12 United States Patent

Tamir et al.

US012093685B2

US 12,093,685 B2
*Sep. 17, 2024

(10) Patent No.:
45) Date of Patent:

(54) REPRESENTING SOURCE CODE AS
IMPLICIT CONFIGURATION ITEMS

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

US 2022/0156063 Al

ServiceNow, Inc., Santa Clara, CA
(US)

Giora Tamir, San Diego, CA (US);
Kurt Zettel, Nashville, TN (US);
Naveen Bojja, San Diego, CA (US);
Brian James Waplington, San Diego,
CA (US); Maulik Shah, San Diego, CA
(US); Thomas Brotherton, San Diego,
CA (US)

ServiceNow, Inc., Santa Clara, CA
(US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent 1s subject to a terminal dis-
claimer.

17/591,940

Feb. 3, 2022

Prior Publication Data

May 19, 2022

Related U.S. Application Data

Continuation of application No. 16/991,704, filed on
Aug. 12, 2020, now Pat. No. 11,275,580.

Int. CI.

GO6F 8/71 (2018.01)

GO6F 8/60 (2018.01)

GO6F 21/57 (2013.01)

U.S. CL

CPC .. Go6l 8/71 (2013.01); GO6GEF 8/60

(2013.01); GO6F 21/577 (2013.01); GO6F

2221/033 (2013.01)

(38) Field of Classification Search
CPC . GO6F 8/60; GO6F 8/71; GO6F 21/377; GO6F
2221/033
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7/1990 Terada et al.
2/1993 Wu

(Continued)

4,941,084 A
5,185,800 A

FOREIGN PATENT DOCUMENTS

6/1991
12/2005

(Continued)

EP
EP

0433979
1607824

Primary Examiner — Douglas M Slachta

(74) Attorney, Agent, or Firm — McDonnell Boehnen
Hulbert & Berghofl LLP

(57) ABSTRACT

Persistent storage may contain: (1) an explicit configuration
item table with entries of explicit configuration i1tems rep-
resenting hardware devices and executable software appli-
cations deployed on the hardware devices, (1) an 1mplicit
configuration item table with entries of 1mplicit configura-
tion 1tems representing units of source code, wherein at least
some of the executable software applications are compiled
versions of the units of source code, and (111) an 1mplicit
relationship table associating pairs of the configuration
items. One or more processors may be configured to receive
information related to a particular unit of source code; write,
to the implicit configuration item table, at least some of the
information as an implicit configuration 1tem; determine that
the implicit configuration 1tem has one or more identifying
attributes 1n common with an explicit configuration 1tem;
and write, to the implicit relationship table, a new entry
associating the implicit configuration 1tem and the explicit
configuration item.

20 Claims, 12 Drawing Sheets

.

(RECEIVE INFORMATION RELATED TO A PARTICULAR UNIT OF SOURCE CODE)
ASSOCIATED WITH A MANAGED NETWORK, WHEREIN PERSISTENT STORAGE
CONTAINS: (I} AN EXPLICIT CONFIGURATION ITEM TABLE WITH ENTRIES OF
EXPLICIT CONFIGURATION ITEMS REPRESENTING HARDWARE DEVICES
ASSOCIATED WITH THE MANAGED NETWORK AND EXECUTABLE SOFTWARE
APPLICATIONS DEPLOYED ON THE HARDWARE DEVICES, (Il) AN IMPLICIT
CONFIGURATION ITEM TABLE WITH ENTRIES OF IMPLICIT CONFIGURATION
ITEMS REPRESENTING UNITS OF SOURCE CODE ASSOCIATED WITH THE
MANAGED NETWORK, WHEREIN AT LEAST SOME OF THE EXECUTABLE
SOFTWARE APPLICATIONS ARE COMPILED VERSIONS OF THE UNITS OF
SOURCE CODE, AND {lll) AN IMPLICIT RELATIONSHIP TABLE ASSOCIATING
PAIRS OF THE IMPLICIT CONFIGURATION ITEMS AND EXPLICIT CONFIGURATION
ITEMS WITH ONE ANOTHER

1000

J/

'

INFORMATION AS AN IMPLICIT CONFIGURATION ITEM

Emma, TO THE IMPLICIT CONFIGURATION ITEM TABLE, AT LEAST SOME OF Tﬂ o 1002

'

rﬂ"

.

DETERMINE THAT THE IMPLICIT CONFIGURATION ITEM HAS ONE OR MORE
IDENTIFYING ATTRIBUTES IN COMMON WITH AN EXPLICIT CONFIGURATION
ITEM IN THE EXPLICIT CONFIGURATION ITEM TABLE

~
o 1004

/

'

7

.

IN RESPONSE TO DETERMINING THAT THE IMPLICIT CONFIGURATION ITEM HAS
ONE OR MORE IDENTIFYING ATTRIBUTES IN COMMON WITH THE EXPLICIT
CONFIGURATION ITEM, WRITE, TO THE IMPLICIT RELATIONSHIP TABLE, A NEW
ENTRY ASSOCIATING THE IMPLICIT GONFIGURATION ITEM AND THE EXPLICIT
CONFIGURATION ITEM

o

1006

/

US 12,093,685 B2

(56)

5,237,518
5,201,097
5,265,252
5,307,685
5,390,297
5,442,791
5,452,415
5,522,042
5,533,116
5,655,081
5,659,736
5,671,412
5,696,701
5,715,463
5,745,879
5,761,502
5,764,913
5,764,989

5,887,139
5,909,217
5,937,165
5,949,976
5,978,594
6,021,437
0,041,347
6,088,717
6,101,500
0,128,016
0,131,118
, 134,581
, 138,122
, 148,335
, 166,732
, 167,448
, 175,866
175,878
6,260,050
0,263,457
0,272,150
6,336,138
0,363,421
0,393,386
6,397,245
0,434,626
0,438,592
0,456,306
6,466,932
0,487,590
0,505,248
0,526,442
6,621,823
6,707,795
0,742,015
6,763,380
0,816,898
0,895,586
6,948,175
6,983,456

NN ONONON O O

6,985,901
7,003,564
7,028,228
7,043,537
7,043,061
7,062,683
7,096,459
7,146,574
7,197,466
7,215,360
7,216,304
7,222,147
7,281,170
7,412,502
7,505,872

Page 2
References Cited 7,555,497
7,593,013
U.S. PATENT DOCUMENTS 7,596,716
7,617,073
A 8/1993 Sztipanovits et al. 7,660,731
A 11/1993 Saxon 7,676,294
A 11/1993 Rawson, III et al. 7,676,437
A 11/1994 Gosling 7,693,845
A 2/1995 Barber et al.
A 8/1995 Wrabetz et al. 7,840,490
A 9/1995 Hotka 7,849,509
A 5/1996 Fee et al.
A 7/1996 Vesterinen 7,877,783
A 8/1997 Bonnell et al. 7,890,869
A 8/1997 Hasegawa et al. 7,966,398
A 9/1997 Christiano 7,979,450
A 12/1997 Burgess et al.
A 2/1998 Merkin 8,060,396
A 4/1998 Wyman 8,108,431
A 6/1998 Jacobs 8,196,210
A 6/1998 Jancke et al. 8,321,948
A 6/1998 QGustafsson GO6F 9/44521 8,407,669
714/E11.21 8,554,750
A 3/1999 Madison, Jr. et al. 8,595,647
A 6/1999 Bereiter 8,620,818
A 8/1999 Schwaller et al. 8,640,093
A 9/1999 Chappelle 8,674,992
A 11/1999 Bonnell et al. 8,725,647
A 2/2000 Chen et al. 9,053,460
A 3/2000 Harsham et al. 9,374,385
A 7/2000 Reed et al. 10,262,145
A 8/2000 Lau 10,489,388
A 10/2000 Coelho et al. 10,673,963
A 10/2000 Stupek, Jr. et al. 10,749,889
A 10/2000 Ismael et al. 10,749,943
A 10/2000 Smith et al. 10,771,344
A 11/2000 Haggard et al. 10,819,587
A 12/2000 Mitchell et al. 10,824,650
A 12/2000 Hemphill et al. 10,944,654
Bl 1/2001 Holloway et al. 11,032,381
Bl 1/2001 Seaman et al. 11,089,115
Bl 7/2001 Yost et al. 11,095,506
Bl 7/2001 Anderson et al. 11,106,823
Bl 8/2001 Hrastar et al. 11,115,471
Bl 1/2002 Caswell et al. 11,275,580
B2 3/2002 Barker et al. 11,657,160
Bl 5/2002 Zager et al.
Bl 5/2002 Johnson et al. 2002/0116340
Bl 8/2002 Prakash et al. 2002/0133584
Bl 8/2002 Killian 2002/0158969
Bl 9/2002 Chin et al. 2003/0051230
Bl 10/2002 Dennis et al. 2003/0118087
Bl 11/2002 Foley et al. 2003/0172367
Bl 1/2003 Casper et al.
Bl 2/2003 Stupek, Jr. et al. 2003/0200293
Bl 9/2003 Mellquist et al. 2005/0015217
Bl 3/2004 Noorhosseini et al. 2005/0091356
Bl 5/2004 Bowman-Amuah 2006/0026453
Bl 7/2004 Mayton et al. 2006/0095461
Bl 11/2004 Scarpell et al. 2006/0179058
Bl 5/2005 Brasher et al. 2006/0293942
B] 9/2005 Fong et al. 2007/0033279
B2 1/2006 Poznanovic GO6F 30/30 2007/0188494
717/133 2007/0288389
Bl 1/2006 Sachse et al. 2008/0133289
B2 2/2006 Greuel et al. 2008/0148753
Bl 4/2006 Lovy et al. 2008/0319779
Bl 5/2006 Pratt 2009/0088875
B2 5/2006 Valadarsky et al. 2000/0278984
B2 6/2006 Warpenburg et al.
B2 872006 Keller et al 2010/0110932
B2 12/2006 Goldthwaite et al. 2010/0325620
Bl 3/2007 Peterson et al.
B2 5/2007 Gupta 2011/0131559
Bl 5/2007 Gourdol et al.
Bl 5/2007 Black et al. 2014/0075245
B2 10/2007 Taylor et al.
B2 8/2008 Fearn et al. 2014/0096184
B2 3/2009 Keller et al.

B2 *
B2
B2
B2
B2
B2
B2
B2 *

Bl
B2 *

Bl
Bl
B2
B2 *

Bl
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Bl *
B2 *
Bl
Bl
B2 *
Bl
B2
B2 *
B2
B2
B2 *
B2
Bl
BI*
B2
B2 *
B2 *

AN A AN A AN A AN A A AN A A AN

Al*

Al*

Al*

6/2009
9/2009
9/2009
11/2009
2/201
3/201
3/201
4/201

oo OO

11/2010
12/2010

1/2011
2/2011
6/2011
7/2011

11/2011
1/201
6/201

11/201
3/201

10/201

11/201

12/201
2/201
3/201
5/201
6/201
6/201
4/201

11/201
6/2020
8/2020
8/2020
9/2020

10/2020

11/2020
3/2021
6/2021
8/2021
8/2021
8/2021
9/2021
3/2022
5/2023

(IR R o TR, TN LN LN LN UL IR S IR FU IR OB I (N I N I N

8/2002
9/2002
10/2002
3/2003
6/2003
9/2003

10/2003
1/2005
4/2005
2/2006
5/2006
8/2006

12/2006

2/2007
8/2007
12/2007
6/2008
6/2008
12/2008
4/2009
9/2009
5/2010
12/2010

6/2011

3/2014

4/2014

GOO6F 16/188

tttttttttttt

Thompson
Agutter et al.

Frost et al.

Trinon et al.
Chaddha et al.
Baier et al.
Satkunanathan et al.

Scanzano GO6F 16/284

707/999.1

tttttttttttttt

Sellers et al.

Venkatapathy GOO6F 21/577

717/126

ttttttt

Cline et al.

Mayer et al.
Wiles, Jr.

Adler GO6F 16/2455

707/755

tttttttttttttttttt

Bessler et al.
Guner et al.
Sterin
Robinson et al.
Yee et al.
Rangarajan et al.
Sabin et al.
Hughes et al.
Myers et al.
Poston et al.
Disciascio et al.
Gilbert et al.

Falkowitz HO4L 63/145
Hoernecke G06Q) 10/10
Rogynskyy et al.

Feiguine et al.

Henderson GOG6F 16/245

Feiguine et al.
Bitterfeld et al.

Singh
Bar Oz et al.
Rimar et al.
Feiguine
Garty et al.

Erblat et al.

Brookcooo...l.
Sant et al.

Tamircooovvvvvveninnnn.. GO6F 8/60
Maekawa GO6F 12/0223

726/25

HO4L. 41/142

iiiiiiiiiiiiiiiiiiii

HO4L 67/1097

ttttttttttttt

HO4L 9/0891

ttttttttttt

Hellberg et al.
Greuel et al.
Gupta
Molchanov et al.
Goldthwaite et al.

Kannenberg GO6F 9/44

717/101

iiiiiiiiiiiiii

Fearn et al.
Weidl et al.
Izzo

Frost et al.

Raymond

Bram et al.
Chaddha et al.

Battat et al.
Agutter et al.
Vaughan et al.
Armour et al.
Badwe et al.

Hughes et al.

Baier et al.

Sterin

Doran et al.

Rohde G0O6F 11/3604
717/154

Youngoeevvvenn. GO6F 8/314
717/145

Shim GO6F 11/3672
714/38.1

Zaitsev ..., GO6F 21/50

726/1

US 12,093,685 B2

Page 3
(56) References Cited
U.S. PATENT DOCUMENTS
2017/0323107 Al1* 11/2017 Bender HO4L 63/20
2018/0025059 Al1* 1/2018 Batchu GO6F 16/24564
707/740

2018/0046670 Al 2/2018 Atkins et al.

2018/0123940 Al 5/2018 Rumar et al.

2018/0210712 Al* 7/2018 Busjaeger GO6F 8/70

2019/0104398 Al 4/2019 Owen et al.

2019/0342323 Al* 11/2019 Henderson GOO6F 16/285

2020/0050689 Al 2/2020 Tal et al.

2020/0204443 Al 6/2020 Bar Oz et al.

2020/0382546 Al1* 12/2020 Henderson GOG6F 40/177

2021/0064758 Al* 3/2021 Zettel, II GO6F 21/577

2021/0194764 Al 6/2021 Badyan et al.

2021/0203731 Al 7/2021 Garty et al.

2021/0224258 Al1* 7/2021 Faruque GOO6F 16/244

2021/0349875 Al 11/2021 Gu et al.

