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COLLECTION AND REPRESENTATION OF
PROGRAM CALL STACKS

PRIORITY APPLICATION

This application claims the benefit of and priority to U.S.
Provisional Application No. 63/402,902, filed Aug. 31,
2022, the entire contents of which are incorporated herein by
reference.

BACKGROUND

Developers of computer programs and/or operators of a
large group of machines (e.g., servers, personal computers,
Internet of Things (IoT) devices) often analyze call stacks to
identily the most frequently used programming elements
(e.g., subroutines, functions, statements), to determine sys-
temic costs with regard to modilying programming ele-
ments, to identily which programming elements use most of
the processing time, to implement stack traces for debugging,
purposes, etc. A call stack 1s a data structure that stores
information about the flows of a computer program being
executed. More specifically, a flow captures a call from one
programming element to another programming element. The
flows that can be added to a call stack include dedicated
locations 1n memory (e.g., memory blocks) useable by a
compiler and/or a processing unit (e.g., a central processing
unit (CPU)). The dedicated locations are typically repre-
sented by a set of addresses (e.g., addresses “00007-9999),

Consequently, a call stack includes a plurality of flows in
a defined sequence (e.g., flow A includes a call to flow B,
which includes a call to tflow C, and so forth). A flow 1n the
call stack 1s represented by an address (e.g., flow A 1is
represented by flow address “4096””). While a call stack can
include any number of tlows, a relatively small call stack
generally includes eight to twelve flows while a relatively
large call stack generally includes thirty to one hundred
flows. It 1s worth noting that a call stack may alternatively
be referred to as an execution stack, a program stack, a
control stack, a run-time stack, or a machine stack, and 1s
often referred to as simply the stack.

Oftentimes the aforementioned analysis needs to be per-
formed on a whole fleet of machines within an organization.
Depending on the size of the organization, a large number of
stacks may need to be collected and stored. For instance, a
cloud provider with multiple datacenters collects and ana-
lyze upwards of trillions of stacks every day. This collection
and analysis can result 1n a large carbon footprint for the
organization due to the energy used to operate resources to

collect, to store, and/or to analyze the large number of
stacks.

SUMMARY

The disclosed techniques implement an improved format
for transmitting call stacks (referred to herein as stacks)
from machines to a stack analysis service. Moreover, the
techniques implement an 1mproved way for the stack analy-
s1s service to represent the large number of stacks. The
improved format enables the collection of a large number of
stacks (e.g., millions or even trillions of stacks) to be more
cilicient. The improved representation of a large number of
stacks enables the analysis to be more eflicient. Conse-
quently, the techniques described herein reduce the carbon
footprint for an orgamization that operates a group of
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2

machines because less network, storage, and/or processing
resources are needed to collect and analyze a large number
ol stacks.

The format used locally by the machines to transmit a
stack to the stack analysis service employs address oflsets to
represent the tlows 1n a stack. As described above, a stack 1s
a data structure that stores information about the flows of a
computer program being executed. More specifically, a tlow
captures a call from one programming element (e.g., a
subroutine, a function, a statement) to another programming,
clement. Consequently, a stack includes a sequence of tlows
(may alternatively be referred to herein as a flow sequence).

As described above, flows that can be added to a stack
reside 1n dedicated locations 1n memory (e.g., memory
blocks) useable by a compiler and/or a processing unit (e.g.,
a central processing unit (CPU)). The dedicated locations are
typically represented by a set of addresses (e.g., addresses
“00007-9999”). A flow 1n a stack 1s typically represented by
an address (e.g., flow A 1s represented by flow address
“40967).

The format for transmitting a stack from a machine to a
stack analysis service employs an actual address to represent
the first flow 1n the sequence of tlows 1included in the stack.
This actual address serves as a baseline address for the stack.
However, the format does not employ actual addresses to
represent the flows 1n the sequence of flows after the first
flow. Rather, the format employs an address oflset to rep-
resent each flow 1n the sequence of tlows after the first tlow.
The address offset 1s a diflerence between an address of a
current flow and an address of a previous tlow that calls on
the current flow. For instance, an address oflset for flow B
1s the difference between the actual address for flow B and
the actual address for flow A, an address offset for flow C 1s
the difference between the actual address for flow C and the
actual address for flow B, and so forth.

The use of address oflsets enables storage space to be
conserved and/or enables compression ratios related to the
transmission of stacks to be increased because the values for
the address oflsets are typically smaller compared to the
values for the actual addresses. The values for the address
oflsets are typically smaller compared to the values for the
actual addresses because operating systems and/or compil-
ers strive for high storage locality with regard to related
programming elements. That 1s, programming elements that
often call on one another are typically stored, e.g., by an
operating system and/or a compiler, close to one another 1n
memory (e.g., the addresses are close).

In various examples, the techniques further improve the
elliciency with which stacks are transmitted by variable bit
encoding the address oflsets representing the tlows in the
stack. That 1s, the processing power used to prepare a stack
for transmission 1s reduced by using variable bit encoding
rather than conventional compression techniques (e.g.,
DEFLATE data compression, ZIP data compression), which
require scanning previously seen data and finding duplicated
parts of the data. Consequently, variable bit encoding the
address oflsets, rather than using entire addresses associated
with machines, operating systems, and/or CPUs configured
for sixty-four bit operation, allows for a lower processing
cost to be realized, which is 1deal 1n environments (e.g.,
datacenter operators, cloud providers) that are sensitive to
power consumption and carbon footprints.

After machines locally package stacks for transmission
using a format that employs address offsets and/or variable
bit encoding, the stack analysis service collects the stacks
and generates tlow 1dentifications for each of the flows 1n a
stack. The stack analysis service 1s configured to recalculate
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an address for each flow in the stack using the baseline
address that represents the first flow and the address oilsets
that represent the flows after the first flow. The addresses
used for specific flows are consistent, or the same, across a
fleet of machines, which enables the improved representa-
tion of a large number of stacks, as further described herein.
For instance, 1f flow A 1s stored in address “4032” on one
machine 1n the fleet, then flow A 1s stored in address “4032”
across the machines in the fleet.

Once the stacks are collected by the stack analysis service,
the stacks are represented 1n an effective manner that reduces
the use of storage and processing resources. As described
herein, the stack analysis service 1s configured to generate a
graph for a group of stacks (e.g., the stacks in a stack file).
In one example, the stack analysis service 1s configured to
receive a stack file from each machine 1n a tleet of machines.
In another example, the stack analysis service 1s configured
to receive a single stack file from a predefined group of
machines (e.g., two machines, three machines, ten
machines).

The graph includes a plurality of entries where each entry
represents a unique sequence of flows. The stack analysis
service sequentially reads the stacks 1n a stack file (e.g., one
by one). For the first stack sequentially read and/or for the
first sequence of flows encountered, the stack analysis
service adds an entry to the graph. Again, the entry repre-
sents the sequence of flows 1n the first stack that 1s sequen-
tially read from the stack file. For each stack that 1s sequen-
tially read from the stack file after the first stack, the stack
analysis service uses the flow identifications to determine
whether the sequence of flows included 1n the stack cur-
rently being sequentially read from the stack file (1.e., the
“current” or “remaining’’ stack) matches a sequence of tlows
in a previous stack that has already been sequentially read
from the stack file.

If the sequence of flows 1n the current stack matches the
sequence of flows 1n the previous stack, meaning the graph
already includes an entry for the matched sequence of tlows,
then the stack analysis service increments a weight value for
the entry. The weight value represents a number of times the
sequence of flows occurs 1n different stacks. If the sequence
of flows 1n the current stack does not match the sequence of
flows 1n the previous stack, meaning the graph does not yet
include an entry for the sequence of flows in the current
stack, then the stack analysis service adds a new entry to the
graph.

The stack analysis service can additionally be configured
to use a pointer from a tlow 1dentification (e.g., a flow node)
in one entry ol the graph to the same flow identification 1n
a different entry 1n the graph. For example, 1n response to
determining that the sequence of flows 1n the current stack
does not match the sequence of flows 1n the previous stack,
the stack analysis service looks in the existing entries of the
graph for tlow 1dentifications that match flow i1dentifications
in the new entry added to the graph. In the event of a match,
the stack analysis service adds a pointer from the flow 1n the
new entry to the matching flow 1n an existing entry.

