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READ /O PROCESSING TECHNIQUES
USING REMOTE MAPPING RESOLUTION
WITH LOGICAL ADDRESS SPACE SLICING

BACKGROUND

Systems include different resources used by one or more
host processors. The resources and the host processors 1n the
system are interconnected by one or more communication
connections, such as network connections. These resources
include data storage devices such as those included 1n data
storage systems. The data storage systems are typically
coupled to one or more host processors and provide storage
services to each host processor. Multiple data storage sys-
tems from one or more different vendors can be connected
to provide common data storage for the one or more host
Processors.

A host performs a variety of data processing tasks and
operations using the data storage system. For example, a
host 1ssues I/O operations, such as data read and write
operations, that are subsequently received at a data storage
system. The host systems store and retrieve data by 1ssuing
the I/O operations to the data storage system containing a
plurality of host interface units, disk drives (or more gen-
erally storage devices), and disk interface units. The host
systems access the storage devices through a plurality of
channels provided therewith. The host systems provide data
and access control information through the channels to a
storage device of the data storage system. Data stored on the
storage device 1s provided from the data storage system to
the host systems also through the channels. The host systems
do not address the storage devices of the data storage system
directly, but rather, access what appears to the host systems
as a plurality of files, objects, logical units, logical devices
or logical volumes. Thus, the I/O operations issued by the
host are directed to a particular storage entity, such as a file
or logical device. The logical devices generally include
physical storage provisioned from portions of one or more
physical drives. Allowing multiple host systems to access
the single data storage system allows the host systems to
share data stored therein.

SUMMARY OF THE PRESENT DISCLOSUR.

(L]

Various embodiments of the techniques herein can include
a computer-implemented method, a system and a non-
transitory computer readable medium. The system can
include one or more processors, and a memory comprising
code that, when executed, performs the method. The non-
transitory computer readable medium can include code
stored thereon that, when executed, performs the method.
The method can comprise: receiving, at a first node from a
host, a read I/O operation requesting to read content C1 from
a first logical address LA1, where the first node and a second
node are included 1n a data storage system; determining that
LLA1 1s owned by the second node but not owned by the first
node; sending, from the first node to the second node, a first
request requesting that the second node perform {irst reso-
lution processing for LA1; and responsive to receiving the
first request at the second node, the second node performing
said first resolution processing for LA1, wherein said first
resolution processing includes: mapping L A1 to a first entry
E1 of a first metadata (MD) leaf object, wherein E1 includes
a first virtual layer block (VLB) address which corresponds
to a first VLB of a virtual block layer; determining whether
the second node owns the first VLB, responsive to deter-
mimng the second node does not own the first VLB, sending,
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a first response from the second node to first node, where the
first response ncludes the first VLB address and includes a
first indicator with a first setting which indicates that the first
response includes a VLB address type; and responsive to
determining that second node does own the first VLB,
performing first processing including: the second node using
the first VLB address to obtain a first physical address or
location PA1 on non-volatile storage, wherein C1 1s stored
at PA1; and sending the first response from the second node
to the first node, wherein the first response includes PA1 and
includes the first indicator with a second setting which
indicates that the first response includes a physical layer
block (PLB) address type.

In at least one embodiment, the VLB address type can be
an 1ndirect pointer or address used to indirectly access stored
content. The PLB address type can be a physical address or
location of stored content on non-volatile storage. Process-
ing can include: receiving, at the first node from the second
node, the first response; determining, by the first node,
whether the first indicator of the first response has the first
setting or the second setting; and responsive to determining,
that the first indicator has the first setting, the first node
determining that the first response includes the VLB address
type, and the first node performing second processing which
includes using the first VLB address to read C1 from PA1.

In at least one embodiment, the first VLB address can
identify a VLB entry E2 of the first VLB, wherein E2
includes PA1l, and wherein the second processing can
include: reading, by the first node, the first VLB from
non-volatile storage; caching, by the first node, the first VLB
in a local cache of the first node; reading, by the first node,
PA1 from E2 of the first VLB; reading, by the first node, C1
which 1s stored at PA1 on non-volatile storage; and return-
ing, by the first node, C1 to the host 1n a read 1/0 response.
Responsive to determining that the first indicator has the
second setting, the first node can determine that the first
response 1mncludes the PLB address type, and third process-
ing can be performed which includes: reading, by the first
node, C1 from PA1; and returning, by the first node, C1 to
the host 1n a read 1I/0O response. The second node using the
first VLB address to obtain PA1 can further comprise:
reading, by the second node, the first VLB from non-volatile
storage; caching, by the second node, the first VLB 1n a local
cache of the second node; and reading, by the second node,
PA1 from E2 of the first VLB.

In at least one embodiment, processing can include:
partitioning a plurality of virtual layer blocks (VLBs) of the
virtual block layer into a plurality of sets including a first set
and a second set, wherein the first node 1s assigned exclusive
ownership of VLBs 1n the first set and wherein the second
node 1s assigned exclusive ownership of VLBs 1n the second
set. Processing can include: partitioning a logical address
space 1nto a plurality of logical address portions; dividing
the plurality of logical address portions nto a plurality of
logical address sets including a first logical address set and
a second logical address sets, wherein the first node 1is
assigned exclusive ownership of logical address portions of
the first logical address set, and wherein the second node 1s
assigned exclusive ownership of logical address portions of
the second logical address set.

Various embodiments of the techniques herein can include
a computer-implemented method, a system and a non-
transitory computer readable medium. The system can
include one or more processors, and a memory comprising
code that, when executed, performs the method. The non-
transitory computer readable medium can include code
stored thereon that, when executed, performs the method.
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The method can comprise: receiving, at a first node from a
host, a read 1/O operation requesting to read content C1 from

a first logical address LA1, where the first node and a second
node are included 1n a data storage system; determining that
LAl 1s owned by the first node; the first node performing 5
first resolution processing for L A1, wherein the first reso-
lution processing includes the first node mapping LA1 to a
first entry E1 of a first metadata (MD) leal object, wherein
E1 includes a first virtual layer block (VLB) address which
corresponds to a first VLB of a virtual block layer; deter- 10
mimng, by the first node, whether the first node or the
second node owns the first VLB; responsive to determining
that the first node owns the first VLB, performing first
processing including: the first node using the first VLB
address to obtain a first physical address or location PA1 on 15
non-volatile storage, wherein C1 1s stored at PA1; the first
node reading C1 from PA1; and the first node returning C1

to the host 1n a read 1/0 response.

