12 United States Patent

Javadiabhari et al.

US012106182B2

(10) Patent No.: US 12,106,182 B2

(54) VALIDATING AND ESTIMATING RUNTIME
FOR QUANTUM ALGORITHMS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Ali Javadiabhari, Sleepy Hollow, NY
(US); Jay M. Gambetta, Yorktown
Heights, NY (US); Ismael Faro
Sertage, Chappaqua, NY (US); Paul
Nation, Yorktown Heights, NY (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 17/975,690
(22) Filed: Oect. 28, 2022

(65) Prior Publication Data
US 2023/0409938 Al Dec. 21, 2023

Related U.S. Application Data

(63) Continuation of application No. 16/297,604, filed on
Mar. 9, 2019, now Pat. No. 11,580,433,

(51) Int. CL

GO6N 10/00 (2022.01)
GO6F 11/07 (2006.01)
(Continued)
(52) U.S. CL
CPC GO6N 10700 (2019.01); GO6I' 11/076
(2013.01); GO6F 11/3612 (2013.01);
(Continued)
Yy 104

CLASSICAlL. PROCESSOR
122
APPLICATION MEMORY
103 124

-

STORAGE
18

DATABASE
109

DEVICE 132

102

45) Date of Patent: *Oct. 1, 2024
(38) Field of Classification Search
CPC GO6N 10/00; GO6N 10/60; GO6N 10/70;
GO6F 11/076; GO6F 11/3612;
(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

11,086,665 B2* &/2021 Grflin GOO6F 9/542
11,494,681 Bl * 11/2022 Peterson GO6N 10/00
2003/0169041 Al 9/2003 Coury et al.
2017/0228483 Al 8/2017 Rigett1 et al.
2019/0340532 Al* 11/2019 Ducorecccccuvvnn, GO6N 10/00

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2018503796 A 2/2018

OTHER PUBLICATTIONS

Application No. 2021543345, Notice of Allowance, Jun. 21, 2023.
Application No. 2021543345, Notice of Allowance, English Trans-
lation, Jun. 21, 2023.

List of all IBM related dockets, 2022.

(Continued)

Primary Examiner — James C Kerveros

(74) Attorney, Agent, or Firm — Garg Law Firm, PLLC;
Rakesh Garg; Erik Johnson

(57) ABSTRACT

A method for validation and runtime estimation of a quan-
tum algorithm includes receiving a quantum algorithm and
simulating the quantum algorithm, the quantum algorithm
forming a set of quantum gates. The method further includes
analyzing a {irst set o parameters of the set of quantum gates
and analyzing a second set of parameters of a set of qubits
performing the set of quantum gates. The method further
includes transforming, in response to determining at least
one of the first set of parameters or the second set of
parameters meets an acceptability criterion, the quantum
algorithm 1nto a second set of quantum gates.

20 Claims, 5 Drawing Sheets

QUANTUM PROCESSING SYSTER
140

QUANTUM PROCESSOR
142

MEMORY APPLICATION
144 148

CLIENT 17

NETWORK P) S

CLIENT 110

CLIENT 112
.
|]

US 12,106,182 B2

Page 2

(51) Int. CL

GO6F 11/36 (2006.01)

GO6F 30720 (2020.01)

GOO6N 10/60 (2022.01)

GOO6N 10/70 (2022.01)
(52) U.S. CL

CPC GO6l’ 30720 (2020.01); GO6N 10/60

(2022.01); GO6N 10/70 (2022.01)
(58) Field of Classification Search

CPC ... GO6F 30/20; GO6F 11/3419; GO6F
11/0754; GO6F 30/32; GO6F 2201/81;

B82Y 10/00

USSP s 706/46

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2020/0125402 Al* 4/2020 Gnilin GO6F 9/5027
2020/0242207 Al* 7/2020 Shehab GO6N 10/00
2020/0285986 Al* 9/2020 Javadiabhari GO6N 10/00

OTHER PUBLICATIONS

Murali et al., Formal Constraint-based Compilation for Noisy

Intermediate-Scale Quantum Systems, Mar. 8, 2019.

Larose, Overview and Comparison of Gate Level Quantum Soft-
ware Platforms, Department of Computational Mathematics, Sci-
ence, and Engineering, Michigan State University, Jul. 6, 2018.
Application No. 2020233909, Notice of Acceptance for Patent
Application, Mar. 29, 2023.

* cited by examiner

US 12,106,182 B2

Sheet 1 of 5

Oct. 1, 2024

U.S. Patent

L ANGMO

NOILVOl'lddV

L LNAITO

9l vrl

vl
d0SS300dd WNLNVNO

orl
NI LSAS ONISSAD0HA ANLNVNO

AHJOWAAN

¢el JVINAA

I 5t

743
AHOWAEN

ccl

HOSSH430dd 1VOISSVIO

¥0l

NDLSAS DNISSIV0dHa IVOISSVY IO

col
NOILVOI'lddV

601
ASVEvLvAd

801
4OVHOLS

001

| 2702 3goo

— \ 44074
(di0¢ 49VHOLS AHOMLEN

g81l0¢ W3LSAS J10Ndd

US 12,106,182 B2

FA W4
y¥3ldvavy
577 o >c7 WHOMLIN
244 749 advay || 0o | | sidod o
NOY ANIAOWN ISNOW aNV] AN ~ Y3IHILO 0ce
H AHVOLATINA | ANV 9Sn | nou-ao
= _
g |
~—
P
e
7 702 o
oo 0Fe sng
gt¢ SMa HOI/ES

_4
g\
Q 56z 9lc “
o ol Y31dvay
i OIaNY “ __ — 012
2 5 ¢ c0c (N woss300%c
- AHOWANW NIVIN HOW/AN SO

7

50¢

LINM ONISS300dd

Z ‘SL]

U.S. Patent

O\

US 12,106,182 B2

\7,
=
er,
D
-
7
Lol [] [(=]
2 | =] el [2] [
—
&
s | L=l =] =] L]
- —

L€ HOSSIAD0Ud NNLINVNO

U.S. Patent

0ce
VIiddLlldO ALl
J41VO M.

ole
SISATVNY d4

dvV1ad00Vv
NVNO

1 ANV

41VO WNLNVNO

" f2d 1dl Uo —
. g1¢

VIiddlldO ALITIEV1Ld300Vv

2d ‘1d] 1O S

9l¢€ SISATVNY d31L3JNVHVd LI1dNO

SHA1JNVHVYd LI9N0O

90¢€

"t fz2d ‘1Ld] 2O 11810

¢le NOILvdddO d01vdddO NOILVHdl'1vVO

NOILVHdl VO

0 NOILVddl 1VO

0 NOILVOl'lad¥

£ 3]

ClE
1vVd3ddO

Vddl'1vO

00¢

9l NOILVNILST FNILNNY LINDHID WNLNVND

US 12,106,182 B2

VA LY SISATVNY d3dLdAVEVYd 41LVO ANLINVYNO
. 13M0I1
S
&
= SISATVNY d3d13dANVHVd 119NO
D
=
7 1INOAHID NNLNYNO ALV INNIS
(047
1INOdIO
M ANNLNVYNO NOILVINJO4SNVHl AHLIHdO9D 1V
—
&
— —
o Q0r o4 1IdNOD
&
-

