealy
machine of an ONOS/Atomix cluster according to an
embodiment of the inventive concept; and

FIG. 10 1s a block diagram 1llustrating a detailed configu-
ration ol a protocol state tuzzing system according to an
embodiment of the inventive concept.

DETAILED DESCRIPTION

Advantages, features, and methods of accomplishing the
same 1n the mventive concept will become apparent with
reference to embodiments described 1n detail below together
with the accompanying drawings. However, the inventive
concept 1s not limited by embodiments disclosed heremafter,
and may be implemented in various forms. Rather, these
embodiments are provided so that this disclosure will be
through and complete and will fully convey the concept of
the mvention to those skilled in the art, and the mmventive
concept will only be defined by the scope of the appended
claims.

Terms used 1n the specification are used to describe
embodiments of the inventive concept and are not intended
to limit the scope of the inventive concept. In the specifi-
cation, the terms of a singular form may include plural forms
unless otherwise specified. The expressions “comprise” and/
or “comprising’ used herein indicate existence of stated
components, steps, operations, and/or elements, but do not
exclude presence or addition of one or more other compo-
nents, steps, operations, and/or elements.

Unless otherwise defined herein, all terms (including
technical and scientific terms) used in the specification may
have the same meaning that 1s generally understood by a
person skilled in the art. Also, terms which are defined 1n a
dictionary and commonly used should be interpreted as not
in an idealized or overly formal detect unless expressly so
defined.

Hereinafter, exemplary embodiments of the inventive
concept will be described 1 detail with reference to the
accompanying drawings. The same reference denotations
are used for the same components on the drawings, and a
duplicated description of the same components will be
omitted.

Embodiments of the inventive concept may be the subject
matter of designing, implementing, and proposing an
ambusher for inferring a hidden state and analyzing security
of a distributed SDN cluster.

A distributed network operating system (NOS) 1s 1n the
spothgh’[ as an essential part of a wide area network (WAN)
for eflicient network management. However, a distributed
architecture of the NOS has brought a new attack surface
and has not recetved attention so far. Thus, to address these
concerns, an embodiment of the inventive concept proposes
an ambusher which 1s a test tool capable of passively/
actively monitoring intercommunication between NOS
instances and generating a possible attack scenario for a
distributed NOS to automatically infer an operation state of
the distributed NOS. To this end, the architecture and
operating scenarios of the distributed NOS may be investi-
gated. This becomes the design philosophy of the ambusher.
This 1s intended to recognize an inner operation of the
distributed NOS and to reveal vulnerabilities capable of
occurring therein. Furthermore, the ambusher 1s evaluated
by geographically constructing a real SD-WAN composed of
two campus networks and one enterprise network. The
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6

ambusher has been shown to be able to discover potential
vulnerabilities 1n a common distributed NOS platiorm.

Heremafiter, an embodiment of the inventive concept will
be described 1n detail with reference to FIGS. 2 to 10.

FIG. 2 1llustrates a structure of distributed NOSs. FIG. 3
illustrates a state machine of a Raft consensus protocol. FIG.
4 1llustrates a sequence diagram of a SWIM protocol.

Hereinafiter, a description will be given of the background
necessary to understand an architecture of the distributed
NOS with reference to FIGS. 2 to 4.

Referring to FIG. 2, the distributed NOS may be com-
posed of at least one or more controllers which communicate
with each other to accomplish a logically centralized control
plane. Each of all the distributed NOSs may be composed of
four main components, for example, (1) distributed storage
for managing a global network state, (2) a leadership engine
for selecting a leader, (3) a membership engine for periodi-
cally checking the life of a node, and (4) a mastership engine
for determining ownership of network device management
(e.g., switches). To reduce a load of the NOS, some of
previous functions may be implemented 1n a separate node
called an arbiter. Thus, a set of the arbiter and the NOS node
may form a so-called controller cluster. Heremaiter, a
description will be given of how each of the four compo-
nents operates.

Distributed Storage

One of the important aspects of the distributed NOS 1s to
achieve a consistent view between distributed storage and
distributed storage. To this end, the node should synchronize
the storage with another node after a new event 1s generated.
The synchronization methodology 1s defined by a consis-
tency policy which varies with a type of a target event. For
example, because an event of a control plane such as
leadership/mastership 1s associated with a cluster work, 1t
should be immediately updated. In this case, such an event
should be ensured by strong consistency. On the other hand,
because an event of a data plane generated by a network
device 1s managed by a master controller, 1t 1s not necessary
to be strictly updated. Thus, such an event may be loosely
synchronized through ultimate consistency.