In at least one embodiment, the first VLB address can
identify a second entry E2 of the first VLB, and wherein the 20
first node using the first VLB address to obtain a first
physical address or location PA1 on non-volatile storage can
turther include: the first node reading the first VLB from
non-volatile storage; the first node caching the first VLB in
a local cache of the first node; and the first node reading PA1 25
from E2 of the first VLB. Processing can include: determin-
ing, by the first node, that the second node owns the first
VLB; and responsive to determining that the second node
owns the first VLB, performing second processing includ-
ing: selecting one option from a plurality of processing 30
options; performing processing of the selected one option to
obtain PA1 for the first node; the first node using PA1 to read
C1 from non-volatile storage; and the first node returning C1
in a read 1I/O response to the host.

In at least one embodiment, the plurality of options can 35
include a first option, and wherein processing of the first
option can include: sending a request, from the first node to
the second node, requesting that the second node map the
first VLB address of the first VLB to a corresponding
physical address, PA1; receiving, by the second node, the 40
request; reading, by the second node, the first VLB from
non-volatile storage; storing the first VLB 1n a local cache of
the second node; reading, by the second node, PA1 from E2
of the first VLB; and the second node returning a response
to the first node, wherein the response includes PAL. 45

In at least one embodiment, the plurality of options can
include a second option, wherein processing of the second
option can include: the first node reading the first VLB from
non-volatile storage and not caching the first VLB locally on
the first node; and the first node reading PA1 from E2 of the 50
first VLB.

In at least one embodiment, the plurality of options can
include a third option, wherein processing of the third option
can include: the first node reading the first VLB from
non-volatile storage; the first node caching the first VLB 55
locally on the first node; and the first node reading PA1 from
E2 of the first VLB.

In at least one embodiment, selecting the one option from
the plurality of options can include evaluating one or more
criteria dynamically at runtime to select said one option 60
from the plurality of options. The one or more criteria can
select the one option 1n accordance with one or more metrics
including any of: latency introduced by issuing a request
from the first node to the second node; a VLB page cache hit
rate with respect a first local cache of the first node; a VLB 65
page cache hit rate with respect a second local cache of the
second node; and a current utilization of backend non-
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volatile storage including PA1 where C1 1s stored. The one
or more criteria can include a first criterion which indicates
to select a first option of the plurality of options 11 the latency
1s less than a specified threshold, and wherein the first option
can include 1ssuing the request, from the first node to the
second node, requesting that the second node map the first
VLB address of the first VLB to a corresponding physical
address, PAL. The one or more criteria can include a second
criterion which indicates to select a second option of the
plurality of options or a third option of the plurality of
options 1i the latency 1s not less than the specified threshold
and 11 the current utilization of backend non-volatile storage
1s less than a utilization threshold, wherein the second option
and the third option can both include the first node locally
reading the first VLB from backend non-volatile storage.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present disclosure will
become more apparent from the following detailed descrip-
tion of exemplary embodiments thereof taken 1n conjunction
with the accompanying drawings 1n which:

FIG. 1 1s an example of components that may be included
in a system 1n accordance with the techniques of the present
disclosure.

FIG. 2A 1s an example illustrating the I/O path or data
path 1 connection with processing data in at least one
embodiment in accordance with the techniques of the pres-
ent disclosure.

FIGS. 2B, 2C and 2D are examples 1llustrating use of a
log or journal recording client operations in at least one
embodiment in accordance with the techniques of the pres-
ent disclosure.

FIGS. 3, 4, 5, and 6 are examples of mapping information
in the form of a metadata structure that can be used 1n
connection with mapping logical addresses to physical
addresses or storage locations 1n at least one embodiment 1n
accordance with the techniques of the present disclosure.

FIG. 7 1s an example illustrating a partitioned logical
address space and a partitioned VLB layer 1n at least one
embodiment in accordance with the techniques of the pres-
ent disclosure.

FIGS. 8A, 8B, 9, 10A and 10B are flowcharts of process-
ing steps that can be performed 1n at least one embodiment
in accordance with the techniques of the present disclosure.

DETAILED DESCRIPTION OF
EMBODIMENT(S)

Existing systems, such as data storage systems, can main-
tain and utilize a data cache to store frequently accessed
pages of data. The data cache can be, for example, a form of
fast volatile memory such as a volatile form of random
access memory (RAM). In particular, the data cache can be
used as a read data cache to store user data which 1s
frequently read. For a read 1/0 requesting read data, the read
data which 1s stored 1n the cache results 1n a cache hit or read
cache hit. For a read cache hit, the requested read data can
be retrieved from the cache and returned to the requester or
originator of the read I/0. If the requested read data 1s not
in the cache, a cache miss or read cache miss results where
the requested read data can be retrieved from longer term
backend (BE) non-volatile storage. A cache miss as com-
pared to a cache hit results in an I/O performance penalty
and 1ncreased 1/0 latency 1n order to service the read 1I/O and
return the requested read data to the requester. The data
cache can provide for read cache hits and optimized perfor-
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mance such as by providing for improved /O latency and
improved utilization of system resources. Generally, the data
cache, and cache memory 1n general, can be characterized as
a critical and expensive resource which can have a limited
s1ze or capacity. Accordingly, 1t 1s important for systems to
utilize the data cache, and more generally cache storage,
ciliciently to provide for optimal performance.

In at least one existing system, mapping information can
be used to map a logical address to a corresponding physical
storage location or address storing the user data or content
of the logical address. The mapping information can be a
chain of metadata (MD) pages traversed to obtain the
content of a logical address from its corresponding physical
storage location or address on BE non-volatile storage.
Thus, a read cache miss with respect to a read 1/0 requesting
to read user data from a logical address can result 1n a cache
miss with respect to the data cache noted above. Read cache
miss processing can incur a performance penalty as noted
above, at least 1n part, due to the traversal of the chain of MD
pages of the mapping information. The MD pages of map-
ping 1nformation can also be stored on BE non-volatile
storage. Thus, traversing the chain of MD page can include
retrieving each MD page of the chain from BE non-volatile
storage thereby incurring additional performance penalties
to access. To further improve performance, a system can also
store the mapping information, such as the chain of MD
pages, 1n the cache. However, as with the user data and the
limited size of the cache, not all mapping information or MD
pages for all user data can be stored 1n the cache. As a result,
accessing the multiple layers or levels of MD pages which
can be needed for accessing the read data to service a read
cache miss can result 1n additional cache misses thereby
incurring an additional performance penalty to access any
uncached MD pages of mapping mformation from BE
non-volatile storage.