2021/0357593 Al* 11/2021 Oaraoeeeuee.e. GO6F 40/30
2021/0392155 Al1* 12/2021 Waplington GO6F 16/285
FOREIGN PATENT DOCUMENTS
WO WO 99/34285 7/1999
WO WO 00/52559 9/2000
WO WO 01/79970 10/2001

* cited by examiner

US 12,093,685 B2

Sheet 1 of 12

Sep. 17, 2024

U.S. Patent

L1INN LNALNO / LNdNI

80}

v0l

Ol

0kl

00}

JOVA43LNI

NHOMLAN

40SS300dd

901

¢0l

U.S. Patent Sep. 17, 2024 Sheet 2 of 12 US 12,093,685 B2

SERVER CLUSTER

ROUTERS

210

NETWORK 212

US 12,093,685 B2

Sheet 3 of 12

Sep. 17, 2024

U.S. Patent

(1173
SMYOMLAN

anod ainiand

RV ininivinin I
01€ TIYMIYId |
| e e o e o — —)
AN s _
| |
;;;;;;;; — | 90£S¥3LNOY
| ZIESyanNas b ol !
JONVISNI | “ AXO¥d “ e
| | IYNOILYLNJINOD | I pvNowLvLlndwoo, (0 \ T TTTTT 77 " $0¢ _
;;;;;;;;; S39IA3A ¥3IANIS
“ 80¢ SANIHOVIA " ;;;;;;;;;;;;;;;;;
JONVISNI | L AN co¢ “
| TYNOLLYLNJINOD | | SIINIALINAND
00 YMOMLIN GIDVNYI

WH041V1d LNJWIOVNVYIA
AYOMLAN L0

US 12,093,685 B2

Sheet 4 of 12

Sep. 17, 2024

U.S. Patent

' 43ONVIVE Vo1 €

40

g90¥

—_——— — L

e .

a8
- 3
D
<}
-
=
<
LE]
0
L

NVLSNI :Iv. AVMILYO NdA |

TYNOILYLNJINOD |

d00¥ 4341N30 V1VQ

NOLLVOI'ld3d
4Svavivd

LI _Tv_

 43ONVIVE QYO ;

30

——— — L

ERERERE 4 EERERE A SRENRER R .]II.II.I..II

555 |
NVLSNI _.Tv_

Veov |
AVM3LV9 NdA |

V00¥ ¥31N40 V1iVA

91% ¥3SN ILOWIY

N T T ST ST T T

m
-
ﬁ'
72,
=
LL]
-

00€ YMOMLIN Q3I9VNVIA

e e e |

US 12,093,685 B2

Sheet 5 of 12

Sep. 17, 2024

U.S. Patent

JONVLISNI TVNOILV.LNdNOD

VS Ol4

00C YHOMLIN
JIOVNVIN
SWaLI
NOLLVHN9IINOD
ERETL e
" ZIESHIANIS |

SANVIIINOD

SISNOJS TN \

ANV $380d

Wil W e T Gwimme ewieeieee e e gy

806 WALl
NOLLVHNOIINOD ! |

| (o = — |

TR TN TR T TS T T R .

| 90S IN3LI _

. NOLLV¥N9IINOD “

R AR TR R TR TR TR TR ey

U.S. Patent Sep. 17, 2024 Sheet 6 of 12 US 12,093,685 B2

POPULATE TASK LIST

SCANNING PHASE:
PROBE IP ADDRESSES FOR DEVICES AND DETERMINE OPERATING SYSTEMS

CLASSIFICATION PHASE:
PROBE FOR OPERATING SYSTEM VERSION OF DISCOVERED DEVICES

IDENTIFICATION PHASE:
PROBE FOR CONFIGURATION OF DISCOVERED DEVICES

EXPLORATION PHASE:
PROBE FOR OPERATIONAL STATE AND SERVICES OF DISCOVERED DEVICES

FURTHER EDITING OF CONFIGURATION ITEMS IN CMDB

US 12,093,685 B2

Sheet 7 of 12

Sep. 17, 2024

U.S. Patent

9 Ol4

009 —

¢19 318Vl

dIHSNOLLV13d 4SVE

d

\ -
s_oE syyauny NOdASLEEHN

| osoemay |

[so1ay ' —

[vty |

019379Vl

dIHSNOLLVY13d LIOINdXd

oom 31dVL WAL
NOILVENOIANOD LIOMNdX4

¢09 31gv.L 3Ll
NOLLVENOIANOD JSVE

| veoeiE |
809

319V.1 dIHSNOLLV13d 11O dIN}

gw 319V1 W41l
NOILYANOIANOD LIOINdINI

US 12,093,685 B2

Sheet 8 of 12

Sep. 17, 2024

U.S. Patent

319V.LNO3X3
l ¢A V148

319V.LNO3X4
¢ LA V1dd

319v.LNO3Xd

IAVHATY I1dINO)

319v.LINIO3Xd 371dINO9

0'LA YHdTV

V. Dl

™~

=
w
N

3374 | a3d | snoisyan
SNOISHEA 3114 ddV

vi34d 103rodd

AN

o
03FW4 | €34 | VI | SNOISYIA
| SNOISY3AFWd | ddV

VHJ1V 1LO4rQdd

0L AJOLISOd3d 3d0I FdN0S

US 12,093,685 B2

Sheet 9 of 12

Sep. 17, 2024

U.S. Patent

| ¢A V148

P1L Y3ANIS gam

F WA VH 1TV

¢1L 30IA30 ¥3ANIS

o IAVHA 1V

012 3JIA30 ¥3AY3S

v1d8 104rodd
VHd1V 104r0¥d

0L AMOLISOd3d 302D FN0S

00€ YMOMLIN QIOVNVI

US 12,093,685 B2

Sheet 10 of 12

Sep. 17, 2024

U.S. Patent

708 NOILVYOITddV
INJWFOVNVIA

OI104.1340d
NOILVOI1ddV

SdIHSNOILV13d
ANV SINALI
NOILVENOIANOI LIOINdINI
SdIHSNOILV13y
ANV SINALI
NOILVANIIANOD LIONdINI

¢08 NOILVYOITddV

SNOILVd3dO
INJNdOT13AIA

SAIHSNOILV13d
ANV SINALI
NOILVANOIANOI LIOINdNI

03 NOILVYOIlddV

ASNOdS 3y
ALTIGVHANTNA

US 12,093,685 B2

Sheet 11 of 12

Sep. 17, 2024

U.S. Patent

909 379VL NI LI

NOILVANDIANOD
1I9NMd X3

809 379Vl

dIHSNOILV13d
LIOINdINI

09 379VL W3 LI
NOILVANDIANOD
LIOINdINI

¥06 (S)319VL

SNOILVd3dO
IN3JNdOT13AdA

206 (S)319vL
ISNOJS 3N
ALITIGYHINTNA

906 (S)31gV1
INJFWNIOVNVYIN
01704.1380d
NOILVOI1ddV

U.S. Patent Sep. 17, 2024 Sheet 12 of 12 US 12,093,685 B2

RECEIVE INFORMATION RELATED TO A PARTICULAR UNIT OF SOURCE CODE
ASSOCIATED WITH A MANAGED NETWORK, WHEREIN PERSISTENT STORAGE
CONTAINS: (I) AN EXPLICIT CONFIGURATION ITEM TABLE WITH ENTRIES OF
EXPLICIT CONFIGURATION ITEMS REPRESENTING HARDWARE DEVICES
ASSOCIATED WITH THE MANAGED NETWORK AND EXECUTABLE SOFTWARE
APPLICATIONS DEPLOYED ON THE HARDWARE DEVICES, (ll) AN IMPLICIT 1000
CONFIGURATION ITEM TABLE WITH ENTRIES OF IMPLICIT CONFIGURATION |4
ITEMS REPRESENTING UNITS OF SOURCE CODE ASSOCIATED WITH THE
MANAGED NETWORK, WHEREIN AT LEAST SOME OF THE EXECUTABLE
SOFTWARE APPLICATIONS ARE COMPILED VERSIONS OF THE UNITS OF
SOURCE CODE, AND (ll1) AN IMPLICIT RELATIONSHIP TABLE ASSOCIATING
PAIRS OF THE IMPLICIT CONFIGURATION ITEMS AND EXPLICIT CONFIGURATION
ITEMS WITH ONE ANOTHER

WRITE, TO THE IMPLICIT CONFIGURATION ITEM TABLE, AT LEAST SOME OF THE | 4— 1002
INFORMATION AS AN IMPLICIT CONFIGURATION ITEM

DETERMINE THAT THE IMPLICIT CONFIGURATION ITEM HAS ONE OR MORE <1004
IDENTIFYING ATTRIBUTES IN COMMON WITH AN EXPLICIT CONFIGURATION
ITEM IN THE EXPLICIT CONFIGURATION ITEM TABLE

IN RESPONSE TO DETERMINING THAT THE IMPLICIT CONFIGURATION ITEM HAS
ONE OR MORE IDENTIFYING ATTRIBUTES IN COMMON WITH THE EXPLICIT | ___ 1006
CONFIGURATION ITEM, WRITE, TO THE IMPLICIT RELATIONSHIP TABLE, A NEW
ENTRY ASSOCIATING THE IMPLICIT CONFIGURATION ITEM AND THE EXPLICIT
CONFIGURATION ITEM

FIG. 10

US 12,093,685 B2

1

REPRESENTING SOURCE CODE AS
IMPLICIT CONFIGURATION ITEMS

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of and claims priority to
U.S. patent application Ser. No. 16/991,704, filed Aug. 12,
2020, which 1s hereby incorporated by reference in 1ts
entirety.

BACKGROUND

Soltware applications and hardware devices disposed
upon a managed network or public cloud network may be
automatically discovered in various ways, and configuration
items representing these components may be populated 1n a
configuration management database (CMDB). Alternatively,
some configuration 1tems may be manually entered into the
CMDB. The CMDB may reside in a remote network man-
agement platform separate from the managed network or
public cloud network, for example.

Each configuration item may take the form of a database
entry with attributes representing the characteristics of the
component. This allows the CMDB to serve as a single point
of truth with respect to the discovered components, their
properties, and their relationships with one another. Numer-
ous applications of the remote network management plat-
form may use the data in the CMDB for purposes of service
mapping, asset management, information technology ser-
vice management, security operations, and so on.

Traditionally, only executable (e.g., compiled) versions of
software applications were populated in the CMDB. In some
cases, only executing versions of these applications can be
discovered. This results 1n source code forms of applications
being excluded from the CMDB. Such source code may be
for custom applications developed or under development by
the managed network, for example. As a consequence, the
remote network management platform applications may be
unable to account for at least some versions of these appli-
cations, potentially limiting the utility of the remote network
management platform for purposes of security, software
development operations, and/or service management.

SUMMARY

To overcome these limitations, the embodiments herein

use 1mplicit configuration 1tems to represent units ol source
code under development. Legacy configuration items are
referred to as explicit configuration items for purposes of
differentiation.
Modified discovery procedures or manual entry can be
used to populate the CMDB with implicit configuration
items. Further, reconciliation procedures can be used to
populate an 1mplicit relationship table 1n the CMDB with
entries, each representing a determined relationship between
either: a pair of implicit configuration 1tems, or one 1mplicit
configuration item and one explicit configuration 1tem.

These tables facilitate new features and functionality that
would otherwise not be possible. For example, source code
under development can be associated with compiled ver-
sions thereof. This can enable defect and vulnerability
tracking between source code and deployed executable
applications compiled from the source code. Further, various
remote network management applications may use implicit
configuration items and/or their associated explicit configu-
ration i1tems to provide new features and functionality.

10

15

20

25

30

35

40

45

50

55

60

65

2

Accordingly, a first example embodiment may volve
persistent storage containing: (1) an explicit configuration
item table with entries of explicit configuration 1tems rep-
resenting hardware devices associated with a managed net-
work and executable software applications deployed on the
hardware devices, (1) an 1mplicit configuration 1tem table
with entries of implicit configuration items representing
units of source code associated with the managed network,
wherein at least some of the executable software applica-
tions are compiled versions of the units of source code, and
(111) an 1mplicit relationship table associating pairs of the
implicit configuration items and explicit configuration i1tems
with one another. The first example embodiment may also
involve one or more processors configured to: (1) receive
information related to a particular unit of source code
associated with the managed network; (1) write, to the
implicit configuration item table, at least some of the infor-
mation as an implicit configuration item; (111) determine that
the implicit configuration item has one or more 1dentifying
attributes 1n common with an explicit configuration item 1n
the explicit configuration item table; and (1v) possibly in
response to determining that the implicit configuration 1tem
has one or more 1dentifying attributes 1n common with the
explicit configuration item, write, to the implicit relationship
table, a new entry associating the implicit configuration item
and the explicit configuration item.

A second example embodiment may involve receiving
information related to a particular unit of source code
assocliated with a managed network, wherein persistent
storage contains: (1) an explicit configuration item table with
entries of explicit configuration 1tems representing hardware
devices associated with the managed network and execut-
able software applications deployed on the hardware
devices, (11) an implicit configuration 1tem table with entries
of implicit configuration i1tems representing units ol source
code associated with the managed network, wherein at least
some of the executable software applications are compiled
versions of the units of source code, and (111) an 1mplicit
relationship table associating pairs of the implicit configu-
ration i1tems and explicit configuration items with one
another. The second example embodiment may also involve
writing, to the implicit configuration item table, at least
some of the information as an implicit configuration item.
The second example embodiment may also 1nvolve deter-
mining that the implicit configuration 1tem has one or more
identifying attributes 1n common with an explicit configu-
ration 1tem in the explicit configuration item table. The
second example embodiment may also mvolve, possibly 1n
response to determining that the implicit configuration 1tem
has one or more 1dentifying attributes in common with the
explicit configuration item, writing, to the implicit relation-
ship table, a new entry associating the implicit configuration
item and the explicit configuration item.

In a third example embodiment, an article of manufacture
may include a non-transitory computer-readable medium,
having stored thereon program instructions that, upon
execution by a computing system, cause the computing
system to perform operations in accordance with the first
and/or second example embodiment.

In a fourth example embodiment, a computing system
may include at least one processor, as well as memory and
program 1nstructions. The program instructions may be
stored 1n the memory, and upon execution by the at least one
processor, cause the computing system to perform opera-
tions in accordance with the first and/or second example
embodiment.

US 12,093,685 B2

3

In a fifth example embodiment, a system may include
various means for carrying out each of the operations of the
first and/or second example embodiment.

These, as well as other embodiments, aspects, advantages,
and alternatives, will become apparent to those of ordinary
skill 1n the art by reading the following detailed description,
with reference where appropriate to the accompanying
drawings. Further, this summary and other descriptions and
figures provided herein are intended to illustrate embodi-
ments by way of example only and, as such, that numerous
variations are possible. For instance, structural elements and
process steps can be rearranged, combined, distributed,
climinated, or otherwise changed, while remaining within
the scope of the embodiments as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a schematic drawing of a computing
device, 1 accordance with example embodiments.

FIG. 2 illustrates a schematic drawing of a server device
cluster, in accordance with example embodiments.

FIG. 3 depicts a remote network management architec-
ture, 1n accordance with example embodiments.

FIG. 4 depicts a communication environment involving a
remote network management architecture, i accordance
with example embodiments.

FIG. SA depicts another communication environment
involving a remote network management architecture, 1n
accordance with example embodiments.

FIG. 5B 1s a flow chart, in accordance with example
embodiments.

FIG. 6 depicts an arrangement of database tables, in
accordance with example embodiments.

FIG. 7A depicts the contents of a source code repository,
in accordance with example embodiments.

FIG. 7B depicts applications developed and deployed on
a managed network 1n accordance with example embodi-
ments.

FIG. 8 depicts remote network management platform
applications using implicit configuration items and relation-
ships, 1n accordance with example embodiments.

FIG. 9 depicts a further arrangement of database tables, in
accordance with example embodiments.

FIG. 10 1s a flow chart, in accordance with example
embodiments.

DETAILED DESCRIPTION

Example methods, devices, and systems are described
herein. It should be understood that the words “example”
and “exemplary” are used heremn to mean “‘serving as an
example, nstance, or illustration.” Any embodiment or
teature described herein as being an “example” or “exem-
plary” 1s not necessarily to be construed as preferred or
advantageous over other embodiments or features unless
stated as such. Thus, other embodiments can be utilized and
other changes can be made without departing from the scope
of the subject matter presented herein.

Accordingly, the example embodiments described herein
are not meant to be limiting. It will be readily understood
that the aspects of the present disclosure, as generally
described herein, and illustrated in the figures, can be
arranged, substituted, combined, separated, and designed 1n
a wide variety of different configurations. For example, the
separation of features into “client” and “server” components
may occur in a number of ways.

