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TEX'T-TO-SPEECH USING DURATION
PREDICTION

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. Provisional Appli-
cation No. 63/087,162, filed on Oct. 2, 2020. The disclosure
of the prior application 1s considered part of and 1s 1ncor-
porated by reference in the disclosure of this application.

BACKGROUND

This specification relates to performing text-to-speech
using neural networks.

Neural networks are machine learning models that
employ one or more layers of nonlinear units to predict an
output for a received input. Some neural networks 1nclude
one or more hidden layers in addition to an output layer. The
output of each hidden layer 1s used as input to the next layer
in the network, 1.e., the next hidden layer or the output layer.
Each layer of the network generates an output from a
received input in accordance with current values of a respec-
tive set of parameters.

SUMMARY

This specification describes a system implemented as
computer programs on one Oor more computers 1n one or
more locations that executes a neural network system con-
figured to process an mput text sequence representing a text
sample and to generate an output audio sequence represent-
ing audio data characterizing a speaker speaking the text
sample. This specification also describes a system imple-
mented as computer programs on one or more computers in
one or more locations that trains the neural network system.
The neural network system can generate the output audio
sequence using a duration prediction neural network that
predicts, for each text element 1n the mput text sequence, a
respective duration of the text element 1n the output audio
sequence.

The subject matter described 1n this specification can be
implemented in particular embodiments so as to realize one
or more of the following advantages.

Some existing techniques use autoregressive neural net-
works to generate audio outputs from text inputs, where the
neural network iteratively generates new output elements
until the network determines to stop, e.g., by generating a
‘stop” token. Such autoregressive neural networks can be
less robust than traditional, non-deep approaches because
determining ad-hoc when to stop generating output tokens
can result in problems such as early cut-ofl or failure to stop
at all. Using techniques described in this specification, a
neural network configured to perform text-to-speech can use
a duration prediction neural network to predict, for each
input token, a duration of the input token in the output
sequence, €.g., a number of output tokens that correspond to
the 1nput token or a length of time that the mput token
represents. The neural network can therefore determine,
before generating the audio output, the length of the audio
output, eliminating or significantly reducing the risk of early
cut-oil or failure to stop.

Existing autoregressive neural networks furthermore
impose little to no constraints to prevent repetition or
skipping of output tokens. As described 1n this specification,
by directly modeling the duration of each input token, a deep
neural network configured to perform text-to-speech can
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2

determine an exact correspondence between the input
sequence and the output sequence, thus minimizing the risk
ol repeating or skipping output tokens.

Conventionally, non-autoregressive systems upsampled
an mmput sequence to generate an mtermediate sequence by
simply repeating each input token in the input sequence N
times. Using techniques described in this specification, a
system can leverage the predicted duration of each input
token and, optionally, a range parameter that predicts the
importance of the mput token, to upsample the sequence 1n
a more sophisticated way, generating an improved prior for
the intermediate sequence. In particular, 1n some 1implemen-
tation described in this specification, the system can deter-
mine, for each mnput token in the input sequence, a distri-
bution over the intermediate sequence, e.g., a (Gaussian
distribution, that models the range of the influence of the
input token. Then, the system can determine the value of
cach 1ntermediate token 1n the intermediate sequence
according to a combination of the respective influences of
the mput tokens, e.g., a weighted sum of the values of the
intermediate token 1n the respective distributions of the input
tokens.

Using techmiques described in this specification, a training
system can train a duration prediction neural network that 1s
a component of a text-to-speech neural network 1 an
unsupervised (or semi-supervised) fashion. That 1s, the
training system can train the duration prediction neural
network, e.g., concurrently with one or more other subnet-
works of the text-to-speech neural network, using trainming
input sequences without having access to ground-truth dura-
tions for each input token in the training input sequences.
Ground-truth durations for each text element 1n a text corpus
can be scarce; for example, in some cases users must
hand-tune a computationally-expensive separate model to
generate ground-truth durations. By executing unsupervised
training of the duration prediction neural network, the train-
ing system can avoid the need to perform this labor-intensive
Process.

In some 1implementations described in this specification, a
system can control the pace of synthesized audio on a
per-word or per-phoneme level by modifying the predicted
durations of each word or phoneme determined by a dura-
tion prediction neural network, while still maintaining the
naturalness of the synthesized speech.

The details of one or more embodiments of the subject
matter of this specification are set forth 1n the accompanying,
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram of an example neural network system.

FIG. 2 1s a diagram of an example duration prediction
neural network.

FIG. 3 1s a diagram of an example traiming system.

FIG. 4 1s a flow diagram of an example process for
processing an iput text sequence using a neural network
system to generate an output audio sequence.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 1s a diagram of an example neural network system
100. The neural network system 100 i1s an example of a
system 1mplemented as computer programs on one or more
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computers 1n one or more locations, 1n which the systems,
components, and techniques described below can be 1imple-
mented.

The neural network system 100 1s configured to process
an mput text sequence 102 that represents a text sample and
to generate an output audio sequence 142 that represents
audio data of a speaker speaking the text sample. In other
words, the output audio sequence 142 1s “conditioned” on
the mput text sequence 102.

The mnput text sequence 102 can include a respective text
clement at each of multiple mput time steps. For example,
cach text element can represent a character, a word, or a
phoneme. As another example, each text element can
include linguistic features that have been derived from the
input text and that correspond to the respective iput time
step. As a particular example, for each word or sub-word 1n
the mput text, the linguistic features can include one or more
of a morphological lemma of the word or sub-word; one or
more other morphological features of the word or sub-word,
¢.g., case, number, gender, person, and/or tense; a part-oi-
speech tag of the word or sub-word; a dependency label
identifying a different word on which the word or sub-word
depends; or an 1dentification of whether the sub-word occu-
pies the beginning, 1nside, or end of the corresponding word.
In some implementations, the mput text sequence 102
includes respective text elements for word boundaries, punc-
tuation, and/or an end-of-sequence token.

The output audio sequence 142 may comprise samples of
a time-domain audio waveform. That 1s, the output audio
sequence 142 can include a respective sample of an audio
wave at each ol a sequence of output time steps. For
example, the audio sample at a given output time step can be
an amplitude value, a compressed amplitude value, or com-
panded amplitude value of the audio wave. The output audio
sequence may thus represent synthesized speech corre-
sponding to the mput text sequence.

The neural network system 100 includes an encoder
neural network 110, a duration prediction neural network
120, a decoder neural network 130, and a vocoder system
140.

The encoder neural network 110 1s configured to process
the input text sequence 102 and to generate a modified input
sequence 112 that includes, at each of the multiple input time
steps, a representation of the corresponding text element 1n
the input text sequence 102. Each representation in the
modified mput sequence 112 can be an embedding of the
corresponding text element of the input text sequence 102.
In this specification, an embedding 1s an ordered collection
of numeric values that represents an mput in a particular
embedding space. For example, an embedding can be a
vector of floating point or other numeric values that has a
fixed dimensionality.

The encoder neural network 110 can obtain, for each text
clement 1n the mput text sequence 102, a predetermined
embedding of the text element. For example, 1f the text
clements are 1dentifications of phonemes, the encoder neural
network 110 can obtain an embedding for each phoneme
identified 1n the mput text sequence 102. The predetermined
embeddings of the text elements can be machine learned.
For example, the embeddings can be trained concurrently
with one or more of the neural networks in the neural
network system 100. As another example, the embeddings
can be pre-trained using a different neural network to
perform a text processing machine learning task, e.g., a
language modelling machine learning task.

In some implementations, the encoder neural network 110
can compose the modified input sequence 112 directly from
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4

the predetermined embeddings, where the representation in
the modified input sequence 112 corresponding to each text
clement 1s equal to the embedding of the text element. That
1s, the encoder neural network 110 can be an encoder system
that does not include any neural network layers.

In some other implementations the encoder neural net-
work 110 can process the embeddings of the text elements
in the mput text sequence 102 using one or more neural
network layers to generate the representations of the text
clements in the modified iput sequence 112. For example,
the encoder neural network 110 can process the sequence of
embeddings using one or more convolutional neural network
layers and/or one or more long short-term memory (LSTM)
neural network layers, e.g., bi-directional LSTM neural
network layers. As another example, the encoder neural
network 110 can process the sequence of embeddings using
one or more self-attention neural network layers.

In some implementations, the encoder neural network 110
can process the embeddings of the text elements using the
one or more neural network layers to generate respective
initial representations for each text element. Then, the
encoder neural network 110 can combine, for each initial
representation corresponding to a respective text element, 1)
the mitial representation and 11) an identification of a class to
which the output audio sequence 142 should belong to
generate the representation of the text element in the modi-
fied mput sequence 112. For example, the class can identity
a particular speaker that the audio data represented by the
output audio sequence 142 should sound like. The identified
class can be one of a predetermined number of possible
classes to which the output audio sequence 142 can belong.

The duration prediction neural network 120 1s configured
to process the modified 1input sequence 112 and to generate,
for each representation 1 the modified input sequence, a
predicted duration of the corresponding text element in the
output audio sequence 142. That 1s, for each representation
in the modified mput sequence 112, the predicted duration of
the representation represents a length of time that the text
clement corresponding to the representation will take to be
spoken 1n the audio data represented by the output audio
sequence.

After the duration prediction neural network 120 gener-
ates the respective predicted duration for each representation
in the modified mput sequence 112, the duration prediction
neural network 120 can upsample the modified input
sequence 112 according to the predicted durations to gen-
crate an intermediate sequence 122 that includes a respective
intermediate element at each of multiple intermediate time
steps. Generally, there are more intermediate time steps 1n
the intermediate sequence 122 than input time steps in the
iput text sequence 102.

For example, each predicted duration can be a floating
point value representing a number of seconds or millisec-
onds that the corresponding text element will take. As
another example, each predicted duration can be an integer
representing a number of output time steps that the corre-
sponding text element will take.

In some implementations, the duration prediction neural
network 1s configured to process the modified input
sequence 112 and to generate, for each representation 1n the
modified mput sequence 112, a respective single value
representing the predicted duration. As a particular example,
the duration prediction neural network 120 can process the
modified mput sequence 112 using one or more bi-direc-
tional LSTM neurals network layers. The duration predic-
tion neural network 112 can also 1nclude an output projec-
tion neural network layer, e.g., a feedforward neural network
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layer, that 1s configured to receive a respective layer input
for each representation in the modified mput sequence 112
and to generate the predicted duration for each representa-
tion in the modified mput sequence 112.

In some other implementations, the duration prediction
neural network 120 1s configured to generate, for each
representation in the modified mput sequence 112, a respec-
tive distribution over the intermediate elements of the mter-
mediate sequence 122 that models the influence of the
representation on each intermediate element 1n the interme-
diate sequence 122. That 1s, for each representation in the
modified mnput sequence 112, the corresponding distribution
can 1nclude a value for each intermediate element in the
intermediate sequence 122 representing the intluence of the
representation on the intermediate element. This process 1s
described 1n more detail below with reference to FIG. 2.

In some 1mplementations, after generating an nitial pre-
dicted duration for each representation 1n the modified input
sequence 112 (e.g., using one or more neural network layers
as described below with reference to FIG. 2), the duration
prediction neural network 120 can heuristically update one
or more ol the imitial predicted durations to generate final
predicted durations.

For example, the duration prediction neural network 120
can scale each initial predicted duration by a same scaling
tactor (e.g., a scaling factor between 0.8 and 1.25). This can
be usetul when synthesizing audio data for speakers with
different speech patterns, e.g., speakers who speak more
slowly or quickly than average.