Leadership Engine

Because event synchronization requires the role of des-
1gnating a node to adjust the synchronization work, selecting
a leader node 1s a basic task for a distributed NOS cluster.
The leader should receive all network states from another
follower node and should track a recent state of each storage.
A node for selecting the leader performs a series of selection
processes. Nodes compete with each other to be elected as
the leader 1n the leader election process, and a node which
does not become the leader becomes a follower. Next, such
a follower node serves as a backup to receive a replicated
state from the leader node.

Raft 1s the most well-known algorithm used for leader
clection. Simplicity thereol may allow the widely used
distributed NOS to place Rait dominantly. Seeing the opera-
tion of Raft with reference to FIG. 3, the node mitially starts
in a follower state to set any timer. When the timer expires,
the node may send a RaftVoteRequest message to a peer
node to become a leader. Thereafter, the node may switch to
a candidate state, while waiting for a response. When
receiving votes from most cluster nodes, the node may be
promoted to a leader state. Otherwise, the corresponding
state may change to the follower state again. This selection
cycle 1s recorded as the selection period to count the number
of repeated selection tasks during the selection period. When
receiving a new RaiftVoteRequest message including a
higher term than an old leader from the leader node, because
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the cluster regards the old leader as being 1nvalid, the cluster
may be 1n a follower state and restarts an election procedure
for electing a new leader.

Membership Engine

Another key component for preventing a Byzantine fault
in the distributed system posts a node about the state of
another node. To this end, the node may periodically exam-
ine the life of a peer and may send a heartbeat message to
all nodes to perform a so-called membership test. Broad-
casting 1s widely used to propagate the heartbeat, but 1s not
suitable for a large cluster. Alternatively, a SWIM protocol
may be used. This 1s an advanced investigation solution to
address the limitations. The basic concept of SWIM 1s that
the node selectively pings only one node at a time such that
large numbers of heartbeat messages are not generated.
Taking FIG. 4 as an example, when a source wants to
investigate a target node, the node may first and directly send
a SwimProbeRequest to a target. When a SwimProbeRe-
sponse 1s not reached within a specific heartbeat threshold,
the source may request t peer members to indirectly mves-
tigate the target.

Mastership Engine

Mastership represents a user who has the authonty to
control a network device. When a large number of devices
are maintained on the network, 1t 1s important to divide a
management sector mto a suitable number of segments in
conjunction with the overall performance improvement.
When the NOS node fetches a master for a specific switch,
the node manages a delivery rule of a switch through a
southbound protocol such as OpenFlow. The master node
has the write permission capable of correcting the rule,
whereas another NOS node (1.e., a standby node) may only
read the rule. When a fault occurs 1n the master node, the
mastership moves to one of standby nodes.

FIG. 5 1llustrates an operational tlowchart of a protocol
state fuzzing method according to an embodiment of the
iventive concept. FIG. 6 illustrates a structure and an
operational flow of an ambusher according to an embodi-
ment of the inventive concept.

Referring to FIG. 6, an ambusher 600 according to an
embodiment of the inventive concept may be composed of
three main modules such as a state machine builder 620, a
state machine fuzzer 640, and a cluster environment man-
ager 630.

A detailed operation will be described with reference to
FIGS. 5 and 6. In operation S510, input alphabets 610 may
be recerved to be converted 1nto a protocol message and the
protocol message may be sent to a cluster.

Operation S510 may include receiving (@) the 1nput
alphabets which are abstract symbols of the protocol mes-
sage from a network operator in an ambusher of a distributed
NOS. In the receiving (@)5 the input alphabets indicating
the abstract symbols of the protocol message may be
received to be transmitted to a system under learning (SUL).
The SUL may observe output alphabets for the input alpha-
bets.

Thereafter, 1n operation S510, a learner 621 may generate
a query used in a learning state and may deliver the
generated query to a proxy 622. Thereafter, operation S510
may include converting (@) the query into a detailed
protocol message and sending the protocol message to a
target cluster by a dummy arbiter generated 1n the cluster. In
the sending, the proxy 622 may convert the input alphabets
into the protocol message and may use a user-defined
protocol for protocol implementation.
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Thereafter, 1n operation S510, when searching (@) the
cluster for a response message, the proxy 622 may send the
message to the learner 621 to learn the output 1dentical to the
message.