Some system can include multiple processing nodes
where the multiple processing nodes can service 1/Os. In
such systems, cache usage can be even more ineflicient
across the multiple processing nodes since the same MD
and/or user data or content for servicing I/Os can be cached
in node-local caches of all the multiple processing nodes.
For example, pages of the same user data and/or MD can be
cached locally 1n caches of the multiple processing nodes.
To mmprove upon the foregoing, an architecture can be
utilized which partitions ownership of the logical address
space of user data or content among the multiple processing
nodes. In one such architecture, a node assigned a particular
logical address can be designated as the exclusive owner of
the logical address. A node can service 1/Os directed to
logical addresses owned by the node. 11 the node receives an
I/0O directed to a logical address not owned by the node, the
receiving node can forward the I/0 for servicing or process-
ing to the owning node. Generally, an exclusive ownership
assignment can also be characterized as a strong ownership.
In contrast, a non-exclusive ownership assignment can also
be characterized as a weak ownership.

The architecture can also assign strong ownership to some
MD pages and assign weak ownership to other MD pages.
Strong ownership of a MD page assigned to a node can
denote exclusive ownership of the assigned MD page by the
node. Weak ownership of a MD page can indicate that the
MD page can be owned by more than one node and thus can
denote non-exclusive ownership of the MD page shared by
multiple nodes. Thus, those MD pages having associated
weak ownership can lead to caching mefhiciencies since the
same weakly owned MD page can be cached locally 1n local
caches of multiple nodes. In particular, a virtual layer of the

10

15

20

25

30

35

40

45

50

55

60

65

6

mapping information can include multiple virtual layer
blocks (VLBs) used 1n connection with mapping user data
logical addresses to corresponding physical locations or
addresses containing content stored at corresponding logical
addresses. VLBs can be weakly owned and thus can be
regularly cached in duplicate in multiple local caches of
multiple nodes.

Accordingly, described 1n the present disclosure are tech-
niques that overcome the foregoing drawbacks and provide
for improved and eflicient cache usage.

In at least one embodiment, the techmques of the present
disclosure provide for assigning ownership of the VLBs of
the virtual layer among the multiple nodes of the system. In
at least one embodiment, the VLLBs of the virtual layer can
be partitioned 1into multiple sets, where exclusive ownership
of one of the multiple sets of VLBs 1s assigned to a
corresponding one of the multiple nodes. In at least one
embodiment, exclusive ownership of each VLB can be
assigned to a single one of the nodes.

In at least one embodiment, a node which receives an [/O
operation can be referred to as the mitiator node with respect
to that particular I/O operation.

In at least one embodiment, exclusive ownership, such as
with respect to a portion of logical address space as well as
a VLB or other metadata portion may include a strong
ownership or include the exclusive locking by a particular
node, where such ownership 1s not shared with another node.
In at least one embodiment, a storage node assigned exclu-
s1ive ownership over a logical address or a metadata portion
does not yield access to that logical address or metadata

portion to another node.

In at least one embodiment, an architecture can be utilized
which partitions ownership of the logical address space of
user data or content among the multiple processing nodes. In
at least one embodiment, a node assigned a particular logical
address can be designated as the exclusive owner of the
logical address. If the node receirves an I/O directed to a
logical address not owned by the node, the receiving node
can forward or redirect the 1/0 for servicing or processing to
the owning node. In at least one embodiment, the I/Os can
include read 1/Os. For a read I/O directed to a target logical
address LA1 where the read I/O 1s recerved by an initiator
node which does not own [LA1, the 1nitiator node can 1ssue
a remote procedure call (RPC) to its peer node to service the
read, where the peer node owns LAl. In at least one
embodiment, the RPC for the read 1/0O can be a request from
the nitiator node to a peer node (owner of LA1) to perform
processing in connection with MD pages of mapping infor-
mation for LA1. In particular, the RPC for the read I/O can
be a request for the peer node (which owns the logical
address L A1) to perform mapping resolution processing for
L.A1l. The resolution processing can include mapping LA1 to
a corresponding VLB address or physical layer block (PLB)
address. The resolution processing can be in accordance
with the chain of MD pages of mapping information for
LLA1. The resolution processing can include traversing one
or more of the MD pages of the chain of mapping informa-
tion for LA1. The VLB address can be a location or address
of an offset or entry of a VLB 1ncluded 1n the chain of MD
pages of mapping nformation used to map LAl to a
corresponding PLB address. The PLB address can be a
physical location or address of a PLB (or physical location
or address within a PLB) including the content C1 stored at
LLAl. Thus, the VLB address can be an indirect pointer or
address used to indirectly access the content C1 stored at

[LAl. The PLB address can be a pointer to, or address of, a
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physical storage location on BE non-volatile storage, where
the physical storage location contains the content C1 stored

at LAL.

In at least one embodiment, the peer node, which owns
[LA1 and receives the RPC {rom the 1nitiator node, can return

either a VLB address V1 or a PLLB address PAL. In at least

one embodiment, the peer node can return a PLB address 1f
the peer node 1s the exclusive owner of the VLB, VLBI,
where V1 1s an address or oflset of an entry within VLBI,
where V1 1s included in the mapplng information used to
map LAl to PA1, and where PA1 1s the physical address or
location of C1 stored at LAL. If the peer node receiving the
RPC owns LA1 and also owns VLBI1 including V1, the peer
node continues performing additional resolution processing,
using V1. In particular, V1 can denote an address, offset or
location of an entry E1 within VLB1, where E1 includes the
PLB address PAL. In this manner, the resolution processing
can include mapping LAl to V1, and then reading the
contents stored at V1 (e.g., the contents stored at entry E1 of
VLB1), where PA1 1s the contents stored at V1.