As a particular example, the neural network system 100
can determine the scaling factor by comparing (1) a distri-
bution of word/phoneme durations 1n audio data correspond-
ing to the particular speaker to be characterized in the output
audio sequence 142 and (1) a distribution of word/phoneme
durations 1n audio data corresponding to a wider population.
For instance, the scaling factor can be determined to be
proportional to a ratio of the means of the two distributions.

As another particular example, the duration prediction
neural network 120 can generate, for each representation in
the modified mput sequence 112, (1) a predicted duration
corresponding to a particular speaker (e.g., using an 1denti-
fication of a class corresponding to the particular speaker, as
described above) and (11) a respective predicted duration
corresponding to one or more other speakers (e.g., profes-
sional speakers). The duration prediction neural network
120 can then combine, for each representation, the predicted
durations corresponding to respective speakers to generate
the final predicted duration for the representation, e.g., by
determining a mean (for instance, the geometric mean) of
the predicted durations. Performing this technique can
improve the intelligibility of the output audio sequence 142.
For example, the particular speaker may have a unique
speech pattern that 1s diflicult to understand. Theretfore, the
duration prediction neural network 120 can determine the
final predicted durations according to both the particular
speaker (so that the output audio sequence 142 characterizes
the unique speech pattern of the particular speaker) and one
or more prolfessional speakers (so that the output audio
sequence 142 1s more ntelligible for listeners).

As another example, the duration prediction neural net-
work 120 can identily one or more particular representations
in the modified mput sequence 112 whose 1nitial predicted
duration should be modified. As a particular example, the
duration prediction neural network 120 can i1dentily one or
more representations whose corresponding text element in
the mput text sequence 102 represents a word or phoneme
that should be emphasized. For instance, the duration pre-
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diction neural network 120 can obtain 1dentifications of the
text elements from an external natural language machine
learning model that 1s configured to process the mput text
sequence 102 (or a model input characterizing the same
iput text as the mput text sequence 102) and to 1dentify one
or more text elements that should be emphasized 1n the
corresponding synthesized audio data.

Having determined the predicted duration for each rep-
resentation 1n the modified mput sequence 112, the duration
prediction neural network 120 can upsample the modified
iput sequence 112 according to the predicted durations to
generate the itermediate sequence 122.

For example, in implementations in which the duration
prediction neural network 120 generates a respective single
value representing the predicted duration of each represen-
tation 1n the modified mput sequence 112, the duration
prediction neural network 120 can repeat, for each repre-
sentation 1n the modified 1nput sequence 112, the represen-
tation in the intermediate sequence 122 a number of times
identified by the predicted duration.

As another example, in implementations in which the
duration prediction neural network 120 generates a distri-
bution over the mtermediate sequence 122, the duration
prediction neural network 120 can determine, for each
intermediate element 1n the intermediate sequence 122, the
value for the intermediate element by combining the respec-
tive intluences of the representations in the modified mnput
sequence 112 on the mtermediate element according to their
respective distributions. This process 1s described 1n more
detail below with reference to FIG. 2.

In some 1mplementations, the intermediate time steps are
the same as the output time steps; that 1s, each intermediate
clement 1n the intermediate sequence 122 can correspond to
a respective audio sample 1n the output audio sequence 142.
In some other implementations, there are fewer intermediate
time steps than output time steps, and the intermediate time
steps can be further upsampled to generate the output audio
sequence 142, e.g., by the vocoder system 140, as 1s
described in more detail below.

In some implementations, after upsampling the modified
input sequence 112 to generate an upsampled sequence that
includes a respective upsampled representation at each inter-
mediate time step, the duration prediction neural network
120 combines, for the upsampled representation correspond-
ing to each intermediate time step, 1) the upsampled repre-
sentation and 11) a positional embedding of the upsampled
representation to generate the intermediate element corre-
sponding to the intermediate time step 1n the mtermediate
sequence 122.

The positional embedding of an upsampled representation
represents a position of the upsampled representation in the
upsampled sequence. Each positional embedding can be
machine-learned, e.g., concurrently with one or more of the
encoder neural network 110, the duration prediction neural
network 120, or the decoder neural network 130. As a
particular example, the positional embeddings can be sinu-
soidal positional embeddings.

In some 1implementations, the positional embedding of an
upsampled representation represents a global position of the
upsampled representation 1n the upsampled sequence, 1.¢.,
the position of the upsampled representation among the
intermediate time steps.

In some other implementations, the positional embedding
of an upsampled representation represents a local position of
the upsampled representation in the upsampled sequence.
For example, the positional embedding can represent the
position of the upsampled representation 1n a subsequence of
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upsampled representations corresponding to the same rep-
resentation 1n the modified mput sequence (1.e., correspond-
ing to the same text element in the mput text sequence 102).
That 1s, each upsampled representation can correspond to a
particular representation in the modified input sequence 112,
1.€., the representation 1n the modified 1input sequence 112 1n
whose predicted duration the upsampled representation lies.
The first upsampled representation 1n each subsequence can
have the same positional embedding, the second upsampled
representation 1n each subsequence can have the same
positional embedding, and so on.

In some other implementations, the duration prediction
neural network 120 can add positional embeddings to the
modified mput sequence 112 (e.g., where the positional
embedding of each representation in the modified 1nput
sequence 112 represents a position of the representation
within the modified mput sequence 112) before upsampling,
the modified mnput sequence 112 to generate the intermediate

sequence 122. This process 1s described 1n more detail below
with reference to FIG. 2.

In some 1implementations, during training of one or more
downstream neural networks to the duration prediction
neural network 120 (e.g., the decoder neural network 130
and/or a vocoder neural network of the vocoder system 140),
a training system can execute “teacher forcing” when using
the predicted durations to upsample the modified nput
sequence 112. That 1s, instead of generating the intermediate
sequence 122 by upsampling the modified input sequence
112 according to the predicted durations actually generated
by the duration prediction neural network 120, the traiming
system can upsample the modified mput sequence 112
according to “ground-truth” durations representing the out-
put that the duration prediction neural network 120 should
generate 1 response to processing the modified mput
sequence 112. Example techniques for training the duration
prediction neural network 120 are discussed 1n more detail
below.

The decoder neural network 130 1s configured to process
the intermediate sequence 122 and to generate a sequence of
audio features that includes a respective set of audio features
for each intermediate time step 1n the intermediate sequence
122. The set of audio features for a particular intermediate
time step represents the output audio sequence 142 at the one
or more output time steps corresponding to the particular
intermediate time step.

For example, the sequence of audio features can represent
a spectral representation of the output audio sequence 142.
As a particular example, the decoder neural network 130 can
be configured to generate a respective mel-frequency ceps-
tral coethicient (MFCC) feature representation for each inter-
mediate time step.

As another particular example, the decoder neural net-
work 130 can be configured to generate a mel-spectrogram
132 corresponding to the output audio sequence 142, 1.¢., a
mel-spectrogram 132 representing the same audio data as
the output audio sequence 142. The mel-spectrogram 132
can include a respective spectrogram frame at each inter-
mediate time step of the intermediate sequence 122. The
spectrogram frame corresponding to each mtermediate time
step represents a predicted distribution of audio frequencies
of the output audio sequence 142 at the one or more output
time steps corresponding to the intermediate time step.

Although the below description refers implementations 1n
which the decoder neural network 130 generates a mel-
spectrogram 132, 1t should be understood that the techmiques
described below can be used to implement a decoder neural
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network 130 that generates any appropriate set of audio
features corresponding to the output audio sequence 142.

In some implementations, the decoder neural network 130
generates spectrogram frames of the mel-spectrogram 132
autoregressively. For example, at a first processing time step
in a sequence of processing time steps, the decoder neural
network 130 can process the first intermediate element in the
intermediate sequence 122 to generate the first frame of the
mel-spectrogram 132. Then, at each subsequent processing
time step in the sequence of processing time steps, the
decoder neural network 130 can process 1) the subsequent
intermediate element 1n the intermediate sequence 122, and
11) the preceding frame of the mel-spectrogram 132 gener-
ated 1n the preceding processing time step to generate the
subsequent frame of the mel-spectrogram 132. That 1s, each
processing time step can correspond to a respective inter-
mediate time step 1n the intermediate sequence 122, and 1n
cach processing time step the decoder neural network 130
generates the spectrogram frame of the mel-spectrogram 132
corresponding to the respective intermediate time step.

In some implementations, during training of the decoder
neural network 130, a training system can execute teacher
forcing when autoregressively processing preceding spec-
trogram frames to generate new spectrogram frames. That 1s,
instead of processing the spectrogram frame actually gen-
erated by the decoder neural network 130 at the preceding
processing time step, the training system can process a
corresponding spectrogram frame of a “ground-truth” mel-
spectrogram representing the output that the decoder neural
network 130 should generate 1n response to processing the
intermediate sequence 122. Example techniques for training
the decoder neural network 130 are discussed 1n more detail
below.

In some implementations, the decoder neural network 130
includes a “pre-net” subnetwork that processes, at each
processing time step, the preceding frame of the mel-
spectrogram 132 to generate an embedding of the preceding
frame. The decoder neural network 130 can then process 1)
the intermediate element of the intermediate sequence 122
corresponding to the current processing time step and 11) the
embedding of the preceding spectrogram frame to generate
the subsequent spectrogram frame of the mel-spectrogram
132. As a particular example, the pre-net subnetwork can
include one or more feedforward neural network layers.

In some such implementations, the decoder neural net-
work 130 concatenates 1) the intermediate element of the
intermediate sequence 122 corresponding to the current
processing time step and 11) the embedding of the preceding
spectrogram Irame to generate a first concatenated repre-
sentation, and then processes the first concatenated repre-
sentation using a first subnetwork of the decoder neural
network 130 to generate an embedding of the first concat-
enated representation. For example, the first subnetwork can
include one or more uni-directional LSTM neural network
layers.

The decoder neural network 130 can then concatenate 1)
the intermediate element of the intermediate sequence 122
corresponding to the current processing time step and 11) the
embedding of the first concatenated representation to gen-
crate a second concatenated representation, and then process
the second concatenated representation using a second sub-
network of the decoder neural network 130 to generate the
subsequent frame of the mel-spectrogram 132. For example,
the second subnetwork can include an output projection
neural network layer, e.g., a feedforward neural network
layer, that 1s configured to generate the subsequent frame of
the mel-spectrogram.
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In some 1mplementations, after generating a sequence of
spectrogram frames as described above, the decoder neural
network 130 1s configured to further process the mel-
spectrogram frames to generate the final mel-spectrogram
132. That 1s, the mel-spectrogram generated, e.g., by the
second subnetwork can be an “imitial” mel-spectrogram, and
the decoder neural network 130 can process the initial
mel-spectrogram to generate the final mel-spectrogram 132.
For example, the decoder neural network 130 can process
the 1nitial mel-spectrogram using a “post-net” subnetwork to
generate the final mel-spectrogram 132. As a particular
example, the post-net subnetwork can include one or more
convolutional neural network layers that are each configured
to apply a convolutional filter to the spectrogram frames of
the 1nitial mel-spectrogram (or to processed versions of the
spectrogram frames).

The vocoder system 140 1s configured to process the
mel-spectrogram 132 to generate the output audio sequence
142. The vocoder system 140 can use any appropriate
technique to generate the output audio sequence 142 from
the mel-spectrogram 132. For example, the vocoder system
140 can include a vocoder neural network that 1s configured
to process the mel-spectrogram 132 to generate the output
audio sequence.