10

15

20

25

30

35

40

45

50

55

60

65

4

Further, unless context suggests otherwise, the features
illustrated 1n each of the figures may be used 1n combination

with one another. Thus, the figures should be generally
viewed as component aspects ol one or more overall
embodiments, with the understanding that not all 1llustrated
features are necessary for each embodiment.

Additionally, any enumeration of elements, blocks, or
steps 1n this specification or the claims 1s for purposes of
clarity. Thus, such enumeration should not be iterpreted to
require or imply that these elements, blocks, or steps adhere
to a particular arrangement or are carried out in a particular
order.

I. Introduction

A large enterprise 1s a complex entity with many interre-
lated operations. Some of these are found across the enter-
prise, such as human resources (HR), supply chain, infor-
mation technology (IT), and finance. However, each
enterprise also has its own unique operations that provide
essential capabilities and/or create competitive advantages.

To support widely-implemented operations, enterprises
typically use ofl-the-shell software applications, such as
customer relationship management (CRM) and human capi-
tal management (HCM) packages. However, they may also
need custom software applications to meet their own unique
requirements. A large enterprise often has dozens or hun-
dreds of these custom soiftware applications. Nonetheless,
the advantages provided by the embodiments herein are not
limited to large enterprises and may be applicable to an
enterprise, or any other type of organization, of any size.

Many such software applications are developed by 1ndi-
vidual departments within the enterprise. These range from
simple spreadsheets to custom-built software tools and data-
bases. But the proliferation of siloed custom software appli-
cations has numerous disadvantages. It negatively impacts
an enterprise’s ability to run and grow 1ts operations, 1nno-
vate, and meet regulatory requirements. The enterprise may
find 1t difficult to integrate, streamline, and enhance 1its
operations due to lack of a single system that unifies 1ts
subsystems and data.

To elliciently create custom applications, enterprises
would benefit from a remotely-hosted application platform
that eliminates unnecessary development complexity. The
goal of such a platform would be to reduce time-consuming,
repetitive application development tasks so that software
engineers and ndividuals 1n other roles can focus on devel-
oping unique, high-value features.

In order to achieve this goal, the concept of Application
Platform as a Service (aPaaS) 1s introduced, to intelligently
automate workilows throughout the enterprise. An aPaaS
system 1s hosted remotely from the enterprise, but may
access data, applications, and services within the enterprise
by way of secure connections. Such an aPaaS system may
have a number of advantageous capabilities and character-
1stics. These advantages and characteristics may be able to
improve the enterprise’s operations and workflows for IT,
HR, CRM, customer service, application development, and
security.

The aPaaS system may support development and execu-
tion ol model-view-controller (MVC) applications. MVC
applications divide their functionality into three intercon-
nected parts (model, view, and controller) in order to 1solate
representations of information from the manner 1n which the
information 1s presented to the user, thereby allowing for
ellicient code reuse and parallel development. These appli-
cations may be web-based, and offer create, read, update,

US 12,093,685 B2

S

delete (CRUD) capabilities. This allows new applications to
be built on a common application inirastructure.

The aPaaS system may support standardized application
components, such as a standardized set of widgets for
graphical user interface (GUI) development. In this way,
applications built using the aPaaS system have a common
look and feel. Other software components and modules may
be standardized as well. In some cases, this look and feel can
be branded or skinned with an enterprise’s custom logos
and/or color schemes.

The aPaaS system may support the ability to configure the
behavior of applications using metadata. This allows appli-
cation behaviors to be rapidly adapted to meet specific
needs. Such an approach reduces development time and
increases flexibility. Further, the aPaaS system may support
GUI tools that facilitate metadata creation and management,
thus reducing errors 1 the metadata.

The aPaaS system may support clearly-defined interfaces
between applications, so that software developers can avoid
unwanted inter-application dependencies. Thus, the aPaaS
system may implement a service layer in which persistent
state information and other data are stored.

The aPaaS system may support a rich set of integration
teatures so that the applications thereon can interact with
legacy applications and third-party applications. For
instance, the aPaaS system may support a custom employee-
onboarding system that integrates with legacy HR, IT, and
accounting systems.

The aPaaS system may support enterprise-grade security.
Furthermore, since the aPaaS system may be remotely
hosted, 1t should also utilize security procedures when it
interacts with systems in the enterprise or third-party net-
works and services hosted outside of the enterprise. For
example, the aPaaS system may be configured to share data
amongst the enterprise and other parties to detect and
identily common security threats.

Other features, functionality, and advantages of an aPaaS
system may exist. This description 1s for purpose of example
and 1s not mtended to be limiting.

As an example of the aPaaS development process, a
soltware developer may be tasked to create a new applica-
tion using the aPaaS system. First, the developer may define
the data model, which specifies the types of data that the
application uses and the relationships therebetween. Then,
via a GUI of the aPaaS system, the developer enters (e.g.,
uploads) the data model. The aPaaS system automatically
creates all of the corresponding database tables, fields, and
relationships, which can then be accessed via an object-
oriented services layer.

In addition, the aPaaS system can also build a fully-
tfunctional MVC application with client-side interfaces and
server-side CRUD logic. This generated application may
serve as the basis of further development for the user.
Advantageously, the developer does not have to spend a
large amount of time on basic application functionality.
Further, since the application may be web-based, 1t can be
accessed from any Internet-enabled client device. Alterna-
tively or additionally, a local copy of the application may be
able to be accessed, for instance, when Internet service 1s not
available.

The aPaaS system may also support a rich set of pre-
defined functionality that can be added to applications.
These features include support for searching, email, tem-
plating, workilow design, reporting, analytics, social media,
scripting, mobile-friendly output, and customized GUISs.

Such an aPaaS system may represent a GUI 1n various
ways. For example, a server device of the aPaaS system may

10

15

20

25

30

35

40

45

50

55

60

65

6

generate a representation of a GUI using a combination of
HTML and JAVASCRIPT®. The JAVASCRIPT® may

include client-side executable code, server-side executable
code, or both. The server device may transmit or otherwise
provide this representation to a client device for the client
device to display on a screen according to its locally-defined
look and feel. Alternatively, a representation of a GUI may
take other forms, such as an intermediate form (e.g., JAVA®
byte-code) that a client device can use to directly generate
graphical output therefrom. Other possibilities exist.

Further, user interaction with GUI elements, such as
buttons, menus, tabs, sliders, checkboxes, toggles, etc. may
be referred to as “selection”, “activation”, or ‘“‘actuation”
thereolf. These terms may be used regardless of whether the
GUI elements are interacted with by way of keyboard,
pointing device, touchscreen, or another mechanism.

An aPaaS architecture 1s particularly powertul when
integrated with an enterprise’s network and used to manage
such a network. The following embodiments describe archi-
tectural and functional aspects of example aPaaS systems, as
well as the features and advantages thereof.

11.

Example Computing Devices and Cloud-Based
Computing Environments

FIG. 1 1s a simplified block diagram exemplifying a
computing device 100, illustrating some of the components
that could be included 1n a computing device arranged to
operate 1n accordance with the embodiments herein. Com-
puting device 100 could be a client device (e.g., a device
actively operated by a user), a server device (e.g., a device
that provides computational services to client devices), or
some other type of computational platform. Some server
devices may operate as client devices from time to time 1n
order to perform particular operations, and some client
devices may incorporate server features.

In this example, computing device 100 includes processor
102, memory 104, network interface 106, and input/output
unmit 108, all of which may be coupled by system bus 110 or
a similar mechanism. In some embodiments, computing
device 100 may include other components and/or peripheral
devices (e.g., detachable storage, printers, and so on).

Processor 102 may be one or more of any type of
computer processing element, such as a central processing
unit (CPU), a co-processor (e.g., a mathematics, graphics, or
encryption co-processor), a digital signal processor (DSP), a
network processor, and/or a form of integrated circuit or
controller that performs processor operations. In some cases,
processor 102 may be one or more single-core processors. In
other cases, processor 102 may be one or more multi-core
processors with multiple independent processing units. Pro-
cessor 102 may also include register memory for temporar-
1ly storing instructions being executed and related data, as
well as cache memory for temporarily storing recently-used
instructions and data.

Memory 104 may be any form of computer-usable
memory, including but not limited to random access memory
(RAM), read-only memory (ROM), and non-volatile
memory (e.g., flash memory, hard disk drives, solid state
drives, compact discs (CDs), digital video discs (DVDs),
and/or tape storage). Thus, memory 104 represents both
main memory units, as well as long-term storage. Other
types of memory may include biological memory.

Memory 104 may store program instructions and/or data
on which program instructions may operate. By way of
example, memory 104 may store these program instructions
on a non-transitory, computer-readable medium, such that

US 12,093,685 B2

7

the 1instructions are executable by processor 102 to carry out
any of the methods, processes, or operations disclosed 1n this
specification or the accompanying drawings.

As shown 1n FIG. 1, memory 104 may include firmware
104A, kernel 104B, and/or applications 104C. Firmware
104 A may be program code used to boot or otherwise 1nitiate
some or all of computing device 100. Kernel 104B may be
an operating system, including modules for memory man-
agement, scheduling and management of processes, mput/
output, and communication. Kernel 1048 may also include
device drivers that allow the operating system to commu-
nicate with the hardware modules (e.g., memory units,
networking 1intertaces, ports, and buses) ol computing
device 100. Applications 104C may be one or more user-
space soltware programs, such as web browsers or email
clients, as well as any software libraries used by these
programs. Memory 104 may also store data used by these
and other programs and applications.

Network interface 106 may take the form of one or more
wircline interfaces, such as Ethernet (e.g., Fast Ethernet,
(Gigabit Ethernet, and so on). Network interface 106 may
also support communication over one or more non-Ethernet
media, such as coaxial cables or power lines, or over
wide-area media, such as Synchronous Optical Networking,
(SONET) or digital subscriber line (DSL) technologies.
Network interface 106 may additionally take the form of one
or more wireless interfaces, such as IEEE 802.11 (Wif),
BLUETOOTH®, global positioning system (GPS), or a
wide-area wireless interface. However, other forms of physi-
cal layer interfaces and other types of standard or proprietary
communication protocols may be used over network inter-
face 106. Furthermore, network interface 106 may comprise
multiple physical interfaces. For instance, some embodi-
ments ol computing device 100 may include Ethernet,
BLUETOOTH®, and Wifl interfaces.

Input/output unit 108 may facilitate user and peripheral
device mteraction with computing device 100. Input/output
unit 108 may include one or more types of mput devices,
such as a keyboard, a mouse, a touch screen, and so on.
Similarly, input/output unit 108 may include one or more
types of output devices, such as a screen, monitor, printer,
and/or one or more light emitting diodes (LEDs). Addition-
ally or alternatively, computing device 100 may communi-
cate with other devices using a universal serial bus (USB) or
high-definition multimedia interface (HDMI) port interface,
for example.

In some embodiments, one or more computing devices
like computing device 100 may be deployed to support an
aPaaS architecture. The exact physical location, connectiv-
ity, and configuration of these computing devices may be
unknown and/or unimportant to client devices. Accordingly,
the computing devices may be referred to as “cloud-based”
devices that may be housed at various remote data center
locations.

FIG. 2 depicts a cloud-based server cluster 200 1n accor-
dance with example embodiments. In FIG. 2, operations of
a computing device (e.g., computing device 100) may be
distributed between server devices 202, data storage 204,
and routers 206, all of which may be connected by local
cluster network 208. The number of server devices 202, data
storages 204, and routers 206 in server cluster 200 may
depend on the computing task(s) and/or applications
assigned to server cluster 200.

For example, server devices 202 can be configured to
perform various computing tasks of computing device 100.
Thus, computing tasks can be distributed among one or more
of server devices 202. To the extent that these computing

10

15

20

25

30

35

40

45

50

55

60

65

8

tasks can be performed in parallel, such a distribution of
tasks may reduce the total time to complete these tasks and
return a result. For purposes of simplicity, both server cluster
200 and individual server devices 202 may be referred to as
a “server device.” This nomenclature should be understood
to imply that one or more distinct server devices, data
storage devices, and cluster routers may be involved 1n
server device operations.

Data storage 204 may be data storage arrays that include
drive array controllers configured to manage read and write
access to groups of hard disk drives and/or solid state drives.
The drive array controllers, alone or 1n conjunction with
server devices 202, may also be configured to manage
backup or redundant copies of the data stored 1n data storage
204 to protect against drive failures or other types of failures
that prevent one or more of server devices 202 from access-
ing units of data storage 204. Other types of memory aside
from drives may be used.

Routers 206 may include networking equipment config-
ured to provide internal and external communications for
server cluster 200. For example, routers 206 may include
one or more packet-switching and/or routing devices (in-
cluding switches and/or gateways) configured to provide (1)
network commumnications between server devices 202 and
data storage 204 via local cluster network 208, and/or (11)
network communications between server cluster 200 and
other devices via communication link 210 to network 212.

Additionally, the configuration of routers 206 can be
based at least 1n part on the data communication require-
ments of server devices 202 and data storage 204, the
latency and throughput of the local cluster network 208, the
latency, throughput, and cost of communication link 210,
and/or other factors that may contribute to the cost, speed,
fault-tolerance, resiliency, efliciency, and/or other design
goals of the system architecture.

As a possible example, data storage 204 may include any
form of database, such as a structured query language (SQL)
database. Various types ol data structures may store the
information 1n such a database, including but not limited to
tables, arrays, lists, trees, and tuples. Furthermore, any
databases 1n data storage 204 may be monolithic or distrib-
uted across multiple physical devices.

Server devices 202 may be configured to transmit data to
and receirve data from data storage 204. This transmission
and retrieval may take the form of SQL queries or other
types ol database queries, and the output of such queries,
respectively. Additional text, images, video, and/or audio
may be included as well. Furthermore, server devices 202
may organize the recerved data ito web page or web
application representations. Such a representation may take
the form of a markup language, such as the hypertext
markup language (HTML), the extensible markup language
(XML), or some other standardized or proprietary format.
Moreover, server devices 202 may have the capability of

executing various types ol computerized scripting lan-
guages, such as but not limited to Perl, Python, PHP
Hypertext Preprocessor (PHP), Active Server Pages (ASP),
JAVASCRIPT®, and so on. Computer program code written
in these languages may facilitate the providing of web pages
to client devices, as well as client device interaction with the
web pages. Alternatively or additionally, JAVA® may be
used to facilitate generation of web pages and/or to provide
web application functionality.

I11.

Example Remote Network Management
Architecture

FIG. 3 depicts a remote network management architec-
ture, 1n accordance with example embodiments. This archi-

US 12,093,685 B2

9

tecture 1includes three main components—managed network
300, remote network management platform 320, and public
cloud networks 340—all connected by way of Internet 350.
A. Managed Networks

Managed network 300 may be, for example, an enterprise
network used by an entity for computing and communica-
tions tasks, as well as storage of data. Thus, managed
network 300 may include client devices 302, server devices
304, routers 306, virtual machines 308, firewall 310, and/or
proxy servers 312. Client devices 302 may be embodied by
computing device 100, server devices 304 may be embodied
by computing device 100 or server cluster 200, and routers
306 may be any type of router, switch, or gateway.

Virtual machines 308 may be embodied by one or more of
computing device 100 or server cluster 200. In general, a
virtual machine 1s an emulation of a computing system, and
mimics the functionality (e.g., processor, memory, and com-
munication resources) of a physical computer. One physical
computing system, such as server cluster 200, may support
up to thousands of individual virtual machines. In some
embodiments, virtual machines 308 may be managed by a
centralized server device or application that facilitates allo-
cation of physical computing resources to individual virtual
machines, as well as performance and error reporting. Enter-
prises olften employ virtual machines 1n order to allocate
computing resources in an eflicient, as needed fashion.
Providers of wvirtualized computing systems 1nclude
VMWARE® and MICROSOFT®.