In at least one embodiment, the peer node receiving the
RPC can return the VLB address V1 1f the peer node 1s not
the exclusive owner of the VLB, VLB1, where VLBI1
includes the VLB address V1, where V1 1s included 1n the
mapping mformation used to map LA1 to PAl, and where
PA1 1s the physical address or location of C1 stored at LA1.
In connection with the foregoing case, V1 1s the address of
an entry E1 1n VLB1 where PA1 1s included in the entry E1
of VLB1. If the peer node receiving the RPC owns LA1 but

does not own VLBI1 including V1, the peer node can simply
return V1 (an address or pointer to the entry E1 of VLB1)
without performing the additional resolution processing
noted above.

In at least one embodiment, in response to the RPC, the
peer node owning LA1 can return information including
cither the VLB address V1 or the PLB address PA1 depend-
ing on whether the peer node owns VLB1 which 1ncludes a
corresponding entry, location or address denoted by V1. In
such an embodiment, the flag IS_PLB can be included 1n an
RPC response or reply sent from the peer node to the

initiator node, where the initiator node sent the RPC. The
IS_PLB flag can denote the address or pointer type returned
as either a VLB address type or a PLB address type. The
initiator node can then examine the IS_PLB flag to interpret
the returned address as either a VLB address or a PLB
address. If the IS_PLB flag=1 (e.g., 1s true or on) and thus
denotes a PLB address, the mitiator can directly read the
content C1 using the returned PLB address PAL. If the
IS_PLB flag=0 (e.g., 1s false or ofl) and thus denotes a VLB
address, the mitiator owns the VLB, VLBI1, including the
returned VLB address, V1. In this latter case the initiator
node accesses VLB1 to read contents stored at the address,
location or entry thereof denoted by the returned VLB
address V1. In at least one embodiment, V1 can be an

address or location of an entry or offset E1 within the VLB,

where E1 includes PAL. Thus, E1 of VLB1 can be accessed
to read PA1, and the PA1 can be accessed by the iitiator
node to read the contents C1 stored at LA1. C1 can then be
returned to the host or other client which 1ssued the read I/O
reading from LAI1.

If the imitiator node which receives the read I/O operation
to read C1 from LLA1 1s the owner of LA1 and also the owner
of the VLB, VLBI1, included 1in the mapping inf

ormation for
[LA1l, the mitiator node can perform all necessary resolution
processing for LAl. In this case, the mitiator node, which
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owns LA1 and VLB1, may not 1ssue an RPC to 1ts peer node.
Rather, the VLB access to VLBI1 1s done locally on the
owning 1nitiator node.

In at least one embodiment, for a read I/O directed to
logical address LA1, the node designated as the exclusive
owner of LAl can map LAl to a corresponding VLB
address, V1, where V1 1s included 1n the mapping informa-
tion for LA1. Additionally 1n at least one embodiment, the
particular node designated as the exclusive owner with
respect to a target VLB (which includes an entry E1 having
the address V1) can map the VLB address V1 to a corre-
sponding PLB address denoting a physical address or loca-
tion PA1 containing the content C1 stored at LAI.

In this manner, the foregoing scenarios provide for efli-
cient use of cache by having the VLB owning node perform
mapper resolution processing with respect to a target logical
address LA1 of a read 1I/O operation. As a result 1 such
embodiments, the VLB can be read and accessed, and
correspondingly cached, on only the owning node of the
VLB but not the peer node. As a result of the foregoing
scenarios 1n accordance with the techniques of the present
disclosure, access and reading of a VLB by a non-owning
node can be avoided in such scenarios, whereby the non-
owning node with respect to a VLB can avoid caching the
VLB which it does not own.

In at least one embodiment, an 1nitiator node receiving a
read I/O directed to the logical address LLA1 can exclusively
own LA1 but not exclusively own the target VLB included
in the chain of MD pages of mapping information mapping
LAl to a corresponding PLLB address PA1 containing con-
tent C1 stored at LA1. In at least one embodiment 1n this
case, the imitiator node can 1ssue an RPC to the peer node
which owns the target VLB, where the target VLB includes
an entry E1, where F1 includes the corresponding PLB
address PAL. The peer node owning the target VLB can
access and read 1ts entry E1 thereby reading PA1 from E1.
The peer node can then return PA1 in response to the RPC.
After the mitiator node recerves the RPC response from the
peer node which owns the target VLB, the 1mnitiator node can
access PA1 and read the content C1, and then return C1 to
the host or other client which 1ssued the read 1/0.

In at least one embodiment, an 1nitiator node receiving a
read I/O directed to the logical address LLA1 can exclusively
own LA1 but not own the target VLB 1ncluded in the chain
of MD pages of mapping information mapping LAl to a
corresponding PLLB address PA1 containing content C1
stored at LA1. In at least one embodiment, one of multiple
options can be selected 1n order to access the target VLB and
obtain PA1 from a corresponding entry E1 of the target VLB.
In at least one embodiment, one or more of the multiple
options can include relaxation or removal of some of the
restrictions resulting from exclusive VLB ownership. In
particular, the second and third options noted below and
discussed elsewhere herein provide for a relaxation or
removal of some of the restrictions of exclusive VLB
ownership whereby the non-owning VLB node can be
allowed to Iimited access and/or caching of a VLB which 1t
does not own. In at least one embodiment, such limited
access and/or caching by a non-owning node with respect to
a target VLB can be performed in connection with a limited
usage case or scenario where the mitiator node receives the
read 1/O directed to LAl and exclusively owns LA1 but
where the peer node owns the target VLB of the mapping
information mapping LLA1 to its corresponding PLLB address
PA1 containing content C1 stored at LAL.

In at least one embodiment, the multiple options can
include a first, second and third option. The first option can
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include 1ssuing an RPC as noted above to the peer node
which owns the target VLB. The second option can include
the mitiator node (which does not own the target VLB)
reading the target VLB, such as from a corresponding
location on non-volatile BE storage; and then reading PA1 °
from the corresponding entry E1 of the target VLB. In this
second option, the target VLB read locally by the non-
owning 1nitiator node from BE non-volatile storage may not
be cached by the non-owning 1nitiator node. The third option
can include the mitiator node (which does not own the target
VLB) reading the target VLB, such as from a corresponding,
location on non-volatile BE storage; and then reading PA1
from the corresponding entry E1 of the target VLB. In this
third option, the target VLB read locally by the non-owning,
initiator node from BE non-volatile storage can be cached by
the non-owning initiator node. With this third option 1n at
least one embodiment, the initiator node can have a rela-
tively small local cache of un-owned VLBs (e.g., VLBs
which are exclusively owned by the peer node but not the »¢
initiator node). With this third option 1n at least one embodi-
ment, the small local cache of un-owned VLBs can include
hot or frequently accessed VLBs which are owned by the
peer node.