In some implementations, the vocoder system 140 further
upsamples the mel-spectrogram so that there are more
output time steps in the output audio sequence 142 than
intermediate time steps in the mel-spectrogram 132. For
example, the vocoder system 140 can be configured to
generate an initial output audio sequence from the mel-
spectrogram 132 that includes a respective 1nitial audio
sample for each intermediate time step, then generate the
output audio sequence 142 by processing the initial output
audio sequence using a neural network, e.g., a convolutional
neural network, that 1s configured to refine the 1nitial output
audio sequence.

In some 1implementations, the neural network system 100
does not 1include a vocoder system 140, and instead outputs
the mel-spectrogram 132. That 1s, the neural network system
100 can be configured to generate mel-spectrograms that
represent output audio sequences instead of being config-
ured to generate the output audio sequences themselves.

In some 1implementations, multiple neural networks of the
neural network system 100 can be trained concurrently. For
example, one or more of: the encoder neural network 110;
the duration prediction neural network 120; the decoder
neural network 130; or, optionally, a vocoder neural network
of the vocoder system 140 can be trained concurrently. For
example, training system can determine an error in the
output audio sequence 142 and backpropagate the error
through the neural network system 100 to determine a
parameter update for the one or more neural networks, e.g.,
using stochastic gradient descent.

In some such implementations, the encoder neural net-
work 110, the duration prediction neural network 120, and
the decoder neural network 130 can be trained concurrently
using supervised learning. That 1s, a training system can
determine parameter updates for the neural networks using
a set of training examples that each include 1) a training 1nput
text sequence, 1) a ground-truth mel-spectrogram, and 111)
ground-truth durations corresponding to each text input 1n
the training input text sequence.

A fraining system can process each training input text
sequence using the neural network system 100 to generate a
predicted mel-spectrogram 132, and then compute a loss
function that represents an error in the predicted mel-
spectrogram 132.
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For example, the loss function can include a first term
characterizing an error 1n the predicted durations, generated
by the duration prediction neural network 120, of the rep-
resentations 1n the modified mput sequence 112. As a
particular example, the first term can be (or be proportional
to):

Lawr = llld d*||5
M N P

where N 1s the number of representations in the modified
iput sequence 112, d represents the predicted durations, d*
represents the ground-truth durations, and |||, 1s an L., loss.

As another example, the loss function can include a
second term characterizing an error in the generated mel-
spectrogram 132. As a particular example, the second term
can be (or be proportional to):

T h

1
pee = 7| 2y Ive =Yl o+ llye = 3716

t=1 J

where T 1s the number of intermediate time steps 1n the
mel-spectrogram, K 1s the number of frequencies repre-
sented 1n the mel-spectrogram, y, 1s the value of the pre-
dicted mel-spectrogram at intermediate time step t, y,* 1s the
value of the ground-truth mel-spectrogram at intermediate
time step t, ||-||, is an L, loss, and |-, 1s an L, loss.

In some 1mplementations, as described above, the decoder
neural network 130 first generates an inmitial mel-spectro-
gram and then processes the initial mel-spectrogram to
generate the final predicted mel-spectrogram 132. In some
such implementations, the second term of the loss function
can include a respective term corresponding to both the
initial mel-spectrogram and the final mel-spectrogram 132.
That 1s, the training system can determine an error both 1n
the 1nitial mel-spectrogram and the final mel-spectrogram
132 using the ground-truth mel-spectrogram. As a particular
example, the second term can be (or be proportional to):

(195 = willy + 100 = Yi5 + lye = vl + e = 35113,

wherein y,' 1s the value of the initial mel-spectrogram at
intermediate time step t, y, 1s the value of the final mel-
spectrogram at intermediate time step t, and y,* 1s the value
of the ground-truth mel-spectrogram at intermediate time
step t.

In some other implementations, the encoder neural net-
work 110, the duration prediction neural network 120, and
the decoder neural network 130 can be trained concurrently
using semi-supervised or unsupervised learning. That 1s, a
fraining system can determine parameter updates for the
neural networks when ftraining examples that include
ground-truth durations and/or ground-truth mel-spectro-
grams are scarce or unavailable. Example techniques for
training the neural network system 100 using unsupervised
or semi-supervised learning are described below with rei-
erence to FIG. 3.

The neural network system 100 can be deployed 1n any
appropriate setting. For example, the neural network system
100 can be deployed on an edge device, e.g., a mobile phone,
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a tablet computer, a smart speaker, or on a device embedded
in a vehicle. For instance, the neural network system 100 can
be configured to generate an output audio sequence 142
representing audio data that 1s to be played for a user. As a
particular example, the audio data can be played by the
speakers of a mobile phone or tablet computer, e¢.g., 1n
response to a query provided by the user. As another
particular example, the audio data can be played by speakers
of a vehicle, e.g., to provide an alert or instructions to the
driver or another user in the vehicle.

As another example, the neural network system 100 can
be deployed on the cloud, e.g., in a data center that 1s
communicatively connected with one or more edge devices.
The edge devices can provide text data to the neural network
system 100 with a request to synthesize audio characterizing
the text data. The neural network system 100 can process an
iput text sequence 102 corresponding to the text data and
generate an output audio sequence 142, and then provide the
output audio sequence 142 (or other data characternizing the
output audio sequence 142) back to the edge device in
response to the request.

FIG. 2 1s a diagram of an example duration prediction
neural network 200. The duration prediction neural network
200 1s an example of a system implemented as computer
programs on one or more computers 1 one or more loca-
tions, 1n which the systems, components, and techniques
described below can be implemented.

The duration prediction neural network 200 1s configured
to obtain an embedding 202 of an input text sequence that
represents text data. The mput text sequence can include a
respective text element at each of multiple input time steps,
and the embedded mput sequence 202 can include a respec-
tive representation of each text element corresponding to a
respective input time step.

The duration prediction neural network 200 1s configured
to process the mput text sequence 102 and to generate an
upsampled sequence 232 that represents the same text data
as the input text sequence 102. The upsampled sequence 232
includes a respective intermediate element at each of mul-
tiple intermediate time steps, where the number of interme-
diate time steps 1s greater than the number of input time
steps 1n the embedded input sequence 202.

The duration prediction neural network 200 1s configured
to generate the upsampled sequence 232 by predicting, for
cach text element represented by the embedded input
sequence 202, a respective duration of the text element 11 the
text data were spoken. That 1s, the duration of a text element
represents the amount of time that will be used to speak the
text represented by the text element, 11 audio data were
generated from the embedded mput sequence 202.

For example, the duration prediction neural network 200
can be a component of a neural network system that is
configured to process the mput text sequence and to generate
an output audio sequence characterizing a speaker speaking
the mput text sequence. As a particular example, the dura-
tion prediction neural network 200 can be the duration
prediction neural network 120 of the neural network system
100 described above with reference to FIG. 1.

The duration prediction neural network 200 includes a
duration prediction subnetwork 210, a range prediction
subnetwork 220, and an upsampling system 230.

The duration prediction neural network 200 1s configured
to determine, for each representation in the embedding input
sequence 202, a respective distribution over the intermediate
clements of the upsampled sequence 232 that models the
influence of the representation on each intermediate element
in the upsampled sequence 232. For each representation 1n
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the embedded mput sequence 202, the corresponding dis-
tribution can define a value for each intermediate element in
the upsampled sequence 232 representing the influence of
the representation on the intermediate element.

For each representation 1n the embedding input sequence
202, the distribution can be parameterized by (1) a predicted
duration 212 of the representation determined by the dura-
tion prediction subnetwork and (11) a range parameter 222 of
the representation determined by the range prediction sub-
network 220. As 1s described 1n more detail below, the center
of the distributions can be defined by the respective pre-
dicted durations 212, while the variance of the distributions
can be defined by the respective range parameters 222. The
range parameter 222 for a particular representation can
represent the importance of the representation, e.g., its
relative influence over the output audio sequence.

In particular, the duration prediction subnetwork 210 1s
configured to process the embedded input sequence 202 and
to generate, for each representation in the embedded input
sequence 202, a respective predicted duration 212. For
example, each predicted duration 212 can be an integer
representing a number of intermediate time steps 1n the
upsampled sequence 232.

As a particular example, the duration prediction subnet-
work 210 can process the embedded mmput sequence 202
using one or more bi-directional LSTM neural network
layers. The duration prediction subnetwork 210 can also
include an output projection neural network layer, e.g., a
teedforward neural network layer, that 1s configured to
receive a respective layer iput for each representation in the
embedded mnput sequence 202 and to generate the predicted
duration 212 for each representation 1n the embedded 1nput
sequence 202.

The range prediction subnetwork 220 i1s configured to
process the embedded mnput sequence 202 and, optionally,
the predicted durations 212 generated by the duration pre-
diction subnetwork 210 and to generate, for each represen-
tation 1n the embedded nput sequence 202, a respective
range parameter 222. For example, the range prediction
subnetwork 220 can combine, for each representation in the
embedded mput sequence 202, 1) the representation and 11)
the predicted duration 212 of the representation, €.g., using
concatenation. The range prediction subnetwork 220 can
then process the combined representation to generate the
corresponding range parameters 222. As a particular
example, the range prediction subnetwork 220 can include
one or more bi-directional LSTM neural network layers. The
range prediction subnetwork 220 can also 1include an output
projection neural network layer, e.g., a feedforward neural
network layer, that 1s configured to receive a respective layer
input for each representation in the embedded 1nput
sequence 202 and to generate the range parameter 222 for
cach representation 1n the embedded 1nput sequence 202.

The upsampling system 230 1s configured to generate the
upsampled sequence 232 from the embedded mput sequence
202 according to the respective predicted durations 212 and
the range parameters 222 of the representations of the
embedded 1nput sequence 202. For each mtermediate ele-
ment 1n the upsampled sequence 232, the upsampling sys-
tem 230 can then determine the value for the intermediate
clement by combining the respective influences of each
representation in the embedded mmput sequence 202 on the
intermediate element, as defined by the predicted durations
212 and the range parameters 222.

For example, for each intermediate element of the
upsampled sequence 232, the upsampling system 230 can
determine a weighted sum of the values of the intermediate
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element 1n the respective distribution of each representation
in the embedded mnput sequence 202. In some implementa-
tions, the weight corresponding to each representation in the
upsampled mput sequence 232 can be normalized using the
sum of the respective values of the intermediate element in
each distribution.

As a particular example, the distribution over the
upsampled sequence 232 for each representation can be a
Gaussian distribution. In this example, the value u, for an
intermediate element t in the upsampled sequence 232 can
be determined by computing:

where h; 1s the value of representation 1 in the embedded
input sequence 202, w,. 1s the weight of representation 1
when calculating the value u, of intermediate element t, N 1s
the number of representations 1n the embedded input
sequence 202, and N(t; c,, Gf) 1s the value of intermediate
element t 1n the distribution over intermediate elements
corresponding to representation 1.

The distribution over the intermediate elements for each
representation 1 can have a center ¢, that 1s determined using
the predicted durations 212 of the representations. The
center ¢, can correspond to the center of the predicted
duration 212 1n the upsampled sequence 232. For example,
the upsampling system 230 can determine the center c. of the
distribution corresponding to representation 1 by computing:

-

7—

d;
CI'ZE—F dj,

Il
—

7

where d. 1s the predicted duration of representation 1 and
each d; 1s the predicted duration of a respective representa-
tion that precedes the representation 1 in the embedded 1nput
sequence 202.