By representing the stacks of a stack file 1n a graph using,
a number of times each unique sequence of flows 1s encoun-
tered 1n the stacks, the deduplication of data 1s enabled.
Further data deduplication occurs by using the pointers
between matching flows 1n different entries. Consequently, a
graph with the aforementioned weight values for each entry
and/or the atorementioned pointers between matching tlows
in different entries allows for more eflicient storage and/or
more eflicient transmission from one location (e.g., one
server) to another location (e.g., another server).
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When a graph 1s being stored for analysis (e.g., written to
disk), the entries 1n the graph are ordered according to
decreasing weight values. This ensures that entries that are
seen more often 1n the stacks of a stack file (e.g., entries with
the higher hit counts), and which are typically more impor-
tant or significant from an analysis perspective, show up first
when the graph 1s being read from disk. For mstance, even
when a small percentage of the data in the graph has been
read, a clear picture of the performance of the fleet 1s
apparent.

In various examples, a weight value threshold can be used
to trim the graph. That 1s, the stack analysis service 1s
configured to determine that a weight value for an entry 1n
the graph fails to satisly a weight value threshold (e.g., the
weight value 1s below the weight value threshold). Based on
this determination, the stack analysis service removes the
entry from the graph. This can further improve the efliciency
with regard to transmitting, storing, and/or processing the
stack data 1n the graph because rarely encountered entries
can be removed. Generally, the growth 1n the stack data
(e.g., the 1ncrease 1n stacks) to be represented 1s driven by
rarely occurring tlow sequences (e.g., a flow sequence that
occurs only one time). Without trimming these rarely occur-
ring flow sequences, the amount of stack data to process and
store can grow endlessly, at a large resource cost.

An additional benefit to using entry weights 1s that graphs
(e.g., trimmed graphs) can be efliciently merged with one
another. For example, weight values for matching entries 1n
two graphs can be combined and represented in a merged
graph. This merging can recursively occur as the collected
stack data increases, and as a result of this recursive merg-
ing, one graph can represent a large number of stack files
and/or stacks. Ultimately, this mitigates the need to maintain
a database to store a large number of stacks and/or stack
files. Instead, via the use of the graphs, the trimming of
graphs, and/or the merging of graphs, the analysis of stacks
can be scaled. For example, due to the space reductions and
the removal of constraints, a graph for stacks collected from
a fleet of customer machines can be placed in a customer
allocated storage account.

In various examples, the graph can also include playback
data. The playback data includes a timestamp associated
with execution of a flow, as well as properties associated
with the execution of the flow. Example properties include
a process 1dentification (PID) and/or a thread i1dentification
(TID). The timestamp and the properties can be used to
replay the execution of tlows at a particular machine.

Features and technical benefits other than those explicitly
described above will be apparent from a reading of the
following Detailed Description and a review of the associ-
ated drawings. This Summary 1s provided to introduce a
selection of concepts 1n a simplified form that are turther
described below 1n the Detailed Description. This Summary
1s not mntended to i1dentily key or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter. The
term “‘techniques,” for instance, may refer to system(s),
method(s), computer-readable mstructions, module(s), algo-

rithms, hardware logic, and/or operation(s) as permitted by
the context described above and throughout the document.

BRIEF DESCRIPTION OF THE DRAWINGS

The Detailed Description 1s described with reference to
the accompanying figures. In the figures, the left-most
digit(s) of a reference number 1dentifies the figure 1n which
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the reference number first appears. The same reference
numbers 1n different figures indicate similar or identical
items.

FIG. 1 1illustrates an example environment in which
machines implement an improved format for transmitting,
stacks to a stack analysis service and/or in which the stack
analysis service can more efliciently represent a large num-
ber of stacks in a graph.

FIG. 2 illustrates an example diagram that captures the
technical benefits of using an address oflset format and/or
variable bit encoding when ftransmitting stacks from a
machine to the stack analysis service.

FIG. 3A illustrates an example diagram that captures the
technical benefits of using the graph to represent the stacks
with entries and/or entry weight values.

FIG. 3B illustrates an example diagram that captures the
technical benefits of using the graph to represent the stacks
with entries, entry weight values, and/or pointers.

FIG. 4 1llustrates an example diagram that trims the graph
representing the stacks with entries, entry weight values,
and/or pointers.

FIG. SA illustrates an example diagram directed to merg-
ing two trimmed graphs.

FIG. 5B illustrates an example diagram that shows the
merged graph, aiter the merging of the two trimmed graphs
of FIG. 5A.

FIG. 6 1llustrates an example diagram 1n which playback
data 1s associated with each node 1n the graph.

FIG. 7 1s an example flow diagram showing aspects of a
method implemented by a machine to represent a stack using,
a format that includes address oflsets.

FIG. 8 1s an example flow diagram showing aspects of a
method implemented by a stack analysis service to generate
the graph representing stacks 1n a stack file.

FIG. 9 1s a computer architecture diagram showing an
illustrative computer hardware and software architecture for
a computing system capable of implementing aspects of the
techniques and technologies presented herein.

DETAILED DESCRIPTION

The techniques described herein implement an improved
format for transmitting call stacks (referred to herein as
stacks) from machines to a stack analysis service. Moreover,
the techmques 1mplement an improved way for the stack
analysis service to represent the large number of stacks. The
improved format enables the collection of a large number of
stacks (e.g., millions or even trillions of stacks) to be more
cilicient. The improved representation of a large number of
stacks enables the analysis to be more eflicient. Conse-
quently, the techniques described herein reduce the carbon
footprint for an orgamization that operates a group of
machines because less network, storage, and/or processing,
resources are needed to collect and analyze a large number
of stacks. Various examples, scenarios, and aspects that
enable the techniques described herein are described below
with respect to FIGS. 1-9.

FIG. 1 1illustrates an example environment 100 1n which
machines 102(1-N) implement an improved format for
transmitting stacks to a stack analysis service 104 and/or in
which the stack analysis service 104 can more efliciently
represent a large number of stacks 1n a graph. As described
above, the machines 102(1-N) can include servers or other
types of machines (e.g., laptop devices, tablet devices,
smartphone devices, Internet of Things (Io'T) devices) that
comprise a fleet 106 configured and/or operated by an
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organization (e.g., an operator of public cloud datacenters).
The stack analysis service 104 can be executed, for example,
On ONE Or MOre Servers.

Each machine 102(1-N) includes at least one central
processing unit (CPU) 108(1-N). Each CPU 108(1-N) 1s
configured to generate corresponding stacks 110(1-N) over
a period of time (e.g., seconds, minutes, hours). A stack 1s a
data structure that stores information about the tlows of a
computer program being executed by one of the CPUs
108(1-N). More specifically, a flow captures a call from one
programming element (e.g., a subroutine, a function, a
statement) to another programming element in the computer
program. The flows added to the stacks 110(1-N) by the
CPUs 108(1-N) include dedicated locations in memory (e.g.,
memory blocks). The dedicated locations are typically rep-
resented by a set of addresses (e.g., addresses “0000-
“9999). Consequently, each of the stacks 110(1-N) includes
a sequence of flows and a flow 1n the stack 1s represented by
an address.

It can be beneficial for an operator of the fleet 106 to
collect and analyze the stacks 110(1-N) for a particular
purpose. For instance, the stack analysis service 104 can
collect and analyze the stacks 110(1-N) to 1dentily the most
frequently used programming elements, to determine sys-
temic costs with regard to modilying programming ele-
ments, to identity which programming elements use most of
the processing time, to implement stack traces for debugging
purposes, etc. To improve the way 1 which the stacks
110(1-N) are collected and represented for analysis, the
stack analysis service 104 includes a stack file collection
module 112, a graph generation module 114, a graph trim-
ming module 116, a graph merging module 118, and a stack
analysis module 120, each of which 1s discussed further
herein. The functionality described herein in association
with the illustrated modules may be performed by a fewer
number of modules or a larger number of modules.