Firewall 310 may be one or more specialized routers or
server devices that protect managed network 300 from
unauthorized attempts to access the devices, applications,
and services therein, while allowing authorized communi-
cation that 1s mitiated from managed network 300. Firewall
310 may also provide intrusion detection, web filtering,
virus scanning, application-layer gateways, and other appli-
cations or services. In some embodiments not shown 1n FIG.
3, managed network 300 may include one or more virtual
private network (VPN) gateways with which 1t communi-
cates with remote network management platform 320 (see
below).

Managed network 300 may also include one or more
proxy servers 312. An embodiment of proxy servers 312
may be a server application that facilitates communication
and movement of data between managed network 300,
remote network management platform 320, and public cloud
networks 340. In particular, proxy servers 312 may be able
to establish and maintain secure communication sessions
with one or more computational instances of remote network
management platform 320. By way of such a session, remote
network management platform 320 may be able to discover
and manage aspects of the architecture and configuration of
managed network 300 and its components. Possibly with the
assistance of proxy servers 312, remote network manage-
ment platform 320 may also be able to discover and manage
aspects of public cloud networks 340 that are used by
managed network 300.

Firewalls, such as firewall 310, typically deny all com-
munication sessions that are imcoming by way of Internet
350, unless such a session was ultimately 1mitiated from
behind the firewall (1.e., from a device on managed network
300) or the firewall has been explicitly configured to support
the session. By placing proxy servers 312 behind firewall
310 (e.g., within managed network 300 and protected by
firewall 310), proxy servers 312 may be able to mitiate these
communication sessions through firewall 310. Thus, firewall
310 might not have to be specifically configured to support

10

15

20

25

30

35

40

45

50

55

60

65

10

incoming sessions from remote network management plat-
form 320, thereby avoiding potential security risks to man-
aged network 300.

In some cases, managed network 300 may consist of a few
devices and a small number of networks. In other deploy-
ments, managed network 300 may span multiple physical
locations and include hundreds of networks and hundreds of
thousands of devices. Thus, the architecture depicted in FIG.
3 1s capable of scaling up or down by orders of magnitude.

Furthermore, depending on the size, architecture, and
connectivity of managed network 300, a varying number of
proxy servers 312 may be deployed therein. For example,
cach one of proxy servers 312 may be responsible for
communicating with remote network management platiorm
320 regarding a portion of managed network 300. Alterna-
tively or additionally, sets of two or more proxy servers may
be assigned to such a portion of managed network 300 for
purposes of load balancing, redundancy, and/or high avail-
ability.

B. Remote Network Management Platforms

Remote network management platform 320 1s a hosted
environment that provides aPaaS services to users, particu-
larly to the operator of managed network 300. These ser-
vices may take the form of web-based portals, for example,
using the aforementioned web-based technologies. Thus, a
user can securely access remote network management plat-
form 320 from, for example, client devices 302, or poten-
tially from a client device outside of managed network 300.
By way of the web-based portals, users may design, test, and
deploy applications, generate reports, view analytics, and
perform other tasks.

As shown 1 FIG. 3, remote network management plat-
form 320 includes four computational instances 322, 324,
326, and 328. Each of these computational instances may
represent one or more server nodes operating dedicated
copies of the aPaaS software and/or one or more database
nodes. The arrangement of server and database nodes on
physical server devices and/or virtual machines can be
flexible and may vary based on enterprise needs. In combi-
nation, these nodes may provide a set of web portals,
services, and applications (e.g., a wholly-functioning aPaaS
system) available to a particular enterprise. In some cases, a
single enterprise may use multiple computational instances.

For example, managed network 300 may be an enterprise
customer of remote network management platform 320, and
may use computational instances 322, 324, and 326. The
reason for providing multiple computational instances to one
customer 1s that the customer may wish to independently
develop, test, and deploy 1ts applications and services. Thus,
computational instance 322 may be dedicated to application
development related to managed network 300, computa-
tional mstance 324 may be dedicated to testing these appli-
cations, and computational instance 326 may be dedicated to
the live operation of tested applications and services. A
computational instance may also be referred to as a hosted
instance, a remote 1nstance, a customer nstance, or by some
other designation. Any application deployed onto a compu-
tational instance may be a scoped application, 1n that its
access to databases within the computational instance can be
restricted to certain elements therein (e.g., one or more
particular database tables or particular rows within one or
more database tables).

For purposes of clarity, the disclosure herein refers to the
arrangement of application nodes, database nodes, aPaaS
soltware executing thereon, and underlying hardware as a
“computational 1nstance.” Note that users may colloquially
refer to the graphical user interfaces provided thereby as

US 12,093,685 B2

11

“instances.” But unless i1t 1s defined otherwise herein, a
“computational instance” 1s a computing system disposed
within remote network management platform 320.

The multi-instance architecture of remote network man-
agement platform 320 1s in contrast to conventional multi-
tenant architectures, over which multi-instance architectures
exhibit several advantages. In multi-tenant architectures,
data from diflerent customers (e.g., enterprises) are com-
ingled 1n a single database. While these customers’ data are
separate from one another, the separation 1s enforced by the
software that operates the single database. As a conse-
quence, a security breach in this system may impact all
customers’ data, creating additional risk, especially for
entities subject to governmental, healthcare, and/or financial
regulation. Furthermore, any database operations that
impact one customer will likely impact all customers sharing
that database. Thus, if there 1s an outage due to hardware or
software errors, this outage affects all such customers.
Likewise, 1f the database 1s to be upgraded to meet the needs
of one customer, 1t will be unavailable to all customers
during the upgrade process. Often, such maintenance win-
dows will be long, due to the size of the shared database.

In contrast, the multi-instance architecture provides each
customer with 1ts own database 1n a dedicated computing
instance. This prevents comingling of customer data, and
allows each instance to be independently managed. For
example, when one customer’s instance experiences an
outage due to errors or an upgrade, other computational
instances are not impacted. Maintenance down time 1s
limited because the database only contains one customer’s
data. Further, the simpler design of the multi-instance archi-
tecture allows redundant copies of each customer database
and instance to be deployed in a geographically diverse
fashion. This facilitates high availability, where the live
version of the customer’s mstance can be moved when faults
are detected or maintenance 1s being performed.

In some embodiments, remote network management plat-
form 320 may include one or more central instances, con-
trolled by the enftity that operates this platform. Like a
computational instance, a central instance may include some
number of application and database nodes disposed upon
some number of physical server devices or virtual machines.
Such a central instance may serve as a repository for specific
configurations of computational instances as well as data
that can be shared amongst at least some of the computa-
tional 1nstances. For instance, definitions of common secu-
rity threats that could occur on the computational instances,
soltware packages that are commonly discovered on the
computational instances, and/or an application store for
applications that can be deployed to the computational
instances may reside in a central mstance. Computational
instances may communicate with central instances by way
of well-defined interfaces 1n order to obtain this data.

In order to support multiple computational instances 1n an
cilicient fashion, remote network management platform 320
may implement a plurality of these instances on a single
hardware platform. For example, when the aPaaS system 1s
implemented on a server cluster such as server cluster 200,
it may operate virtual machines that dedicate varying
amounts of computational, storage, and communication
resources to instances. But full virtualization of server
cluster 200 might not be necessary, and other mechanisms
may be used to separate instances. In some examples, each
instance may have a dedicated account and one or more
dedicated databases on server cluster 200. Alternatively, a
computational mstance such as computational instance 322
may span multiple physical devices.

10

15

20

25

30

35

40

45

50

55

60

65

12

In some cases, a single server cluster of remote network
management platform 320 may support multiple indepen-
dent enterprises. Furthermore, as described below, remote
network management platform 320 may include multiple
server clusters deployed in geographically diverse data
centers 1n order to facilitate load balancing, redundancy,
and/or high availability.

C. Public Cloud Networks

Public cloud networks 340 may be remote server devices
(e.g., a plurality of server clusters such as server cluster 200)
that can be used for outsourced computation, data storage,
communication, and service hosting operations. These serv-
ers may be virtualized (1.e., the servers may be virtual
machines). Examples of public cloud networks 340 may
include AMAZON WEB SERVICES® and MICROSOFT®
AZURE®. Like remote network management platform 320,
multiple server clusters supporting public cloud networks
340 may be deployed at geographically diverse locations for
purposes of load balancing, redundancy, and/or high avail-
ability.

Managed network 300 may use one or more of public
cloud networks 340 to deploy applications and services to 1ts
clients and customers. For instance, 11 managed network 300
provides online music streaming services, public cloud
networks 340 may store the music files and provide web
interface and streaming capabilities. In this way, the enter-
prise ol managed network 300 does not have to build and
maintain 1ts own servers for these operations.

Remote network management platform 320 may include
modules that integrate with public cloud networks 340 to
expose virtual machines and managed services therein to
managed network 300. The modules may allow users to
request virtual resources, discover allocated resources, and
provide flexible reporting for public cloud networks 340. In
order to establish this functionality, a user from managed
network 300 might first establish an account with public
cloud networks 340, and request a set of associated
resources. Then, the user may enter the account information
into the appropriate modules of remote network manage-
ment platform 320. These modules may then automatically
discover the manageable resources 1n the account, and also
provide reports related to usage, performance, and billing.
D. Communication Support and Other Operations

Internet 350 may represent a portion of the global Inter-
net. However, Internet 350 may alternatively represent a
different type of network, such as a private wide-area or
local-area packet-switched network.

FIG. 4 further 1llustrates the communication environment
between managed network 300 and computational instance
322, and introduces additional features and alternative
embodiments. In FIG. 4, computational instance 322 1is
replicated across data centers 400A and 400B. These data
centers may be geographically distant from one another,
perhaps in different cities or different countries. Each data
center includes support equipment that facilitates commu-
nication with managed network 300, as well as remote users.

In data center 400A, network traflic to and from external
devices flows either through VPN gateway 402A or firewall
404A. VPN gateway 402A may be peered with VPN gate-
way 412 of managed network 300 by way of a security
protocol such as Internet Protocol Secunity (IPSEC) or
Transport Layer Security (TLS). Firewall 404A may be
configured to allow access from authorized users, such as
user 414 and remote user 416, and to deny access to
unauthorized users. By way of firewall 404A, these users
may access computational instance 322, and possibly other
computational instances. Load balancer 406 A may be used

"y

US 12,093,685 B2

13

to distribute traflic amongst one or more physical or virtual
server devices that host computational instance 322. Load
balancer 406 A may simplily user access by hiding the
internal configuration of data center 400A, (e.g., computa-
tional instance 322) from client devices. For instance, i
computational instance 322 includes multiple physical or
virtual computing devices that share access to multiple
databases, load balancer 406 A may distribute network traflic
and processing tasks across these computing devices and
databases so that no one computing device or database 1s
significantly busier than the others. In some embodiments,

computational instance 322 may include VPN gateway
402A, firewall 404 A, and load balancer 406A.

Data center 400B may include 1ts own versions of the
components 1n data center 400A. Thus, VPN gateway 402B,
firewall 404B, and load balancer 4068 may perform the
same or similar operations as VPN gateway 402A, firewall
404 A, and load balancer 406 A, respectively. Further, by way
of real-time or near-real-time database replication and/or
other operations, computational instance 322 may exist
simultaneously 1n data centers 400A and 400B.

Data centers 400A and 400B as shown in FIG. 4 may
tacilitate redundancy and high availability. In the configu-
ration of FIG. 4, data center 400A 1s active and data center
400B 1s passive. Thus, data center 400A 1s serving all traflic
to and from managed network 300, while the version of
computational instance 322 i1n data center 400B 1s being
updated 1n near-real-time. Other configurations, such as one
in which both data centers are active, may be supported.

Should data center 400A fail 1n some fashion or otherwise
become unavailable to users, data center 400B can take over
as the active data center. For example, domain name system
(DNS) servers that associate a domain name of computa-
tional instance 322 with one or more Internet Protocol (IP)
addresses of data center 400A may re-associate the domain
name with one or more IP addresses of data center 400B.
After this re-association completes (which may take less
than one second or several seconds), users may access
computational mstance 322 by way of data center 400B.

FIG. 4 also 1llustrates a possible configuration of managed
network 300. As noted above, proxy servers 312 and user
414 may access computational instance 322 through firewall
310. Proxy servers 312 may also access configuration items
410. In FIG. 4, configuration items 410 may refer to any or
all of client devices 302, server devices 304, routers 306, and
virtual machines 308, any applications or services executing,
thereon, as well as relationships between devices, applica-
tions, and services. Thus, the term “configuration items”
may be shorthand for any physical or virtual device, or any
application or service remotely discoverable or managed by
computational mstance 322, or relationships between dis-
covered devices, applications, and services. Configuration
items may be represented in a configuration management
database (CMDB) of computational instance 322.

As noted above, VPN gateway 412 may provide a dedi-
cated VPN to VPN gateway 402A. Such a VPN may be
helpful when there 1s a significant amount of trathic between
managed network 300 and computational instance 322, or
security policies otherwise suggest or require use of a VPN
between these sites. In some embodiments, any device in
managed network 300 and/or computational instance 322
that directly communicates via the VPN 1s assigned a public
IP address. Other devices in managed network 300 and/or

computational instance 322 may be assigned private IP
addresses (e.g., IP addresses selected from the 10.0.0.0-

10.255.255.255 or 192.168.0.0-192.168.255.255 ranges,

5

10

15

20

25

30

35

40

45

50

55

60

65

14

represented 1n shorthand as
192.168.0.0/16, respectively).

subnets 10.0.0.0/8 and

IV. Example Device, Application, and Service

Discovery

In order for remote network management platform 320 to
administer the devices, applications, and services of man-
aged network 300, remote network management platform
320 may first determine what devices are present 1n man-
aged network 300, the configurations and operational sta-
tuses of these devices, and the applications and services
provided by the devices, as well as the relationships between
discovered devices, applications, and services. As noted
above, each device, application, service, and relationship
may be referred to as a configuration item. The process of
defining configuration items within managed network 300 1s
referred to as discovery, and may be facilitated at least in
part by proxy servers 312.

For purposes of the embodiments herein, an “application”
may refer to one or more processes, threads, programs, client
modules, server modules, or any other software that
executes on a device or group of devices. A “service” may
refer to a high-level capability provided by multiple appli-
cations executing on one or more devices working in con-
junction with one another. For example, a high-level web
service may ivolve multiple web application server threads
executing on one device and accessing information from a
database application that executes on another device.

FIG. 5A provides a logical depiction of how configuration
items can be discovered, as well as how information related
to discovered configuration 1tems can be stored. For sake of

simplicity, remote network management platform 320, pub-
lic cloud networks 340, and Internet 350 are not shown.

In FIG. 5A, CMDB 500 and task list 502 are stored within
computational instance 322. Computational instance 322
may transmit discovery commands to proxy servers 312. In
response, proxy servers 312 may transmit probes to various
devices, applications, and services 1n managed network 300.
These devices, applications, and services may transmit
responses to proxy servers 312, and proxy servers 312 may
then provide information regarding discovered configuration
items to CMDB 500 for storage therein. Configuration items
stored in CMDB 500 represent the environment of managed
network 300.

Task list 502 represents a list of activities that proxy
servers 312 are to perform on behall of computational
instance 322. As discovery takes place, task list 502 1is
populated. Proxy servers 312 repeatedly query task list 502,
obtain the next task therein, and perform this task until task
list 502 1s empty or another stopping condition has been
reached.