The distribution over the intermediate elements for each
representation 1 can have a variance o, that is determined
using the range parameters 222 of the representations. In
some i1mplementations, the upsampling system 230 deter-
mines the generated range parameter 222 for representation
i to be equal to the variance G~ of the corresponding
distribution. In some other implementations, the upsampling
system 230 determines the generated range parameter 222 to
be equal to the standard deviation G, of the corresponding
distribution.

In some 1mplementations, upsampling according to
respective distributions over the upsampled sequence 232 1s
fully-differentiable, allowing the duration prediction neural
network 200 to be trained end-to-end with one or more
downstream neural networks (e.g., a decoder neural net-
work, e.g., the decoder neural network 130 described above
with reference to

FIG. 1). This differentiability can be particularly impor-
tant when ground-truth durations are not available and thus
the duration prediction neural network 200 cannot be trained
in a supervised fashion using the ground-truth durations.

In some implementations, the duration prediction neural
network 200 does not include the range prediction subnet-
work 220, and the variance 6,” of the distribution for each
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representation 1 1s fixed. In some such implementations, the
variance G,~ can depend on the speaker that the output audio
sequence 1s to characterize.

As described above with reference to FIG. 1, 1n some
implementations, the duration prediction neural network 200
combines each intermediate element in the upsampled
sequence 232 with a respective positional embedding.

In some other implementations, the duration prediction
neural network 200 incorporates positional embeddings into
the representations 1n the embedded input sequence 202
(e.g., by appending the positional embeddings to the repre-
sentations) before upsampling the embedded 1nput sequence
202 to generate the upsampled sequence 232. Because each
intermediate element 1n the upsampled sequence 232 can be
a linear combination of the representations in the embedded
input sequence 202 (where the linear combination 1s deter-
mined according to the distributions described above), the
positional embeddings appended to the representations can
thus also be linearly combined to generate a respective
different positional embedding for each intermediate ele-
ment 1n the upsampled sequence 232. In other words, the
duration prediction neural network 200 can determine a

respective positional embedding p, for each intermediate
element 1n the upsampled sequence 232 by computing:

N
P = Zwrf‘?f
i=1

where g, is the positional embedding of the i represen-
tation 1n the embedded input sequence 202, and w, is
defined as above.

In some implementations, the duration prediction subnet-
work 210 and the range prediction subnetwork 220 are
trained concurrently with one or more other neural networks,
e.g., one or more: of an encoder neural network (e.g., the
encoder neural network 110 described above with reference
to FIG. 1) configured to generate the embedded input
sequence 202 from the input sequence; a decoder neural
network (e.g., the decoder neural network 130 described
above with reference to FIG. 1) configured to generate a set
of audio features from the upsampled sequence 232; or a
vocoder neural network (e.g., a vocoder neural network that
1s component of the vocoder system 140 described above
with reference to FIG. 1) configured to generate the output
audio sequence from the sets of audio features generated
from the upsampled sequence 232.

For example, as described above with reference to FIG. 1,
the duration prediction subnetwork 210 and the range pre-
diction subnetwork 220 can be trained using ground-truth
durations for each representation in the embedded input
sequence 202.

As another example, the duration prediction subnetwork
210 and the range prediction subnetwork 220 can be trained
without access to any training examples that include ground-
truth durations, or with access to very few training examples
that include ground-truth durations. Example techniques for
training the duration prediction neural network 200 using
unsupervised or semi-supervised learning are described 1n
more detail below with reference to FIG. 3.

FIG. 3 1s a diagram of an example training system 300.
The training system 300 1s an example of a system 1mple-
mented as computer programs on one or more computers in
one or more locations, 1n which the systems, components,
and techniques described below can be implemented.
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The tramning system 300 1s configured to generate
machine-learned parameters for a neural network that 1s
configured to process an mput text sequence 302 and to
generate a mel-spectrogram 352 characterizing audio data of
the input text sequence 302 being spoken. For example, the
neural network can be a component of a neural network
system (e.g., the neural network system 100 described above
with reference to FIG. 1) that 1s configured to generate an
output audio sequence from the mel-spectrogram 352 using
a vocoder system (e.g., the vocoder system 140 described
above with reference to FIG. 1).

The neural network includes an encoder neural network
310, a direction prediction neural network 340, and a
decoder neural network 350.

The training system 300 1s configured to train the neural
network using a training data set stored in a training data
store 301. The training data set includes multiple training
examples that each include (1) a training mput text sequence
302 and (11) a set of ground-truth audio features 304 repre-
senting audio data characterizing a speaker speaking the
training mput text sequence 302. However, these traiming,
examples do not include ground-truth durations for the text
clements of the training 1nput text sequence 302.

To train the neural network without access to ground-truth
durations, the training system 300 can modily the architec-
ture of the neural network to add (1) an audio feature
embedding neural network 320 and (11) an attention-based
neural network 330.

The audio feature embedding neural network 320 and the
attention-based neural network 330 are configured to pro-
cess the ground-truth audio features 304 and extract latent
teatures 332 from the ground-truth audio features 304, 1n
order to guide the training of the neural network without
ground-truth durations. For example, the audio feature
embedding neural network 320 and the attention-based
neural network 330 can leverage duration information
implicitly encoded into the ground-truth audio features 304.

The tramning mnput text sequence 302 includes a respective
text element for each of multiple input time steps.

The ground-truth audio features 304 includes a respective
set of audio features for each of multiple intermediate time
steps, where the number of intermediate time steps 1s greater
than the number of mput time steps. The ground-truth audio
teatures 304 can include any approprate features character-
1zing the output audio sequence. For example, the ground-
truth audio features 304 can include a mel-spectrogram of
the output audio sequence, e.g., generated from a ground-
truth output audio sequence of a speaker speaking the
training input text sequence 302. Instead or 1n addition, the
ground-truth audio features can include a log spectrogram
generated from the ground-truth output audio sequence,
wavelorm {features of the ground-truth output audio
sequence, or pitch contour features of the ground-truth
output audio sequence. Instead or 1n addition, the ground-
truth audio features can include vocoder parameters of a
vocoder configured to synthesize the output audio sequence.

For each training example, the training system 100 can
process the tramming input text sequence 302 using the
encoder neural network 310 to generate a modified 1mput
sequence 312 that includes a respective representation for
cach text element of the training text sequence 302. For
example, the encoder neural network 310 can be configured
similarly to the encoder neural network 110 described above
with reference to FIG. 1.

The training system 300 can process the ground-truth
audio features 304 using the audio feature embedding neural
network 320 to generate a set of embedded audio features
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that includes, for each intermediate time step represented by
the ground-truth audio features 304, an embedding of the
corresponding audio features 304. In implementations 1n
which the ground-truth audio features 304 include a mel-
spectrogram, the audio feature embedding neural network
320 1s sometimes called a spectrogram embedding neural
network. For example, the audio feature embedding neural
network 320 can include one or more convolutional neural
network layers that are configured to apply convolutional
kernels to the sequence of ground-truth audio features 304
(or processed versions thereol) to generate the sequence of
embedded audio features 322. As another example, the audio
feature embedding neural network 320 can include one or
more recurrent neural network layers, e.g., one or more
bi-directional LSTM neural network layers, that are config-
ured to recurrently process the sequence of ground-truth
audio features 304 to generate the sequence of embedded
audio features.

The training system 300 can then process (1) the modified
input sequence 312 and (11) the embedded audio features 322
using the attention-based neural network 330 to generate the
set of latent features 332 of the output audio sequence. The
set of latent features 332 1includes a respective set of features
corresponding to each mput time step, 1.e., corresponding to
cach representation of the modified mput sequence 312.
Because the attention-based neural network 330 “combines”™
the modified mput sequence 312 and the embedded audio
features 322 to generate the latent features 332, the atten-
tion-based neural network 330 1s sometimes called a com-
bining neural network.

The attention-based neural network 330 can process the
modified mput sequence 312 and the embedded audio fea-
tures 322 using one or more attention neural network layers
to align the two 1nput. In particular, for each representation
in the modified mput sequence 312, the attention-based
neural network can generate a respective attention output by
applying an attention mechanism over the respective embed-
ded audio features 322 corresponding to each intermediate
time step. That 1s, the attention-based neural network 330
can determine, for each mput time step 1:

C; =Atin (h I.’.f‘_i_pé‘:?( r* ))

where c, 1s the attention output for input time step 1; Attn
1s an attention mechanism, e.g., dot-product attention or
scaled dot product attention; h, 1s the representation 1n the
modified mput sequence 312 corresponding to mput time
step 1 and 1s used as the query for the attention mechanism;
Y* 1s the set of ground-truth audio features 304; and £ _
represents the output of the audio feature embedding neural
network 320 and 1s used as the values for the attention
mechanism.

In some implementations, one or more of the attention
neural network layers can be a multi-head attention neural
network layer that receives a layer mput, applies multiple
different attention mechanisms to the layer mnput to generate
respective sets ol attention outputs, and combines the
respective attention outputs to generate the final set of
attention outputs. For example, the multi-head attention
neural network layer can apply the multiple different atten-
tion mechanisms 1n parallel.

The attention-based neural network 330 can then process
(1) the modified mput sequence 312 and (11) the generated
attention outputs corresponding to respective representa-
tions in the modified input sequence 312 to generate the
latent features 332. For example, the attention-based neural
network 330 can process the two mputs using a variational
auto-encoder. As a particular example, the variational auto-
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encoder can be a conditional variational auto-encoder con-
ditioned on the modified input sequence 312. The variational
auto-encoder can have a Gaussian prior, e.g., N(0O,1).

For instance, the attention-based neural network 330 can
optimize the variational auto-encoder using an evidence

lower-bound (ELBO):
logp(Y | H) = _ZDE{L(‘?(ZI' | 2y eI P(Z0)) + By s, epllogp(Y | H, Z)]

where H 1s the modified input sequence 312, Z 1s the
posterior latent features 332, the first term 1s the KL diver-
gence between the prior and the posterior, and the second
term can be approximated by drawing samples from the
posterior.

The training system 300 can then combine, e.g., through
concatenation, (1) the modified mput sequence 312 and (11)
the latent features 332 of the ground-truth audio features 304
(and optionally, an 1dentification of a class to which the
output audio sequence should belong, as described above) to
generate the input to the duration prediction neural network
340, which can be called the training modified 1nput
sequence.

The duration prediction neural network 340 can then
process the training modified input sequence to generate
predicted durations for each representation in the modified
input sequence 312, and upsample the modified 1nput
sequence 312 according to the predicted durations to gen-
erate an intermediate sequence 342 that includes a respective
intermediate element for each of the intermediate time steps.
For example, the duration prediction neural network 340 can
be configured similarly to the duration prediction neural
network 120 described above with reference to FIG. 1 or the
duration prediction neural network 200 described above
with reference to FIG. 2.

Thus, even without ground-truth durations to guide train-
ing, the training system 300 can use the ground-truth audio
features 304 to provide information to the duration predic-

tion neural network 340 to help train the duration prediction
neural network 340.