In operation S520, the cluster may monitor intercommu-
nication between instances in the distributed NOSs.

In operation S520, the learner 621 may repeat the loop of
operation S310 when generating (@) an nferred state
machine 660.

In operation S530, a set of sequence executable in the
cluster may be selected to search a cluster log for an output
by executing the sequence and generate an attack result 650.
In operation S530, a test case may be systematically gen-
erated using the state machine.

In detail, 1n operation S530, a sequence extractor 641 of
the state machine fuzzer 640 may explore the state machine
660 and may select (@) an executable state sequence set
capable of being allowed 1n the cluster environment. At this
time, after a sequence pruner 642 removes an unnecessary
input which does not affect a state transition, an attack
conductor 643 may execute the sequence and may search
(@) the cluster log for the output. Finally, the state machine
fuzzer 640 may generate (@) the attack result 650. This
may then be manually analyzed to find attacks by several
criteria.

In operation S530, a set of cluster message sequences may
be generated such that the target cluster transitions to as
many states as possible. Furthermore, in operation S530,
state depth-first search (SDFS) of extracting a message
sequence may be used.

FIG. 7 illustrates a state machine builder according to an
embodiment of the inventive concept. FIG. 8 illustrates an
interaction between a dummy node and an ONOS/Atomix
cluster according to an embodiment of the inventive con-
cept. FIG. 9 illustrates an automatically configured Mealy
machine of an ONOS/Atomix cluster according to an
embodiment of the inventive concept.

Hereinatter, a description will be given in detail of details
of a learning technique for inferring an internal state of a
distributed NOS cluster.

Learning State Machine

Automata learning 1s a framework for systematically
inferring a finite state machine (FSM) of a target system.
Among many FSMs, because a Mealy machine 1s very
suitable for understanding a protocol operation due to its
deterministic properties, 1t 1s mainly used for protocol state
fuzzing. State transition 1s determined by a unique 1mnput and
a umque state. Herein, when the state machine 1s the FSM,
the output of which 1s determined by a current state and a
current mnput, it invokes the Mealy machine. The framework
1s composed of two main concepts such as (1) a learner and
(11) a system under learning (SUL) to form a series of
learning procedures.

The learner 1s responsible for inferring the Mealy machine
(1n this case, the target cluster environment) of a given SUL.
The learner repeats a search stage and a test stage during a
learning process. In the search stage, a series of predeter-
mined symbols (i.e., input alphabets) are sent to the SUL to
observe a response (1.€., output alphabets) of the SUL. When
an appropriate number of responses are observed, the learner
creates a hypothesis model. This model 1s a minimum Mealy
machine, the state of which complies with observation. The
hypothesis model verifies whether there 1s a counterexample
which violates the model to perform verification 1n the test
stage. When nothing 1s found, the hypothetical model 1s
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accepted. Otherwise, the model 1s embodied. This series of
challenges 1s repeated until no opposite case 1s able to be
found in the model.

At this time, because the input alphabets are not a real
protocol message, they are abstract symbols that SUL does
not basically understand. To this end, there 1s a need for an
intermediate proxy which interprets the input alphabets into
a specific message. On the other hand, the protocol of the
distributed NOS generally has a keep-alive message. When
a new node joins the cluster, old members periodically send
such keep-alive messages to the node. It 1s mnevitable to
respond to the message to maintain a valid East- West session
with the SUL, but the message due to unity should just be
learned. Furthermore, the protocol sends/recerves the mes-
sage using a separate session, and communication 1s
executed 1n parallel between nodes. Considering this simul-
taneous execution, 1t 1s diflicult to determine which output 1s
deterministically derived from which nput.