O NOILONHLSNOD LINOHID NNLINVNO

\l\ 207 NOILVOI1ddY

007

p oL

U.S. Patent

011G
(NOIHG3 LD
ALI'EV1d3d00Vv S13dN
dd1 ANV

ON

SdA

US 12,106,182 B2

916 ZLS
4N 1IVd dd1dNVHVd AH1LIHO9DTVY WNLNVYNO dHL
P 40 d45M AdI1LON 40 ANILNMNA dLVINILS
Qo
-
\f,
~
s
s
e
9
v1G

aN3 SALVO WNLNVYNO 40
M 145 ANOOdS V OLNI NHLIHOD IV
m AWNLNVNO FHL ONIWHOASNVYHL
1..:.
-
&
-

008
$ 1]

U.S. Patent
L

800G
S31VO ANLNVNO 40 1dS dHL
ONINHO4d3dd S119N0 40
135S V 40 Sdd1dNVHVd 40
135 ANODIS V ONIZATVNY

908
S31VO WNLNVNO 4O L3S
dHL 4O Sdd1dNVAVYd
40 1dS V ONIZATVNY

¥0S
S41VO ANLINVNO 40 13S
vV NdO4d OL WHLIHOD'1V
ANNLNVYNO JHL ONILVINNIS

c0S
Sdd1dWNVHVYd d45M 40 L3SV
ANV d345MN vV NOdd NHLIHOD 1V
ANNLNVYNO V JAIZO3

US 12,106,182 B2

1

VALIDATING AND ESTIMATING RUNTIME
FOR QUANTUM ALGORITHMS

TECHNICAL FIELD

The present invention relates generally to a method for
compilation of quantum algorithms. More particularly, the
present invention relates to a method for validating and
estimating runtime for quantum algorithms.

BACKGROUND

Hereinatter, a “Q” prefix 1n a word of phrase 1s indicative
ol a reference of that word or phrase 1n a quantum comput-
ing context unless expressly distinguished where used.

Molecules and subatomic particles follow the laws of
quantum mechanics, a branch of physics that explores how
the physical world works at the most fundamental levels. At
this level, particles behave 1n strange ways, taking on more
than one state at the same time, and interacting with other
particles that are very far away. Quantum computing har-
nesses these quantum phenomena to process information.

The computers we use today are known as classical
computers (also referred to herein as “conventional” com-
puters or conventional nodes, or “CN”). A conventional
computer uses a conventional processor fabricated using
semiconductor materials and technology, a semiconductor
memory, and a magnetic or solid-state storage device, in
what 1s known as a Von Neumann architecture. Particularly,
the processors 1n conventional computers are binary proces-
sors, 1.€., operating on binary data represented in 1 and O.

A quantum processor (q-processor) uses the odd nature of
entangled qubit devices (compactly referred to herein as
“qubait,” plural “qubits™) to perform computational tasks. In
the particular realms where quantum mechanics operates,
particles of matter can exist in multiple states—such as an
“on” state, an “‘off” state, and both “on” and “off” states
simultaneously. Where binary computing using semiconduc-
tor processors 1s limited to using just the on and ofl states
(equivalent to 1 and O 1n binary code), a quantum processor
harnesses these quantum states of matter to output signals
that are usable 1 data computing.

Conventional computers encode information 1n bits. Each
bit can take the value of 1 or O. These 1s and Os act as on/ofl
switches that ultimately drive computer functions. Quantum
computers, on the other hand, are based on qubits, which
operate according to two key principles of quantum physics:
superposition and entanglement. Superposition means that
cach qubit can represent both a 1 and a 0 at the same time.
Entanglement means that qubits in a superposition can be
correlated with each other in a non-classical way; that is, the
state of one (whether 1t 1s a 1 or a 0 or both) can depend on
the state of another, and that there 1s more information that
can be ascertained about the two qubits when they are
entangled than when they are treated individually.

Using these two principles, qubits operate as more sophis-
ticated processors of information, enabling quantum com-
puters to function 1n ways that allow them to solve dithicult
problems that are intractable using conventional computers.
IBM has successtully constructed and demonstrated the
operability of a quantum processor using superconducting
qubits (IBM is a registered trademark of International Busi-
ness Machines corporation 1n the United States and in other
countries.)

A superconducting qubit includes a Josephson junction. A
Josephson junction 1s formed by separating two thin-film
superconducting metal layers by a non-superconducting

10

15

20

25

30

35

40

45

50

55

60

65

2

material. When the metal 1n the superconducting layers 1s
caused to become superconducting——e.g. by reducing the
temperature of the metal to a specified cryogenic tempera-
ture—pairs of electrons can tunnel from one superconduct-
ing layer through the non-superconducting layer to the other
superconducting layer. In a qubait, the Josephson junction—
which functions as a dispersive nonlinear inductor—is elec-
trically coupled 1n parallel with one or more capacitive
devices forming a nonlinear microwave oscillator. The oscil-
lator has a resonance/transition frequency determined by the
value of the inductance and the capacitance in the qubit
circuit. Any reference to the term “qubit” 1s a reference to a
superconducting qubit circuitry that employs a Josephson
junction, unless expressly distinguished where used.

The miformation processed by qubits 1s carried or trans-
mitted 1n the form of microwave signals/photons in the
range of microwave frequencies. The microwave signals are
captured, processed, and analyzed to decipher the quantum
information encoded therein. A readout circuit 1s a circuit
coupled with the qubit to capture, read, and measure the
quantum state of the qubit. An output of the readout circuit
1s 1nformation usable by a g-processor to perform compu-
tations.

A superconducting qubit has two quantum states —10> and
|1>. These two states may be two energy states of atoms, for
example, the ground (Ig>) and first excited state (le>) of a
superconducting artificial atom (superconducting qubit).
Other examples include spin-up and spin-down of the
nuclear or electronic spins, two positions of a crystalline
defect, and two states of a quantum dot. Since the system 1s
of a quantum nature, any combination of the two states are
allowed and valid.

For quantum computing using qubits to be reliable, quan-
tum circuits, e.g., the qubits themselves, the readout cir-
cuitry associated with the qubits, and other parts of the
quantum processor, must not alter the energy states of the
qubit, such as by imjecting or dissipating energy, 1 any
significant manner or influence the relative phase between
the 10> and [1> states of the qubit. This operational con-
straint on any circuit that operates with quantum information
necessitates special considerations 1n fabricating semicon-
ductor and superconducting structures that are used in such
circuits.