In some 1mplementations, the training system 300 can
execute “teacher forcing” with respect to the total duration
of the intermediate elements of the intermediate sequence
342. Although ground-truth durations are not available for
each text element 1n the input text sequence 302, the total
duration of the output audio sequence can be known, and the
training system 300 can enforce that the duration of the
intermediate sequence 342 matches the ground-truth total
duration of the output audio sequence. If the sum of the
predicted durations of the representations in the modified
input sequence 312, as determined by the duration predic-
tion neural network 340, 1s different than the required total
duration of the intermediate sequence 342, the duration
neural network 340 can modify the respective predicted
durations of the representations before upsampling. For
example, the duration prediction neural network 340 can
scale the predicted duration of each representation according
to the ratio between the required duration of the intermediate
sequence 342 and the sum of the predicted durations. Thus,
the training system 300 can enforce that the mel-spectro-
gram 352 generated by neural network 1s the same size as a
corresponding ground-truth mel-spectrogram, which can be
helpful when determining an error of the mel-spectrogram

352.
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Because at inference a ground-truth set of audio features
304 1s not available, 1n these implementations, at inference
fime the neural network can generate the input to the
duration prediction neural network 340 by combining, e.g.,
concatenating, (1) the modified mput sequence 312 and (11)
a set of features determined from a prior distribution for the
latent features 332. The prior distribution can be, e.g., the
prior of the variational auto-encoder described above, e.g., a
(Gaussian prior.

For example, the set of features can be the mode of the
prior distribution, or can be randomly sampled from the

prior distribution. As a particular example, the mode of the
prior distribution can be the zero vector.

The decoder neural network 350 can process the inter-
mediate sequence to generate a mel-spectrogram 352 char-
acterizing the output audio sequence. For example, the
decoder neural network 350 can be configured similarly to
the decoder neural network 130 described above with ref-
erence to FIG. 1. As described above, although depicted 1n
FIG. 3 as generating a mel-spectrogram 352, generally the
decoder neural network 350 can be configured to process the
intermediate sequence 342 to generate a corresponding
sequence of any appropriate set of audio features.

A training engine 360 can determine a parameter update
362 to each of one or more of: the encoder neural network
310, the audio feature embedding neural network 320, the
attention-based neural network 330, the duration prediction
neural network 340, or the decoder neural network 350. In
some 1mplementations, the training engine 360 determines a
parameter update 362 for each neural network. In some other
implementations, one or more of the neural networks have
been pre-trained, and the training system 300 freezes their
parameter values during the training of the other neural
networks.

The training engine 360 can determine the parameter
update using a loss function that includes a first term
characterizing an error 1n the predicted mel-spectrogram
(and, optionally, an 1mitial mel spectrogram). As a particular

example, the first term can be (or be proportional to) one of
the L . terms identified above with reference to FIG. 1 As
another particular example, the first term can be (or be
proportional to) the second term of the ELLBO expression

identified above, 1.e.,

L neesllog p(YH, Z)]

Instead or 1n addition, the loss function can include a
second term characterizing an error in the total predicted
duration of the output audio sequence (1.e., the sum of all
predicted durations). That 1s, although ground-truth dura-
tions are not available for each text element in the input text
sequence 302, the total duration of the output audio
sequence can be known and compared to the total duration,
e.g., of the mel-spectrogram 352. As a particular example,
the second term can be (or be proportional to):

2

-!:u=

2

2

1
~|7-2%4

where N 1s the number of representations in the modified
input sequence 312, T 1s the number of intermediate time
steps, d, represents the predicted duration of representation
1 in the modified input sequence, and ||+, 1s an L, loss.

Instead or 1n addition, the loss function can include a third
term characterizing a KL divergence loss of the variational
auto-encoder in the attention-based neural network 330. As
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a particular example, the third term can be (or be propor-
tional to) the first term of the ELLBO expression 1dentified
above, 1.e.,

_ZL}KL(q(Zf | hi, el p(zi))

In some 1mplementations, the training data store 301
includes, 1n addition to training examples without ground-
truth durations, one or more labeled training examples that
include ground-truth durations. In these implementations,
when processing a labeled training example, the training
system 300 can determine a loss function that includes at
least a fourth term characterizing an error 1n the predicted
durations generated by the duration prediction neural net-
work 340, e.g., the £ term 1dentified above with refer-
ence to FIG. 1.

After the training system 300 has trained the neural
network, the neural network can be deployed 1n any appro-
priate setting, e.g., 1n a data center or on an edge device as
described above with reference to FIG. 1.

FIG. 4 1s a flow diagram of an example process 400 for
processing an input text sequence using a neural network
system to generate an output audio sequence. For conve-
nience, the process 400 will be described as being performed
by a system of one or more computers located 1n one or more
locations. For example, a neural network system, e.g., the
neural network system 100 depicted in FIG. 1, appropriately
programmed 1n accordance with this specification, can per-
form the process 400.

The system obtains the mput text sequence (step 402).
The 1nput text sequence can include a respective text ele-
ment at each of multiple input time steps. For example, each
text element represents a character, a phoneme, or a word.
Instead or 1in addition, each text element can include a set of
linguistic features derived from the text data represented by
the 1nput text sequence.

The system processes the input text sequence using a first
neural network to generate a modified input sequence (step
404). The modified input sequence can include, for each of
the multiple input time steps, a representation of the corre-
sponding text element 1n the input text sequence. For
example, the first neural network can be the encoder neural
network 110 described above with reference to FIG. 1. As
another example, the first neural network can include the
encoder neural network 310, the audio feature embedding
neural network 320, and the attention-based neural network
330 described above with reference to FIG. 3.

For example, the system can obtain, for each text element
in the mput text sequence, a predetermined embedding of the
text element. The system can then process the predetermined
embeddings of the text elements using the first neural
network to generate the modified input sequence.

In some implementations, the first neural network
includes one or more of: one or more convolutional neural
network layers, one or more uni-directional LSTM neural
network layers, or one or more bi-directional LSTM neural
network layers.

In some i1mplementations, the system can process the
input text sequence using the first neural network to generate
an 1nitial modified input sequence that includes a respective
initial representation at each input time step. The system can
then combine, for each initial representation, the initial
representation with an identification of a class to which the
output audio sequence should belong, e.g., by concatenating
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the 1nitial representations with the 1dentification of the class.
For example, each class can correspond to a speaker that the
output audio sequence should sound like.

The system processes the modified input sequence using
a second neural network to generate, for each input time
step, a predicted duration of the corresponding text element
in the output audio sequence (step 406).

For example, the second neural network can be the
duration neural network 120 described above with reference
to FIG. 1; the duration neural network 200 described above
with reference to FIG. 2; or the duration prediction neural
network 340 described above with reference to FIG. 3.

For example, the second neural network can include on or
more of: one or more convolutional neural network layers;
one or more uni-directional LSTM neural network layers;
one or more bi-directional LSTM neural network layers; or
an output projection layer that 1s configured to receive a
respective layer input for each representation 1n the modified
iput sequence and to generate the predicted duration for
each representation 1n the modified input sequence.

The system upsamples the modified i1nput sequence
according to the predicted durations to generate an interme-
diate sequence (step 408). The intermediate sequence can
include a respective intermediate element at each of multiple
intermediate time steps.

In some 1mplementations, the system can determine, for
each representation 1n the modified input sequence, a dis-
tribution over the intermediate sequence according to the
predicted duration of the representation. The system can
then generate each intermediate element in the intermediate
sequence by determining a weighted sum of the represen-
tations, where each representation 1s weighted according to
the value of the intermediate element 1n the distribution over
the intermediate sequence corresponding to the representa-
tion. For example, the distribution for each respective rep-
resentation can be a Gaussian distribution, wherein a center
of the Gaussian distribution corresponds to a center of the
predicted duration of the representation.

In some such implementations, a variance of the (Gaussian
distribution for each respective representation can be gen-
erated by processing the modified input sequence using a
fourth neural network, e.g., the range prediction subnetwork
220 of the duration prediction neural network 200 described
above with reference to FIG. 2. For example, the system can
combine each representation 1n the modified input sequence
with the predicted duration of the representation to generate
a respective combined representation. The system can pro-
cess the combined representations using the fourth neural
network to generate the respective variance of the Gaussian
distribution for each representation. As a particular example,
the fourth neural network can include one or more of: one or
more convolutional neural network layers; one or more
uni-directional LSTM neural network layers; one or more
bi-directional LLSTM neural network layers; or an output
projection layer that 1s configured to receive a respective
layer input for each representation in the modified input
sequence and to generate the respective variance of the
(Gaussian distribution for each representation in the modified
input sequence.

In some 1implementations, the system can upsample the
modified input sequence to generate an upsampled sequence
comprising a respective upsampled representation at each
intermediate time step. The system can generate the inter-
mediate sequence from the upsampled sequence by com-
bining, for each upsampled representation in the upsampled
text sequence, the upsampled representation with a posi-
tional embedding of the upsampled representation. For
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example, the positional embedding of an upsampled repre-
sentation can identily a position of the upsampled represen-
tation 1n a subsequence of upsampled representations cor-
responding to the same representation 1n the modified input
sequence.

The system generates the output audio sequence using the
intermediate sequence (step 410). The output audio
sequence can include a respective audio sample at each of
multiple output time steps. In some implementations, the
output time steps are the same as the intermediate time steps.

For example, the system can process the intermediate
sequence using a third neural network to generate a mel-
spectrogram that includes a respective spectrogram frame at
cach intermediate time step. The system can then process the
mel-spectrogram to generate the output audio sequence. For
instance, the third neural network can be the decoder neural
network 130 described above with reference to FIG. 1, or the
decoder neural network 350 described above with reference
to FIG. 3.

At a first processing time step, the system can process a
first intermediate element in the intermediate sequence using
the third neural network to generate a first frame of the
mel-spectrogram. At each of multiple subsequent processing,
time steps, the system can process 1) a respective subsequent
intermediate element 1n the intermediate sequence and 11) the
preceding frame of the mel-spectrogram generated in the
preceding processing time step using the third neural net-
work to generate a subsequent frame of the mel-spectro-
gram. As a particular example, the third neural network can
include one or more of: one or more convolutional neural
network layers; one or more uni-directional LSTM neural
network layers; one or more bi-directional LSTM neural
network layers; or an output projection layer that 1s config-
ured to receive a layer input and to generate the subsequent
frame of the mel-spectrogram.

For instance, the system can process the preceding spec-
trogram Irame using one or more fully-connected neural
network layers to generate an embedding of the preceding
frame, e.g., one or more fully-connected neural network
layers of a “pre-net” of the decoder neural network 130
described above with reference to FIG. 3. The system can
then process 1) the subsequent intermediate element in the
intermediate sequence and 11) the embedding of the preced-
ing frame using the third neural network to generate the
subsequent frame of the mel-spectrogram.

As a particular example, the system can concatenate 1) the
subsequent intermediate element 1n the intermediate
sequence and 11) the embedding of the preceding frame to
generate a first concatenated representation; and process the
first concatenated representation using a first subnetwork of
the third neural network to generate an embedding of the
first concatenated representation. For example, the first
subnetwork can include one or more uni-directional LSTM
neural network layers. The system can then concatenate 1)
the subsequent intermediate element 1n the intermediate
sequence and 11) the embedding of the first concatenated
representation to generate a second concatenated represen-
tation; and process the second concatenated representation
using a second subnetwork of the third neural network to
generate the subsequent frame of the mel-spectrogram. For
example, the second subnetwork can include an output
projection neural network layer, e.g., a feedforward neural
network layer, that 1s configured to generate the subsequent
frame of the mel-spectrogram.

In some i1mplementation, to generate the mel-spectro-
gram, the system can process the intermediate sequence
using a third subnetwork of the third neural network to
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generate an 1mtial mel-spectrogram. For example, the third
subnetwork can include the first subnetwork and the second
subnetwork. The system can then process the initial mel-
spectrogram using a fourth subnetwork of the third neural
network to generate the mel-spectrogram. For example, the
fourth subnetwork can include one or more convolutional
neural network layers, e.g., one or more convolutional
neural network layers of a “post-net” of the decoder neural
network 130 described above with reference to FIG. 3.