As shown 1n FIG. 7, an embodiment of the inventive
concept designs a proxy to integrate the above-mentioned
considerations. When receiving mput text, a translator con-
verts a symbol mnto a protocol message. Because there 1s
currently no standard for an East-West protocol, most dis-
tributed NOSs use a user-defined protocol for protocol
implementation. Thus, when a target NOS uses an expanded
message exceeding a general protocol description, such
conversion needs analysis of a source code. The speciiic
message 1s sent by a message sender connected with a
dummy node of the SUL. When a new channel 1s established
with the SUL, a receiver pool dynamically invokes the
generation of a new thread. Shared queues are used to
process messages transmitted simultancously. When a
sender delivers a message to the SUL, a thread in the
receiver pool queues the received message to a shared
queue, and then the translator queues the message within the
threshold window (using the same threshold as a heartbeat
threshold of a cluster configuration). The message sender
maintains a logical clock and generates a timestamp when
sending the input message. By verifying this clock, the
translator ensures an accurate message order. A session
keeper 1s used to respond to a keep-alive message to
maintain the East-West channel, but the received message 1s
not used for learming. Proxy utilization plays an important
role 1n fill a difference between the learner and the SUL at
the same time as converting the symbol into the protocol
message.

In addition, to prevent complex state learning 1 a dis-
tributed environment, i1t 1s preceded by understanding a
cluster operation from a holistic perspective. In general,
because the cluster 1s managed by the leader, the leader node
responds to most messages. Indeed, an embodiment of the
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inventive concept devises an abstract model showing an
integrated interaction 1n terms ol a node-cluster relationship
rather than communication for each protocol. FIG. 8 illus-
trates a message nteraction generated when a dummy node
starts to communicate with a target cluster from scratch. An
embodiment of the mventive concept analyzes an ONOS
controller by means of a representative SDN cluster imple-
menting the above-mentioned distributed architecture/pro-
tocol. Hereinalter, a description will be given of four inter-
action phases including brief descriptions ol protocol
messages.
1) Discovery Phase

It aims to search a target cluster and join 1t as a legitimate
member 1n the discovery phase. Initially, this node sends a
SwimProbeRequest and then triggers the cluster to respond
to a SwimProbeResponse and a BootstrapRequest. The latter
includes configuration information such as a cluster mem-
ber/protocol. This node sends a BootstrapResponse desig-
nating architecture information (e.g., a protocol and a node)
together and also sends a RaftJoinRequest for participating
in the cluster to a Ralt member. Thereafter, the cluster
responds to a RaftloinResponse and a RaftConfigureRe-
quest for sending current Rait protocol information (e.g., a
period and a leader).
2) Election Phase
The message of the election phase i1s associated with a
leader election process of most Raft protocols. When joining
the cluster, the role of the node 1s basically assigned to a
tollower. A node has 1ts own election timer. When the timer
expires, 1t attempts to promote to the leader by sending a
RaftVoteRequest message to the cluster. When receiving a
RaftVoteResponse message that most nodes agree with, the
node becomes the leader.
3) Synchronization Phase

The node which joins 1n the cluster starts to synchronize
an event. When receiving a RaftAppendRequest including a
commit message promoted by the leader, the node will
recognize that the request 1s received and the commit
message 1s executed and will send a RaftAppendResponse.
The node 1s able to read and correct a shared view (e.g., an
application or a topology) of distributed storage using the
RaftCommandRequest, and the cluster notifies the result
using the RaitCommandResponse.
4) Membership Phase

The node periodically verifies the lifetime of a peer node
based on a membership protocol. When a SWIM protocol 1s
used, the node randomly selects a target node, sends a
SwimProbeRequest designating an identifier to the cluster,
and receives a SwimProbeResponse message.

An embodiment of the mventive concept defines alpha-
bets used for state machine learning, as summarized 1n Table
1 below, based on a message exchange model.

TABLE 1

Alphabet Shorthand

SwimProbeRequest(n) SPReq(n)
ne{n,n"} neNn" &N
SwimProbeResponse(n, s) SPRes(n, s)
n € N, s € {alive,dead}

Discovery BootstrapRequest(N') BReq(N'")
N'CN

BootstrapResponse(N') BRes(N")
N'CN

RaftJoinRequest(n) RJReq(n)

ne{n,n"}neNn" &N

RaftlomnResponse RIRes
RaftConfigureRequest RConReq
RaftConfigureResponse RConRes
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TABLE 1-continued
Alphabet Shorthand
Election RaftVoteRequest(n, t) RVReq(n, t)
neN,te{t,t.}t, >t
RaftVoteResponse(v) RVRes(v)
v € {approved, rejected }
Synchronization RaftCommandRequest(d, o) RComReq(p, o)