To facilitate discovery, proxy servers 312 may be config-
ured with information regarding one or more subnets in
managed network 300 that are reachable by way of proxy
servers 312. For instance, proxy servers 312 may be given
the IP address range 192.168.0/24 as a subnet. Then, com-
putational instance 322 may store this information in CMDB
500 and place tasks 1n task list 502 for discovery of devices
at each of these addresses.

FIG. 5A also depicts devices, applications, and services in
managed network 300 as configuration items 504, 506, 508,
510, and 512. As noted above, these configuration items
represent a set of physical and/or virtual devices (e.g., client
devices, server devices, routers, or virtual machines), appli-
cations executing thereon (e.g., web servers, email servers,

US 12,093,685 B2

15

databases, or storage arrays), relationships therebetween, as
well as services that involve multiple individual configura-
tion 1tems.

Placing the tasks in task list 502 may trigger or otherwise
cause proxy servers 312 to begin discovery. Alternatively or
additionally, discovery may be manually triggered or auto-
matically triggered based on triggering events (e.g., discov-
cery may automatically begin once per day at a particular
time).

In general, discovery may proceed 1n four logical phases:
scanning, classification, 1dentification, and exploration.
Each phase of discovery involves various types of probe
messages being transmitted by proxy servers 312 to one or
more devices in managed network 300. The responses to
these probes may be received and processed by proxy
servers 312, and representations thereol may be transmitted
to CMDB 500. Thus, each phase can result 1n more con-
figuration 1tems being discovered and stored in CMDB 500.

In the scanning phase, proxy servers 312 may probe each
IP address 1n the specified range of IP addresses for open
Transmission Control Protocol (TCP) and/or User Datagram
Protocol (UDP) ports to determine the general type of
device. The presence of such open ports at an IP address may
indicate that a particular application 1s operating on the
device that 1s assigned the IP address, which 1n turn may
identify the operating system used by the device. For
example, 11 TCP port 135 1s open, then the device 1s likely
executing a WINDOWS® operating system. Similarly, 1f
TCP port 22 1s open, then the device 1s likely executing a
UNIX® operating system, such as LINUX®. If UDP port
161 1s open, then the device may be able to be further
identified through the Simple Network Management Proto-
col (SNMP). Other possibilities exist. Once the presence of
a device at a particular IP address and 1ts open ports have
been discovered, these configuration items are saved in
CMDB 500.

In the classification phase, proxy servers 312 may further
probe each discovered device to determine the version of its
operating system. The probes used for a particular device are
based on information gathered about the devices during the
scanning phase. For example, 11 a device 1s found with TCP
port 22 open, a set of UNIX®-specific probes may be used.
Likewise, 11 a device 1s found with TCP port 135 open, a set
of WINDOWS®-specific probes may be used. For either
case, an appropriate set of tasks may be placed in task list
502 for proxy servers 312 to carry out. These tasks may
result 1n proxy servers 312 logging on, or otherwise access-
ing information from the particular device. For instance, 1f
TCP port 22 1s open, proxy servers 312 may be instructed to
initiate a Secure Shell (SSH) connection to the particular
device and obtain information about the operating system
thereon from particular locations 1n the file system. Based on
this information, the operating system may be determined.
As an example, a UNIX® device with TCP port 22 open
may be classified as AIX®, HPUX, LINUX®, MACOS®,
or SOLARIS®. This classification mnformation may be
stored as one or more configuration items in CMDB 500.

In the i1dentification phase, proxy servers 312 may deter-
mine specific details about a classified device. The probes
used during this phase may be based on information gath-
ered about the particular devices during the classification
phase. For example, 11 a device was classified as LINUX®,
a set of LINUX®-specific probes may be used. Likewise, 1

a device was classified as WINDOWS® 2012, as a set of
WINDOWS®-2012-specific probes may be used. As was
the case for the classification phase, an appropriate set of
tasks may be placed 1n task list 502 for proxy servers 312 to

10

15

20

25

30

35

40

45

50

55

60

65

16

carry out. These tasks may result in proxy servers 312
reading information from the particular device, such as basic
input/output system (BIOS) information, serial numbers,
network interface information, media access control address
(es) assigned to these network interface(s), IP address(es)
used by the particular device and so on. This identification

information may be stored as one or more coniiguration
items 1n CMDB 500.

In the exploration phase, proxy servers 312 may deter-
mine further details about the operational state of a classified
device. The probes used during this phase may be based on
information gathered about the particular devices during the
classification phase and/or the i1dentification phase. Again,
an appropriate set of tasks may be placed 1n task list 502 for
proxy servers 312 to carry out. These tasks may result in
proxy servers 312 reading additional information from the
particular device, such as processor information, memory
information, lists of running processes (applications), and so
on. Once more, the discovered information may be stored as
one or more configuration items 1n CMDB 500.

Running discovery on a network device, such as a router,
may utilize SNMP. Instead of or in addition to determining
a list of running processes or other application-related
information, discovery may determine additional subnets
known to the router and the operational state of the router’s
network interfaces (e.g., active, inactive, queue length, num-
ber of packets dropped, etc.). The IP addresses of the
additional subnets may be candidates for further discovery
procedures. Thus, discovery may progress iteratively or
recursively.

Once discovery completes, a snapshot representation of
cach discovered device, application, and service 1s available
in CMDB 500. For example, after discovery, operating
system version, hardware configuration, and network con-
figuration details for client devices, server devices, and
routers 1 managed network 300, as well as applications
executing thereon, may be stored. This collected information
may be presented to a user 1n various ways to allow the user
to view the hardware composition and operational status of
devices, as well as the characteristics of services that span
multiple devices and applications.

Furthermore, CMDB 500 may include entries regarding
dependencies and relationships between configuration
items. More specifically, an application that 1s executing on
a particular server device, as well as the services that rely on
this application, may be represented as such in CMDB 500.
For example, suppose that a database application 1s execut-
ing on a server device, and that this database application 1s
used by a new employee onboarding service as well as a
payroll service. Thus, if the server device 1s taken out of
operation for maintenance, 1t 1s clear that the employee
onboarding service and payroll service will be impacted.
Likewise, the dependencies and relationships between con-
figuration 1tems may be able to represent the services
impacted when a particular router fails.

In general, dependencies and relationships between con-
figuration 1tems may be displayed on a web-based interface
and represented 1n a hierarchical fashion. Thus, adding,
changing, or removing such dependencies and relationships
may be accomplished by way of this interface.

Furthermore, users from managed network 300 may
develop workilows that allow certain coordinated activities
to take place across multiple discovered devices. For
instance, an I'T worktlow might allow the user to change the
common admimstrator password to all discovered LINUX®
devices 1n a single operation.

US 12,093,685 B2

17

In order for discovery to take place in the manner
described above, proxy servers 312, CMDB 500, and/or one
or more credential stores may be configured with credentials
for one or more of the devices to be discovered. Credentials
may 1include any type of information needed in order to
access the devices. These may include userid/password
pairs, certificates, and so on. In some embodiments, these
credentials may be stored 1n encrypted fields of CMDB 500.
Proxy servers 312 may contain the decryption key for the
credentials so that proxy servers 312 can use these creden-
tials to log on to or otherwise access devices being discov-
ered.

The discovery process 1s depicted as a flow chart in FIG.
5B. At block 520, the task list 1n the computational instance
1s populated, for instance, with a range of IP addresses. At
block 522, the scanming phase takes place. Thus, the proxy
servers probe the IP addresses for devices using these IP
addresses, and attempt to determine the operating systems
that are executing on these devices. At block 524, the
classification phase takes place. The proxy servers attempt to
determine the operating system version of the discovered
devices. At block 526, the 1dentification phase takes place.
The proxy servers attempt to determine the hardware and/or
software configuration of the discovered devices. At block
528, the exploration phase takes place. The proxy servers
attempt to determine the operational state and applications
executing on the discovered devices. At block 530, further
editing of the configuration items representing the discov-
ered devices and applications may take place. This editing
may be automated and/or manual in nature.

The blocks represented 1n FIG. 5B are examples. Discov-
ery may be a highly configurable procedure that can have
more or fewer phases, and the operations of each phase may
vary. In some cases, one or more phases may be customized,
or may otherwise deviate from the exemplary descriptions
above.

In this manner, a remote network management platform
may discover and inventory the hardware, software, and
services deployed on and provided by the managed network.
As noted above, this data may be stored in a CMDB of the
associated computational mstance as configuration items.
For example, individual hardware components (e.g., com-
puting devices, virtual servers, databases, routers, etc.) may
be represented as hardware configuration items, while the
applications installed and/or executing therecon may be rep-
resented as soltware configuration 1tems.

The relationship between a software configuration item
installed or executing on a hardware configuration 1tem may
take various forms, such as “i1s hosted on”, “runs on”, or
“depends on”. Thus, a database application installed on a
server device may have the relationship “1s hosted on™ with
the server device to indicate that the database application 1s
hosted on the server device. In some embodiments, the
server device may have a reciprocal relationship of “used
by”” with the database application to indicate that the server
device 1s used by the database application. These relation-
ships may be automatically found using the discovery pro-
cedures described above, though 1t 1s possible to manually
set relationships as well.

The relationship between a service and one or more
soltware configuration 1tems may also take various forms.
As an example, a web service may include a web server
soltware configuration 1tem and a database application soft-
ware configuration item, each installed on different hard-
ware configuration items. The web service may have a
“depends on” relationship with both of these software con-
figuration items, while the software configuration 1tems have

10

15

20

25

30

35

40

45

50

55

60

65

18

a “used by” reciprocal relationship with the web service.
Services might not be able to be fully determined by

discovery procedures, and instead may rely on service
mapping (e.g., probing configuration files and/or carrying
out network tratlic analysis to determine service level rela-
tionships between configuration items) and possibly some
extent of manual configuration.

Regardless of how relationship information 1s obtained, it
can be valuable for the operation of a managed network.
Notably, I'T personnel can quickly determine where certain
soltware applications are deployed, and what configuration
items make up a service. This allows for rapid pinpointing
of root causes ol service outages or degradation. For
example, 1I two different services are suflering from slow
response times, the CMDB can be queried (perhaps among
other activities) to determine that the root cause 1s a database
application that 1s used by both services having high pro-
cessor utilization. Thus, IT personnel can address the data-
base application rather than waste time considering the
health and performance of other configuration items that
make up the services.

V. CMDB Identification Rules and Reconciliation

A CMDB, such as CMDB 3500, provides a repository of
configuration items, and when properly provisioned, can
take on a key role in higher-layer applications deployed
within or 1nvolving a computational instance. These appli-
cations may relate to enterprise IT service management,
operations management, asset management, configuration
management, compliance, and so on.

For example, an I'T service management application may
use iformation i the CMDB to determine applications and
services that may be impacted by a component (e.g., a server
device) that has malfunctioned, crashed, or 1s heavily
loaded. Likewise, an asset management application may use
information in the CMDB to determine which hardware
and/or software components are being used to support
particular enterprise applications. As a consequence of the
importance of the CMDB, it 1s desirable for the information
stored therein to be accurate, consistent, and up to date.

A CMDB may be populated in various ways. As discussed
above, a discovery procedure may automatically store infor-
mation related to configuration 1tems in the CMDB. How-
ever, a CMDB can also be populated, as a whole or 1n part,
by manual entry, configuration files, and third-party data
sources. Given that multiple data sources may be able to
update the CMDB at any time, it 1s possible that one data
source may overwrite entries of another data source. Also,
two data sources may each create slightly different entries
for the same configuration item, resulting mmn a CMDB
containing duplicate data. When either of these occurrences
takes place, they can cause the health and utility of the
CMDB to be reduced.

In order to mitigate this situation, these data sources might
not write configuration items directly to the CMDB. Instead,
they may write to an i1dentification and reconciliation appli-
cation programming interface (API). This API may use a set
of configurable i1dentification rules that can be used to
unmiquely 1dentity configuration items and determine whether
and how they are written to the CMDB.

In general, an identification rule specifies a set of con-
figuration item attributes that can be used for this unique
identification. Identification rules may also have priorities so
that rules with higher priorities are considered before rules
with lower priorities. Additionally, a rule may be indepen-
dent, 1n that the rule 1dentifies configuration items 1ndepen-

US 12,093,685 B2

19

dently of other configuration items. Alternatively, the rule
may be dependent, 1n that the rule first uses a metadata rule

to 1dentily a dependent configuration item.

Metadata rules describe which other configuration i1tems
are contained within a particular configuration 1tem, or the
host on which a particular configuration 1tem 1s deployed.
For example, a network directory service configuration item
may contain a domain controller configuration 1tem, while a
web server application configuration 1tem may be hosted on
a server device configuration item.

A goal of each identification rule 1s to use a combination
of attributes that can unambiguously distinguish a configu-
ration 1tem from all other configuration items, and 1s
expected not to change during the lifetime of the configu-
ration item. Some possible attributes for an example server
device may include serial number, location, operating sys-
tem, operating system version, memory capacity, and so on.
IT a rule specifies attributes that do not umiquely 1dentitly the
configuration item, then multiple components may be rep-
resented as the same configuration 1tem in the CMDB. Also,
i a rule specifies attributes that change for a particular
configuration i1tem, duplicate configuration items may be
created.

Thus, when a data source provides information regarding,
a configuration item to the identification and reconciliation
API, the API may attempt to match the information with one
or more rules. If a match 1s found, the configuration 1tem 1s
written to the CMDB. If a match 1s not found, the configu-
ration 1tem may be held for further analysis.

Configuration 1tem reconciliation procedures may be used
to ensure that only authoritative data sources are allowed to
overwrite configuration item data in the CMDB. This rec-
onciliation may also be rules-based. For instance, a recon-
ciliation rule may specily that a particular data source 1is
authoritative for a particular configuration item type and set
of attributes. Then, the 1dentification and reconciliation API
will only permit this authoritative data source to write to the
particular configuration i1tem, and writes from unauthorized
data sources may be prevented. Thus, the authorized data
source becomes the single source of truth regarding the
particular configuration item. In some cases, an unauthor-
1zed data source may be allowed to write to a configuration
item 1f 1t 1s creating the configuration 1tem or the attributes
to which it 1s writing are empty.

Additionally, multiple data sources may be authoritative
for the same configuration item or attributes thereof. To
avold ambiguities, these data sources may be assigned
precedences that are taken into account during the writing of
configuration 1tems. For example, a secondary authorized
data source may be able to write to a configuration item’s
attribute until a primary authorized data source writes to this
attribute. Afterward, further writes to the attribute by the
secondary authorized data source may be prevented.

In some cases, duplicate configuration items may be
automatically detected by reconciliation procedures or 1n
another fashion. These configuration items may be flagged
for manual de-duplication

V1. Discovering and Representing Implicit
Configuration Items 1 a CMDB

Existing automated discovery procedures may not be able
to detect and/or identity all software disposed upon a
managed network. Some of these procedures may only
discover executing applications (e.g., by obtaining a list of
such by way of a command line interface). Other procedures
may able to discover executable applications that are present

10

15

20

25

30

35

40

45

50

55

60

65

20

on a computing device but not necessarily executing (e.g.,
by searching for executable files in particular locations of a
file system). But applications may exist in non-executable
forms as well. Discovery of these forms and the proper
representation thereof 1n a CMDB 1s not presently sup-
ported.

Nonetheless, facilitating such discovery can be beneficial.
At any given point in time, the managed network may be in
the process of developing one or more custom applications.
Thus, the custom applications may exist largely as source
code. For the purposes herein, source code may include

soltware written using a human-readable programming lan-
guage (e.g., C++, JAVA, JAVASCRIPT®, Python, HTML,
etc.), as well as associated configuration, build, and/or
resource files. The source code 1s typically stored in text
files, while the configuration, build, and resource files could
be either in text files or binary fields (e.g., resource files
often contain still 1images, audio, and/or video). A custom
application may consist of one or more source code files.