In some implementations, the first neural network, the
second neural network, and the third neural network have
been trained concurrently. In some such implementations,
the neural networks can be trained without any ground-truth
durations for representations 1n the modified input sequence.

For example, a traiming system can obtain a training input
text sequence that includes a respective training text element
at each of multiple traiming 1nput time steps. The training
system can process the training mmput text sequence using a
first subnetwork of the first neural network (e.g., the encoder
neural network 310 described above with reference to FIG.
3) to generate an embedding of the tramning mput text
sequence. The training system can obtain a ground-truth
mel-spectrogram corresponding to the training input text
sequence. The training system can process the ground-truth
mel-spectrogram using a second subnetwork of the first
neural network (e.g., the audio feature embedding neural
network 320 described above with reference to FIG. 3) to
generate an embedding of the ground-truth mel-spectro-
gram. The training system can combine 1) the embedding of
the training mput text sequence and 1) the embedding of the
ground-truth mel-spectrogram to generate a training modi-
fied mput sequence that includes, for each training input
time step, a representation of the corresponding training text
clement in the training mput text sequence. The training
system can then process the traimning modified 1nput
sequence using the second neural network (e.g., the duration
prediction neural network 340) to generate, for each repre-
sentation 1n the traiming modified mput sequence, a pre-
dicted duration of the representation.

As a particular example, the training system can combine
1) the embedding of the training input text sequence and 11)
the embedding of the ground-truth mel-spectrogram by
processing the two embeddings using a third subnetwork of
the first neural network, e.g., the attention-based neural
network 330 described above with reference to FIG. 3.

This specification uses the term “configured” 1n connec-
tion with systems and computer program components. For a
system ol one or more computers to be configured to
perform particular operations or actions means that the
system has installed on it software, firmware, hardware, or
a combination of them that 1n operation cause the system to
perform the operations or actions. For one or more computer
programs to be configured to perform particular operations
or actions means that the one or more programs include
istructions that, when executed by data processing appa-
ratus, cause the apparatus to perform the operations or
actions.

Embodiments of the subject matter and the functional
operations described in this specification can be 1mple-
mented 1 digital electronic circuitry, i tangibly-embodied
computer soltware or firmware, i computer hardware,
including the structures disclosed in this specification and
their structural equivalents, or 1n combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, 1.€., one or more modules of computer
program 1nstructions encoded on a tangible non transitory
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storage medium for execution by, or to control the operation
of, data processing apparatus. The computer storage medium
can be a machine-readable storage device, a machine-read-
able storage substrate, a random or serial access memory
device, or a combination of one or more of them. Alterna-
tively or in addition, the program instructions can be
encoded on an artificially generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal, that 1s generated to encode information for transmis-
sion to suitable recerver apparatus for execution by a data
processing apparatus.

The term “data processing apparatus” refers to data pro-
cessing hardware and encompasses all kinds of apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul-
tiple processors or computers. The apparatus can also be, or
turther include, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific integrated circuit). The apparatus can option-
ally include, in addition to hardware, code that creates an
execution environment for computer programs, €.g., code
that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

A computer program, which may also be referred to or
described as a program, software, a software application, an
app, a module, a software module, a script, or code, can be
written 1n any form of programming language, including
compiled or interpreted languages, or declarative or proce-
dural languages; and it can be deployed i any form,
including as a stand alone program or as a module, compo-
nent, subroutine, or other unit suitable for use 1n a computing,
environment. A program may, but need not, correspond to a
file 1n a file system. A program can be stored 1n a portion of
a lile that holds other programs or data, e.g., one or more
scripts stored 1 a markup language document, in a single
file dedicated to the program in question, or in multiple
coordinated files, e.g., files that store one or more modules,
sub programs, or portions of code. A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network.

In this specification, the term “database” 1s used broadly
to refer to any collection of data: the data does not need to
be structured 1n any particular way, or structured at all, and
it can be stored on storage devices 1n one or more locations.
Thus, for example, the mndex database can include multiple
collections of data, each of which may be organized and
accessed differently.

Similarly, 1n this specification the term “engine” 1s used
broadly to refer to a software-based system, subsystem, or
process that 1s programmed to perform one or more specific
functions. Generally, an engine will be implemented as one
or more software modules or components, installed on one
Oor more computers 1 one or more locations. In some cases,
one or more computers will be dedicated to a particular
engine; 1n other cases, multiple engines can be 1nstalled and
running on the same computer or computers.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
computers executing one or more computer programs to
perform functions by operating on input data and generating,
output. The processes and logic flows can also be performed
by special purpose logic circuitry, e.g., an FPGA or an ASIC,
or by a combination of special purpose logic circuitry and
one or more programmed computers.
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Computers suitable for the execution of a computer
program can be based on general or special purpose micro-
processors or both, or any other kind of central processing
umt. Generally, a central processing unit will receive
instructions and data from a read only memory or a random
access memory or both. The essential elements of a com-
puter are a central processing unit for performing or execut-
ing 1nstructions and one or more memory devices for storing
instructions and data. The central processing unit and the
memory can be supplemented by, or incorporated 1n, special
purpose logic circuitry. Generally, a computer will also
include, or be operatively coupled to receirve data from or
transier data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded 1n another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
Global Positioning System (GPS) receiver, or a portable
storage device, e.g., a universal serial bus (USB) flash drive,
to name just a few.

Computer readable media suitable for storing computer
program 1instructions and data include all forms of non
volatile memory, media and memory devices, including by
way ol example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks.

To provide for interaction with a user, embodiments of the
subject matter described 1n this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, €.g., a mouse or a trackball, by which the
user can provide mput to the computer. Other kinds of
devices can be used to provide for interaction with a user as
well; for example, teedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
teedback, or tactile feedback; and mput from the user can be
received 1n any form, including acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that 1s used by the user; for example, by sending web
pages to a web browser on a user’s device 1n response 1o
requests recerved from the web browser. Also, a computer
can interact with a user by sending text messages or other
forms ol message to a personal device, e.g., a smartphone
that 1s running a messaging application, and receiving
responsive messages from the user 1n return.

Data processing apparatus for implementing machine
learning models can also include, for example, special-
purpose hardware accelerator units for processing common
and compute-intensive parts of machine learning training or
production, 1.e., inference, workloads.

Machine learning models can be implemented and
deployed using a machine learning framework, e.g., a Ten-
sorFlow framework, a Microsolt Cognitive Toolkit frame-
work, an Apache Singa framework, or an Apache MXNet
framework.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front end component, e.g., a client
computer having a graphical user interface, a web browser,
or an app through which a user can interact with an 1mple-
mentation of the subject matter described 1n this specifica-
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fion, or any combination of one or more such back end,
middleware, or front end components. The components of
the system can be interconnected by any form or medium of
digital data communication, e.g., a communication network.
Examples of communication networks include a local area
network (LAN) and a wide area network (WAN), e.g., the
Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data, e.g., an HTML page, to a user
device, e.g., for purposes of displaying data to and receiving
user input from a user interacting with the device, which acts
as a client. Data generated at the user device, e.g., a result
of the user interaction, can be received at the server from the
device.

In addition to the embodiments described above, the
following embodiments are also innovative:

Embodiment 1 1s a method for generating an output audio
sequence from an 1input text sequence, wherein the input text
sequence comprises a respective text element at each of a
plurality of input time steps and the output audio sequence
comprises a respective audio sample at each of a plurality of
output time steps, the method comprising:

processing the input text sequence using a first neural
network to generate a modified 1input sequence comprising,
for each of the plurality of input time steps, a representation
of the corresponding text element 1n the input text sequence;

processing the modified input sequence using a second
neural network to generate, for each input time step, a
predicted duration of the corresponding text element in the
output audio sequence;

upsampling the modified input sequence according to the
predicted durations to generate an intermediate sequence
comprising a respective intermediate element at each of a
plurality of intermediate time steps; and

generating the output audio sequence using the interme-
diate sequence.

Embodiment 2 1s the method of embodiment 1, wherein
processing the input text sequence using the first neural
network to generate the modified mput sequence comprises:

obtaining, for each text element in the input text sequence,
a predetermined embedding of the text element; and

processing the predetermined embeddings of the plurality
of text elements using the first neural network to generate the
modified mput sequence.

Embodiment 3 1s the method of any one of embodiments
1 or 2, wherein the first neural network comprises one or
more of:

one or more convolutional neural network layers;

one or more uni-directional LSTM neural network layers;
or

one or more bi-directional LSTM neural network layers.

Embodiment 4 1s the method of any one of embodiments
1-3, wherein processing the input text sequence using a first
neural network to generate the modified mnput sequence
COmprises:

processing the mput text sequence using the first neural
network to generate an initial modified nput sequence
comprising a respective inifial representation at each of the
plurality of input time steps; and

generating the modified mnput sequence from the initial
modified input sequence, comprising combining, for each
initial representation in the initial modified input sequence,
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the 1mitial representation with an identification of a class to
which the output audio sequence should belong.

Embodiment 5 1s the method of embodiment 4, wherein
each class corresponds to a speaker that the output audio
sequence should sound like.

Embodiment 6 1s the method of any one of embodiments
1-5, wherein the second neural network comprises one or
more of:

one or more convolutional neural network layers;

one or more uni-directional LSTM neural network layers;

one or more bi-directional LSTM neural network layers;
or

an output projection layer that 1s configured to receive a
respective layer input for each representation in the modified
input sequence and to generate the predicted duration for
each representation 1n the modified mput sequence.

Embodiment 7 1s the method of any one of embodiments
1-6, wherein upsampling the modified nput sequence
according to the predicted durations to generate an interme-
diate sequence comprises:

determining, for each representation in the modified 1nput
sequence, a distribution over the intermediate sequence
according to the predicted duration of the representation;
and

for each intermediate element 1n the intermediate
sequence, generating the intermediate element by determin-
ing a weighted sum of the representations, wherein each
representation 1s weighted according to a value of the
intermediate element in the distribution over the intermedi-
ate sequence corresponding to the representation.

Embodiment 8 1s the method of embodiment 7, wherein
the distribution for each respective representation 1s a
Gaussian distribution, wherein a center of the (Gaussian
distribution corresponds to a center of the predicted duration
of the representation.

Embodiment 9 1s the method of embodiment &, wherein
the center of the Gaussian distribution for a particular
representation 1s:

. i—1
C; = E + Zldj,
j=

wherein c; 1s the center of the Gaussian distribution for the
particular representation, d. 1s the predicted duration of the
particular representation, and each d, 1s the predicted dura-
tion of a respective representation that precedes the particu-
lar representation in the modified mnput sequence.
Embodiment 10 1s the method of any one of embodiments
8 or 9, wherein a variance of the Gaussian distribution for
each respective representation 1s generated by processing the
modified input sequence using a fourth neural network.
Embodiment 11 1s the method of embodiment 10, wherein
processing the modified input sequence using the fourth
neural network comprises:
combining, for each representation 1in the modified 1nput
sequence, the representation with the predicted dura-
tion of the representation to generate a respective
combined representation; and
processing the combined representations using the fourth
neural network to generate the respective variance of
the Gaussian distribution for each representation.
Embodiment 12 1s the method of any one of embodiments
10 or 11, wherein the fourth neural network comprises one
or more of:
one or more convolutional neural network layers;
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one or more uni-directional LSTM neural network layers;

one or more bi-directional LSTM neural network layers;

or

an output projection layer that 1s configured to receive a

respective layer mnput for each representation in the
modified mput sequence and to generate the respective
variance of the Gaussian distribution for each repre-
sentation 1n the modified mput sequence.