In at least one embodiment including the three options 25
noted above, one or more criteria can be specified to provide
tor dynamically selecting one of the three options at runtime
in accordance with the current evaluation of the one or more
criteria. In at least one embodiment, the one or more criteria
can include one or more metrics. In at least one embodiment, 30
the one or more criteria can include the latency introduced
if the RPC of the first option 1s performed. The latency can
be determined 1n any suitable manner. In at least one
embodiment, the latency can be estimated based on prior
actual 1ssuances of the RPC of the first option alone, or 1n 35
combination with, current utilization or data tratlic of an
internode link or connection between the 1nitiator and peer
nodes where the RPC would be i1ssued over the internode
link or connection. Generally, the higher the latency and/or
the higher the internode link utilization, the more motivation 40
to select another option other than the first option. In at least
one embodiment, the one or more criteria can include a VLB
cache hit rate with respect to the peer node which owns the
target VLB. Generally, the higher the VLB cache hit rate of
the owning node of the target VLB, the greater the motiva- 45
tion to send the RPC request by selecting the first option
rather than reading the target VLB locally from BE non-
volatile storage (as with the second or third options). In at
least one embodiment, the one or more criteria can include
a current utilization of BE non-volatile storage. Generally, 50
the higher the BE utilization, the greater the motivation to
send the RPC request by selecting the first option rather than
selecting the second or third options which read the target
VLB locally from BE non-volatile storage. In at least one
embodiment, the one or more criteria can include a local 55
VLB cache hit rate of the mnitiator node 1f a local VLB cache
1s used to cache VLB pages not owned by the mitiator node.
Generally, the higher the local VLB cache hit rate, the more
motivation to use the local VLB cache and not send an RPC
request (e.g., not select the first option but rather select the 60
above-noted second or third option which 1s performed
locally on the mitiator node which received the read 1/0
operation).

In at least one embodiment, the criteria can indicate to
select the first option and send a peer RPC request 1f the 65
latency 1s less than a specified maximum latency threshold,
if the VLB cache hit rate of the peer node i1s above a
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specified hit rate threshold, and if the BE utilization 1s
greater than a specified utilization threshold.

In at least one embodiment, the criteria can indicate to
select the first option to send a peer RPC request it the
latency 1s less than a specified maximum latency threshold,
and 11 the VLB cache hit rate of the peer node 1s above a

specified hit rate threshold.
In at least one embodiment, the criteria can indicate to

select the first option to send a peer RPC request 1f the
latency 1s less than a specified maximum latency threshold,
and 11 the BE utilization 1s greater than a specified utilization

threshold.

In at least one embodiment, the criteria can indicate to
select the second or third option (and not send a peer RPC
request) 11 the latency 1s more than a specified maximum
latency threshold, and/or if the internode link utilization 1s
greater than a specified utilization threshold.

In at least one embodiment, the criteria can include a
function F which includes one or more independent vari-
ables used to make a selection provided as an output of the
function F. The one more independent variables can include
one or more of: the latency introduced i1 the RPC of the first
option 1s performed; current utilization of an mternode link
or connection between the initiator and peer nodes where the
RPC would be 1ssued over the internode link or connection;
a VLB cache hit rate with respect to the peer node which
owns the target VLB; a current utilization of BE non-volatile
storage; and a local VLB cache hit rate of the initiator node
if a local VLB cache 1s used to cache VLB pages not owned
by the mitiator node. Generally, the function F can make a
selection from multiple specified or predefined options such
as discussed above. In at least one embodiment, F can be
used to select one of the specified options 1n accordance with
a weighting of the multiple independent variables.

The foregoing and other aspects of the techniques of the
present disclosure are described 1in more detail in the fol-
lowing paragraphs.

Referring to the FIG. 1, shown 1s an example of an
embodiment of a SAN 10 that 1s used 1n connection with
performing the techniques described herein. The SAN 10
includes a data storage system 12 connected to the host
systems (also sometimes referred to as hosts) 14a-14#
through the communication medium 18. In this embodiment
of the SAN 10, the n hosts 14a-14n access the data storage
system 12, for example, 1n performing mnput/output (1/0)
operations or data requests. The commumication medium 18

can be any one or more of a variety of networks or other type
of communication connections as known to those skilled 1n
the art. The communication medium 18 can be a network
connection, bus, and/or other type of data link, such as a
hardwire or other connections known in the art. For
example, the communication medium 18 can be the Internet,
an intranet, a network, or other wireless or other hardwired
connection(s) by which the host systems 14a-14# access and
communicate with the data storage system 12, and also
communicate with other components included in the SAN
10.

Each of the host systems 14a-14»n and the data storage
system 12 included 1in the SAN 10 are connected to the
communication medium 18 by any one of a vaniety of
connections as provided and supported in accordance with
the type of communication medium 18. The processors
included 1 the host systems 14aq-14n and data storage
system 12 can be any one of a varniety of proprietary or
commercially available single or multi-processor system,
such as an Intel-based processor, or other type of commer-
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cially available processor able to support traflic 1n accor-
dance with each particular embodiment and application.

It should be noted that the particular examples of the
hardware and software included in the data storage system
12 are described herein in more detail, and can vary with
cach particular embodiment. Each of the hosts 14a-14» and
the data storage system 12 can all be located at the same
physical site, or, alternatively, be located 1n different physi-
cal locations. The communication medium 18 used {for
communication between the host systems 14a-14» and the
data storage system 12 of the SAN 10 can use a variety of
different communication protocols such as block-based pro-
tocols (e.g., SCSI, FC, 1SCSI), file system-based protocols
(e.g., NFS or network file server), and the like. Some or all
of the connections by which the hosts 14a-14» and the data
storage system 12 are connected to the communication
medium 18 can pass through other commumnication devices,
such as switching equipment, a phone line, a repeater, a
multiplexer or even a satellite.