These custom applications may be undeployed, in that
they do not have corresponding compiled or executable files
disposed upon the managed network or elsewhere. For
instance, a custom application that 1s under development
may exist only in source code form. In such a case, the
source code may be stored in the managed network, but
corresponding executable variations of the application might
not exist or be deployed for use. Herein, an application that
1s deployed 1s assumed to be compiled or otherwise 1 an
executable form and 1installed on at least one computing
device 1n the managed network or on a public cloud net-
work.

On the other hand, compiled or executable files corre-
sponding to one or more versions of these applications might
be disposed upon the managed network or a public cloud
network. As an example, source code for versions 1.0 and
1.1 of a custom application may be stored in the managed
network, but a compiled representation of only version 1.0
might be deployed. Thus, version 1.1 of the application may
exist only 1n source code form. Examples include word
processing and/or email applications installed upon client
devices, where these client devices may be associated with
the managed network but not always disposed upon the
managed network (e.g., laptops).

As noted, traditional discovery procedures cannot dis-
cover versions of applications that exist only as source code.
Further, even 11 the source code were discoverable or were
somehow entered 1into an existing configuration item table 1n
the CMDB, such an arrangement would be problematic. The
managed network relies upon the CMDB to be a single
source of truth with respect to applications that are deployed
for use upon the managed network or a public cloud net-
work. Including representations of source code 1n the
CMDB as normal configuration items would result in the
CMDB no longer containing an accurate representation of
applications that are actually 1n use or usable by the man-
aged network. Thus, remote network management platiorm
applications would not be able to distinguish between
deployed and undeployed applications.

In such a situation, some remote network management
platform applications would generate invalid interpretations
of the configuration items. For example, a vulnerability
response application that scans source code and/or execut-
able files for security vulnerabilities may flag the source
code for a custom application as having one or more
vulnerabilities. But, if this application 1s not deployed, the
cellective security risk 1s negligible. Such an inaccuracy

US 12,093,685 B2

21

could cause IT professionals to waste time tracking down
and trying to address a false positive.

Similarly, remote network management platform applica-
tions for service mapping may generate representations of
services that span one or more configuration 1tems. Such an
application might erroneously 1nclude an undeployed cus-
tom application 1n 1ts representation of a service. For
example, the undeployed custom application may include,
for purposes of testing, parameters 1n 1ts source code (e.g.,
IP addresses, names of other applications, a name of the
service) linking it to other configuration 1tems in the service.
But the resulting service map would not be an accurate
representation of which configuration items are actively
involved 1n providing the service. Thus, IT proifessionals
might become confused, and waste time searching for or
investigating configuration items that do not actually exist as
active components of the service.

To overcome these limitations, the embodiments herein
introduce a new type of configuration item to represent
source code—the 1mplicit configuration item. Unlike previ-
ous configuration items (which can be referred to as explicit
configuration items for purposes of differentiation), an
implicit configuration item represents a source code version
of a soltware application that may be uncompiled, unde-
ployed, or under development.

An 1mplicit configuration item may represent one or more
source code files stored 1n a source code repository, for
example. Such an implicit configuration i1tem may include
some or all attributes of a traditional configuration item, as
well as an application name, application version, an indica-
tion of whether the compiled application 1s intended to be
Internet-facing, the type of compiled application (e.g., web
service, microservice, etc.), and so on.

A. Implicit and Explicit Configuration Item Storage

Implicit configuration items may exist in a CMDB table
that 1s separate from those used to store explicit configura-
tion 1tems. Thus, implicit configuration 1tems can easily be
distinguished from explicit configuration 1tems and would
not be subject to operations occurring on tables of explicit
configuration items. This new CMDB table may inherent
some or all of the attributes and properties of a base
configuration item table in the CMDB.

In addition to this new table storing implicit configuration
items, a further CMDB table may be defined to store named
or unnamed relationships between implicit configuration
items and other configuration items (e.g., between two
implicit configuration 1tems, or between one 1mplicit con-
figuration item and one explicit configuration item). This
turther relationship table may be referred to as an implicit
relationship table, and may be separate from any existing,
explicit relationship tables that define explicit relationships
between pairs of explicit configuration 1tems.

These tables and how they may be used are defined in
database architecture 600 of FIG. 6. Particularly, database
architecture 600 may exist in the CMDB and include base
configuration item table 602, which defines some number of
attributes. These attributes (not shown) may appear as
columns 1n base configuration item table 602. Example
attributes include: to whom the configuration item 1is
assigned, a department of the managed network that owns or
uses the configuration 1tem, how the configuration item was
discovered, an IP address of the configuration item, a
link-layer address of the configuration item, the time at
which the configuration item was most recently discovered,
a model number of the configuration 1tem, a serial number
of the configuration 1tem, a class of the configuration item,
a unique identifier of the configuration item, and a vendor

5

10

15

20

25

30

35

40

45

50

55

60

65

22

that provided the configuration item. Other attributes are
possible, and some embodiments include several dozen
attributes 1n the configuration item table. In some cases, not
all of these attributes will be populated with values for all
configuration items, and unpopulated attributes may take on
a null, blank, or detfault value.

Implicit configuration item table 604 and explicit con-
figuration item table 606 inherit from base configuration
item table 602. In other words, implicit configuration 1tem
table 604 and explicit configuration item table 606 may
contain all of the attributes 1n base configuration item table
602, and additional attributes as well. Further, while only
one instance of each of implicit configuration item table 604
and explicit configuration item table 606 are shown, mul-
tiple instances of these tables may be present. For example,
there may be several tables each containing different types
of 1mplicit configuration i1tems and/or several tables each
containing different types of explicit configuration items.
Thus, there may be explicit configuration i1tem tables for
generic hardware components, generic software compo-
nents, hardware components from particular vendors, soft-
ware components from particular vendors, and so on.
Accordingly, implicit configuration item table 604 may
represent one of possibly many such tables contaiming
implicit configuration items, and explicit configuration 1tem
table 606 may represent one of possibly many such tables
containing explicit configuration items.

Implicit configuration 1item table 604 as shown contains
five implicit configuration items, 604A, 6048, 604C, 604D,
and 604E. As noted above, each of these implicit configu-
ration 1tems may represent a set of source code files. Explicit
configuration item table 606 as shown contains five explicit
configuration items, 606 A, 6068, 606C, 606D, and 606E. As
noted above, each of these explicit configuration 1tems may
represent a hardware component or executable software
component.

Implicit relationship table 608 contains relationships
between pairs of configuration items. As noted above,
implicit relationship table 608 may contain relationships
between pairs of implicit configuration items or between an
implicit configuration i1item and an explicit configuration
item. In some embodiments, implicit relationship table 608
does not contain relationships between pairs of explicit
configuration 1items. Thus, for example, relationship 608A is
between 1implicit configuration items 604D and 604E, while
relationship 608B 1s between implicit configuration items
6048 and 604C. Relationship 608C, on the other hand, 1s
between implicit configuration item 604A and explicit con-
figuration item 606A.

Explicit relationship table 610 might only contain rela-
tionships between pairs of explicit configuration items.
Thus, for example, relationship 610A 1s between explicit
configuration items 606D and 606E, while relationship
610B 1s between explicit configuration items 6068 and
606C.

Relationships 1in implicit relationship table 608 and
explicit relationship table 610 may contain references
“pomting” to configuration items. These relferences are
shown as solid arrows from entries 1 1mplicit relationship
table 608 or explicit relationship table 610 to specific
conflguration items. In practice, a reference be implemented
as a numeric value referring to a unique identifier of a
conflguration item 1n one of configuration item table 604 or
explicit configuration 1tem table 606. But other possibilities
exist.

The relationships 1n 1mplicit relationship table 608 may
either be named or unnamed. A named relationship includes

US 12,093,685 B2

23

an 1ndication of the type of relationship, e.g., “i1s hosted on”,
“runs on”, “depends on”, or “1s used by”. An unnamed
relationship 1indicates that a relationship exists between two
configuration items but does not specily the type of rela-
tionship. The relationships in explicit relationship table 610
may all be named.

In some embodiments, implicit relationship table 608 and
explicit relationship table 610 may i1nherit from base rela-
tionship table 612. Thus, base relationship table 612 may
define a relationship entry to include a per-table unique
identifier, references to two configuration items, a type, and
possibly other attributes. Entries in implicit relationship
table 608 and explicit relationship table 610 may include
these attributes and possibly other attributes as well. For
example, implicit relationship table 608 may contain attri-
butes not 1n explicit relationship table 610, and/or vice versa.
B. Discovering Source Code Repositories

Most source code under development 1s stored 1n a source
code repository. Such a repository may include a database
and/or file system including the source code files.

The source code repository may perform version control
over the source code files by tracking changes to these files
as well as allowing each variation thereof to be tagged with
a version number (i.e., a file version). Various tagged ver-
sions ol source code files, when compiled into machine
code, byte code, or some other executable or interpretable
format, may result 1n a particular version of an application
(1.e., an application version).

The source code repository may have a web-based inter-
face for interacting with the source code files. By way of this
interface, a software developer may be able to browse
directories of files, view files, check files out, check files 1n,
merge diflerent versions of {files, resolve conflicts between
different versions of files, compile versions of applications
from these files, create forks or branches of applications, and
possibly perform other tasks. Other interfaces providing this
functionality (e.g., from a dedicated client application) may
also exist. Additional source code repository features may
include defect tracking, task management, editing of docu-
mentation files, and continuous build, integration, and test,
as well as user-defined properties.

FIG. 7A 1s a depiction of source code repository 700,
containing two projects, alpha and beta that correspond to
respective applications. Each of these projects includes
multiple source code files tagged with file versions, and
application versions that consist of a number of tagged file
versions. Each file version may represent a version of the
source code file that was checked into source code reposi-
tory 700, and each application version may represent a set of
file versions of the source code files that can be (or is
intended to be) compiled into an executable application or
accompany such an executable application. While only two
projects are shown 1n FIG. 7A, many such projects may exist
in source code repository 700.

Project alpha includes source code files A, B, and C.
Multiple file versions of these files may be stored 1n source
code repository 700, each with a specific and unique tag. For
example, there are two file versions of source code file A
(1.5.7 and 1.6), three file versions of source code file B (2.3,
2.5, and 2.5.1), and two file versions of source code file C
(1.1 and 1.1.4). There are also three application versions of
project alpha. Application version 1.0 includes file versions
1.5.7 and 2.3 of source code files A and B, respectively.
Application version 1.1 includes file versions 1.5.7, 2.5, and
1.1 of source code files A, B, and C, respectively. Applica-
tion version 1.2 includes file versions 1.6, 2.5.1, and 1.1.4 of
source code files A, B, and C, respectively. Notably, more or

10

15

20

25

30

35

40

45

50

55

60

65

24

less than three source code files may exist in a project, and
more or fewer file versions and application versions may
also exist. Also, different application versions of the same
application may involve diflerent numbers of source code
files.

FIG. 7A also shows that application version 1.0 of project
alpha (consisting of file versions 1.5.7 and 2.3 of source
code files A and B, respectively) has been compiled into
version 1.0 of the project alpha executable. Also, application
version 1.1 of project alpha (consisting of file versions 1.5.7,
2.5, and 1.1 of source code files A, B, and C, respectively)
has been compiled into version 1.1 of the project alpha
executable. These compiled executables can be distributed
for installation on computing devices within the managed
network or elsewhere. Application version 1.2 has not yet
been compiled into an executable. This may be because the
associated file versions of source code files A, B, and C are
still under development.

Similarly, project beta includes source code files D, E, and
F. Not unlike the source code files of project alpha, multiple
file versions of these files may be stored i1n source code
repository 700, each with a specific and unique tag. For
example, there are two file versions of source code file D
(0.7 and 0.8), one file version of source code file E (1.1), and
one file version of source code file F (2.0A). There are also
three application versions ol project beta. Application ver-
sion 1.5 includes file versions 0.7, 1.1, and 2.0A of source
code files D, E, and F, respectively. Application version 2.0
includes file versions 0.7 and 2.0A of source code files D and
F, respectively. Application version 2.1 includes file versions
0.8 and 2.0A of source code files D and F, respectively.

FIG. 7A also shows that application version 1.5 of project
beta (consisting of file versions 0.7, 1.1, and 2.0A of source
code files D, E, and F, respectively) has been compiled into
version 1.5 of the project beta executable. Also, application
version 2.1 of project beta (consisting of file versions 0.8 and
2.0A of source code files D and F, respectively) has been
compiled into version 2.1 of the project beta executable.
These compiled executables can be distributed for installa-
tion on computing devices within the managed network or
clsewhere. Application version 2.0 has not yet been com-
piled into an executable. This may be because the associated
file versions of source code files D and F are still under
development, or compilation of this version of project beta
has been put aside 1n favor of version 2.1.

As noted, a source code repository can be logged into,
¢.g., by way ol a web interface or a client application. This
means that, given the proper credentials (e.g., userid and
password), proxy servers 312 can access source code reposi-
tory 700 and use commands to view projects and the source
code files thereof. As an example, proxy server 312 may
access source code repository 700, request a list of projects,
and receive indications that project alpha and project beta
are stored within source code repository 700.

Then, proxy server 312 may perform commands to select
project alpha, and obtain a listing of the versions of this
project. If possible, proxy server 312 may also obtain
information about the associated executable files, such as
their file names and whether they are intended to be Internet-
facing (e.g., directly accessible by way of a public IP address
on the Internet). Proxy server 312 may collect similar
information with regard to project beta. Proxy server 312
may also provide this information to a CMDB (e.g., CMDB
500) for storage 1n a table that stores implicit configuration
items (e.g., mmplicit configuration item table 604). The
entries stored in the table may respectively include each
project’s name, version, a unique identifier, whether it 1s

US 12,093,685 B2

25

intended to produce Internet-facing applications, and possi-
bly other information as well. In some cases, this additional

information may include indications of source code files
associated with each version of the project, whether the
project has been tested, individuals responsible for the
project, and a status of the project.

While projects within source code repositories can be
automatically discovered using such a process, some man-
aged networks may manually enter this data into the CMDB,
or may use manual entry of data to enhance what 1s found
during discovery. Also, as discussed below, remote network
management platform applications other than those focused
on discovery may populate the CMDB with information
related to implicit configuration items.

C. Determining Implicit Relationships Between Source
Code and Applications

FIG. 7B depicts managed network 300 containing source
code repository 700, server device 710, server device 712,
and web server 714. As shown in FIG. 7A, source code
repository contains the source code and related information
from project alpha and project beta. Server device 710 has
deployed upon 1t version 1.0 of the project alpha executable,
and server device 712 has deployed upon it version 1.1 of the
project alpha executable. Web server 714 has deployed upon
it version 2.1 of the project beta executable. As shown, the
project beta executable on web server 714 1s Internet-facing
while the two project alpha deployments are not.

Given the information discoverable within source code
repository 700, server device 710, server device 712, and
web server 714, tables 1n the CMDB containing implicit
configuration 1tems, explicit configuration items, and
implicit relationships may be populated. For example,
implicit configuration 1tem table 604 may be populated with
entries for each version of project alpha and project beta, and
explicit configuration 1tem table 606 may be populated with
cach deployment of the project alpha and project beta
executables. In some cases, relationships between the source
code and the deployed executables may be determined (e.g.,
based on the filenames and versions of the project alpha and
project beta executables, and/or other identifying informa-
tion). Thus, implicit relationship table 608 can be populated
with entries that associate versions of projects in source code
repository 700 (represented as configuration items in
implicit configuration i1tem table 604) with their respective
deployed executables (represented as configuration 1tems 1n
explicit configuration 1tem table 606).