d € {app, topo}, o € {add, modify remove}
RComRes

RaftCommandResponse
RaftAppendRequest

RaftAppendResponse
NoResponse

An embodiment of the inventive concept extracts and
selects a message parameter which 1s able to influence the
internal state of the cluster to generate a state machine
including various cases. For example, SwimProbeResponse
(n, s) implies that the node 1s in membership state s. This
may be active or 1nactive to respond to SwimProbeRequest
(n). BootstrapRequest(IN') and BootstrapResponse(N') indi-
cate that there 1s a node currently configured in the cluster.
The variable N' may be a subset of the entire node set N.
RaftJoinRequest(n) indicates that node n participates in Raft
protocol interaction, which 1s later answered by Raftloin-
Response. The variable n may be a current member node n'
or a new node n". RaftConfigureRequest(n) indicates that
the node joins the Raft cluster and responds to the RaftCon-
figureResponse. RaftVote Request(n, t) means that node n 1s
trying to promote to the leader with term t which may be
greater term th or current term tc. The RraftVote Response
(v) 1s used to notily of voting results capable of being
approved or rejected. RaftCommandRequest(d, o) instructs
the cluster to run operation o capable of adding, correcting,
or removing shared data, which may be important informa-
tion such as application, topology, or mastership information
(respectively indicated as app and topo). Variations of these
parameters within a specific range may switch the cluster to
an abnormal state.

Requuire:
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State Machine Fuzzing

An embodiment of the inventive concept proposes a fuzzy
technique for systematically generating a test case using a
state machine. To this end, this phase aims to generate a set
of cluster message sequences such that the target cluster
transitions to as many states as possible.

To this end, to perform fuzzing using the assembled
Mealy machine, 1t should first be formulated 1nto an appro-
priate structure. The Mealy machine may be represented as
a Multi-edged graph & =(V ,&). Herein, V denotes the
state and ¢ denotes the transition labeled with input alphabet
I and output alphabet O. I and O are functions of mapping
the transition to message m.

An embodiment of the inventive concept deletes an
alphabet which does not aflect the transition in the state
machine to reduce the eflort to analyze the state. For
example, there may be a loop where the state 1s connected
with the state machine in the state machine. Furthermore,
there 1s a keep-alive message which only activates mean-
ingiul transitions, such as SwimProbeRequest and RaftAp-
pendRequest. Such a transition 1s excluded from the set of
candidate message sequences and 1s indicated as “Others™ 1n
the state diagram (refer to FIG. 9).

In addition, an embodiment of the inventive concept
explores all reachable states and generates a sequence of
messages capable of being generated in the state machine.
To this end, an embodiment of the inventive concept pro-
poses an algorithm, such as Algorithm 1 below, which
extracts a message sequence using the DFS.

ALGORITHM 1

DFS for Message Sequence Extraction

A Mealy machine graph &= (¥, ¢, I, O),
An mtial state v,

Ensure:

A set of message sequences S

1: procedure INIT (&, v,)
2: M () * Empty set
3: S <[] = Empty list
4 Set all states in #as not visited
5 At SDFS®E ,vp, A S)
6: return

Requuire:

A currently visited state v,
A subsequence that consists of states visited previously S’

N B W R O O 00 )

procedure SDFS(# ,vo, M S )
for e € & .outgoingEdges(v), where e = (v, w) do

if w 1s not visited then

pre

Post

At At ) §

Mark w as visited
m < I{e)

» (Jet a message from a transition
*» Add the message to the sequence
* Add the subsequence to the set
» Call SDES recursively

> Add the subsequence to the set

.append(m)

pre

< SDFS@, w,A S )

Post

returnt
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State depth-first search (SDFS) uses a Mealy machine
graph ¢ and an initial state v, as inputs and generates a
message sequence M as an output. The SDFS mnitializes two
variables M and S (rows 1-3). The former 1s the output of the
algorithm and finally becomes the final set of message
sequences. The latter 1s used to store messages extracted
from the states visited so far. Initially, the algorithm marks
all states as unvisited and starts traversing from the initial
state v, (rows 4-5). When invoked, the SDFS finds all
outgoing edges (1.e. transitions) from the current state v and
verifies whether the next state (rows 7-9) 1s visited. Other-
wise, the algonithm displays the state after the visit and
fetches message m from transition € (rows 10-11). The
message 1s added to a Spre sequence and 1s also added to a
set M (rows 12-13). The SDFS 1s repeatedly called using a
next state w and a pre-sequence Spre, and then generates a
post-sequence Spost (row 14). Finally, a message M 1nclud-
ing both pre- and post-sequences 1s generated (row 16).