Each of the host systems 14a-14n can perform data
operations. In the embodiment of the FIG. 1, any one of the
host computers 14a-14» 1ssues a data request to the data
storage system 12 to perform a data operation. For example,
an application executing on one of the host computers
14a-14» performs a read or write operation resulting in one
or more data requests to the data storage system 12.

It should be noted that although the element 12 1s 1llus-
trated as a single data storage system, such as a single data
storage array, the element 12 also represents, for example,
multiple data storage arrays alone, or 1n combination with,
other data storage devices, systems, appliances, and/or com-
ponents having suitable connectivity to the SAN 10 1n an
embodiment using the techniques herein. It should also be
noted that an embodiment can include data storage arrays or
other components from one or more vendors. In subsequent
examples 1illustrating the techmiques herein, reference 1is
made to a single data storage array by a vendor. However, as
will be appreciated by those skilled 1n the art, the techniques
herein are applicable for use with other data storage arrays
by other vendors and with other components than as
described herein for purposes of example.

In at least one embodiment, the data storage system 12 1s
a data storage appliance or a data storage array including a
plurality of data storage devices (PDs) 16a-16n. The data
storage devices 16a-16n 1include one or more types of data
storage devices such as, for example, one or more rotating
disk drives and/or one or more solid state drives (SSDs). An
SSD 1s a data storage device that uses solid-state memory to
store persistent data. SSDs refer to solid state electronics
devices as distinguished from electromechanical devices,
such as hard drives, having moving parts. Flash devices or
flash memory-based SSDs are one type of SSD that contains
no moving mechanical parts. In at least one embodiment, the
flash devices can be constructed using nonvolatile semicon-
ductor NAND flash memory. The flash devices include, for
example, one or more SLC (single level cell) devices and/or
MLC (mult1 level cell) devices.

In at least one embodiment, the data storage system or
array includes different types ol controllers, adapters or
directors, such as an HA 21 (host adapter), RA 40 (remote
adapter), and/or device interface(s) 23. Each of the adapters
(sometimes also known as controllers, directors or interface
components) can be implemented using hardware including
a processor with a local memory with code stored thereon
for execution 1n connection with performing diflerent opera-
tions. The HAs are used to manage communications and
data operations between one or more host systems and the
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global memory (GM). In an embodiment, the HA 1s a Fibre
Channel Adapter (FA) or other adapter which facilitates host
communication. The HA 21 can be characterized as a front
end component of the data storage system which receives a
request Irom one of the hosts 14a-x. In at least one embodi-
ment, the data storage array or system includes one or more
RAs used, for example, to {facilitate communications
between data storage arrays. The data storage array also
includes one or more device interfaces 23 for facilitating
data transiers to/from the data storage devices 16a-16%. The
data storage device interfaces 23 include device interface
modules, for example, one or more disk adapters (DAs)
(e.g., disk controllers) for interfacing with the flash drives or
other physical storage devices (e.g., PDS 16a-r). The DAs
can also be characterized as back end components of the data
storage system which interface with the physical data stor-
age devices.

One or more internal logical communication paths exist
between the device interfaces 23, the RAs 40, the HAs 21,

and the memory 26. An embodiment, for example, uses one
or more internal busses and/or communication modules. In
at least one embodiment, the global memory portion 255 1s
used to facilitate data transfers and other communications
between the device interfaces, the HAs and/or the RAs 1in a
data storage array. In one embodiment, the device interfaces
23 performs data operations using a system cache included
in the global memory 255, for example, when communicat-
ing with other device interfaces and other components of the
data storage array. The other portion 25a 1s that portion of
the memory used in connection with other designations that
can vary 1n accordance with each embodiment.

The particular data storage system as described in this
embodiment, or a particular device thereot, such as a disk or
particular aspects of a flash device, should not be construed
as a limitation. Other types of commercially available data
storage systems, as well as processors and hardware con-
trolling access to these particular devices, can also be
included in an embodiment.

The host systems 14a-14» provide data and access control
information through channels to the storage systems 12, and
the storage systems 12 also provide data to the host systems
14a-n also through the channels. The host systems 14a-7 do
not address the drives or devices 16a-16n of the storage
systems directly, but rather access to data 1s provided to one
or more host systems from what the host systems view as a
plurality of logical devices, logical volumes (LVs) also
referred to herein as logical units (e.g., LUNs). A logical umit
(LUN) can be characterized as a disk array or data storage
system reference to an amount of storage space that has been
formatted and allocated for use to one or more hosts. A
logical unit has a logical unit number that 1s an I/O address
for the logical unmit. As used herein, a LUN or LUNs refers
to the different logical units of storage referenced by such
logical unit numbers. The LUNs have storage provisioned
from portions of one or more physical disk drives or more
generally physical storage devices. For example, one or
more LUNSs can reside on a single physical disk drive, data
of a single LUN can reside on multiple different physical
devices, and the like. Data 1n a single data storage system,
such as a single data storage array, can be accessible to
multiple hosts allowing the hosts to share the data residing
therein. The HAs are used 1n connection with communica-
tions between a data storage array and a host system. The
RAs are used 1n facilitating communications between two
data storage arrays. The DAs include one or more types of
device mterfaced used 1n connection with facilitating data
transfers to/from the associated disk drive(s) and LUN (s)
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residing thereon. For example, such device interfaces can
include a device interface used 1n connection with facilitat-
ing data transfers to/from the associated flash devices and
LUN(s) residing thereon. It should be noted that an embodi-
ment can use the same or a different device mterface for one
or more different types of devices than as described herein.

In an embodiment in accordance with the techmiques
herein, the data storage system as described can be charac-
terized as having one or more logical mapping layers in
which a logical device of the data storage system 1s exposed
to the host whereby the logical device 1s mapped by such
mapping layers of the data storage system to one or more
physical devices. Additionally, the host can also have one or
more additional mapping layers so that, for example, a host
side logical device or volume 1s mapped to one or more data
storage system logical devices as presented to the host.

It should be noted that although examples of the tech-
niques herein are made with respect to a physical data
storage system and 1ts physical components (e.g., physical
hardware for each HA, DA, HA port and the like), the
techniques herein can be performed in a physical data
storage system including one or more emulated or virtual-
1zed components (e.g., emulated or virtualized ports, emu-
lated or virtualized DAs or HAs), and also a virtualized or
emulated data storage system including virtualized or emu-
lated components.