To 1mprove the collection of the stacks 110(1-N), the
stack file collection module 112 uses an address oflset
format 122 to represent the flows 1n a stack. The stack file
collection module 112 pushes the address ofiset format 122
to the machines 102(1-N) 1n the fleet 106. The machines
102(1-N) are configured to locally generate stack files
124(1-N) that include the stacks 110(1-N) recently config-
ured by the CPUs 108(1-N). A stack file includes at least one
stack. The stack file collection module 112 can be configured
to collect the stack files 124(1-N) in accordance with a
schedule 126 (e.g., every hour, every two hours, once a day)
established based on various factors. Additionally or alter-
natively, the stack file collection module 112 can be con-
figured to collect the stack files 124(1-N) based on an
occurrence of an event 128 (e.g., a system failure, a cyber-
attack).

Prior to transmitting the stack files 124(1-N) to the stack
analysis service 104, based on the schedule 126 and/or based
on an occurrence of an event 128, the machines 102(1-N) are
configured to generate and/or format the stacks 110(1-N) 1n
the address oflset format 122. The address oflset format 122
employs an actual address to represent the first flow 1n the
sequence of the stack. This actual address can be referred to
as a baseline address for the stack. However, the address
oflset format 122 does not employ actual addresses to
represent the flows 1n the sequence of the stack after the first
flow. Rather, the address oflset format 122 employs an
address oflset to represent each flow 1n the sequence after the
first flow. The address ofiset 1s a diflerence between an
address of a current tlow and an address of a previous tlow
that calls on the current flow.
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In various examples, the techniques further improve the
elliciency with which stacks are transmitted by variable bit
encoding the address oflsets representing the flows in the
stack. That 1s, the processing power used to prepare a stack
for transmission 1s reduced by using variable bit encoding
rather than conventional compression techniques (e.g.,
DEFLATE data compression, ZIP data compression), which
require scannmng previously seen data and finding duplicated
parts of the data. Consequently, variable bit encoding the
address oflsets, rather than using entire addresses associated
with machines, operating systems, and/or CPUs configured
for sixty-four bit operation, allows for a lower processing
cost to be realized, which 1s ideal 1n environments (e.g.,
datacenter operators, cloud providers) that are sensitive to
power consumption and carbon footprints. An example of
the technical improvements provided by the address oflset
format 122 and/or the variable bit encoding 1s provided 1n
FIG. 2.

After the machines 102(1-N) locally prepare the stacks
110(1-N) for transmission, via the stack files 124(1-N),
using the address offset format 122 and/or variable bit
encoding, the stack file collection module 112 passes the
stack files 124(1-N) to the graph generation module 114. The
graph generation module 114 1s configured to generate tlow
identifications 130 for each of the flows 1n a stack, as further
described herein with respect to FIG. 2. Furthermore, the
graph generation module 114 1s configured to generate a
graph that represents the stack 1n a manner that reduces the
use of storage and processing resources. For example, the
graph generation module 114 generates a graph 132 with
entries, weights, and/or pointers for each stack file 124(1-N),
as further described herein with respect to FIG. 3. A graph
includes a plurality of entries where each entry represents a
unique sequence of flows. Moreover, each entry 1n the graph
includes a weight value that tracks the number of times the
unique sequence of flows occurs in the stacks of a single
stack file or multiple stack files. While FIG. 1 illustrates that
a stack file 124(1-N) 1s collected from each machine 102
(1-N) 1n the fleet 106, a stack file can be collected from a
predefined group ol machines (e.g., two machines, three
machines, ten machines).

By representing the stacks of a stack file 1n a graph 132
with entries, weights, and/or pointers, the deduplication of
data 1s enabled. Consequently, the graph allows for more
cllicient storage and/or more eflicient transmission from one
location (e.g., one server) to another location (e.g., another
SErver).

In various examples, a weight value threshold 134 can be
used to trim the graph 132. That 1s, the graph trimming
module 116 1s configured to determine that a weight value
for an entry in the graph 132 fails to satisty the weight value
threshold 134 (e.g., the weight value 1s below the weight
value threshold). Based on this determination, the graph
trimming module 116 removes the entry 136 from the graph,
as described herein with respect to FIG. 4. This trimming
can further improve the efliciency with regard to transmit-
ting, storing, and/or processing the stack data in the graph
because rarely encountered entries can be removed. Gener-
ally, the growth 1n the stack data (e.g., the increase 1n stacks)
to be represented 1s driven by rarely occurring flow
sequences (e.g., a flow sequence that occurs only one time).
Without trimming these rarely occurring flow sequences, the
amount of stack data to process and store can grow end-
lessly, at a large resource cost.

An additional benefit to using entry weights is that graphs
(e.g., tnmmed graphs) can be efliciently merged with one
another. For example, provided two different graphs for two
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different stack files 124(1) and 124(2), the graph merging
module 118 can take the weight values for a matching entry
in the two different graphs and add them together to calcu-
late a combined weight value for a merged graph 138. This
merging can recursively occur as the collected stack data
increases (e.g., more and more stack files 124(1-N) are
received). As a result of this recursive merging, the graph
merging module 118 can pass a single graph 140, that
represents a large number of stacks 110(1-N) and/or stack
files 124(1-N) to the stack analysis module 120. Alterna-
tively, the graph merging module 118 can efliciently pass
(e.g., transmit, communicate) the single graph to a different
consumer (€.g., a user device, a client, a tenant, a customer).
Ultimately, this mitigates the need to maintain a dedicated
database for storing, processing, and managing the stacks
110(1-N) and/or stack files 124(1-N). Instead, via the use of
the graphs, the trimming of graphs, and/or the merging of
graphs, the analysis of stacks can be scaled.

FIG. 2 illustrates an example diagram that captures the
technical benefits of using an address oflset format and/or
variable bit encoding when transmitting stacks from a
machine to a stack analysis service. As shown via the top
half of FIG. 2, the conventional approach of using an actual
address format 202 1s used to transmit a stack 204. The stack
204 includes Flow A represented by address <4096 206,
Flow B represented by address “4000” 208, Flow C repre-
sented by address “3800” 210, Flow D represented by
address “4024” 212, and Flow E represented by address
“1024” 214.

When preparing the stack 204 for transmission, the actual
addresses each use eight bytes of space when the machines
102(1-N) are sixty-four bit machines, as shown via elements
216, 218, 220, 222, and 224. Consequently, transmission of
the stack 204 consumes forty bytes 226 when using the
actual address format 202.

However, as described above, the compiler and/or CPU
strive for high locality regarding storing tflows that often call
on one another. Consequently, the bottom half of FIG. 2
illustrates the techmical benefits achieved by using an
address oflset format 122 to transmit the same stack 204.
Using the address oflset format 122, Flow A 1n the stack 204
1s still represented by the baseline-address <4096 206.
However, Flow B 1s represented by the difference between
address “4000” of the current flow and address “4096” of the
previous tlow, or “-96” 228. Flow C 1s represented by the
difference between address “3800” of the current tlow and
address “4000” of the previous flow, or “-200” 230. Flow D
1s represented by the diflerence between address “4024” of
the current tlow and address “3800” of the previous flow, or
“+2247232. Flow E 1s represented by the diflerence between
address “1024” of the current tlow and address “4024” of the
previous tlow, or “-300” 234,

Note that when using the address offsets, one bit 1s used
for indicating a positive or a negative difference or delta.
When preparing the stack 204 for transmission via the use of
variable bit encoding 236, the baseline address <4096 uses
two bytes of space 238. The address offset “-96” uses one
byte of space 240. The address offset “-200” uses two bytes
of space 242. The address oflset “+224” uses two bytes of
space 244. And the address oflset “-3000”" uses two bytes of
space 246. Consequently, transmission ol the stack 204
using the address oflset format 122 consumes nmine bytes
248, which 1s a remarkable improvement compared to the
forty bytes 226 used via the actual address format 202.