FI1G. 10 1s a block diagram 1llustrating a detailed configu-
ration of a protocol state fuzzing system according to an
embodiment of the mventive concept, which illustrates a
conceptual configuration of a system for performing the
method of FIGS. 5 t0 9.

Referring to FI1G. 10, a protocol state fuzzing system 1000
according to an embodiment of the mventive concept may
include a processing unit 1010, a management unit 1020,
and a result output unit 1030. Furthermore, the processing
unit 1010 may include a reception unit 1011 and a trans-
mission umt 1012.

The processing unit 1010 may receive mput alphabets to
convert the input alphabets into a protocol message and may
send the protocol message to a cluster.

The processing unit 1010 may include the reception umit
1011 which recerves the mput alphabets, which are abstract
symbols of the protocol message, from a network operator
in an ambusher of a distributed NOS. The reception unit
1011 may receive the iput alphabets indicating the abstract
symbols of the protocol message to send the mnput alphabets
to a system under learning (SUL), such that the SUL may
observe output alphabets for the input alphabets.

Thereafter, a learner may generate a query used i a
learning state and may deliver the generated query to a
proxy. Thereafter, the query may be converted into a detailed
protocol message. The transmission unit 1012 may send the
protocol message to a target cluster by a dummy arbiter
generated 1n the cluster. In this case, the transmission unit
1012 may convert the input alphabets into the protocol
message and may use a user-defined protocol for protocol
implementation 1n the proxy.

Thereafter, when the proxy searches the cluster for a
response message, the processing unit 1010 may send a
message to the learner to learn an output i1dentical to the
message.

The management unit 1020 may monitor mtercommuni-
cation between instances in NOSs distributed 1n the cluster.

The management unit 1020 may repeat a loop of the
processing unit 1010, until the learner generates an iferred
state machine.

The result output unit 1030 may select a set of sequences
executable 1n the cluster and may search a cluster log for an
output by executing the sequence to generate an attack
result. The result output unit 1030 may systematically gen-
crate a test case using the state machine.

In detail, the result output unit 1030 may explore the state
machine and may select an executable state sequence set
capable of being allowed 1n the cluster environment. In this
case, the result output unit 1030 may remove an unnecessary
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input which does not aflect a state transition, may execute
the sequence, and may search the cluster log for the output.
Finally, the result output unit 1030 may generate an attack
result.

Furthermore, the result output unit 1030 may generate a
set of cluster message sequences such that a target cluster
transitions to as many states as possible and may use state
depth-first search (SDFS) of extracting a message sequence.

It 1s apparent to those skilled in the art that, although the
description 1s omitted in the system of FIG. 10, the respec-
tive means making up FIG. 10 may include all contents
described i FIGS. 1 to 9.

The foregoing systems or devices may be realized by
hardware elements, software elements and/or combinations
thereof. For example, the devices and components 1llustrated
in the exemplary embodiments of the inventive concept may
be implemented in one or more general-use computers or
special-purpose computers, such as a processor, a controller,
an arithmetic logic unit (ALU), a digital signal processor, a
microcomputer, a field programmable array (FPGA), a pro-
grammable logic unit (PLU), a microprocessor or any device
which may execute instructions and respond. A processing
unit may implement an operating system (OS) or one or
software applications running on the OS. Further, the pro-
cessing unit may access, store, manipulate, process and
generate data 1n response to execution of software. It will be
understood by those skilled 1n the art that although a single
processing unit may be illustrated for convenience of under-
standing, the processing unit may include a plurality of
processing elements and/or a plurality of types of processing
clements. For example, the processing unit may include a
plurality of processors or one processor and one controller.
Also, the processing unit may have a different processing
configuration, such as a parallel processor.

Software may include computer programs, codes, mstruc-
tions or one or more combinations thereol and may config-
ure a processing unit to operate 1n a desired manner or may
independently or collectively control the processing unait.
Software and/or data may be permanently or temporarily
embodied 1n any type of machine, components, physical
equipment, virtual equipment, computer storage media or
units or transmitted signal waves so as to be interpreted by
the processing unit or to provide instructions or data to the
processing unit. Software may be dispersed throughout
computer systems connected via networks and may be
stored or executed 1n a dispersion manner. Software and data
may be recorded 1n one or more computer-readable storage
media.