Also shown 1n the FIG. 1 1s a management system 22a
used to manage and monitor the data storage system 12. In
one embodiment, the management system 22a 1s a computer
system which includes data storage system management
soltware or application that executes 1n a web browser. A
data storage system manager can, for example, view 1nfor-
mation about a current data storage configuration such as
L.UNs, storage pools, and the like, on a user iterface (UI)
in a display device of the management system 22a. Alter-
natively, and more generally, the management software can
execute on any suitable processor 1n any suitable system. For
example, the data storage system management software can
execute on a processor of the data storage system 12.

Information regarding the data storage system configura-
tion 1s stored in any suitable data container, such as a
database. The data storage system configuration information
stored 1n the database generally describes the various physi-
cal and logical entities 1n the current data storage system
configuration. The data storage system configuration infor-
mation describes, for example, the LUNs configured in the
system, properties and status information of the configured
LUNs (e.g., LUN storage capacity, unused or available
storage capacity of a LUN, consumed or used capacity of a
LUN), configured RAID groups, properties and status infor-
mation of the configured RAID groups (e.g., the RAID level
of a RAID group, the particular PDs that are members of the
configured RAID group), the PDs 1n the system, properties
and status information about the PDs in the system, data
storage system performance imnformation such as regarding
various storage objects and other entities in the system, and
the like.

Consistent with other discussion herein, management
commands 1ssued over the control or management path
include commands that query or read selected portions of the
data storage system configuration, such as information
regarding the properties or attributes of one or more LUNSs.
The management commands also include commands that
write, update, or modily the data storage system configura-
tion, such as, for example, to create or provision a new LUN
(e.g., which result 1n moditying one or more database tables
such as to add information for the new LUN), and the like.
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It should be noted that each of the diflerent controllers or
adapters, such as each HA, DA, RA, and the like, can be
implemented as a hardware component including, for
example, one or more processors, one or more forms of
memory, and the like. Code can be stored in one or more of
the memories of the component for performing processing.

The device iterface, such as a DA, performs I/O opera-
tions on a physical device or drive 16a-16#%. In the following
description, data residing on a LUN 1s accessed by the
device 1terface following a data request 1n connection with
I/O operations. For example, a host 1ssues an I/O operation
that 1s recerved by the HA 21. The 1I/O operation identifies
a target location from which data 1s read from, or written to,
depending on whether the I/O operation 1s, respectively, a
read or a write operation request. In at least one embodiment
using block storage services, the target location of the
received 1/0 operation 1s expressed 1n terms of a LUN and
logical address or oflset location (e.g., LBA or logical block
address) on the LUN. Processing 1s performed on the data
storage system to further map the target location of the
received 1/0O operation, expressed i terms of a LUN and
logical address or oflset location on the LUN, to 1ts corre-
sponding physical storage device (PD) and location on the
PD. The DA which services the particular PD performs
processing to either read data from, or write data to, the
corresponding physical device location for the I/O opera-
tion.

It should be noted that an embodiment of a data storage
system can include components having different names from
that described herein but which perform functions similar to
components as described herein. Additionally, components
within a single data storage system, and also between data
storage systems, can communicate using any suitable tech-
nique described herein for exemplary purposes. For
example, the element 12 of the FIG. 1 in one embodiment 1s
a data storage system, such as a data storage array, that
includes multiple storage processors (SPs). Each of the SPs
27 1s a CPU 1including one or more “cores’ or processors and
cach have therr own memory used for communication
between the different front end and back end components
rather than utilize a global memory accessible to all storage
processors. In such embodiments, the memory 26 represents
memory ol each such storage processor.

Generally, the techniques herein can be used 1n connec-
tion with any suitable storage system, appliance, device, and
the like, in which data 1s stored. For example, an embodi-
ment can 1mplement the techniques herein using a midrange
data storage system as well as a higher end or enterprise data
storage system.

The data path or I/O path can be characterized as the path
or flow of 1/O data through a system. For example, the data
or I/O path can be the logical flow through hardware and
soltware components or layers in connection with a user,
such as an application executing on a host (e.g., more
generally, a data storage client) 1ssuing I/O commands (e.g.,
SCSI-based commands, and/or file-based commands) that
read and/or write user data to a data storage system, and also
receive a response (possibly including requested data) in
connection such I/O commands.

The control path, also sometimes referred to as the
management path, can be characterized as the path or flow
of data management or control commands through a system.
For example, the control or management path 1s the logical
flow through hardware and software components or layers 1n
connection with 1ssuing data storage management command
to and/or from a data storage system, and also receiving
responses (possibly including requested data) to such control
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or management commands. For example, with reference to
the FIG. 1, the control commands are i1ssued from data
storage management software executing on the management
system 22a to the data storage system 12. Such commands,
for example, establish or modify data services, provision
storage, perform user account management, and the like.
Consistent with other discussion herein, management com-
mands result in processing that can include reading and/or
moditying information in the database storing data storage
system configuration information.

The data path and control path define two sets of diflerent
logical flow paths. In at least some of the data storage system
configurations, at least part of the hardware and network
connections used for each of the data path and control path
differ. For example, although both control path and data path
generally use a network for communications, some of the
hardware and software used can differ. For example, with
reference to the FIG. 1, a data storage system has a separate
physical connection 29 from a management system 22a to
the data storage system 12 being managed whereby control
commands are 1ssued over such a physical connection 29.
However, user I/O commands are never 1ssued over such a
physical connection 29 provided solely for purposes of
connecting the management system to the data storage
system. In any case, the data path and control path each
define two separate logical flow paths.