Embodiment 13 1s the method of any one of embodiments
1-12, wherein upsampling the modified mnput sequence to
generate an intermediate sequence comprises:

upsampling the modified mnput sequence to generate an
upsampled sequence comprising a respective upsampled
representation at each of the plurality of intermediate time
steps; and

generating the intermediate sequence from the upsampled
sequence, comprising combining, for each upsampled rep-
resentation in the upsampled text sequence, the upsampled
representation with a positional embedding of the
upsampled representation.

Embodiment 14 i1s the method of embodiment 13, wherein
the positional embedding of an upsampled representation
identifies a position of the upsampled representation 1n a
subsequence of upsampled representations corresponding to
the same representation 1n the modified 1input sequence.

Embodiment 15 1s the method of any one of embodiments
1-14, wherein the first neural network and the second neural
network have been trained concurrently.

Embodiment 16 1s the method of any one of embodiments
1-15, wherein generating the output audio sequence using
the intermediate sequence comprises:

processing the intermediate sequence using a third neural
network to generate a mel-spectrogram comprising a respec-
tive spectrogram frame at each of the plurality of interme-
diate time steps; and

processing the mel-spectrogram to generate the output
audio sequence.

Embodiment 17 1s the method of embodiment 16, wherein
processing the intermediate sequence using a third neural
network to generate a mel-spectrogram comprises:

at a first processing time step 1in a sequence of processing
fime steps, processing a first intermediate element 1n the
intermediate sequence using the third neural network to
generate a first frame of the mel-spectrogram; and

at each subsequent processing time step in the sequence of
processing time steps, processing 1) a subsequent interme-
diate element 1n the intermediate sequence and 11) a preced-
ing frame of the mel-spectrogram generated in a preceding
processing time step using the third neural network to
generate a subsequent frame of the mel-spectrogram.

Embodiment 18 1s the method of embodiment 17, wherein
the third neural network comprises one or more of:

one or more convolutional neural network layers;

one or more uni-directional LSTM neural network layers;

one or more bi-directional LSTM neural network layers;
or

an output projection layer that 1s configured to receive a
layer input and to generate the subsequent frame of the
mel-spectrogram.

Embodiment 19 1s the method of any one of embodiments
17 or 18, wherein processing 1) the subsequent intermediate
element 1n the intermediate sequence and 11) the preceding
frame of the mel-spectrogram using the third neural network
COmprises:

processing the preceding frame using one or more fully-
connected neural network layers to generate an embedding
of the preceding frame; and
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processing 1) the subsequent intermediate element in the
intermediate sequence and 11) the embedding of the preced-
ing frame using the third neural network to generate the
subsequent frame of the mel-spectrogram.

Embodiment 20 1s the method of embodiment 19, wherein
processing 1) the subsequent intermediate element in the
intermediate sequence and 11) the embedding of the preced-
ing frame using the third neural network comprising:

concatenating 1) the subsequent intermediate element in
the intermediate sequence and 1) the embedding of the
preceding frame to generate a first concatenated represen-
tation;

processing the first concatenated representation using a
first subnetwork of the third neural network to generate an
embedding of the first concatenated representation;

concatenating 1) the subsequent intermediate element in
the intermediate sequence and 11) the embedding of the first
concatenated representation to generate a second concat-
enated representation; and

processing the second concatenated representation using a
second subnetwork of the third neural network to generate
the subsequent frame of the mel-spectrogram.

Embodiment 21, 1s the method of any one of embodi-
ments 16-20, wherein processing the intermediate sequence
using the third neural network to generate the mel-spectro-
gram COIMprises:

processing the intermediate sequence using a third sub-
network of the third neural network to generate an initial
mel-spectrogram; and

processing the initial mel-spectrogram using a fourth
subnetwork of the third neural network to generate the
mel-spectrogram.

Embodiment 22 1s the method of embodiment 21, wherein
the fourth subnetwork of the third neural network comprises
one or more convolutional neural network layers.

Embodiment 23 1s the method of any one of embodiments
16-22, wherein the first neural network, the second neural
network, and the third neural network have been trained
concurrently.

Embodiment 24 i1s the method of embodiment 23, wherein
the neural networks are trained using a loss term that
includes one or more of:

a first term characterizing an error 1n the predicted dura-
tions of the representations in the modified nput
sequence; or

a second term characterizing an error in the generated
mel-spectrogram.

Embodiment 25 1s the method of embodiment 24, wherein

the first term 1s:

1 * |12
Lawr = Ellﬂf—ﬂf 13,

wherein N 1s a number of representations in the modified
iput sequence, d represents the predicted durations, d*
represents ground-truth durations, and ||+, 1s an L., loss.

Embodiment 26 1s the method of any one of embodiments
24 or 25, wherein the second term 1s:

T

(Ilye = ¥l +llye = YEN3),

spec — TK
=1
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wherein T 1s a number of intermediate time steps, K 1s a
number of frequencies represented in the mel spectrogram,
y, 1s the generated mel-spectrogram, y,* 1s a ground-truth
mel-spectrogram, |+||, 1s an L, loss, and |:||, is an L, loss.

Embodiment 27 1s the method of any one of embodiments
24 or 25, wherein the second term characterizes an error in
both 1) the generated mel-spectrogram and 1) an 1nitial
mel-spectrogram generated by the third neural network,
wherein the mel-spectrogram 1s generated by processing the

initial mel-spectrogram using a fourth subnetwork of the
third neural network.

Embodiment 28 1s the method of embodiment 27, wherein
the second term 1s:

1 T
—= D 7 = vl 10 = Vil + llye = 2l + My = v 1),
=1

-!:spec —

wherein T 1s a number of intermediate time steps, K 1s a
number of frequencies represented in the mel spectrogram,
y, 1s the 1nitial mel-spectrogram, y, 1s the generated mel-
spectrogram, y,* i1s a ground-truth mel-spectrogram, |||, is
an L, loss, and |+, 1s an L, loss.

Embodiment 29 1s the method of any one of embodiments
23-28, wherein the training comprised teacher forcing using
ground-truth durations for each representation in the modi-
fied mput sequence.

Embodiment 30 is the method of embodiment 23, wherein
the training comprised training the neural networks without
any ground-truth durations for representations in the modi-
fied mput sequence.

Embodiment 31 1s the method of embodiment 30, wherein
the training comprised:

obtaining a training 1nput text sequence comprising a

respective training text element at each of a plurality of
training input time steps;
processing the training mnput text sequence using a first
subnetwork of the first neural network to generate an
embedding of the training input text sequence;

obtaining a ground-truth mel-spectrogram corresponding
to the training input text sequence;

processing the ground-truth mel-spectrogram using a sec-

ond subnetwork of the first neural network to generate
an embedding of the ground-truth mel-spectrogram;
combining 1) the embedding of the training mnput text
sequence and 1) the embedding of the ground-truth
mel-spectrogram to generate a training modified 1nput

sequence comprising, for each of the plurality of train-
Ing input time steps, a representation of the correspond-
ing training text element in the training input text
sequence; and

processing the training modified input sequence using the

second neural network to generate, for each represen-
tation 1n the training modified input sequence, a pre-
dicted duration of the representation.

Embodiment 32 is the method of embodiment 31, wherein
combining 1) the embedding of the training nput text
sequence and 1) the embedding of the ground-truth mel-
spectrogram comprises processing 1) the embedding of the
training 1nput text sequence and 11) the embedding of the
ground-truth mel-spectrogram using a third subnetwork of
the first neural network.

Embodiment 33 1s the method of embodiment 32, wherein
processing 1) the embedding of the training input text
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sequence and 11) the embedding of the ground-truth mel-
spectrogram using the third subnetwork of the first neural
network comprises:

aligning 1) the embedding of the training input text

sequence and 11) the embedding of the ground-truth
mel-spectrogram using one or more attention neural
network layers;

processing the aligned embedding of the ground-truth

mel-spectrogram using a variational auto-encoder to
generate aligned latent features of the ground-truth
mel-spectrogram; and

concatenating 1) the embedding of the training input text

sequence and 1) the aligned latent features of the
ground-truth mel-spectrogram.

Embodiment 34 1s the method of embodiment 33, wherein
the variational auto-encoder 1s a conditional variational
auto-encoder conditioned on the embedding of the training
input text sequence.

Embodiment 35 1s the method of any one of embodiments
31-34, wherein at inference generating the modified input
Sequence COmprises:

processing the input text sequence using the first subnet-

work of the first neural network to generate an embed-
ding of the input text sequence; and

combining 1) the embedding of the input text sequence

and 11) a mode of a prior distribution of mel-spectro-
grams to generate the modified mnput sequence.

Embodiment 36 1s the method of embodiment 35, wherein
the mode of the prior distribution of mel-spectrograms 1s a
Zero vector.

Embodiment 37 1s the method of any one of embodiments
31-36, wherein the neural networks are trained using a loss
term that includes one or more of:

a first term characterizing an error in the generated

mel-spectrogram;

a second term characterizing an error in a total predicted

duration of the output audio sequence; or

a third term characterizing a KIL. divergence loss of a

variational auto-encoder of a third subnetwork of the
first neural network.

Embodiment 38 1s the method of embodiment 37, wherein
the first term 1is:

T

(Ilye = ¥5 1y + lye = p5113)
1

-L‘:s ec —
TK £

wherein Tis a number of intermediate time steps, K 1s a
number of frequencies represented 1n the mel spectro-
gram, y, 1s the generated mel-spectrogram, y,* 1s a
ground-truth mel-spectrogram, |-||; 1s an L, loss, and
|||, 1s an L, loss.

Embodiment 39 1s the method of embodiment 37, wherein
the first term characterizes an error in both 1) the generated
mel-spectrogram and 11) an 1nifial mel-spectrogram gener-
ated by the third neural network, wherein the mel-spectro-
gram 1s generated by processing the 1nitial mel-spectrogram
using a fourth subnetwork of the third neural network.

Embodiment 40 1s the method of embodiment 39, wherein
the first term 1is:

T

-L‘:spe::' — TK 4

(195 = willy + 10 = Vi +llwe = vl + e = 25113,
1



US 12,100,382 B2

31

wherein T 1s a number of intermediate time steps, K 1s a
number of frequencies represented 1in the mel spectro-
gram, y, 1s the imitial mel-spectrogram, vy, 1s the gen-
erated mel-spectrogram, y,* 1s a ground-truth mel-
spectrogram, ||, is an L, loss, and |||, 1s an L, loss.

Embodiment 41 1s the method of any one of embodiments

37-40, wherein the second term 1s:

2

?

2

1
L=yl -2

wherein N 1s a number of representations in the modified
input sequence, T 1s a number of intermediate time
steps, d, represents the predicted duration of represen-

tation 1 in the modified input sequence, and |||, 1s an L,
loss.

Embodiment 42 1s the method of any one of embodiments
1-41, wherein the plurality of intermediate time steps are the
same as the plurality of output time steps.

Embodiment 43 1s the method of any one of embodiments
1-42, wherein:

each text element represents a character;

each text element represents a phoneme;

each text element represents a word; or

each text element comprises a plurality of linguistic

features derived from an input text.

Embodiment 44 1s a system comprising: one or more
computers and one or more storage devices storing instruc-
tions that are operable, when executed by the one or more
computers, to cause the one or more computers to perform
the method of any one of embodiments 1 to 43.