In some embodiments, one or more of source code
repository 700, server device 710, server device 712, and
web server 714 may exist outside of the managed network,
such as 1n one or more of public cloud networks 340. In
these cases, source code repository 700 and its compiled
applications executing on server device 710, server device
712, and web server 714 may be discoverable by way of
application programming interfaces ol the public cloud
network 1n which these devices are disposed.

VII. Implicit Configuration Item Use

Once stored 1n a CMDB, implicit configuration items and
implicit relationships can be used by various remote network
management platform applications. Three such remote net-
work management platform applications are described
herein—vulnerability response, development operations,
and application portifolio management. Each of these appli-
cations may employ functionality that can be used to popu-
late the CMDB with implicit configuration items and/or
implicit relationships. Each application may also be able to

10

15

20

25

30

35

40

45

50

55

60

65

26

read and integrate these implicit configuration 1tems and/or
implicit relationships into their operations.

FIG. 8 1llustrates a remote network management platform
architecture to {facilitate these features. As previously
described, CMDB 500 i1s disposed within a remote network
management platform, and the platform supports a number
ol remote network management platform applications. Vul-
nerability response application 800, development operations
application 802, and application portfolio management
application 804 may each be able to write to and/or read
from CMDB 500. Particularly, these three applications may
be able to populate, edit, and read from 1mplicit configura-
tion i1tem table 604 and implicit relationship table 608. The
applications may also be able to populate, edit, and read
from explicit configuration item table 606 and explicit
relationship table 610.

In some cases, these applications may communicate with
proxy server 312 or discovery applications on the remote
network management platform to cause discovery of
implicit configuration items. In other cases, soltware dis-
posed on the managed network or a public cloud network
may provide information related to implicit configuration
items to the CMDB.

Any mmplicit configuration 1tems or 1mplicit relationships
stored 1n CMDB 3500 due to the activities of one remote
network management platform application may be used by
any other remote network management platform application.
For example, implicit configuration items discovered at the
request of vulnerability response application 800 may be
used by development operations application 802.

The disclosure below provides more detail as to the
operations ol vulnerability response application 800, devel-
opment operations application 802, and application portiolio
management application 804, and also illustrate some sce-
narios 1 which use of mmplicit configuration items can
enhance the functionality of these applications.

As shown 1n FIG. 9, the role of implicit relationship table
608 may be expanded to incorporate relationships between
implicit configuration 1tems stored in 1mplicit configuration
item table 604, explicit configuration items stored in explicit
configuration item table 606, entries from wvulnerability
response application 800 stored in vulnerability response
table(s) 902, entries from development operations applica-
tion 802 stored in development operations table(s) 904,
and/or application portiolio management application 804
stored 1n application portfolio management table(s) 906. In
various embodiments, not all of these tables may be present.

As an example, in some cases, vulnerability response
application 800, development operations application 802,
and application portiolio management application 804 may
cach read from and write to implicit configuration item table
604 without needing the presence of implicit relationship
table 608 or explicit configuration 1tem table 606. This may
be due to entries 1 implicit relationship table 608 and
explicit configuration item table 606 not yet existing because
the software development 1s too early i1n the process to
commit hardware resources as explicit relationships. Or, 1f
the source code does not run on managed network hardware,
then there may not ever be a relationship to other configu-
ration 1tems.

A. Vulnerability Response

Vulnerabilities may relate to known or discovered defects
in software disposed upon or associated with a managed
network. Exploitation of a vulnerability may result mn a
negative impact to the data confidentiality, integrity, and/or
availability of one or more applications or computing
devices. It should be noted that vulnerabilities are not the

US 12,093,685 B2

27

same as active security threats—vulnerabilities may harm-
lessly exist 1n an unexploited state while active security
threats are ongoing attacks that need immediate mitigation.

Vulnerabilities may be associated with diflerent severi-
ties. For example, a first hypothetical vulnerability may be
that opening a certain type of file mn a word processing
application provides a remotely-exploitable mechanism
through which an attacker can gain access to the computing,
device on which the word processing application 1s installed.
This would likely be viewed a critical vulnerability, as 1t
could lead to unauthorized access to confidential data. On
the other hand, a second hypothetical vulnerability may be
that providing certain mput to a web browsing application
may cause the screen of the computing device on which the
web browsing application 1s installed to go blank. This
would likely be viewed as a non-critical vulnerability, as it
1s a mere annoyance to the user. Severity may be chosen, for
example, on a spectrum from critical (most severe), to high,
to medium, to low (least severe).

Vulnerabilities can be found based on static or dynamic
scanning ol applications, or based on published lists of
known vulnerabilities 1n particular versions of applications.
Vulnerability response may use any combination of these
sources to 1dentily and manage vulnerabilities.

A static scan may parse the source code of an application,
searching for indications of wvulnerabilities. Techniques
employed may include abstract interpretation (modeling the
impact each statement of code has on a hypothetical
machine that would execute the code), data flow analysis
(modeling paths through the code as a lattice), formal
systems (rules that reason about the correctness of pro-
grams), and symbolic execution (a system of mathematical
expressions that represent the values of variables 1n various
points 1n the code). Other less formal techniques may scan
the source code for hardcoded passwords, unused variables,
unchecked boundaries, and so on.

Dynamic scanning generally mvolves analysis of appli-
cations while they are executing. Dynamic scanning tool
may execute an application 1n a safe (e.g., sandboxed)
environment with a broad array in inputs. The tool may
attempt to detect memory errors (e.g., memory leaks,
uncheck boundaries), locate defects 1n the code (fault local-
1zation), determine whether race conditions exist, and so on.

Listings of known vulnerabilities are published by gov-
ernments, as well as wvarious commercial entities. For
example, the U.S. National Institute of Standards and Tech-
nology (NIST) maintains a public national vulnerability
database, listing known vulnerabailities, their severities, and
their exploitability (e.g., how an attacker might go about
using the vulnerability and how hard this process might be).

(Given the intractability of manually detecting vulnerabaili-
ties, a number of software tools are available that perform

automated vulnerability detection. Some of these tools
include, but are not lmited to, NESSUS®, QUALYS-

GUARD®, and RAPID7®. For purposes ol simplicity,
various vulnerability detection and assessment tools are
referred to as third-party vulnerability detection tools or
vulnerability scanners in the discussion below. In some
cases, these tools may execute on one or more computing
devices of the managed network, scanning the software
configurations of these devices, or remotely scanning the
software configurations of other devices on the managed
network. Results of these scans may be made available to the
remote network management platiorm, either directly or by
way ol a public cloud network, and stored 1n the CMDB.
These results may be 1n the form of implicit configuration
items written directly to implicit configuration item table

10

15

20

25

30

35

40

45

50

55

60

65

28

604 or 1n some other form that 1s written to vulnerability
response table(s) 902. In the former case, the remote net-
work management platform may execute a reconciliation
routine to populate implicit relationship table 608 with
entries between these new 1mplicit configuration 1tems and
those 1 explicit configuration i1tem table 606. For example,
a relationship may be added to implicit relationship table
608 between an implicit configuration 1tem and an explicit
configuration item when the two have an application name,
application version, application identifier, and/or some other
identifying data in common.

In the latter case, the remote network management plat-
form may execute an 1nitial reconciliation routine to popu-
late 1implicit configuration item table 604 with entries based
on those 1n vulnerability response table(s) 902. For example,
entries 1n vulnerability response table(s) 902 referencing
source code of applications may be used to form 1mplicit
configuration 1tems representing that source code. Then, the
remote network management platform may execute further
reconciliation routines to populate implicit relationship table
608 with entries between these new 1mplicit configuration
items and the entries 1n vulnerability response table(s) 902,
as well as between these new 1mplicit configuration 1tems
and those 1n explicit configuration 1tem table 606. In some
cases, relationships between any of implicit configuration
item table 604, configuration item table 606, vulnerability
response table(s) 902, development operations table(s) 904,
and/or application portiolio management table(s) 906 may
also be populated 1in implicit relationship table 608.

B. Development Operations

A development operations application on a remote net-
work management platform collects data related to the
solftware application development cycle (plan, develop,
build, test, deploy, operate) of applications under develop-
ment within a managed network or public cloud environ-
ment. To do so, the development operations application
connects to or integrates with multiple tools that in the
development toolchain. The resulting data can be processed
to generate automated change requests, generate visualiza-
tions of project progress, and integrate with external (third-
party) development operations tools.

The wvisualizations include representations of develop-
ment activities, source code check-ins, deployments, change
management, and system health. These representations pro-
vide and end-to-end view of the entire software development
process and can be used to identify specific areas that need
attention. For example, 11 the number of source code check-
ins are trending low, this may mean that larger, more risky
changes are being made to the source code. Additionally, 1f
change approval delays are trending high, this may indicate
that there 1s too much reliance on manual approvals.

Some or all of the information used by development
operations may be stored 1n one or more tables of a CMDB,
such as development operations table(s) 904. The remote
network management platform may execute a reconciliation
routine to populate 1mplicit configuration item table 604
with entries based on those in development operations
table(s) 904. For example, entries 1n development operations
table(s) 904 referencing to source code of applications may
be used to form implicit configuration i1tems representing
that source code. Then, the remote network management
plattorm may execute further reconciliation routines to
populate implicit relationship table 608 with entries between
these new implicit configuration items and the entries in
development operations table(s) 904, as well as between
these new 1mplicit configuration 1tems and those in explicit
configuration item table 606. In some cases, relationships

US 12,093,685 B2

29

between any of implicit configuration item table 604, con-
figuration item table 606, vulnerability response table(s)

902, development operations table(s) 904, and/or applica-
tion portiolio management table(s) 906 may also be popu-
lated 1n 1mplicit relationship table 608.

C. Application Portiolio Management

An application portfolio management application on a
remote network management platform may classify appli-
cations deployed on a managed network by services pro-
vided or functionality. The classification procedures may be
performed based on explicit configuration items (e.g., stored
in explicit configuration item table 606) that have been
discovered automatically or manually entered, as well as any
service maps developed therefrom. The classification may
include the name and version of the application, and indi-
cation of 1ts functionality, and possibly other information,
such as annual cost. For instance, application portiolio
management may classily discovered executable applica-
tions based on their respective vendor names, application
names, and/or version numbers 1nto such categories.

As an example of the utility of application portiolio
management, a large managed network may have inadver-
tently licensed and deployed two different productivity
soltware suites to 1ts employee’s client devices. For
example, client devices at one location may have one of
these suites installed and another location may have the
other installed. Application portiolio management may help
the managed network determine that this 1s the case, the
extent of each deployment, and the possible savings that
could be gained if these two suites were consolidated into
Just one.

Further, application portiolio management may identify
lifecycles and licensing statuses of the software applications
that that make up services associated with the managed
network. From this data, application portiolio management
can notily the managed network when lifecycles or licenses
for certain applications are about to expire or need renewal,
thereby reducing risk of service disruption.

Application portiolio management may generate its data
from entries 1 explicit configuration item table 606, for
example. Then, 1t may store this data in application portiolio
management table(s) 906. Application portiolio manage-
ment may also obtain (e.g., via discovery or manual con-
figuration) information related to implicit configuration
items and then store this information 1n 1mplicit configura-
tion item table 604.

Then, the remote network management platform may
execute reconciliation routines to populate implicit relation-
ship table 608 with entries between these implicit configu-
ration 1items and the entries 1n application portifolio manage-
ment table(s) 906, as well as between these implicit
configuration items and those 1n explicit configuration item
table 606. In some cases, relationships between any of
implicit configuration item table 604, configuration item
table 606, vulnerability response table(s) 902, development
operations table(s) 904, and/or application portfolio man-
agement table(s) 906 may also be populated 1n 1mplicit
relationship table 608.

VIII. Example Use Cases

The following use cases provide examples of how vul-
nerability response, development operations, and applica-
tion portiolio management applications of a remote network
management platform could use implicit configuration 1tems
individually or 1n conjunction with other information in the
CMDB to provide new functionality. Nonetheless, these are

10

15

20

25

30

35

40

45

50

55

60

65

30

just a limited number of examples. Thus, these and other
remote network management platform applications may

have additional uses of implicit configuration items.

In a first example, a vulnerability response application
may 1dentily relationships between source code under devel-
opment 1n a managed network (e.g., discovered 1n a source
code repository) and applications deployed on the managed
network that were compiled from this source code. A static
vulnerability checking tool may 1dentily one or more vul-
nerabilities 1n the source code. Using the implicit relation-
ship table, the vulnerability response application may then
automatically flag these vulnerabilities against their com-
piled versions. Thus, vulnerabilities 1n compiled applica-
tions that are deployed for use can be found without scan-
ning those compiled applications. Further, perhaps based on
the IP addresses or other parameters associated with the
compiled applications, the vulnerability response applica-
tion may determine whether these applications are Internet-
facing. Using the implicit relationship table, the vulnerabil-
ity response application may write this information to the
associated implicit configuration items. Then, the vulner-
ability response application may be able to more accurately
assess the risk associated with vulnerabilities found in the
source code.

In a second example, a development operations applica-
tion may use the implicit relationship table and/or the
vulnerability response table(s) to identily vulnerabilities
found by the vulnerability response application 1n source
code under development. From this information, the devel-
opment operations application may be able to automatically
generate change requests with the appropnate priority (e.g.,
based on severity of the vulnerabilities found) that describe
the vulnerabilities 1n the source code. These change requests
could then be integrated into the development process for
the source code so that they can be addressed.

In a third example, a development operations application
may be used to track the development of a particular
soltware application. This software application may provide
functionality that 1s part of a service covered by an appli-
cation portfolio management application. The application
portfolio management application may have determined that
an 1mportant feature 1s missing from the software applica-
tion. But, by using the mmplicit relationship table, the
implicit configuration item table, and/or the development
operations table(s), the application portiolio management
application may determine that the missing feature 1s under
development. The application portiolio management appli-
cation may also be able to determine a scheduled release
date for a new version of the software application that
provides the missing feature. Therefore, the application
portfolio management application can store this information
in the application portiolio management table(s) and/or
present 1t to users. This can result 1n the users understanding
that the missing functionality will be provided and a time
frame for when 1t will be available.

Any of these examples may also be applied to software
applications that are developed and/or deployed on a public
cloud network rather than a managed network.

IX. Example Operations

FIG. 10 1s a flow chart illustrating an example embodi-
ment. The process 1llustrated by FIG. 10 may be carried out
by a computing device, such as computing device 100,
and/or a cluster of computing devices, such as server cluster
200. However, the process can be carried out by other types
of devices or device subsystems. For example, the process

US 12,093,685 B2

31

could be carried out by a computational instance of a remote
network management platform.

The embodiments of FIG. 10 may be simplified by the
removal of any one or more of the features shown therein.
Further, these embodiments may be combined with features,
aspects, and/or implementations of any of the previous
figures or otherwise described herein.

Block 1000 may involve receiving imnformation related to
a particular unit of source code associated with a managed
network, wherein persistent storage contains: (1) an explicit
configuration item table with entries of explicit configura-
tion 1tems representing hardware devices associated with the
managed network and executable software applications
deployed on the hardware devices, (11) an implicit configu-
ration item table with entries of implicit configuration i1tems
representing units of source code associated with the man-
aged network, wherein at least some of the executable
soltware applications are compiled versions of the units of
source code, and (111) an 1mplicit relationship table associ-
ating pairs ol the implicit configuration 1tems and explicit
configuration items with one another. This source code may
be disposed upon the managed network, disposed upon a
client or server device that 1s linked to or used by the
managed network in some fashion, or associated with the
managed network 1n some other way.