FIG. 3A 1llustrates an example diagram that captures the
technical benefits of using a graph 132 that represents stacks
with entries, entry weight values, and/or pointers. As
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described above, prior to generating the graph 132, the graph
generation module 114 1s configured to recalculate an
address for each flow 1n a stack using the baseline address
that represents the first flow and the address offsets that
represent the flows after the first flow. The address serves as
a flow 1dentification (ID) (e.g., a node ID). For example,

looking back to the example of FIG. 2, the graph generation
module 114 uses the baseline address “4096” and the

address offset “-96” to recalculate the address “4000” for

Flow B 228. Further, the graph generation module 114 uses
the recalculated address “4000” and the address oflset

“-200 to recalculate the address ‘“3800” for Flow C 230.

The addresses used to 1dentity specific tlows are consistent,
or the same, across a fleet of machines 102(1-N), which
enables the improved representation of a large number of
stacks 1n the graph 132.

The graph generation module 114 1s configured to sequen-
tially read a stack file 302 (e.g., one stack at a time) when

generating the graph 132. In the example of FIG. 3A, ten
stacks 304, 306, 308, 310, 312, 314, 316, 318, 320, and 322
are 1n the stack file 302. As shown, the graph 132 includes
a plurality of entries 324, 326, 328, 330, which are added
based on stacks that are sequentially read. In this example,
entry 324 1s identified by the tflow sequence (0, 1, 2, 3), entry
326 1s 1dentified by the flow sequence (4, 2, 3), entry 328 1s
identified by the flow sequence (5, 6, 3), and entry 330 1s
identified by the tlow sequence (7, 8, 6, 3). Accordingly,
cach entry 324, 326, 328, 330 represents a unique sequence
of flows.

For the first stack 304 sequentially read from the stack file
302, the graph generation module 114 adds an entry to the
graph. Specifically, the first stack 304 includes a flow
sequence (0, 1, 2, 3), and thus, entry 324 1dentified by the
flow sequence (0, 1, 2, 3) 1s added to the graph 132. As
shown, the entry 324 includes a node for flow ID 0 332, a
node for flow ID 1 334, a node for flow ID 2 336, and a node
for tlow 1D 3 338. The sequence of nodes matches the tlow
sequence (0, 1, 2, 3). Additionally, entry 324 identified by
the flow sequence (0, 1, 2, 3) includes a weight 340. The
weight 340 1s a value that represents a number of times the
same flow sequence 1s seen by the graph generation module
114. Accordingly, after reading out the first stack 304, the
weight 340 1s set to a value of one, but this value 1s
incremented each time the same tlow sequence (0, 1, 2, 3)
1s read out.

For each stack that i1s sequentially read from the stack file
302 after the first stack 304, the graph generation module
114 1s configured to determine whether the flow sequence 1n
the stack currently being sequentially read (1.e., the “current”™
or “remaining’’ stack) matches a tlow sequence 1n a previous
stack that has already been sequentially read. Stated alter-
natively, the graph generation module 114 1s configured to
determine 1f the flow sequence of the current stack matches
a flow sequence of an entry that already exists in the graph
132. If the flow sequence in the current stack matches a flow
sequence 1n a previous stack, then the graph generation
module 114 increments a weight value for a corresponding
entry. IT the flow sequence in the current stack does not
match the flow sequence in any previous stack, then the
graph generation module 114 adds a new entry to the graph
132.

Back to the example of FIG. 3A, the graph generation
module 114 reads the second stack 306 from the stack file
302 and determines that the flow sequence of (4, 2, 3) for the
second stack 306 does not match the only existing entry 324
representing the tlow sequence (0, 1, 2, 3). Accordingly,
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entry 326 identified by the flow sequence (4, 2, 3) 1s added
to the graph 132 and its corresponding weight 342 1s set to
a value of one.

Next, the graph generation module 114 reads the third
stack 308 from the stack file 302 and determines that the
flow sequence of (35, 6, 3) for the third stack 308 neither
matches the flow sequence of existing entry 324 nor the flow
sequence of existing entry 326. Accordingly, entry 328
identified by the flow sequence (5, 6, 3) 1s added to the graph
132 and 1ts corresponding weight 344 1s set to a value of one.

Next, the graph generation module 114 reads the fourth
stack 310 from the stack file 302 and determines that the
flow sequence of (0, 1, 2, 3) for the fourth stack 310 matches
the flow sequence of existing entry 324. Accordingly, the
weight 340 for entry 324 1s incremented from one to two.

Next, the graph generation module 114 reads the fifth
stack 312 from the stack file 302 and determines that the
flow sequence of (7, 8, 6, 3) for the fifth stack 312 neither
matches the tlow sequence of existing entry 324, the flow
sequence ol existing entry 326, nor the tlow sequence of
existing entry 328. Accordingly, entry 330 identified by the
flow sequence (7, 8, 6, 3) 1s added to the graph 132 and 1ts
corresponding weight 346 1s set to a value of one.

Next, the graph generation module 114 reads the sixth
stack 314 from the stack file 302 and determines that the
flow sequence of (0, 1, 2, 3) for the sixth stack 314 matches
the flow sequence of existing entry 324. Accordingly, the
weight 340 for entry 324 1s incremented from two to three.

Next, the graph generation module 114 reads the seventh
stack 316 from the stack file 302 and determines that the
flow sequence of (4, 2, 3) for the seventh stack 316 matches
the flow sequence of existing entry 326. Accordingly, the
weight 342 for entry 326 1s incremented from one to two.

Next, the graph generation module 114 reads the eighth
stack 318 from the stack file 302 and determines that the
flow sequence of (0, 1, 2, 3) for the eighth stack 318 matches
the flow sequence of existing entry 324. Accordingly, the
weight 340 for entry 324 1s incremented from three to
four—the final value for this example of FIG. 3, as 1llus-
trated.

Next, the graph generation module 114 reads the ninth
stack 320 from the stack file 302 and determines that the
flow sequence of (4, 2, 3) for the ninth stack 320 matches the
flow sequence of existing entry 326. Accordingly, the weight
342 for entry 326 1s incremented from two to three—the
final value for this example of FIG. 3, as illustrated.

Finally, the graph generation module 114 reads the tenth
stack 322 from the stack file 302 and determines that the
flow sequence of (3, 6, 3) for the tenth stack 322 matches the
flow sequence of existing entry 328. Accordingly, the weight
344 for entry 328 is incremented from one to two—the final
value for this example of FIG. 3A, as 1illustrated.

Now that all the stacks from the stack file 302 have been
sequentially read, the graph 132 shows that the first entry
324 represents the first, fourth, sixth, and eighth read stacks
348, so the value for the weight 340 1s four. Further, the
graph 132 shows that the second entry 326 represents the
second, seventh, and ninth read stacks 350, so the value for
the weight 342 1s three. The graph 132 shows that the third
entry 328 represents the third and tenth read stacks 352, so
the value for the weight 344 1s two. And the graph 132 shows
that the fourth entry 330 represents the fifth read stack 354,
so the value for the weight 346 1s one.

Note that the number of stacks used 1n FIG. 3A (1.e., ten)
1s small and 1s used for ease of discussion. A stack file 1s
likely to have many more stacks, and thus, a graph generated
for the stack file 1s likely to have many more entries and
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larger weight values. When the graph generation module 114
stores the graph 132 for analysis (e.g., writes the graph 132
to disk), the entries 324, 326, 328, 330 1n the graph 132 are
ordered according to decreasing weight values, as shown 1n
FIG. 3A. This ensures that entries that are seen more often
in the stacks of a stack file (e.g., entries with the higher
weilght values or hit counts), and which are typically more
important or significant from an analysis perspective, show
up first when the graph 132 1s being read from disk. For
instance, even when a small percentage of the data 1n the
graph has been read, a clear picture of the performance of the
fleet 1s apparent.