In conventional circuits, Boolean logic gates arranged 1n
succession manipulate a series of bits. The technology for
optimizing the gate-logic for binary computations 1s well-
known. Circuit optimization software for conventional cir-
cuits aims to 1ncrease efliciency and decrease complexity of
conventional circuits. Circuit optimization software for con-
ventional circuits functions 1 part by decomposing the
overall desired behavior of the conventional circuit into
simpler functions. The conventional circuit optimization
software more easily manipulates and processes the simpler
functions. The circuit optimization soitware generates an
cilicient layout of design elements on the conventional
circuit. As a result, circuit optimization software for con-
ventional circuits significantly reduces resource demands,
thereby increasing efliciency and decreasing complexity.

The illustrative embodiments recognize that in quantum
circuits, quantum gates mampulate qubits to perform quan-
tum computations. Quantum gates are unitary matrix trans-
formations acting on qubits. Due to the superposition and
entanglement of qubits, quantum gates represent a 2” by 2”
matrix, where n 1s the number of qubits the quantum gate
mampulates. The illustrative embodiments recognize that
the decomposition of such matrix transformations quickly
becomes too complex to perform by hand due to the expo-

US 12,106,182 B2

3

nential increase in the size of the matrix transformations
with the number of qubits. For example, quantum computers

with 2 qubaits require a 4 by 4 matrix operator for quantum
gate representation. A quantum computer with 10 qubaits
require a 1024 by 1024 matrix operator for quantum gate
representation. As a result of the exponential increase,
manual quantum logic gate matrix transformations quickly
become unmanageable as the number of qubits increases.

A quantum algorithm represents a set of instructions to be
performed on a quantum computer. The illustrative embodi-
ments recognize that quantum algorithms can be modeled as
a quantum circuit. A quantum circuit 1s a computation model
formed of a set of quantum logic gates which perform the
steps of the corresponding quantum algorithm.

Quantum processors can be cloud access devices. Provid-
ers ol quantum processors supply a frontend software for
users to create quantum algorithms for a backend quantum
processor to execute.

The illustrative embodiments further recognize that quan-
tum gates contain error rates which affect the computation of
the quantum algorithm. Each quantum gate introduces quan-
tum noise mnto the quantum system which affects the state of
the qubit. Quantum gate error corresponds to how accurately
the quantum processor controls the superposition of states of
the qubit(s) acted on by the quantum gate.

The 1llustrative embodiments recognize that quantum
processors exhibit varying physical characteristics over a
period of time. The illustrative embodiments recognize that
calibration of quantum processors determines error rates for
associated qubits and quantum gates of the quantum pro-
cessor. The illustrative embodiments further recognize that
quantum processors are often calibrated only once or twice
daily. The illustrative embodiments further recognize that
certain quantum algorithms may not execute on a given
quantum processor due to specific error rates for the asso-
ciated qubits and quantum gates.

The illustrative embodiments recognize that hardware
resources for quantum processors are limited. The 1llustra-
tive embodiments further recognize that compilers which
transform a quantum algorithm to a quantum circuit to be
executed on a quantum processor aim to create circuits
which are functionally equivalent to the quantum algorithm
but run with maximum efliciency on the quantum hardware.
The illustrative embodiments further recognize that elimi-
nation of extraneous or unnecessary operations simplifies
and creates a more eiflicient quantum circuit.

The 1illustrative embodiments recogmize that hardware
resources for quantum processors are limited. The illustra-
tive embodiments further recognize that compilers which
transform a quantum algorithm to a quantum circuit to be
executed on a quantum processor aim to create circuits
which are functionally equivalent to the quantum algorithm
but run with increased efliciency on the quantum hardware.

SUMMARY

The 1llustrative embodiments provide a method for vali-
dation and runtime estimation of quantum algorithms. A
method for validation and runtime estimation of quantum
algorithms includes receiving a quantum algorithm and
simulating the quantum algorithm, the quantum algorithm
forming a set of quantum gates. In an embodiment, the
method 1includes analyzing a first set of parameters of the set
of quantum gates.

In an embodiment, the method includes analyzing a
second set of parameters of a set of qubits performing the set
of quantum gates. In an embodiment, the method includes

10

15

20

25

30

35

40

45

50

55

60

65

4

transforming, in response to determining at least one of the
first set of parameters or the second set of parameters meets

an acceptability criterion, the quantum algorithm into a
second set of quantum gates.

In an embodiment, the method includes comparing the
quantum algorithm to a stored quantum algorithm to esti-
mate a runtime of the quantum algorithm. In an embodi-
ment, the method includes producing, 1n response to deter-
mining at least one of the first set of parameters or the second
set of parameters meets an acceptability criterion, a valida-
tion ticket corresponding to a place 1 a queue of quantum
algorithms for a quantum processor executing validated
quantum algorithms.

In an embodiment, the method includes revoking, in
response to a total runtime of a set of quantum algorithms
submitted by the user exceeding a threshold runtime, the
validation ticket. In an embodiment, the method includes
notilying, in response to determining at least one parameter
of the first set of parameters or the second set of parameters
fails to meet an acceptability criterion, a user of the failed at
least one parameter.

In an embodiment, the method includes executing the
quantum algorithm with the second set of quantum gates. In
an embodiment, the acceptability criterion 1s a threshold
error rate of a quantum gate. In an embodiment, the accept-
ability criterion 1s a threshold coherence time of a qubit.

An embodiment includes a computer usable program
product. The computer usable program product includes a
computer-readable storage device, and program instructions
stored on the storage device.

In an embodiment, the computer usable code 1s stored 1n
a computer readable storage device in a data processing
system, and wherein the computer usable code 1s transferred
over a network from a remote data processing system. In an
embodiment, the computer usable code 1s stored 1n a com-
puter readable storage device 1n a server data processing
system, and wherein the computer usable code 1s down-
loaded over a network to a remote data processing system
for use 1n a computer readable storage device associated
with the remote data processing system

An embodiment includes a computer system. The com-
puter system includes a processor, a computer-readable
memory, and a computer-readable storage device, and pro-
gram 1nstructions stored on the storage device for execution
by the processor via the memory.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth 1 the appended claims. The invention 1tself,
however, as well as a preferred mode of use, further objec-
tives and advantages thereof, will best be understood by
reference to the following detailed description of the illus-
trative embodiments when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 depicts a block diagram of a network of data
processing systems in which 1llustrative embodiments may
be implemented;

FIG. 2 depicts a block diagram of a data processing
system 1n which illustrative embodiments may be imple-
mented

FIG. 3 depicts an example configuration of constant
folding for compilation of quantum algorithms in accor-
dance with an illustrative embodiment;

FIG. 4 depicts an example configuration of validation and
runtime estimation for compilation of quantum algorithms;
and

US 12,106,182 B2

S

FIG. § depicts a flowchart of an example method for
validation and runtime estimation of quantum algorithms in
accordance with an 1illustrative embodiment.

DETAILED DESCRIPTION

The illustrative embodiments provide a method for vali-
dating and estimating runtime for quantum algorithms. The
illustrative embodiments used to describe the invention
generally address and solve the above-described needs for
compilation of quantum algorithms. The illustrative embodi-
ments provide a method for validation and runtime estima-
tion of quantum algorithms.