The methods according to the above-described exemplary
embodiments of the inventive concept may be implemented
with program instructions which may be executed through
various computer means and may be recorded 1n computer-
readable media. The computer-readable media may also
include, alone or in combination with the program instruc-
tions, data files, data structures, and the like. The program
instructions recorded in the media may be designed and
configured specially for the exemplary embodiments of the
inventive concept or be known and available to those skilled
in computer software. Examples of computer-readable
media mclude magnetic media such as hard disks, floppy
disks, and magnetic tape; optical media such as compact
disc-read only memory (CD-ROM) disks and digital versa-
tile discs (DVDs); magneto-optical media such as floptical
disks; and hardware devices that are specially configured to
store and perform program instructions, such as read-only
memory (ROM), random access memory (RAM), flash
memory, and the like. Program instructions include both
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machine codes, such as produced by a compiler, and higher
level codes that may be executed by the computer using an
interpreter. The described hardware devices may be config-
ured to act as one or more soitware modules to perform the
operations of the above-described exemplary embodiments
of the mventive concept, or vice versa.

According to an embodiment of the inventive concept, the
security of protocols used on East and West interfaces may
be investigated, and protocol state fuzzing may reveal poten-
tially hidden vulnerabilities in the West and East protocols of
the distributed NOS.

In addition, according to an embodiment of the inventive
concept, an ambusher for proposing a learning method
capable of extracting a state machine from a distributed
SDN cluster running several controllers and protocols, gen-
crating a message sequence leading the cluster to an unex-
pected state in the state machine, and performing state
recognition fuzzing may be designed and implemented.

Furthermore, according to an embodiment of the inven-
tive concept, the ambusher of a distributed SDN cluster built
on the SD-WAN testbed may be evaluated, and a potential
vulnerability 1n the ONOS, which 1s one of the most used
SDN controllers, may be disclosed.

While a few embodiments have been shown and
described with reference to the accompanying drawings, 1t
will be apparent to those skilled in the art that various
modifications and variations can be made from the foregoing,
descriptions. For example, adequate eflects may be achieved
even 1f the foregoing processes and methods are carried out
in different order than described above, and/or the afore-
mentioned elements, such as systems, structures, devices, or
circuits, are combined or coupled in different forms and
modes than as described above or be substituted or switched
with other components or equivalents.

Therefore, other implements, other embodiments, and
equivalents to claims are within the scope of the following
claims.

What 1s claimed 1s:

1. A protocol state fuzzing method for security of a control
plane of a distributed software-defined network, the protocol
state Tuzzing method comprising:

receiving input alphabets being abstract symbols of a

protocol message 1n an ambusher of a distributed
network operating system (NOS), converting the 1input
alphabets into the protocol message, and sending the
protocol message to a cluster,

wherein sending the protocol message to the cluster

includes:

receiving the mput alphabets;

generating a query to deliver the query to a proxy,
converting the query into the protocol message, and
sending the protocol message to a target cluster by a
dummy arbiter generated 1n the cluster, wherein the
proxy converts the mput alphabets into the protocol
message and uses a user-defined protocol for proto-
col implementation; and

sending a response message to a learner to output a
message 1dentical to the response message when the
proxy searches for the response message;

monitoring, by the cluster, intercommunication between

instances 1n the distributed NOS; and

selecting a set of sequences executable 1n the cluster and

searching a cluster log for an output by executing a
sequence to generate an attack result.

2. The protocol state fuzzing method of claim 1, wherein
the receiving mput alphabets includes: receiving the input
alphabets 1ndicating the abstract symbols of the protocol
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message to send the mput alphabets to a system under
learning (SUL) such that the SUL observes output alphabets
for the input alphabets.

3. The protocol state fuzzing method of claim 1, wherein
the monitoring of the mtercommumnication includes:

repeating a loop of transmitting the protocol message to

the cluster, until generating an inferred state machine.

4. The protocol state fuzzing method of claim 3, wherein
the generating of the attack result includes:

systematically generating a test case using the state

machine.