The graph generation module 114 can additionally be
configured to use a pointer from a flow 1dentification (e.g.,
a flow node) 1n one entry of the graph to the same tlow
identification in a different entry in the graph. As shown 1n
FIG. 3B, 1n response to determiming that the flow sequence
(4, 2, 3) for the second stack 306 read does not match the
flow sequence (0, 1, 2, 3) for the first stack 304 already read,
the graph generation module 114 looks in entry 324 for flow
identifications that match flow identifications in the new
entry 326 added to the graph. Since flow ID 4 does not have
a match, a node 356 1s added to entry 326. However, the
subsequent sequence of flow ID 2 and flow ID 3 1s the same
in entry 324. Consequently, to further conserve space when
representing the stacks in the graph, the graph generation
module 114 adds a pointer 358 from the node 356 repre-
senting tlow ID 4 to the node 336 representing tlow ID 2 1n
entry 324. The flow sequence (4, 2, 3) 1s still intact via the
pointer 358.

Similarly, 1 response to determining that the flow
sequence (5, 6, 3) for the third stack 308 neither matches the
flow sequence (0, 1, 2, 3) for the first stack 304 nor the tlow
sequence (4, 2, 3) for the second stack 306, the graph
generation module 114 looks 1n entry 324 and entry 326 for
flow 1dentifications that match flow identifications in the
new entry 328 added to the graph. Since flow ID 5 and flow
ID 6 do not have a match, nodes 360 and 362 are added to
entry 328. However, the subsequent flow ID 3 has a match
in entry 324. Consequently, to further conserve space when
representing the stacks in the graph, the graph generation
module 114 adds a pointer 364 from the node 362 repre-
senting tlow ID 6 to the node 338 representing tlow 1D 3 1n
entry 324. The flow sequence (5, 6, 3) 1s still intact via the
pointer 364.

In another example, 1n response to determiming that the
flow sequence (7, 8, 6, 3) for the fifth stack 312 does not
match the flow sequences that have already been read, the
graph generation module 114 looks 1n entry 324, entry 326,
and entry 328 for flow identifications that match flow
identifications 1n the new entry 330 added to the graph.
Since flow ID 7 and flow ID 8 do not have a match, nodes
366 and 368 are added to entry 330. However, the subse-
quent flow ID 6 has a match 1n entry 328 that represent the
same flow—tlow ID 6. Consequently, to further conserve
space when representing the stacks 1n the graph, the graph
generation module 114 adds a pointer 370 from the node 368
representing flow ID 8 to the node 362 representing tflow 1D
6 1 entry 328. Thus, the flow sequence (7, 8, 6, 3) 1s still
intact via the pointer 370 and the pointer 364.

FIG. 4 illustrates an example diagram that trims a graph
that represents stacks with entries, entry weight values,
and/or pointers. The diagram i1n FIG. 4 1s based on the
diagram 1n FIG. 3, except that the graph 1s now a trimmed
graph 402. The graph trimming module 116 uses the weight
value threshold 134 to trim the graph 132. In the example of
FIG. 4, the weight value threshold 1s equal to three 404. The
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weight value threshold 134 can be established based on
various factors, such as a number of stacks, a number of
entries, etc. Moreover, the weight value threshold 134 can be
learned over time and adjusted to accommodate difierent
analysis scenarios.

In FIG. 4, the graph trimming module 116 determines that
entries 324 and 326 have weight values 340 and 342 that
satisly the weight value threshold of three 404 (e.g., the
weilght values of four 340 and three 342 are greater than or
equal to the weight value threshold of three). In contrast, the
graph trimming module 116 determines that entries 328 and
330 have weight values 344 and 346 that fail to satisty the
weight value threshold of three 404 (e.g., the weight values
of two 344 and one 346 are less than the weight value
threshold of three). Accordingly, entries 328 and 330 are not
shown 1n the trimmed graph 402 of FIG. 4. In other words,
entries 328 and 330 are removed from the graph 406. Thus,
stacks 308, 312, and 322 are no longer represented 1n the
trimmed graph 402, as captured by the “X” through these
stacks 1n the stack file 302 in FIG. 4.

As described above, this trimming and/or removal can
turther improve the efliciency with regard to transmitting,
storing, and/or processing the stack data in the graph
because the removed entries are likely 1nsignificant and/or
meaningless from an analysis perspective.

An additional benefit to using entry weights 1s that graphs
(c.g., trimmed graphs) can be efficiently merged with one
another. FIG. SA 1illustrates an example diagram directed to
merging 502 two graphs 504, 506. For example, a first graph
504 may be generated based on stack file 124(1) and a
second graph 506 may be generated based on stack file
124(2). In FIG. 5A, the first graph 504 comprises the
trimmed graph 402 from FIG. 4, and the second graph 506
comprises another trimmed graph 508. As 1illustrated,
trimmed graph 402 and trimmed graph 508 include common
entries 324 and 326, which include the same umique tlows,
and thus, the same nodes and 332, 334, 336, 338, 356 and
the same pointer 358. Note that the trimmed graph 402 likely
includes entries not included 1n trimmed graph, and vice
versa, but this 1s not 1llustrated.

The difference between trimmed graph 402 and trimmed
graph 508 1s the weight values. Trimmed graph 402 includes
a weight value 340 of four for entry 324, while trimmed
graph 508 includes a weight value 510 of six for entry 324.
Further, timmed graph 402 includes a weight value 342 of
three for entry 326, while tnmmed graph 508 includes a
weight value 512 of four for entry 326.

The graph merging module 118 1s configured to combine
the weight values for common or matching entries, from
multiple graphs. As shown in FIG. 5B, a merged graph 514
includes a combined weight value 516 of ten for entry 324
and a combined weight value 518 of seven for entry 326.
The merging, an example of which 1s 1llustrated in FIGS.
5A-3B, can recursively occur as the collected stack data
increases (e.g. more stack files 124(1-N) are received), and
as a result of this recursive merging, one graph can represent
a large number of stack files and/or stacks. Ultimately, this
mitigates the need to maintain a database to store a large
number of stacks and/or stack files. Instead, via the use of
the graphs, the trimming of graphs, and/or the merging of
graphs, the analysis of stacks can be scaled. For example,
due to the space reductions and the removal of constraints,
a graph for stacks collected from a fleet of customer
machines can be placed 1n a customer allocated storage
account.

The graphs can be merged together 1n accordance with
various schedules, which enables the containment of stack
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permutations. For example, graphs can merge each twenty-
four-hour window of time per-service in the fleet. Moreover,
as the merging increases (e.g., more stack files and/or stacks
are represented 1n a single graph), the weight value threshold
used to trim the graphs can increase.

FIG. 6 1llustrates an example diagram 1n which playback
data 1s associated with each node i a graph. FIG. 6
illustrates the trimmed graph from FIG. 4, where each node
332, 334, 336, 338, and 356 includes playback data 602.

The playback data 602 includes a timestamp associated
with execution of a flow, as well as properties associated
with the execution of the tlow. Example properties include
a process 1dentification (PID) and/or a thread identification
(TID). The timestamp and the properties can be used to
replay the execution of flows at a particular machine. In
various examples, the playback data 602 1s stored and read
from a different location in the graph. Each playback data
entry points to a node in the graph.

For example, for each time that flow ID 0 332 1s executed
(c.g., at least four times 1n this example), a timestamp 604
and properties 606 are registered. Similarly, for each time
that flow ID 1 334 1s executed (e.g., at least four times 1n this
example), a timestamp 608 and properties 610 are regis-
tered. For each time that tlow ID 2 336 1s executed (e.g., at
least seven times 1n this example), a timestamp 612 and
properties 614 are registered. For each time that flow ID 3
338 1s executed (e.g., at least seven times 1n this example),
a timestamp 616 and properties 618 are registered. And, for
cach time that flow ID 4 356 1s executed (e.g., at least three
times 1n this example), a timestamp 620 and properties 622
are registered.

Turning now to FIG. 7, aspects of a method 700 imple-
mented by a machine are described. At operation 702, the
machine accesses a stack to be transmitted to a stack analysis
service. At operation 704, the machine represents the first
flow of the stack using an actual address. At operation 706,
the machine represents each tlow of the stack after the first
flow using an address oflset. At operation 708, the machine
variable bit encodes the stack for transmission.