An embodiment provides a method for improving com-
pilation of a quantum circuit model of a quantum algorithm
using a hybrid classical-quantum computing system.
Another embodiment provides a conventional or quantum
computer usable program product comprising a computer-
readable storage device, and program 1nstructions stored on
the storage device, the stored program instructions compris-
ing a method for improving compilation of a quantum circuit
model using a hybrid classical-quantum computing system.
The mstructions are executable using a conventional or
quantum processor. Another embodiment provides a com-
puter system comprising a conventional or quantum proces-
sor, a computer-readable memory, and a computer-readable
storage device, and program instructions stored on the
storage device for execution by the processor via the
memory, the stored program instructions comprising a
method for improving compilation of a quantum circuit
model using a hybrid classical-quantum computing system.

One or more embodiments provide for a mixed classical
and quantum methodology that simulates a quantum circuit
corresponding to a quantum algorithm. In the embodiment,
the simulation gives an 1dealized account of the state of the
quantum algorithm at each step of execution. In the embodi-
ment, the quantum circuit corresponds to a set of quantum
logic gates performing the steps of the quantum algorithm.
In the embodiment, at each step of the simulated quantum
circuit, quantum logic gates manipulate a state of a qubit

In an embodiment, a quantum algorithm 1s provided to a
quantum circuit compilation application. In the embodi-
ment, the quantum circuit compilation application forms a
quantum circuit having a set of quantum logic gates corre-
sponding to steps of the quantum algorithm. In the embodi-
ment, the quantum circuit compilation application deter-
mines a set of qubit parameters for a set of qubits on a
quantum processor. In the embodiment, the quantum circuit
compilation application determines a set of quantum logic
gate parameters for the set of quantum logic gates. In the
embodiment, the quantum circuit compilation application
determines a set ol quantum circuit parameters for the
quantum circuit.

In the embodiment, the quantum -circuit compilation
application compares at least one of the set of quantum
circuit parameters to at least one of the set of qubit param-
cters. In the embodiment, the quantum circuit compilation
application compares at least one of the set of quantum
circuit parameters to at least one of the set of quantum logic
gate parameters.

For the clanty of the description, and without implying
any limitation thereto, the illustrative embodiments are
described using some example configurations. From this
disclosure, those of ordinary skill in the art will be able to
concelve many alterations, adaptations, and modifications of

10

15

20

25

30

35

40

45

50

55

60

65

6

a described configuration for achieving a described purpose,
and the same are contemplated within the scope of the
illustrative embodiments.

Furthermore, simplified diagrams of the example logic
gates, qubits, and other circuit components are used 1n the
figures and the illustrative embodiments. In an actual fab-
rication or circuit, additional structures or component that
are not shown or described herein, or structures or compo-
nents different from those shown but for a similar function
as described herein may be present without departing the
scope of the illustrative embodiments.

The illustrative embodiments are described with respect
to certain types of quantum logic gates, qubits, quantum
processors, quantum circuits, and applications only as
examples. Any specific mamifestations of these and other
similar artifacts are not intended to be limiting to the
invention. Any suitable manifestation of these and other
similar artifacts can be selected within the scope of the
illustrative embodiments.

The examples 1n this disclosure are used only for the
clanity of the description and are not limiting to the 1llus-
trative embodiments. Any advantages listed herein are only
examples and are not intended to be limiting to the 1llustra-
tive embodiments. Additional or different advantages may
be realized by specific illustrative embodiments. Further-
more, a particular 1llustrative embodiment may have some,
all, or none of the advantages listed above.

With reference to the figures and in particular with
reference to FIGS. 1 and 2, these figures are example
diagrams of data processing environments 1n which 1llus-
trative embodiments may be implemented. FIGS. 1 and 2 are
only examples and are not intended to assert or imply any
limitation with regard to the environments 1n which different
embodiments may be implemented. A particular implemen-
tation may make many modifications to the depicted envi-
ronments based on the following description.

FIG. 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented. Data processing environment 100 1s a
network of computers in which the illustrative embodiments
may be implemented. Data processing environment 100
includes network 102. Network 102 1s the medium used to
provide communications links between various devices and
computers connected together within data processing envi-
ronment 100. Network 102 may include connections, such
as wire, wireless communication links, or fiber optic cables.

Clients or servers are only example roles of certain data
processing systems connected to network 102 and are not
intended to exclude other configurations or roles for these
data processing systems. Classical processing system 104
couples to network 102. Classical processing system 104 1s
a classical processing system. Software applications may
execute on any quantum data processing system in data
processing environment 100. Any software application
described as executing 1n classical processing system 104 1n
FIG. 1 can be configured to execute 1in another data pro-
cessing system 1n a stmilar manner. Any data or information
stored or produced in classical processing system 104 1n
FIG. 1 can be configured to be stored or produced 1n another
data processing system 1n a similar manner. A classical data
processing system, such as classical processing system 104,
may contain data and may have software applications or
solftware tools executing classical computing processes
thereon.

Server 106 couples to network 102 along with storage unit
108. Storage unit 108 1ncludes a database 109 configured to
store quantum circuit designs, quantum gate parameters,

US 12,106,182 B2

7

quantum algorithms, and qubit parameters. Server 106 1s a
conventional data processing system. (Quantum processing
system 140 couples to network 102. Quantum processing
system 140 1s a quantum data processing system. Software
applications may execute on any quantum data processing
system 1n data processing environment 100. Any software
application described as executing 1n quantum processing
system 140 1n FIG. 1 can be configured to execute 1n another
quantum data processing system 1n a similar manner. Any
data or information stored or produced 1n quantum process-
ing system 140 in FIG. 1 can be configured to be stored or
produced 1n another quantum data processing system 1n a
similar manner. A quantum data processing system, such as
quantum processing system 140, may contain data and may
have software applications or software tools executing quan-
tum computing processes thereon.

Clients 110, 112, and 114 are also coupled to network 102.
A conventional data processing system, such as server 106,
or client 110, 112, or 114 may contain data and may have
soltware applications or software tools executing conven-
tional computing processes thereon.

Only as an example, and without implying any limitation
to such architecture, FIG. 1 depicts certain components that
are usable 1n an example implementation of an embodiment.
For example, server 106, and clients 110, 112, 114, are
depicted as servers and clients only as example and not to
imply a limitation to a client-server architecture. As another
example, an embodiment can be distributed across several
conventional data processing systems, quantum data pro-
cessing systems, and a data network as shown, whereas
another embodiment can be implemented on a single con-
ventional data processing system or single quantum data
processing system within the scope of the illustrative
embodiments. Conventional data processing systems 106,
110, 112, and 114 also represent example nodes 1n a cluster,
partitions, and other configurations suitable for implement-
ing an embodiment.

Device 132 1s an example of a conventional computing
device described herein. For example, device 132 can take
the form of a smartphone, a tablet computer, a laptop
computer, client 110 1n a stationary or a portable form, a
wearable computing device, or any other suitable device.
Any software application described as executing 1n another
conventional data processing system 1 FIG. 1 can be
configured to execute 1n device 132 1n a similar manner. Any
data or information stored or produced in another conven-
tional data processing system in FIG. 1 can be configured to
be stored or produced in device 132 1n a similar manner.