5. The protocol state fuzzing method of claim 4, wherein
the generating of the attack result includes:

exploring the state machine to select the set of sequences

executable 1n a cluster environment, deleting an alpha-
bet which does not aflect a state transition from the
state machine to execute a message sequence generable
in the state machine, and searching the cluster log for
the output to generate the attack result.

6. The protocol state fuzzing method of claim 5, wherein
the generating of the attack result includes:

generating the set of sequences executable 1n the cluster

environment such that the target cluster transitions to as
many states as possible.

7. The protocol state fuzzing method of claim 6, wherein
the generating of the attack result includes:

using state depth-first search (SDFS) of extracting a

message sequence.

8. A protocol state fuzzing method for security of a control
plane of a distributed software-defined network, the protocol
state Tuzzing method comprising:

recerving input alphabets being abstract symbols of a

protocol message 1 an ambusher of a distributed
network operating system (NOS);

converting, by a proxy, the mput alphabets into the

protocol message and sending, by a dummy arbiter
generated 1n a cluster, the protocol message to a target
cluster:

sending a response message to a learner to output a

message 1dentical to the response message, when the
proxy searches for the response message;

repeating a loop of the receiving input alphabets, the

sending of the protocol message to the target cluster,
and the sending of the response message to the learner
to generate an inferred state machine;

exploring the state machine to select a set of sequences

executable 1n a cluster environment, and deleting an
alphabet which does not affect a state transition from
the state machine to execute a message sequence gen-
erable 1n the state machine; and

searching a cluster log for an output by executing the

message sequence to generate an attack result.

9. A protocol state fuzzing system for security of a control
plane of a distributed software-defined network, the protocol
state Tuzzing system comprising;

at least one processor operatively connected to a memory;

the processor configured to receive mput alphabets being

abstract symbols of a protocol message 1n an ambusher
of a distributed network operating system (NOS), con-
vert the mput alphabets 1nto the protocol message, and
send the protocol message to a cluster,

wherein the sending the protocol message to the cluster

includes:

receiving the mput alphabets; and

generating a query to deliver the query to a proxy,
converting the query into the protocol message, and
sending the protocol message to a target cluster by a
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dummy arbiter generated in the cluster, wherein the
proxy converts the mput alphabets 1into the protocol
message and uses a user-defined protocol for proto-

col implementation,
sending a response message to a learner to output a
message 1dentical to the response message, when the
proxy searches for the response message;
monitoring, by the cluster, intercommunication between
instances 1n the distributed NOS; and
selecting, by the cluster, a set of sequences executable 1n
the cluster and search a cluster log for an output by
executing a sequence to generate an attack result.

10. The protocol state fuzzing system of claim 9 1s further
comprising, receiving the input alphabets indicates the
abstract symbols of the protocol message to send the mput
alphabets to a system under learning (SUL) such that the
SUL observes output alphabets for the input alphabets.

11. The protocol state fuzzing system of claim 9 1s further
comprising, monitoring repeats a loop of the recerving input
alphabets, until generating an inferred state machine.

12. The protocol state fuzzing system of claim 11 1is
turther comprising, selecting explores the state machine to
select the set of sequences executable in a cluster environ-
ment, deleting an alphabet which does not aflect a state
transition from the state machine to execute a message
sequence generable 1n the state machine, and searching the
cluster log for the output to generate the attack result.
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13. The protocol state fuzzing system of claam 12 1s
further comprising, generating a set of cluster message
sequences such that the target cluster transitions to as many
states as possible.

14. The protocol state fuzzing system of claam 13 1s
turther comprising, using state depth-first search (SDFS) of
extracting the message sequence.

15. A protocol state fuzzing system for security of a
control plane of a distributed software-defined network, the
protocol state fuzzing system comprising:

at least one processor operatively connected to a memory,

the processor enabled for:

recerving input alphabets being abstract symbols of a

protocol message from distributed network operating
systems (NOSs), converting the input alphabets into the
protocol message, sending the protocol message to a
target cluster by a dummy arbiter generated in a cluster,
and generate an inferred state machine;

exploring the inferred state machine to select a set of

sequences executable 1n a cluster environment, deleting,
an alphabet which does not atlect a state transition from
the state machine to execute a message sequence gen-
crable 1n the inferred state machine, searching a cluster
log for an output by executing the sequence to generate
an attack result; and managing clusters.
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