FIG. 8 1s an example flow diagram showing aspects of a
method 800 implemented by a stack analysis service to
generate a graph that represent stacks 1n a stack file. At
operation 802, the stack analysis service receives a stack file
that contains stacks. At operation 804, the stack analysis
service calculates flow (e.g., node) identifications (e.g.,
addresses) for the flows 1 each stack using the baseline
address and the address offset(s). At operation 806, the stack
analysis service adds an entry to a graph for the first stack
sequentially read from the stack file.

At operation 808, the stack analysis service determines
whether a remaining stack (e.g., a current stack being read)
matches a previous stack. If the determination at operation
808 1s ves (1.e., the remaiming stack matches the previous
stack, and thus, an entry for the remaining stack already
exists 1n the graph), then at operation 810 a corresponding
weight value for the entry associated with the remaining
stack and the previous stack 1s incremented. The process
then returns to operation 808 for the next stack to be read.
I1 the determination at operation 808 1s no (i.e., the remain-
ing stack does not match any previous stack, and thus, an
entry for the remaiming stack does not already exists 1n the
graph), then at operation 812 a new entry 1s added to the
graph. The process then returns to operation 808 for the next
stack to be read. When there are no more stacks to 1n the
stack file to evaluate with regard to operation 808, as
captured by 814, the stack analysis service proceeds to use
a weight value threshold to trim the graph at operation 816.
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For ease of understanding, the processes discussed 1n this
disclosure are delineated as separate operations represented
as independent blocks. However, these separately delineated
operations should not be construed as necessarily order
dependent in their performance. The order in which the
process 1s described 1s not intended to be construed as a
limitation, and any number of the described process blocks
may be combined 1n any order to implement the process or
an alternate process. Moreover, 1t 1s also possible that one or
more of the provided operations 1s modified or omitted.

The particular implementation of the technologies dis-
closed herein 1s a matter of choice dependent on the per-
formance and other requirements of a computing device.
Accordingly, the logical operations described herein may be
referred to variously as states, operations, structural devices,
acts, or modules. These states, operations, structural devices,
acts, and modules can be implemented in hardware, sofit-
ware, firmware, 1 special-purpose digital logic, and any
combination thereof. It should be appreciated that more or
fewer operations can be performed than shown 1n the figures
and described herein. These operations can also be per-
formed 1n a different order than those described herein.

It also should be understood that the 1llustrated methods
can end at any time and need not be performed in their
entirety. Some or all operations of the methods, and/or
substantially equivalent operations, can be performed by
execution ol computer-readable instructions included on a
computer-storage media, as defined below. The term “com-
puter-readable instructions,” and variants thereof, as used in
the description and claims, 1s used expansively herein to
include routines, applications, application modules, program
modules, programs, components, data structures, algo-
rithms, and the like. Computer-readable instructions can be
implemented on various system configurations, including
single-processor or multiprocessor systems, minicomputers,
mainiframe computers, personal computers, hand-held com-
puting devices, microprocessor-based, programmable con-
sumer electronics, combinations thereof, and the like.

Thus, 1t should be appreciated that the logical operations
described herein are implemented (1) as a sequence of
computer implemented acts or program modules running on
a computing system and/or (2) as interconnected machine
logic circuits or circuit modules within the computing sys-
tem. The implementation 1s a matter of choice dependent on
the performance and other requirements of the computing
system.

FIG. 9 shows additional details of an example computer
architecture 900 for a device, such as a computer or a server
capable of executing computer instructions (e.g., a compo-
nent described herein). The computer architecture 900 illus-
trated 1n FIG. 9 includes processing unit(s) 902, a system
memory 904, including a random-access memory 906
(RAM) and a read-only memory (ROM) 908, and a system
bus 910 that couples the memory 904 to the processing
unit(s) 902. The processing units 902 may also comprise or
be part of a processing system. In various examples, the
processing units 902 of the processing system are distrib-
uted. Stated another way, one processing unit 902 of the
processing system may be located 1n a first location (e.g., a
rack within a datacenter) while another processing unit 902
of the processing system 1s located 1mn a second location
separate Irom the first location.

Processing unit(s), such as processing unit(s) 902, can
represent, for example, a CPU-type processing unit, a GPU-
type processing unit, a field-programmable gate array
(FPGA), another class of digital signal processor (DSP), or
other hardware logic components that may, 1 some
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instances, be driven by a CPU. For example, illustrative
types of hardware logic components that can be used include
Application-Specific Integrated Circuits (ASICs), Applica-
tion-Specific Standard Products (ASSPs), System-on-a-Chip
Systems (SOCs), Complex Programmable Logic Devices
(CPLDs), and the like.

A basic mput/output system containing the basic routines
that help to transfer mformation between elements within
the computer architecture 900, such as during startup, i1s
stored 1n the ROM 908. The computer architecture 900
turther includes a mass storage device 912 for storing an
operating system 914, application(s) 916, modules 918, and
other data described herein.

The mass storage device 912 1s connected to processing
unit(s) 902 through a mass storage controller connected to
the bus 910. The mass storage device 912 and its associated
computer-readable media provide non-volatile storage for
the computer architecture 900. Although the description of
computer-readable media contained herein refers to a mass
storage device, 1t should be appreciated by those skilled 1n
the art that computer-readable media can be any available
computer-readable storage media or commumnication media
that can be accessed by the computer architecture 900.

Computer-readable media includes computer-readable
storage media and/or communication media. Computer-
readable storage media includes one or more of volatile
memory, nonvolatile memory, and/or other persistent and/or
auxiliary computer storage media, removable and non-re-
movable computer storage media 1mmplemented 1n any
method or technology for storage of information such as
computer-readable instructions, data structures, program
modules, or other data. Thus, computer storage media
includes tangible and/or physical forms of media included 1n
a device and/or hardware component that 1s part of a device
or external to a device, including RAM, static RAM

(SRAM), dynamic RAM (DRAM), phase change memory
(PCM), ROM, erasable programmable ROM (EPROM),
clectrically EPROM (EEPROM), flash memory, compact
disc read-only memory (CD-ROM), digital versatile disks
(DVDs), optical cards or other optical storage media, mag-
netic cassettes, magnetic tape, magnetic disk storage, mag-
netic cards or other magnetic storage devices or media,
solid-state memory devices, storage arrays, network
attached storage, storage arca networks, hosted computer
storage or any other storage memory, storage device, and/or
storage medium that can be used to store and maintain
information for access by a computing device.

In contrast to computer-readable storage media, commu-
nication media can embody computer-readable 1nstructions,
data structures, program modules, or other data in a modu-
lated data signal, such as a carrier wave, or other transmis-
sion mechanism. As defined herein, computer storage media
does not include communication media. That 1s, computer-
readable storage media does not include communications
media consisting solely of a modulated data signal, a carrier
wave, or a propagated signal, per se.

According to various configurations, the computer archi-
tecture 900 may operate 1n a networked environment using
logical connections to remote computers through the net-
work 920. The computer architecture 900 may connect to the
network 920 through a network interface unit 922 connected
to the bus 910.

It should be appreciated that the software components
described heremn may, when loaded into the processing
unit(s) 902 and executed, transform the processing unit(s)
902 and the overall computer architecture 900 from a
general-purpose computing system into a special-purpose
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computing system customized to facilitate the functionality
presented herein. The processing unit(s) 902 may be con-
structed from any number of transistors or other discrete
circuit elements, which may individually or collectively
assume any number of states. More specifically, the pro-
cessing unit(s) 902 may operate as a finite-state machine, 1n
response to executable instructions contained within the
soltware modules disclosed herein. These computer-execut-
able instructions may transform the processing unit(s) 902
by specitying how the processing unit(s) 902 transition
between states, thereby transforming the transistors or other

discrete hardware elements constituting the processing
unit(s) 902.

The disclosure presented herein also encompasses the
subject matter set forth in the following clauses.