Server 106, storage unit 108, classical processing system
104, quantum processing system 140, and clients 110, 112,
and 114, and device 132 may couple to network 102 using
wired connections, wireless communication protocols, or
other suitable data connectivity. Clients 110, 112, and 114
may be, for example, personal computers or network com-
puters.

In the depicted example, server 106 may provide data,
such as boot files, operating system 1mages, and applications
to chients 110, 112, and 114. Clients 110, 112, and 114 may
be clients to server 106 1n this example. Clients 110, 112,
114, or some combination thereof, may include their own
data, boot files, operating system 1mages, and applications.
Data processing environment 100 may include additional
servers, clients, and other devices that are not shown.

In the depicted example, memory 124 may provide data,
such as boot files, operating system images, and applications
to classical processor 122. Classical processor 122 may
include 1ts own data, boot files, operating system images,

10

15

20

25

30

35

40

45

50

55

60

65

8

and applications. Data processing environment 100 may
include additional memories, quantum processors, and other
devices that are not shown. Memory 124 includes applica-
tion 105 that may be configured to implement one or more
of the classical processor functions described herein for
compiling quantum algorithms 1n accordance with one or
more embodiments.

In the depicted example, memory 144 may provide data,
such as boot files, operating system images, and applications
to quantum processor 142. Quantum processor 142 may
include 1ts own data, boot files, operating system images,
and applications. Data processing environment 100 may
include additional memories, quantum processors, and other
devices that are not shown. Memory 144 includes applica-
tion 146 that may be configured to implement one or more
of the quantum processor functions described herein 1n
accordance with one or more embodiments.

In the depicted example, data processing environment 100
may be the Internet. Network 102 may represent a collection
of networks and gateways that use the Transmission Control
Protocol/Internet Protocol (TCP/IP) and other protocols to
communicate with one another. At the heart of the Internet
1s a backbone of data communication links between major
nodes or host computers, including thousands of commer-
cial, governmental, educational, and other computer systems
that route data and messages. Of course, data processing
environment 100 also may be implemented as a number of
different types of networks, such as for example, an intranet,
a local area network (LAN), or a wide area network (WAN).
FIG. 1 1s intended as an example, and not as an architectural
limitation for the different illustrative embodiments.

Among other uses, data processing environment 100 may
be used for implementing a client-server environment in
which the illustrative embodiments may be implemented. A
client-server environment enables software applications and
data to be distributed across a network such that an appli-
cation functions by using the interactivity between a con-
ventional client data processing system and a conventional
server data processing system. Data processing environment
100 may also employ a service oriented architecture where
interoperable software components distributed across a net-
work may be packaged together as coherent business appli-
cations. Data processing environment 100 may also take the
form of a cloud, and employ a cloud computing model of
service delivery for enabling convenient, on-demand net-
work access to a shared pool of configurable computing
resources (e.g. networks, network bandwidth, servers, pro-
cessing, memory, storage, applications, virtual machines,
and services) that can be rapidly provisioned and released
with minimal management effort or interaction with a pro-
vider of the service.

With reference to FIG. 2, this figure depicts a block
diagram of a data processing system 1n which illustrative
embodiments may be implemented. Data processing system
200 1s an example of a conventional computer, such as
classical processing system 104, server 106, or clients 110,
112, and 114 in FIG. 1, or another type of device 1n which
computer usable program code or instructions implementing
the processes may be located for the illustrative embodi-
ments.

Data processing system 200 1s also representative of a
conventional data processing system or a configuration
therein, such as conventional data processing system 132 in
FIG. 1 1n which computer usable program code or instruc-
tions implementing the processes of the i1llustrative embodi-
ments may be located. Data processing system 200 1s
described as a computer only as an example, without being

US 12,106,182 B2

9

limited thereto. Implementations in the form of other
devices, such as device 132 i FIG. 1, may modify data
processing system 200, such as by adding a touch interface,
and even eliminate certain depicted components from data
processing system 200 without departing from the general
description of the operations and functions of data process-
ing system 200 described herein.

In the depicted example, data processing system 200
employs a hub architecture including North Bridge and

memory controller hub (NB/MCH) 202 and South Bridge
and mput/output (I/0) controller hub (SB/ICH) 204. Pro-
cessing unit 206, main memory 208, and graphics processor
210 are coupled to North Bridge and memory controller hub
(NB/MCH) 202. Processing unit 206 may contain one or
more processors and may be implemented using one or more
heterogeneous processor systems. Processing unit 206 may
be a multi-core processor. Graphics processor 210 may be
coupled to NB/MCH 202 through an accelerated graphics
port (AGP) 1n certain implementations.

In the depicted example, local area network (LAN)
adapter 212 1s coupled to South Bridge and I/O controller
hub (SB/ICH) 204. Audio adapter 216, keyboard and mouse
adapter 220, modem 222, read only memory (ROM) 224,
universal serial bus (USB) and other ports 232, and PCI/
PCle devices 234 are coupled to South Bridge and I/O
controller hub 204 through bus 238. Hard disk drive (HDD)
or solid-state drive (SSD) 226 and CD-ROM 230 are
coupled to South Bridge and 1/0 controller hub 204 through
bus 240. PCI/PCle devices 234 may include, for example,
Ethernet adapters, add-in cards, and PC cards for notebook
computers. PCI uses a card bus controller, while PCle does
not. ROM 224 may be, for example, a flash binary mmput/
output system (BIOS). Hard disk drive 226 and CD-ROM

230 may use, for example, an integrated drive electronics
(IDE), serial advanced technology attachment (SATA) inter-

face, or variants such as external-SATA (eSATA) and micro-
SATA (mSATA). A super I/O (SIO) device 236 may be
coupled to South Bridge and I/O controller hub (SB/ICH)
204 through bus 238.

Memories, such as main memory 208, ROM 224, or tlash
memory (not shown), are some examples of computer
usable storage devices. Hard disk drive or solid state drive
226, CD-ROM 230, and other similarly usable devices are
some examples of computer usable storage devices includ-
ing a computer usable storage medium.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of vari-
ous components within data processing system 200 1n FIG.
2. The operating system may be a commercially available
operating system for any type of computing platiorm,
including but not limited to server systems, personal com-
puters, and mobile devices. An object oriented or other type
of programming system may operate in conjunction with the
operating system and provide calls to the operating system
from programs or applications executing on data processing
system 200.

Instructions for the operating system, the object-oriented
programming system, and applications or programs, such as
application 105 1in FIG. 1, are located on storage devices,
such as 1n the form of code 226 A on hard disk drive 226, and
may be loaded into at least one of one or more memories,
such as main memory 208, for execution by processing unit
206. The processes of the illustrative embodiments may be
performed by processing unit 206 using computer 1mple-
mented instructions, which may be located in a memory,
such as, for example, main memory 208, read only memory
224, or 1n one or more peripheral devices.