Block 1002 may involve writing, to the implicit configu-
ration item table, at least some of the information as an
implicit configuration item.

Block 1004 may involve determining that the implicit
configuration 1tem has one or more 1dentifying attributes 1n
common with an explicit configuration 1tem 1n the explicit
confliguration item table.

Block 1006 may 1nvolve, possibly in response to deter-
mimng that the implicit configuration 1tem has one or more
identifying attributes in common with the explicit configu-
ration 1tem, writing, to the implicit relationship table, a new
entry associating the implicit configuration item and the
explicit configuration 1tem.

In some embodiments, the explicit configuration item
represents a compiled version of the particular unit of source
code, wherein the particular umit of source code and the
compiled version of the particular unit of source code are
both disposed upon the managed network.

In some embodiments, the explicit configuration item
represents a compiled version of the particular unit of source
code, wherein the particular umit of source code and the
compiled version of the particular unit of source code are
both disposed upon a public cloud network operated by an
entity other than that which operates the managed network,
and wherein the particular unit of source code and the
compiled version of the particular unit of source code are
accessible by way of an account associated with the man-
aged network.

In some embodiments, the persistent storage also contains
an application-specific table dedicated to a remote network
management platform application, wherein the remote net-
work management platform application 1s configured to
write the information to the application-specific table, and
wherein writing at least some of the information as the
implicit configuration item comprises copying selected parts
of the information from the application-specific table to the
implicit configuration item table.

In some embodiments, the persistent storage also contains
an application-specific table dedicated to a remote network
management platform application, and wherein the remote
network management platform application 1s configured to:
(1) traverse the implicit relationship table until the new entry

10

15

20

25

30

35

40

45

50

55

60

65

32

1s found; (1) locate, using the new entry, the implicit
configuration item 1n the implicit configuration item table;
and (111) copy at least some attributes of the implicit con-
figuration i1tem to the application-specific table.

In some embodiments, the remote network management
platform application 1s a development operations applica-
tion, wherein copying at least some attributes of the implicit
configuration item to the application-specific table com-
prises automatically generating a change request based on
attributes of the implicit configuration item.

In some embodiments, the explicit configuration item
represents a compiled version of the particular unit of source
code, wherein the remote network management platiorm
application 1s an application portfolio management applica-
tion, and wherein copying at least some attributes of the
implicit configuration item to the application-specific table
comprises updating a representation of functionality pro-
vided by the compiled version of the particular unit of source
code.

In some embodiments, the information 1s received from a
remote network management platform application, wherein
the remote network management platform application 1s a
vulnerability response application, wherein the information
1s a vulnerability assessment of the particular unit of source
code, and wherein the new entry indicates that the vulner-
ability assessment applies to the executable soltware appli-
cations represented by the explicit configuration item.

In some embodiments, the information includes the 1den-
tifying attributes.

In some embodiments, the identifying attributes include
one or more of an application name, an application version
number, or an application i1dentifier.

X. Closing

The present disclosure 1s not to be limited 1n terms of the
particular embodiments described in this application, which
are mtended as 1llustrations of various aspects. Many modi-
fications and variations can be made without departing from
its scope, as will be apparent to those skilled 1n the art.
Functionally equivalent methods and apparatuses within the
scope of the disclosure, 1n addition to those described herein,
will be apparent to those skilled in the art from the foregoing
descriptions. Such modifications and variations are intended
to fall within the scope of the appended claims.

The above detailed description describes various features
and operations of the disclosed systems, devices, and meth-
ods with reference to the accompanying figures. The
example embodiments described herein and 1n the figures
are not meant to be limiting. Other embodiments can be
utilized, and other changes can be made, without departing
from the scope of the subject matter presented herein. It will
be readily understood that the aspects of the present disclo-
sure, as generally described herein, and illustrated in the
figures, can be arranged, substituted, combined, separated,
and designed in a wide variety of different configurations.

With respect to any or all of the message flow diagrams,
scenarios, and flow charts in the figures and as discussed
herein, each step, block, and/or communication can repre-
sent a processing of information and/or a transmission of
information in accordance with example embodiments.
Alternative embodiments are included within the scope of
these example embodiments. In these alternative embodi-
ments, for example, operations described as steps, blocks,
transmissions, communications, requests, responses, and/or
messages can be executed out of order from that shown or

discussed, including substantially concurrently or 1n reverse

US 12,093,685 B2

33

order, depending on the functionality involved. Further,
more or fewer blocks and/or operations can be used with any
of the message tlow diagrams, scenarios, and tflow charts
discussed herein, and these message flow diagrams, sce-
narios, and flow charts can be combined with one another,
in part or in whole.

A step or block that represents a processing of information
can correspond to circuitry that can be configured to perform
the specific logical functions of a herein-described method
or technique. Alternatively or additionally, a step or block
that represents a processing of information can correspond
to a module, a segment, or a portion of program code
(including related data). The program code can include one
or more 1nstructions executable by a processor for imple-
menting specific logical operations or actions in the method
or technique. The program code and/or related data can be
stored on any type of computer readable medium such as a
storage device including RAM, a disk drive, a solid state
drive, or another storage medium.

The computer readable medium can also include non-
transitory computer readable media such as computer read-
able media that store data for short periods of time like
register memory and processor cache. The computer read-
able media can further include non-transitory computer
readable media that store program code and/or data for
longer periods of time. Thus, the computer readable media
may include secondary or persistent long term storage, like
ROM, optical or magnetic disks, solid state drives, or
compact-disc read only memory (CD-ROM), for example.
The computer readable media can also be any other volatile
or non-volatile storage systems. A computer readable
medium can be considered a computer readable storage
medium, for example, or a tangible storage device.

Moreover, a step or block that represents one or more

information transmissions can correspond to information
transmissions between soltware and/or hardware modules 1in
the same physical device. However, other information trans-
missions can be between software modules and/or hardware
modules 1n different physical devices.

The particular arrangements shown 1n the figures should
not be viewed as limiting. It should be understood that other
embodiments can include more or less of each element
shown 1n a given figure. Further, some of the illustrated
elements can be combined or omitted. Yet further, an
example embodiment can include elements that are not
illustrated in the figures.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purpose of illustration
and are not intended to be limiting, with the true scope being
indicated by the following claims.

What 1s claimed 1s:

1. A system comprising;:

persistent storage containing an implicit configuration
item table and an implicit relationship table, wherein
the implicit configuration 1tem table contains entries of
implicit configuration items, wherein each implicit
confliguration item corresponds to one or more units of
source code stored within a source code repository
accessible to a managed network, and wherein the
implicit relationship table associates each of the
implicit configuration 1tems with executable software
applications deployed on hardware devices associated
with the managed network; and

10

15

20

25

30

35

40

45

50

55

60

65

34

one or more processors configured to:

recerve vulnerability information related to a unit of
source code implemented as part of the managed net-
work:

write, to the mmplicit configuration item table, at least

some of the vulnerability information as part of an
implicit configuration item;

determine that the implicit configuration item has at least

one 1dentifying attribute 1n common with an executable
software application deployed on a hardware device
associated with the managed network;
identily, by a vulnerability response application, a secu-
rity-flag based on the executable software application
corresponding to the implicit configuration 1tem;

write, to the implicit relationship table, a new security
entry associating the implicit configuration item and the
executable software application;

determine, by the vulnerability response application, a

risk associated with the new security entry, wherein the
risk relates to the vulnerability information of the unit
of source code; and

generate, by a development operations application, a

change request with a priority reflective of the risk,
wherein the change request describes the vulnerability
information of the unit of source code.

2. The system of claim 1, wherein an explicit configura-
tion item represents a compiled or executable version of the
unit of source code, wherein the unit of source code and the
compiled or executable version of the unit of source code are
both disposed upon one or more of the hardware devices,
and wherein the implicit relationship table associates the
implicit configuration item and the explicit configuration
item.

3. The system of claim 1, wherein an explicit configura-
tion item represents a compiled or executable version of the
unit of source code that 1s disposed upon a public cloud
network, and wherein the implicit relationship table associ-
ates the implicit configuration 1tem and the explicit configu-
ration item.

4. The system of claim 1, wherein a plurality of explicit
configuration items represent compiled or executable ver-
s1ons of the unit of source code, and wherein writing the new
security entry associating the implicit configuration item and
the executable software application comprises writing, to the
implicit relationship table, new entries respectively associ-
ating the implicit configuration 1item with each of the plu-
rality of explicit configuration items.

5. The system of claim 1, whereimn the one or more
processors are further configured to:

recerve second information related to a second unit of

source code;

write, to the mmplicit configuration item table, at least

some of the second information as a second implicit
configuration item;

determine that the second 1mplicit configuration i1tem has

one or more further 1dentifying attributes 1n common
with the executable software application; and

write, to the implicit relationship table, a second new

security entry associating the second implicit configu-
ration 1tem and the executable software application.

6. The system of claim 1, wherein the persistent storage
also contains an application-specific table dedicated to a
soltware application, wherein the software application 1s
configured to write the vulnerability information to the
application-specific table, and wherein writing, to the
implicit configuration item table, at least some of the vul-
nerability information as part of the implicit configuration
item comprises copying selected parts of the vulnerability

US 12,093,685 B2

35

information from the application-specific table to the
implicit configuration item table.

7. The system of claim 1, wherein the persistent storage
also contains an application-specific table dedicated to a
soltware application, and wherein the software application 1s
configured to:

traverse the mmplicit relationship table until the new

security entry 1s found;

locate, using the new security entry, the implicit configu-

ration 1tem 1n the 1mplicit configuration item table; and
copy at least some attributes of the implicit configuration
item to the application-specific table.
8. The system of claim 7, wherein the software application
1s the development operations application, and wherein
copying at least some attributes of the implicit configuration
item to the application-specific table comprises automati-
cally generating a change request based on attributes of the
implicit configuration item.
9. The system of claim 7, wherein an explicit configura-
tion item represents a compiled or executable version of the
unit of source code, wherein the software application 1s an
application portiolio management application, wherein
copying at least some attributes of the implicit configuration
item to the application-specific table comprises updating a
representation of functionality provided by the compiled or
executable version of the unit of source code, and wherein
the 1mplicit relationship table associates the implicit con-
figuration 1tem and the explicit configuration 1tem.
10. The system of claim 1, wherein the vulnerability
information 1s received from a soitware application, wherein
the software application 1s the vulnerability response appli-
cation, wherein the vulnerability information i1s a vulner-
ability assessment of the unit of source code, wherein the
new security entry indicates that the vulnerability assess-
ment applies to the executable software applications repre-
sented by an explicit configuration item, and wherein the
implicit relationship table associates the implicit configura-
tion item and the explicit configuration item.
11. The system of claim 1, wherein the vulnerability
information includes the at least one 1dentifying attributes.
12. The system of claam 1, wherein the at least one
identifying attributes includes one or more of an application
name, an application version number, or an application
identifier.
13. A computer-implemented method comprising:
receiving vulnerability information related to a unit of
source code implemented as part of a managed net-
work, wherein persistent storage contains an implicit
configuration item table and an implicit relationship
table, wherein the implicit configuration i1tem table
contains entries of 1mplicit configuration 1tems,
wherein each implicit configuration item corresponds
to one or more units of source code stored within a
source code repository accessible to the managed net-
work, and wherein the implicit relationship table asso-
ciates each of the implicit configuration items with
executable software applications deployed on hardware
devices associated with the managed network;

writing, to the implicit configuration item table, at least
some of the vulnerability information as part of an
implicit configuration item;

determining that the implicit configuration item has at

least one identilying attribute 1 common with an
executable software application deployed on a hard-
ware device associated with the managed network;

10

15

20

25

30

35

40

45

50

55

60

65

36

identifying, by a vulnerability response application, a
security tlag based on the executable software applica-
tion corresponding to the implicit configuration 1tem;

writing, to the implicit relationship table, a new security
entry associating the implicit configuration 1tem and the
executable software application;

determining, by the vulnerability response application, a
risk associated with the new security entry, wherein the
risk relates to the vulnerability information of the unit
of source code; and

generating, by a development operations application, a
change request with a priority reflective of the risk,
wherein the change request describes the vulnerability
information of the unit of source code.

14. The computer-implemented method of claim 13,
wherein an explicit configuration item represents a compiled
or executable version of the unit of source code, wherein the
unit of source code and the compiled or executable version
of the unit of source code are both disposed upon one or
more of the hardware devices, and wherein the implicit
relationship table associates the implicit configuration item
and the explicit configuration 1tem.

15. The computer-implemented method of claim 13,
wherein an explicit configuration item represents a compiled
or executable version of the unit of source code that is
disposed upon a public cloud network, and wheremn the
implicit relationship table associates the implicit configura-
tion item and the explicit configuration item.

16. The computer-implemented method of claim 13,
wherein a plurality of explicit configuration i1tems represent
compiled or executable versions of the umt of source code,
and wherein writing the new security entry associating the
implicit configuration item and the executable software
application comprises writing, to the implicit relationship
table, new entries respectively associating the implicit con-
figuration item with each of the plurality of explicit con-
figuration items.

17. The computer-implemented method of claim 13, fur-
ther comprising:

receiving second information related to a second particu-
lar unit of source code;

writing, to the implicit configuration 1tem table, at least
some of the second information as a second implicit
confliguration item;

determining that the second implicit configuration item
has one or more further 1dentifying attributes 1n com-
mon with the executable software application; and

writing, to the implicit relationship table, a second new
security entry associating the second implicit configu-
ration 1tem and the executable software application.

18. The computer-implemented method of claim 13,
wherein the persistent storage also contains an application-
specific table dedicated to a software application, wherein
the software application 1s configured to write the vulner-
ability information to the application-specific table, and
wherein writing, to the implicit configuration item table, at
least some of the vulnerability information as part of the
implicit configuration item comprises copying selected parts
of the vulnerability information from the application-spe-
cific table to the implicit configuration item table.

19. The computer-implemented method of claim 13,
wherein the persistent storage also contains an application-
specific table dedicated to a software application, and
wherein the software application 1s configured to:

traverse the implicit relationship table until the new
security entry 1s found;

US 12,093,685 B2

37

locate, using the new security entry, the implicit configu-
ration 1tem 1n the implicit configuration item table; and

copy at least some attributes of the implicit configuration
item to the application-specific table.

20. An article of manufacture mcluding a non-transitory
computer-readable medium, having stored thereon program
istructions that, upon execution by a computing system,
cause the computing system to perform operations compris-
ng:

receiving vulnerability information related to a unit of 10

source code implemented as part of a managed net-
work, wherein persistent storage contains an implicit
configuration item table and an i1mplicit relationship
table, wherein the implicit configuration item table
contains entries ol 1mplicit configuration 1tems,
wherein each implicit configuration i1tem corresponds
to one or more units of source code stored within a
source code repository accessible to the managed net-
work, and wherein the implicit relationship table asso-
ciates each of the implicit configuration items with
executable software applications deployed on hardware
devices associated with the managed network;

15

20

38

writing, to the implicit configuration 1tem table, at least
some of the vulnerability information as part of an
implicit configuration item;

determiming that the implicit configuration item has at
least one identifying attribute 1 common with an
executable software application deployed on a hard-
ware device associated with the managed network;

identifying, by a vulnerability response application, a
security tlag based on the executable software applica-
tion corresponding to the implicit configuration 1tem;

writing, to the implicit relationship table, a new security
entry associating the implicit configuration item and the
executable software application;

determiming, by the vulnerability response application, a
risk associated with the new security entry, wherein the
risk relates to the vulnerability information of the unit
of source code; and

generating, by a development operations application, a
change request with a priority reflective of determined
risk, wherein the change request describes the vulner-
ability information of the unit of source code.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