Example Clause A, a method comprising: receiving a
stack file that includes a plurality of stacks, wherein each
stack 1n the plurality of stacks includes a sequence of flows;
generating a graph for the stack file by sequentially reading
the plurality of stacks from the stack file, the graph including
a plurality of entries and each entry of the plurality of entries
represents a unique sequence of tflows, wherein the gener-
ating the graph includes: adding a first entry to the graph, the
first entry representing the sequence of tlows 1n a first stack
of the plurality of stacks; for a remaining stack of the
plurality of stacks after the first stack: determining that a
particular sequence of flows included 1n the remainming stack
of the plurality of stacks matches a previous sequence of
flows included 1n a previous stack of the plurality of stacks;
and based on the determining that the particular sequence of
flows 1included 1n the remaining stack matches the previous
sequence of flows included in the previous stack, increment-
ing, for a corresponding entry included in the graph, a
corresponding weight value that represents a number of
times the previous sequence of flows occurs 1n the plurality
of stacks; determining that a weight value for a particular
entry of the plurality of entries fails to satisty a weight value
threshold; and removing the particular entry from the graph
based on the determining that the weight value for the
particular entry fails to satisiy the weight value threshold.

Example Clause B, the method of Example Clause A,
wherein removing the particular entry from the graph pro-
duces a trimmed graph, the method further comprising
writing remaining entries of the trnmmed graph to memory
in order of decreasing weight values.

Example Clause C, the method of Example Clause A or
Example Clause B, further comprising merging the graph
with another graph by combining the weight values for
matching entries.

Example Clause D, the method of any one of Example
Clauses A through C, wherein: each stack of the plurality of
stacks 1s recerved 1n a format that represents a first flow 1n
the sequence of tlows using an address and each flow in the
sequence of flows after the first flow uses an address oflset
from a previous tlow in the sequence of tlows; and the
method further comprises: recalculating an address for each
flow 1n the sequence of flows using the address that repre-
sents the first flow and at least one address oflset that
represents each flow after the first flow; and using the
address for each tlow as a flow identification in the graph.

Example Clause E, the method of Example Clause D,
wherein the format variable bit encodes the address and the
address oflset.

Example Clause F, the method of any one of Example
Clauses A through E, wherein the graph includes playback
data that includes a timestamp for each time a flow 1is




US 12,112,151 B2

17

executed and that identifies a thread identification or a
process 1dentification associated with each time the flow 1s
executed.

Example Clause G, a method comprising: receiving a
stack file that includes a plurality of stacks, wherein each
stack 1n the plurality of stacks includes a sequence of flows;
generating a graph for the stack file by sequentially reading
the plurality of stacks from the stack file, the graph including
a plurality of entries and each entry of the plurality of entries
represents a unique sequence of flows, wherein the gener-
ating the graph includes: adding a first entry to the graph, the
first entry representing the sequence of flows 1n a first stack
of the plurality of stacks; for a remaining stack of the
plurality of stacks after the first stack: determining that a
particular sequence of flows included 1n the remainming stack
of the plurality of stacks does not match a previous sequence
of flows included 1n a previous stack of the plurality of
stacks; and based on the determining that the particular
sequence of flows included 1n the remaining stack does not
match the previous sequence of flows included i the
previous stack of, adding a new entry to the graph; deter-
mimng that a weight value for a particular entry of the
plurality of entries included 1n the graph fails to satisty a
weight value threshold; and removing the particular entry
from the graph based on the determining that the weight
value for the particular entry fails to satisiy the weight value
threshold.

Example Clause H, the method of Example Clause G,
wherein removing the particular entry from the graph pro-
duces a trimmed graph, the method further comprising
writing remaining entries of the trimmed graph to memory
in order of decreasing weight values.

Example Clause I, the method of Example Clause G or
Example Clause H, further comprising merging the graph
with another graph by combining the weight values for
matching entries.

Example Clause J, the method of any one of Example
Clauses G through I, wherein: each stack of the plurality of
stacks 1s received 1n a format that represents a first flow 1n
the sequence of tlows using an address and each flow in the
sequence of flows after the first flow uses an address offset
from a previous tlow in the sequence of flows; and the
method further comprises: recalculating an address for each
flow 1n the sequence of flows using the address that repre-
sents the first flow and at least one address offset that
represents each tlow after the first flow; and using the
address for each tlow as a flow identification in the graph.

Example Clause K, the method of Example Clause I,
wherein the format variable bit encodes the address and the
address offset.

Example Clause L, the method of any one of Example
Clauses G through K, further comprising: based on the
determining that the particular sequence of flows included 1n
the remaining stack does not match the previous sequence of
flows included in the previous stack, determining that a
remaining flow identification included in the remaining
stack matches a previous flow 1dentification included 1n the
previous stack; and adding a pointer from the new entry to
an existing entry that includes the previous flow identifica-
tion.

Example Clause M, the method of any one of Example
Clauses G through L, wherein the graph includes playback
data that includes a timestamp for each time a tlow 1is
executed and that identifies a thread identification or a
process 1dentification associated with each time the flow 1s
executed.
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Example Clause N, a system comprising: a processing
system; and computer-readable storage media storing
instructions that, when executed by the processing system,
cause the system to: generate a graph for a stack file that
includes a plurality of stacks by sequentially reading the
plurality of stacks from the stack file, wherein: each stack in
the plurality of stacks includes a sequence of flows; the
graph 1ncludes a plurality of entries; and each entry of the
plurality of entries represents a unique sequence of flows
and includes a weight value that represents a number of
times the unique sequence of tlows occurs 1n the stack file;
determine that a weight value for an entry of the plurality of
entries fails to satisty a weight value threshold; and remove
the entry from the graph based on the determining that the
weight value for the entry fails to satisty the weight value
threshold.

Example Clause O, the system of Example Clause N,
wherein removing the entry from the graph produces a
trimmed graph, and the instructions further cause the system
to write remaining entries of the trimmed graph to memory
in an order of decreasing weight values.

Example Clause P, the system of Example Clause N or
Example Clause O, wherein the instructions further cause
the system to merge the graph with another graph by reading
and combining the weight values for the entries.

Example Clause ), the system of any one of Example
Clauses N through P, wherein: each stack of the plurality of
stacks 1s received 1n a format that represents a first flow 1n
the sequence of flows using an address and each flow 1n the
sequence of tlows after the first flow uses an address oflset
from a previous flow 1n the sequence of flows; and the
instructions further cause the system to: recalculate an
address for each tflow 1n the sequence of flows using the
address that represents the first flow and at least one address
oflset that represents each flow after the first flow; and use
the address for each flow as a flow identification in the
graph.

Example Clause R, the system of Example Clause Q,
wherein the format variable bit encodes the address and the
address oflset.

Example Clause S, the system of any one of Example
Clauses N through R, wherein the graph includes playback
data that includes a timestamp for each time a flow 1is
executed and that identifies a thread identification or a
process 1dentification associated with each time the flow 1s
executed.

Example Clause T, the system of any one of Example
Clauses N through S, wherein the nstructions further cause
the system to receive the stack file from a machine.

While certain example embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limait the scope of the inventions
disclosed herein. Thus, nothing 1n the foregoing description
1s intended to imply that any particular feature, character-
istic, step, component, module, or block 1s necessary or
indispensable. Indeed, the novel methods and systems
described herein may be embodied 1n a variety of other
forms; furthermore, various omissions, substitutions and
changes 1n the form of the methods and systems described
herein may be made without departing from the spirit of the
inventions disclosed herein. The accompanying claims and
their equivalents are itended to cover such forms or modi-
fications as would fall within the scope and spirit of certain
of the mventions disclosed herein.

It should be appreciated that any reference to “first,”
“second,” etc. elements within the Summary and/or Detailed
Description 1s not mtended to and should not be construed
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to necessarily correspond to any reference of “first,” “‘sec-
ond,” etc. elements of the claims. Rather, any use of “first”
and “second” within the Summary, Detailed Description,
and/or claims may be used to distinguish between two
different 1nstances of the same element (e.g., two different
stacks)

In closing, although the various configurations have been
described 1 language specific to structural features and/or
methodological acts, it 1s to be understood that the subject
matter defined in the appended representations is not nec-
essarilly limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as
example forms of implementing the claimed subject matter.