10

15

20

25

30

35

40

45

50

55

60

65

10

Furthermore, in one case, code 226 A may be downloaded
over network 201 A from remote system 201B, where similar
code 201C 1s stored on a storage device 201D. 1n another
case, code 226 A may be downloaded over network 201 A to
remote system 201B, where downloaded code 201C 1s
stored on a storage device 201D.

The hardware 1in FIGS. 1-2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or 1n place of the hardware depicted 1n FIGS. 1-2.
In addition, the processes of the illustrative embodiments
may be applied to a multiprocessor data processing system.

In some 1llustrative examples, data processing system 200
may be a personal digital assistant (PDA), which 1s generally
configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-
generated data. A bus system may comprise one or more
buses, such as a system bus, an 1/O bus, and a PCI bus. Of
course, the bus system may be implemented using any type
of communications fabric or architecture that provides for a
transier of data between different components or devices
attached to the fabric or architecture.

A communications unit may include one or more devices
used to transmit and receive data, such as a modem or a
network adapter. A memory may be, for example, main
memory 208 or a cache, such as the cache found in North
Bridge and memory controller hub 202. A processing unit
may include one or more processors or CPUSs.

The depicted examples 1n FIGS. 1-2 and above-described
examples are not meant to imply architectural limitations.
For example, data processing system 200 also may be a
tablet computer, laptop computer, or telephone device in
addition to taking the form of a mobile or wearable device.

Where a computer or data processing system 1s described
as a virtual machine, a virtual device, or a virtual compo-
nent, the wvirtual machine, virtual device, or the wvirtual
component operates 1n the manner of data processing system
200 using virtualized manifestation of some or all compo-
nents depicted 1n data processing system 200. For example,
in a virtual machine, virtual device, or virtual component,
processing unit 206 1s manifested as a virtualized instance of
all or some number of hardware processing units 206
available 1n a host data processing system, main memory
208 1s manifested as a virtualized instance of all or some
portion of main memory 208 that may be available 1n the
host data processing system, and disk 226 1s manifested as
a virtualized instance of all or some portion of disk 226 that
may be available 1n the host data processing system. The
host data processing system 1n such cases 1s represented by
data processing system 200.

With reference to FIG. 3, this figure depicts an example
configuration for calibration of a quantum processor 1n
accordance with an illustrative embodiment. The example
embodiment includes an application 302. In a particular
embodiment, application 302 1s an example of application
105 1n FIG. 1.

Application 302 includes calibration component 304.
Component 304 includes calibration operator component
306, qubit parameter analysis component 308, and quantum
gate parameter analysis component 310. Application 302
receives a calibration operation 312.

Calibration operator 306 executes calibration operation
312. In an embodiment, calibration operation 312 performs
a set ol operations on a plurality of qubits Q1, Q2,
Q3, ..., Qn of the quantum processor 314. In an embodi-
ment, calibration operation 312 performs a method of ran-

US 12,106,182 B2

11

domized benchmarking on the plurality of qubits. For
example, calibration operation 312 can perform a set of
pre-determined operations on a plurality of qubits of the
quantum processor 314. The set of pre-determined opera-
fions generate a set of values for each qubit in response to
performing the set of pre-determined operations. In an
embodiment, calibration operator 312 compares the set of
values for each qubit to an expected answer of at least one
of the set of pre-determined operations.

In an embodiment, calibration operation 312 returns a set
of qubit parameter values 316 for the plurality of qubits of
the quantum processor 314. For example, qubit coherence
fime, qubit relaxation time, measurement error, and other
qubit parameter values can be determined by the calibration
operation. Each qubit of the quantum processor 314 can
include a subset of the set of parameter values. For example,
qubit Q1 can include associated parameter values Pl,
P2, ..., Pn, etc. These examples of qubit parameter values
are not intended to be lmiting. From this disclosure, those
of ordinary skill in the art will be able to conceive of many
other qubit parameter values suitable for calibrating a set of
qubits and the same are contemplated within the scope of the
illustrative embodiments.

In an embodiment, calibration operation 312 returns a set
of quantum gate parameters. For example, calibration opera-
tion 312 can return a parameter corresponding to an error
rate for each quantum gate 1n the quantum processor 314. In
an embodiment, calibration operation 312 returns a param-
eter corresponding to an error rate for each one and two
qubit gate (primitive gate) in the quantum processor 314.

Component 308 analyzes the set of qubit parameter values
316. In an embodiment, component 308 analyzes the set of
qubit parameter values 316 according to at least one of a set
of qubit acceptability criteria 318. For example, component
308 can compare a parameter value of a qubit to a qubit
acceptability criterion. For example, component 308 can
determine a coherence time of a qubit fails to safisfy a
threshold coherence time to perform a set of operations. As
another example, component 308 can determine a coherence
time of another qubit meets a threshold coherence time to
perform the set of operations.

Component 310 analyzes a set of quantum gate param-
eters. In an embodiment, quantum gate parameters corre-
spond to the set of qubits forming the quantum gate and the
layout of the qubits on the quantum processor. In an embodi-
ment, calibration operation 312 returns a set of quantum gate
parameters values for a plurality of quantum gates of the
quantum processor 314. For example, gate error rates, gate
speeds, gate cross talk matrix, and other quantum gate
parameter values can be determined by the calibration
operation. Each quantum gate of the quantum processor 314
can 1nclude a subset of the set of quantum gate parameter
values. These examples of quantum gate parameters are not
intended to be limiting. From this disclosure, those of
ordinary skill in the art will be able to conceive of many
other quantum gate parameter values suitable for calibrating
a set of quantum gates and the same are contemplated within
the scope of the illustrative embodiments.

Component 310 analyzes the set of quantum gate param-
eter values. In an embodiment, component 310 analyzes the
set of quantum gate parameter values according to at least
one of a set of quantum gate acceptability criteria 320. For
example, component 310 can compare a parameter value of
a quantum gate to a quantum gate acceptability criterion. For
example, component 310 can determine a gate error rate of
a quantum gate fails to satisfy a threshold error rate to
perform the quantum gate.

10

15

20

25

30

35

40

45

50

35

60

65

12

In an embodiment, component 310 generates a composite
gate error rate for a composite gate from a set of primitive
gate error rates, the composite gate formed from a set of
primitive gates corresponding to the primitive gate error
rates. In an embodiment, component 310 generates a com-
posite gate error rate for a composite gate formed using three
qubits from the formula

Y A123 812813813
- 21

Al —|—A2 —I—A3

el 9)),

where A, and B, are primitive gate error rates for a
quantum gate formed from qubits X and y during a first
calibration operation and a second calibration operation,
respectively.

With reference to FIG. 4, this figure depicts an example
configuration of validation and runtime estimation for com-
pilation of quantum algorithms. The example embodiment
includes an application 402. In a particular embodiment,
application 402 1s an example of application 105 1n FIG. 1.
Application 402 includes a quantum circuit construction
component 404. Quantum circuit construction component
404 compiles an output quantum circuit design 420 1n
accordance with an example method described herein. Com-
piler component 406 1s configured to transform an 1nput
quantum algorithm 418 into an optimized quantum circuit
design 420. Component 406 includes an algorithm transfor-
mation component 408, quantum circuit simulation compo-
nent 410, and quantum circuit runtime estimation compo-
nent 416.