Embodiment 45 1s one or more non-transitory computer
storage medium encoded with a computer program, the
program comprising instructions that are operable, when
executed by data processing apparatus, to cause the data
processing apparatus to perform the method of any one of
embodiments 1 to 43.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any invention or on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular embodiments of particular
inventions. Certain features that are described 1n this speci-
fication 1n the context of separate embodiments can also be
implemented 1n combination 1n a single embodiment. Con-
versely, various features that are described in the context of
a single embodiment can also be implemented 1n multiple
embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as
acting in certain combinations and even 1nitially be claimed
as such, one or more features from a claimed combination
can 1n some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination.

Similarly, while operations are depicted in the drawings
and recited 1n the claims 1n a particular order, this should not
be understood as requiring that such operations be per-
formed 1n the particular order shown or in sequential order,
or that all illustrated operations be performed, to achieve
desirable results. In certain circumstances, multitasking and
parallel processing may be advantageous. Moreover, the
separation of various system modules and components 1n the
embodiments described above should not be understood as
requiring such separation 1n all embodiments, and it should
be understood that the described program components and
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systems can generally be integrated together 1n a single
software product or packaged into multiple software prod-
ucts.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed 1n a different order and still achieve
desirable results. As one example, the processes depicted 1n
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In some cases, multitasking and parallel
processing may be advantageous.

What 1s claimed 1s:

1. A method for generating an output audio sequence from
an 1mmput text sequence, wherein the input text sequence
comprises a respective text element at each of a plurality of
iput time steps and the output audio sequence comprises a
respective audio sample at each of a plurality of output time
steps, the method comprising:

processing the input text sequence using a first neural

network to generate a modified input sequence com-
prising, for each of the plurality of input time steps, a
representation of the corresponding text element in the
input text sequence;

processing the modified mput sequence using a second

neural network to generate, for each input time step, a
predicted duration of the corresponding text element in
the output audio sequence;

upsampling the modified input sequence according to the

predicted durations to generate an intermediate
sequence comprising a respective intermediate element
at each of a plurality of intermediate time steps, the
upsampling comprising:
determining, for each representation in the modified
sequence and using the predicted durations of the
corresponding text elements in the output audio
sequence, parameters of a distribution for the repre-
sentation that assigns a respective value to each
intermediate element that models an influence of the
representation on the intermediate element based on
the predicted durations for the corresponding text
elements wherein the distribution for the represen-
tation 1s a Gaussian distribution, and wherein a
center of the Gaussian distribution corresponds to a
center of the predicted duration of the representation;
and
generating each intermediate element of the interme-
diate sequence based on the distributions for the
representations i1n the modified sequence, the gener-
ating comprising, for each particular intermediate
element:
determining a respective weight for each represen-
tation from the value assigned to the particular
intermediate element 1n the distribution generated
for the representation; and
generating the particular intermediate element by
determining a weighted sum of the representa-
fions, wherein each representation 1s weighted
according to the respective weight for the repre-
sentation; and
generating the output audio sequence using the interme-
diate sequence.

2. The method of claim 1, wherein the center of the

Gaussian distribution for a particular representation 1s:
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wherein c, 1s the center of the Gaussian distribution for the
particular representation, d. 1s the predicted duration of
the particular representation, and each d; 1s the pre-
dicted duration of a respective representation that pre-
cedes the particular representation 1n the modified input
sequence.

3. The method of claim 1, wherein a variance of the
Gaussian distribution for each respective representation 1s
generated by processing the modified input sequence using
a fourth neural network.

4. The method of claim 3, wherein processing the modi-
fied mput sequence using the fourth neural network com-
prises:

combining, for each representation in the modified input

sequence, the representation with the predicted dura-
tion of the representation to generate a respective
combined representation; and

processing the combined representations using the fourth
neural network to generate the respective variance of
the Gaussian distribution for each representation.

5. The method of claim 1, wherein upsampling the modi-
fied 1nput sequence to generate an intermediate sequence
COmprises:

upsampling the modified mput sequence to generate an
upsampled sequence comprising a respective
upsampled representation at each of the plurality of
intermediate time steps; and

generating the intermediate sequence from the upsampled
sequence, comprising combining, for each upsampled
representation 1n the upsampled text sequence, the
upsampled representation with a positional embedding
of the upsampled representation.

6. The method of claim 5, wherein the positional embed-
ding of an upsampled representation identifies a position of
the upsampled representation 1n a subsequence of
upsampled representations corresponding to the same rep-
resentation 1n the modified input sequence.

7. The method of claim 1, wherein generating the output
audio sequence using the intermediate sequence comprises:

processing the intermediate sequence using a third neural
network to generate a mel-spectrogram comprising a
respective spectrogram frame at each of the plurality of
intermediate time steps; and

processing the mel-spectrogram to generate the output
audio sequence.

8. The method of claim 7, wherein the first neural net-
work, the second neural network, and the third neural
network have been trained concurrently.

9. The method of claim 8, wherein the neural networks are
trained using a loss term that includes one or more of:

a first term characterizing an error in the predicted dura-
tions of the representations in the modified 1nput
sequence; or

a second term characterizing an error in the generated
mel-spectrogram.

10. The method of claim 8, wherein the training comprises
teacher forcing using ground-truth durations for each rep-
resentation in the modified input sequence.

11. The method of claim 8, wherein the training comprises
training the neural networks without any ground-truth dura-
tions for representations 1n the modified input sequence.
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12. The method of claim 11, wherein the training com-
prises:

obtaining a training input text sequence comprising a

respective training text element at each of a plurality of
training 1nput time steps;
processing the training mput text sequence using a first
subnetwork of the first neural network to generate an
embedding of the training input text sequence;

obtaining a ground-truth mel-spectrogram corresponding
to the training input text sequence;
processing the ground-truth mel-spectrogram using a sec-
ond subnetwork of the first neural network to generate
an embedding of the ground-truth mel-spectrogram:;

combining 1) the embedding of the training nput text
sequence and 11) the embedding of the ground-truth
mel-spectrogram to generate a training modified 1nput
sequence comprising, for each of the plurality of train-
ing input time steps, a representation of the correspond-
ing tramning text element 1n the training input text
sequence; and

processing the training modified input sequence using the

second neural network to generate, for each represen-
tation 1n the training modified input sequence, a pre-
dicted duration of the representation.

13. The method of claam 12, wherein combining 1) the
embedding of the training input text sequence and 1) the
embedding of the ground-truth mel-spectrogram comprises
processing 1) the embedding of the training input text
sequence and 11) the embedding of the ground-truth mel-
spectrogram using a third subnetwork of the first neural
network.

14. The method of claam 13, wherein processing 1) the
embedding of the training nput text sequence and 11) the
embedding of the ground-truth mel-spectrogram using the
third subnetwork of the first neural network comprises:

aligning 1) the embedding of the training input text

sequence and 11) the embedding of the ground-truth
mel-spectrogram using one or more attention neural
network layers;

processing the aligned embedding of the ground-truth

mel-spectrogram using a variational auto-encoder to
generate aligned latent features of the ground-truth
mel-spectrogram; and

concatenating 1) the embedding of the training nput text

sequence and 1) the aligned latent features of the
ground-truth mel-spectrogram.

15. The method of claim 14, wherein the variational
auto-encoder 1s a conditional variational auto-encoder con-
ditioned on the embedding of the fraining nput text
sequence.

16. The method of claim 12, wherein at inference gener-
ating the modified input sequence comprises:

processing the mput text sequence using the first subnet-

work of the first neural network to generate an embed-
ding of the nput text sequence; and

combining 1) the embedding of the input text sequence

and 11) a mode of a prior distribution of mel-spectro-
grams to generate the modified input sequence.

17. The method of claim 12, wherein the neural networks
are trained using a loss term that includes one or more of:

a first term characterizing an error in the generated

mel-spectrogram;

a second term characterizing an error in a total predicted

duration of the output audio sequence; or

a third term characterizing a KL divergence loss of a

variational auto-encoder of a third subnetwork of the
first neural network.
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18. A system comprising one or more computers and one
or more storage devices storing instructions that when
executed by the one or more computers cause the one more
computers to perform operations for generating an output
audio sequence from an input text sequence, wherein the
input text sequence comprises a respective text element at
cach of a plurality of mput time steps and the output audio
sequence comprises a respective audio sample at each of a
plurality of output time steps, the operations comprising:

processing the input text sequence using a {irst neural

network to generate a modified input sequence com-
prising, for each of the plurality of input time steps, a
representation of the corresponding text element in the
iput text sequence;

processing the modified mput sequence using a second

neural network to generate, for each input time step, a
predicted duration of the corresponding text element in
the output audio sequence;

upsampling the modified input sequence according to the

predicted durations to generate an 1intermediate
sequence comprising a respective mntermediate element
at each of a plurality of mtermediate time steps, the
upsampling comprising:
determining, for each representation in the modified
sequence and using the predicted durations of the
corresponding text elements in the output audio
sequence, parameters of a distribution for the repre-
sentation that assigns a respective value to each
intermediate element that models an influence of the
representation on the mtermediate element based on
the predicted durations for the corresponding text
clements, wherein the distribution for the represen-
tation 1s a Gaussian distribution, and wherein a
center ol the Gaussian distribution corresponds to a
center of the predicted duration of the representation;
and
generating each intermediate element of the interme-
diate sequence based on the distributions for the
representations 1n the modified sequence, the gener-
ating comprising, for each particular intermediate
clement:
determining a respective weight for each represen-
tation from the value assigned to the particular
intermediate element 1n the distribution generated
for the representation; and
generating the particular intermediate element by
determining a weighted sum of the representa-
tions, wherein each representation i1s weighted
according to the respective weight for the repre-
sentation; and
generating the output audio sequence using the inter-
mediate sequence.

19. One or more non-transitory computer storage media
storing 1nstructions that when executed by one or more
computers cause the one more computers to perform opera-
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tions for generating an output audio sequence from an input
text sequence, wherein the 1nput text sequence comprises a
respective text element at each of a plurality of mnput time
steps and the output audio sequence comprises a respective
audio sample at each of a plurality of output time steps, the
operations comprising;:

processing the mput text sequence using a {irst neural

network to generate a modified mput sequence com-
prising, for each of the plurality of input time steps, a
representation of the corresponding text element 1n the
iput text sequence;

processing the modified mnput sequence using a second

neural network to generate, for each mput time step, a
predicted duration of the corresponding text element 1n
the output audio sequence;

upsampling the modified input sequence according to the

predicted durations to generate an 1ntermediate
sequence comprising a respective intermediate element
at each of a plurality of itermediate time steps, the
upsampling comprising:
determining, for each representation in the modified
sequence and using the predicted durations of the
corresponding text elements in the output audio
sequence, parameters of a distribution for the repre-
sentation that assigns a respective value to each
intermediate element that models an influence of the
representation on the imtermediate element based on
the predicted durations for the corresponding text
clements, wherein the distribution for the represen-
tation 1s a Gaussian distribution, and wherein a
center of the Gaussian distribution corresponds to a
center of the predicted duration of the representation;
and
generating each intermediate element of the interme-
diate sequence based on the distributions for the
representations 1n the modified sequence, the gener-
ating comprising, for each particular intermediate
clement:
determining a respective weight for each represen-
tation from the value assigned to the particular
intermediate element 1n the distribution generated
for the representation; and
generating the particular intermediate element by
determining a weighted sum of the representa-
tions, wherein each representation 1s weighted
according to the respective weight for the repre-
sentation; and
generating the output audio sequence using the inter-
mediate sequence.

20. The system of claim 18, wherein a variance of the
Gaussian distribution for each respective representation 1s
generated by processing the modified mput sequence using
a fourth neural network.
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