The 1nvention claimed 1s:

1. A method comprising;

receiving a stack file that includes a plurality of stacks,

wherein each stack of the plurality of stacks includes a
sequence of flows being executed;

generating a graph for the stack file by sequentially

accessing and reading the plurality of stacks from the
stack file, wherein the graph includes a plurality of
entries and each entry of the plurality of entries repre-
sents a unique sequence of tlows, and wherein gener-
ating the graph includes:
adding a first entry of the plurality of entries to the
graph, wherein the first entry of the plurality of
entries represents the sequence of flows 1n a first
stack of the plurality of stacks;
for a remaining stack of the plurality of stacks after the
first stack of the plurality of stacks:
determining that a particular sequence of flows
included 1n the remaining stack of the plurality of
stacks matches a previous sequence of flows
included 1n a previous stack of the plurality of
stacks; and
based on the determining that the particular sequence
of flows included in the remaining stack of the
plurality of stacks matches the previous sequence
of flows included i1n the previous stack of the
plurality of stacks, incrementing, for a corre-
sponding entry of the plurality of entries included
in the graph, a corresponding weight value that
represents a number of times the previous
sequence of flows occurs 1n the plurality of stacks;
determining that a weight value for a particular entry of
the plurality of entries included in the graph fails to
satisly a weight value threshold; and
removing the particular entry of the plurality of entries
from the graph based on the determining that the
weight value for the particular entry of the plurality of
entries fails to satisty the weight value threshold.

2. The method of claim 1, wherein removing the particular
entry of the plurality of entries from the graph produces a
trimmed graph, the method further comprising writing
remaining entries of the trimmed graph to a memory in an
order of decreasing weight values.

3. The method of claim 1, turther comprising merging the
graph with another graph by reading and combining weight
values for matching entries.

4. The method of claim 1, wherein:

cach stack of the plurality of stacks 1s received 1n a format

that represents a first flow 1n the sequence of flows
using an address and each flow 1n the sequence of flows
aiter the first flow 1n the sequence of flows uses an
address oflset from a previous tlow 1n the sequence of
flows: and

10

15

20

25

30

35

40

45

50

55

60

65

20

the method further comprises:

recalculating an address for each flow 1n the sequence
of flows using the address that represents the first
flow 1n the sequence of flows and at least one address
oflset that represents each tlow in the sequence of
flows after the first flow 1n the sequence of tlows; and

using the address for each flow 1n the sequence of flows
as a flow i1dentification in the graph.

5. The method of claim 4, wherein the address and the
address oflset are encoded using variable bit encoding.

6. The method of claim 1, wherein the graph includes
playback data that includes a timestamp for each time a flow
1s executed and that i1dentifies a thread identification or a
process 1dentification associated with each time the tlow 1s
executed.

7. A method comprising;

recerving a stack file that includes a plurality of stacks,

wherein each stack of the plurality of stacks includes a

sequence ol flows being executed;
generating a graph for the stack file by sequentially
accessing and reading the plurality of stacks from the
stack file, wherein the graph includes a plurality of
entries and each entry of the plurality of entries repre-
sents a unique sequence of tlows, and wherein gener-
ating the graph includes:
adding a first entry of the plurality of entries to the
graph, wherein the first entry of the plurality of
entries represents the sequence of flows 1n a first
stack of the plurality of stacks;
for a remaining stack of the plurality of stacks after the
first stack of the plurality of entries:
determining that a particular sequence of flows
included 1n the remaining stack of the plurality of
stacks does not match a previous sequence of
flows 1ncluded 1n a previous stack of the plurality
of stacks; and
based on the determining that the particular sequence
of flows included in the remaining stack of the
plurality of stacks does not match the previous
sequence of tlows included 1n the previous stack
of the plurality of stacks, adding a new entry to the
graph;
determiming that a weight value for a particular entry of
the plurality of entries included 1n the graph fails to
satisty a weight value threshold; and

removing the particular entry of the plurality of entries

from the graph based on the determining that the
weight value for the particular entry of the plurality of
entries fails to satisty the weight value threshold.

8. The method of claim 7, wherein removing the particular
entry of the plurality of entries from the graph produces a
trimmed graph, the method further comprising writing
remaining entries of the trimmed graph to a memory in an
order of decreasing weight values.

9. The method of claim 7, further comprising merging the
graph with another graph by reading and combining weight
values for matching entries.

10. The method of claim 7, wherein:

cach stack of the plurality of stacks 1s received 1n a format

that represents a first flow 1n the sequence of flows
using an address and each flow 1n the sequence of flows
after the first flow 1n the sequence of flows uses an
address oflset from a previous tlow in the sequence of
flows: and

the method further comprises:

recalculating an address for each tlow 1n the sequence
of flows using the address that represents the first
flow 1n the sequence of tlows and at least one address
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oflset that represents each tlow in the sequence of
flows after the first flow 1n the sequence of flows; and
using the address for each tlow 1n the sequence of flows
as a flow i1dentification 1n the graph.
11. The method of claim 10, wherein the address and the
address oflset are encoded using variable bit encoding.
12. The method of claim 7, turther comprising;:
based on the determining that the particular sequence of
flows 1included 1n the remaining stack of the plurality of
stacks does not match the previous sequence of flows
included 1n the previous stack of the plurality of stacks,
determining that a remaining flow 1dentification
included 1n the remaining stack of the plurality of
stacks matches a previous tlow 1dentification included
in the previous stack of the plurality of stacks; and

adding a pointer from the new entry to an existing entry
that includes the previous tlow 1dentification.

13. The method of claim 7, wherein the graph includes
playback data that includes a timestamp for each time a flow
1s executed and that identifies a thread identification or a
process 1dentification associated with each time the tlow 1s
executed.

14. A system comprising:

a processing unit; and

computer-readable storage media storing instructions that,

when executed by the processing unit, cause the system
to:
generate a graph for a stack file that includes a plurality
of stacks by sequentially accessing and reading the
plurality of stacks from the stack file, wherein:
cach stack of the plurality of stacks includes a
sequence ol flows being executed;
the graph includes a plurality of entries; and
cach entry of the plurality of entries represents a
unique sequence ol flows and includes a weight
value that represents a number of times the unique
sequence ol flows occurs in the stack file;
determine that a weight value for an entry of the
plurality of entries fails to satisty a weight value

threshold; and
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remove the entry of the plurality of entries from the
graph based on the determining that the weight value
for the entry of the plurality of entries fails to satisiy

the weight value threshold.

15. The system of claim 14, wherein removing the entry
of the plurality of entries from the graph produces a trimmed
graph, and the 1nstructions further cause the system to write
remaining entries of the trimmed graph to a memory in an
order of decreasing weight values.

16. The system of claim 14, wherein the instructions
further cause the system to merge the graph with another
graph by reading and combining weight values for matching
entries.

17. The system of claim 14, wherein:

cach stack of the plurality of stacks 1s received 1n a format

that represents a first flow in the sequence of tlows
using an address and each flow 1n the sequence of tlows
after the first flow 1n the sequence of flows uses an
address oflset from a previous flow in the sequence of
flows; and

the instructions further cause the system to:

recalculate an address for each flow 1n the sequence of
flows using the address that represents the first flow
in the sequence of flows and at least one address
offset that represents each tlow 1n the sequence of
flows after the first flow 1n the sequence of flows; and

use the address for each flow 1n the sequence of tlows
as a flow i1dentification in the graph.

18. The system of claim 17, wherein the address and the
address oflset are encoded using variable bit encoding.

19. The system of claim 14, wherein the graph includes
playback data that includes a timestamp for each time a flow
1s executed and that identifies a thread identification or a
process 1dentification associated with each time the tlow 1s
executed.

20. The system of claim 14, wheremn the instructions
further cause the system to receive the stack file from a
machine.
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