Component 408 transforms the quantum algorithm code
into a first quantum circuit design corresponding to the
operations performed by the quantum algorithm. Compo-
nent 410 simulates the quantum algorithm as a quantum
circuit. In an embodiment, components 412 and 414 analyze
the first quantum circuit to determine the set of qubits and
the set of quantum gates used 1n the first quantum circuit. For
example, component 414 determines a first qubit and a
second qubit form a first quantum gate. In an embodiment,
component 412 determines the first qubit performs a set of
operations.

Component 412 determines whether at least one qubit
satisfies at least one criterion from a set of qubit acceptabil-
ity criteria. For example, component 412 can determine a
coherence time of a qubit fails to satisfy a threshold coher-
ence time to perform a set of operations. the quantum circuit
in accordance with at least one of a set of acceptability
criteria.

Component 414 analyzes the set of quantum gate param-
eter values. In an embodiment, component 414 analyzes the
set of quantum gate parameter values according to at least
one of a set of quantum gate acceptability criteria. For
example, component 414 can compare a parameter value of
a quantum gate to a quantum gate acceptability criterion. For
example, component 414 can determine a gate error rate of
a quantum gate fails to satisfy a threshold error rate to
perform the quantum gate.

In response to determining the simulated quantum circuit
satisfies a subset of the set of quantum gate acceptability
criteria and a second subset of the set of qubit acceptability
criteria, application 402 transforms the quantum algorithm
into quantum circuit 420, quantum circuit 420 performing
the operations of the quantum algorithm. Application 402
outputs validation ticket 422 and notifies the user of vali-
dation. Validation ticket 422 corresponds to a place 1n a

((4233531 + A3 By + 412813 +

US 12,106,182 B2

13

queue ol quantum algorithms for a quantum processor
executing validated quantum algorithms.

Quantum circuit runtime estimation component 416 esti-
mates a runtime for performing the output quantum circuit
420. In an embodiment, component 416 compares a sub-
mitted quantum algorithm to a stored quantum algorithm to
estimate a runtime of the submitted quantum algorithm. For
example, component 416 can compare the number of quan-
tum gates, type of quantum gates, and quantum gate param-
cters to determine a runtime for the submitted quantum
algorithm. Component 416 determines a total runtime for all
quantum algorithms submitted by a single user. Component
416 compares the total runtime to a threshold runtime, such
as one hour. For example, component 416 can determine the
total runtime for quantum algorithms submitted by a single
user 1s two hours. Component 416 determines the total
runtime exceeds the threshold runtime. Component 416
revokes the ticket 422 in response to the total runtime
exceeding the threshold runtime.

With reference to FIG. 5, thus figure depicts a tflowchart of
an example method for validation and runtime estimation of
quantum algorithms 1n accordance with an illustrative
embodiment. Application 105 performs method 300 in an
embodiment. In block 502, application 105 receives a quan-
tum algorithm from a user and a set of user parameters. In
block 504, application 105 simulates a quantum algorithm
forming a set of quantum gates performing operations of the
quantum algorithm. In block 506, application 105 analyzes
a set of parameters of the set of quantum gates. In block 508,
application 105 analyzes a second set of parameters of a set
of qubits performing the set of quantum gates. In block 510,
application 105 determines whether at least one of the
parameters meets an acceptability criterion. In response to
determining the at least one parameter fails to meet an
acceptability criterion (NO path of block 510), application
105 moves to block 516 to notily the user of parameter
tailure. Application 105 ends process 500 thereatter.

In response to determining the at least one parameter
meets an acceptability criterion (YES path of block 510),
application 105 moves to block 512. In block 512, applica-
tion 105 estimates a runtime of the quantum algorithm. In
block 514, application 105 transforms the quantum algo-
rithm 1nto a second set of quantum gates. Application 105
ends process 500 thereatter.

Various embodiments of the present invention are
described herein with reference to the related drawings.
Alternative embodiments can be devised without departing,
from the scope of this mnvention. Although various connec-
tions and positional relationships (e.g., over, below, adja-
cent, etc.) are set forth between elements in the following
description and in the drawings, persons skilled 1n the art
will recognize that many of the positional relationships
described herein are orientation-independent when the
described functionality 1s maintained even though the ori-
entation 1s changed. These connections and/or positional
relationships, unless specified otherwise, can be direct or
indirect, and the present invention 1s not intended to be
limiting 1n this respect. Accordingly, a coupling of entities
can refer to either a direct or an indirect coupling, and a
positional relationship between entities can be a direct or
indirect positional relationship. As an example of an indirect
positional relationship, references in the present description
to forming layer “A” over layer “B” include situations in
which one or more intermediate layers (e.g., layer “C”) 1s
between layer “A” and layer “B” as long as the relevant
characteristics and functionalities of layer “A” and layer “B”
are not substantially changed by the intermediate layer(s).

10

15

20

25

30

35

40

45

50

55

60

65

14

The following definitions and abbreviations are to be used
for the interpretation of the claims and the specification. As
used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having,” “contains” or
“containing,” or any other varnation thereof, are imntended to
cover a non-exclusive inclusion. For example, a composi-
tion, a mixture, process, method, article, or apparatus that
comprises a list of elements 1s not necessarily limited to only
those elements but can include other elements not expressly
listed or inherent to such composition, mixture, process,
method, article, or apparatus.

Additionally, the term “illustrative” 1s used herein to mean
“serving as an example, instance or illustration.” Any
embodiment or design described herein as “illustrative™ 1s
not necessarily to be construed as preferred or advantageous
over other embodiments or designs. The terms “at least one”
and “one or more” are understood to include any integer
number greater than or equal to one, 1.€. one, two, three,
four, etc. The terms ““a plurality” are understood to 1nclude

any nteger number greater than or equal to two, 1.e. two,
three, four, five, etc. The term “connection” can include an
indirect “connection” and a direct “connection.”

References 1n the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described can include a particular feature,
structure, or characteristic, but every embodiment may or
may not include the particular feature, structure, or charac-
teristic. Moreover, such phrases are not necessarily referring
to the same embodiment. Further, when a particular feature,
structure, or characteristic 1s described 1n connection with an
embodiment, 1t 1s submitted that 1t 1s within the knowledge
of one skilled 1n the art to aflect such feature, structure, or
characteristic 1n connection with other embodiments
whether or not explicitly described.

The terms “about,” “substantially,” “approximately,” and
variations thereolf, are intended to include the degree of error
assoclated with measurement of the particular quantity
based upon the equipment available at the time of filing the
application. For example, “about” can include a range of
+8% or 5%, or 2% of a given value.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found i1n the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
described herein.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found 1n the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
described herein.

Thus, a computer implemented method, system or appa-
ratus, and computer program product are provided in the
illustrative embodiments for managing participation 1n

i 1

US 12,106,182 B2

15

online communities and other related features, functions, or
operations. Where an embodiment or a portion thereof 1s
described with respect to a type of device, the computer
implemented method, system or apparatus, the computer
program product, or a portion thereot, are adapted or con-
figured for use with a suitable and comparable manifestation
of that type of device.

Where an embodiment 1s described as implemented in an
application, the delivery of the application 1n a Software as
a Service (SaaS) model 1s contemplated within the scope of
the illustrative embodiments. In a SaaS model, the capability
of the application implementing an embodiment 1s provided
to a user by executing the application in a cloud infrastruc-
ture. The user can access the application using a variety of
client devices through a thin client interface such as a web
browser (e.g., web-based e-mail), or other light-weight
client-applications. The user does not manage or control the
underlying cloud infrastructure including the network, serv-
ers, operating systems, or the storage of the cloud infra-
structure. In some cases, the user may not even manage or
control the capabilities of the SaaS application. In some
other cases, the SaaS implementation of the application may
permit a possible exception of limited user-specific appli-
cation configuration settings.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the

10

15

20

25

30

35

40

45

50

55

60

65

16

network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1 any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the mnstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible

US 12,106,182 B2

17

implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations ol special purpose hardware and computer
instructions.

What 1s claimed 1s:

1. A method comprising:

analyzing a first set of parameters of a set of quantum

gates corresponding to a quantum algorithm;
analyzing a second set of parameters of a set of qubits
performing the set of quantum gates;

transforming, responsive to determining that at least one

parameter from at least one of the first set of parameters
and the second set of parameters satisfies an accept-
ability criterion, the quantum algorithm into a second
set of quantum gates; and

queueing, mto a queue ol quantum algorithms, in

response to determining at least one of the first set of
parameters or the second set of parameters meets the
acceptability criterion, the second set of quantum gates
for execution by a quantum processor executing vali-
dated quantum algorithms.

2. The method of claim 1, turther comprising;:

comparing the quantum algorithm to a stored quantum

algorithm to estimate a runtime of the quantum algo-
rithm, wherein the runtime 1s a time period.

3. The method of claim 1, further comprising:

producing, in response to determining at least one of the

first set of parameters or the second set of parameters
meets the acceptability criterion, a validation ticket
corresponding to a place mm the queue of quantum
algorithms.

4. The method of claim 3, further comprising;:

revoking, 1 response to a total runtime of a set of

quantum algorithms submitted by a user exceeding a
threshold runtime, the validation ticket.

5. The method of claim 1, turther comprising;:

notifying, 1n response to determining at least one param-

cter of the first set of parameters or the second set of
parameters fails to meet an acceptability criterion, a
user of the failed at least one parameter.

6. The method of claim 1, further comprising:

executing the quantum algorithm with the second set of

quantum gates.

7. The method of claim 1, wherein the acceptability
criterion 1s a threshold error rate of a quantum gate.

8. The method of claim 1, wherein the acceptability
criterion 1s a threshold coherence time of a qubit.

9. A computer usable program product comprising a
computer-readable storage medium, and program instruc-
tions stored on the storage medium, the stored program
instructions comprising:

10

15

20

25

30

35

40

45

50

55

60

65

18

program 1nstructions to analyze a first set of parameters of
a set of quantum gates corresponding to a quantum
algorithm;

program 1nstructions to analyze a second set of param-

cters of a set of qubits performing the set of quantum
gates;
program 1nstructions to transform, responsive to deter-
mining that at least one parameter from at least one of
the first set of parameters and the second set of param-
cters satisfies an acceptability criterion, the quantum
algorithm 1nto a second set of quantum gates; and

program instructions to queue, into a queue of quantum
algorithms, in response to determining at least one of
the first set of parameters or the second set of param-
cters meets the acceptability criterion, the second set of
quantum gates for execution by a quantum processor
executing validated quantum algorithms.

10. The computer usable program product of claim 9,
wherein the stored program instructions are stored i a
computer readable storage medium 1n a data processing
system, and wherein the computer usable code 1s transferred
over a network from a remote data processing system.

11. The computer usable program product of claim 9,
wherein the stored program instructions are stored in a
computer readable storage medium 1n a server data process-
ing system, and wherein the computer usable code 1s down-
loaded over a network to a remote data processing system
for use 1 a computer readable storage medium associated
with the remote data processing system.

12. The computer usable program product of claim 9, the
stored program 1instructions further comprising;:

program instructions to compare the quantum algorithm

to a stored quantum algorithm to estimate a runtime of
the quantum algorithm, wherein the runtime 1s a time
period.

13. The computer usable program product of claim 9, the
stored program 1instructions further comprising;:

program instructions to produce, 1n response to determin-

ing at least one of the first set of parameters or the
second set of parameters meets the acceptability crite-
rion, a validation ticket corresponding to a place 1n the
queue of quantum algorithms.

14. The computer usable program product of claim 13, the
stored program instructions further comprising:

program 1nstructions to revoke, in response to a total

runtime of a set of quantum algorithms submitted by
the user exceeding a threshold runtime, the validation
ticket.

15. The computer usable program product of claim 9, the
stored program 1instructions further comprising;:

program 1nstructions to notify, in response to determining

at least one parameter of the first set of parameters or
the second set of parameters fails to meet an accept-
ability criterion, a user of the failed at least one
parameter.

16. The computer usable program product of claim 9, the
stored program instructions further comprising:

program 1nstructions to execute the quantum algorithm

with the second set of quantum gates.

17. The computer usable program product of claim 9,
wherein the acceptability criterion 1s a threshold error rate of
a quantum gate.

18. The computer usable program product of claim 9,
wherein the acceptability criterion 1s a threshold coherence
time of a qubit.

19. A computer system comprising a processor, a com-
puter-readable memory, and a computer-readable storage

US 12,106,182 B2
19

medium, and program instructions stored on the storage
medium for execution by the processor via the memory, the
stored program 1nstructions comprising;:
program 1nstructions to analyze a first set of parameters of
a set of quantum gates corresponding to a quantum 5
algorithm;
program 1nstructions to analyze a second set of param-
cters of a set of qubits performing the set of quantum
gates;
program 1nstructions to transform, responsive to deter- 10
mining that at least one parameter from at least one of
the first set of parameters and the second set of param-
cters satisfies an acceptability criterion, the quantum
algorithm into a second set of quantum gates; and
program 1instructions to queue, mto a queue of quantum 15
algorithms, 1n response to determining at least one of
the first set of parameters or the second set of param-
cters meets the acceptability criterion, the second set of
quantum gates for execution by a quantum processor
executing validated quantum algorithms. 20
20. The computer system of claim 19, the stored program
instructions further comprising:
program 1nstructions to compare the quantum algorithm
to a stored quantum algorithm to estimate a runtime of
the quantum algorithm, wherein the runtime 1s a time 25
period.

	Front Page
	Drawings
	Specification
	Claims