With reference to the FIG. 2A, shown 1s an example 100
illustrating components that can be included 1n the data path
in at least one existing data storage system 1n accordance
with the techmiques of the present disclosure. The example
100 includes two processing nodes A 102q and B 10256 and
the associated software stacks 104, 106 of the data path,
where I/0 requests can be received by either processing
node 102a or 1025. In the example 200, the data path 104 of
processing node A 102a includes: the frontend (FE) com-
ponent 104a (e.g., an FA or front end adapter) that translates
the protocol-specific request 1nto a storage system-specific
request; a system cache layer 1045 where data 1s temporarily
stored; an inline processing layer 105a; and a backend (BE)
component 104¢ that facilitates movement of the data
between the system cache and non-volatile physical storage
(e.g., back end physical non-volatile storage devices or PDs
accessed by BE components such as DAs as described
herein). During movement of data in and out of the system
cache layer 1046 (e.g., such as in connection with read data
from, and writing data to, physical storage 110a, 1105),
inline processing can be performed by layer 105a. Such
inline processing operations ol 105a can be optionally
performed and can include any one of more data processing,
operations 1n connection with data that 1s flushed from
system cache layer 1045 to the back-end non-volatile physi-
cal storage 110q, 1105, as well as when retrieving data from
the back-end non-volatile physical storage 110a, 1105 to be
stored 1n the system cache layer 104b. In at least one
embodiment, the inline processing can include, for example,
performing one or more data reduction operations such as
data deduplication or data compression. The inline process-
ing can include performing any suitable or desirable data
processing operations as part of the I/O or data path.

In a manner similar to that as described for data path 104,
the data path 106 for processing node B 1025 has 1ts own FE
component 1064, system cache layer 1065, inline processing
layer 1055, and BE component 106¢ that are respectively
similar to the components 104a, 1045, 105a and 104¢. The
clements 110a, 1105 denote the non-volatile BE physical
storage provisioned from PDs for the LUNs, whereby an I/O
can be directed to a location or logical address of a LUN and
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where data can be read from, or written to, the logical
address. The LUNs 110a, 1105 are examples of storage
objects representing logical storage entities mcluded 1n an
existing data storage system configuration. Since, 1n this
example, writes, or more generally I/Os, directed to the
LUNs 110a, 1105 can be received for processing by either
of the nodes 1024 and 10256, the example 100 illustrates
what can also be referred to as an active-active configura-
tion.

In connection with a write operation received from a host
and processed by the processing node A 102a, the write data
can be written to the system cache 1045, marked as write
pending ( WP) denoting 1t needs to be written to the physical
storage 110a, 1105 and, at a later point 1n time, the write data
can be destaged or flushed from the system cache to the
physical storage 110a, 1105 by the BE component 104¢. The
write request can be considered complete once the write data
has been stored in the system cache whereby an acknowl-
edgement regarding the completion can be returned to the
host (e.g., by component the 104a). At various points in
time, the WP data stored 1in the system cache 1s flushed or
written out to the physical storage 110a, 1105.

In connection with the mline processing layer 105a, prior
to storing the original data on the physical storage 110a,
1105, one or more data reduction operations can be per-
formed. For example, the inline processing can include
performing data compression processing, data deduplication
processing, and the like, that can convert the original data (as
stored 1n the system cache prior to inline processing) to a
resulting representation or form which 1s then written to the
physical storage 110a, 1105.

In connection with a read operation to read a block of
data, a determination 1s made as to whether the requested
read data block 1s stored 1n 1ts original form (1n system cache
1045 or on physical storage 110a, 1105), or whether the
requested read data block 1s stored 1 a different modified
form or representation. If the requested read data block
(which 1s stored 1n 1ts original form) 1s 1n the system cache,
the read data block 1s retrieved from the system cache 10456
and returned to the host. Otherwise, 1f the requested read
data block 1s not 1n the system cache 1045 but is stored on
the physical storage 110a, 1105 1n 1ts original form, the
requested data block 1s read by the BE component 104¢ from
the backend storage 110a, 1105, stored 1n the system cache
and then returned to the host.

If the requested read data block 1s not stored 1n 1ts original
form, the original form of the read data block is recreated
and stored 1n the system cache 1n 1ts original form so that 1t
can be returned to the host. Thus, requested read data stored
on physical storage 110a, 1105 can be stored in a modified
form where processing 1s performed by 105q to restore or
convert the modified form of the data to its original data
form prior to returning the requested read data to the host.

Also 1llustrated 1in FIG. 2A 1s an internal network inter-
connect 120 between the nodes 1024, 1025. In at least one
embodiment, the interconnect 120 can be used for internode
communication between the nodes 102a, 1025.

In connection with at least one embodiment 1n accordance
with the techniques of the present disclosure, each processor
or CPU can include 1ts own private dedicated CPU cache
(also sometimes referred to as processor cache) that 1s not
shared with other processors. In at least one embodiment,
the CPU cache, as 1n general with cache memory, can be a
form of fast memory (relatively faster than main memory
which can be a form of RAM). In at least one embodiment,
the CPU or processor cache 1s on the same die or chip as the
processor and typically, like cache memory in general, 1s far
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more expensive to produce than normal RAM used as main
memory. The processor cache can be substantially faster
than the system RAM used as main memory. The processor
cache can contain information that the processor will be
immediately and repeatedly accessing. The faster memory
of the CPU cache can for example, run at a refresh rate that’s
closer to the CPU’s clock speed, which mimimizes wasted
cycles. In at least one embodiment, there can be two or more
levels (e.g., L1, L2 and L3) of cache. The CPU or processor
cache can include at least an L1 level cache that is the local
or private CPU cache dedicated for use only by that par-
ticular processor. The two or more levels of cache 1n a
system can also include at least one other level of cache
(LLC or lower level cache) that 1s shared among the different
CPUs. The L1 level cache serving as the dedicated CPU
cache of a processor can be the closest of all cache levels
(e.g., L1-L3) to the processor which stores copies of the data
from frequently used main memory locations. Thus, the
system cache as described herein can include the CPU cache
(e.g., the L1 level cache or dedicated private CPU/processor
cache) as well as other cache levels (e.g., the LLC) as
described herein. Portions of the LL.C can be used, for
example, to mitially cache write data which 1s then flushed
to the backend physical storage such as BE PDs providing
non-volatile storage. For example, 1n at least one embodi-
ment, a RAM based memory can be one of the caching
layers used as to cache the write data that 1s then flushed to
the backend physical storage. When the processor performs
processing, such as 1n connection with the inline processing
105a, 1054 as noted above, data can be loaded from the main
memory and/or other lower cache levels 1nto 1ts CPU cache.

In at least one embodiment, the data storage system can
be configured to include one or more pairs of nodes, where
cach pair of nodes can be generally as described and
represented as the nodes 102a-6 1n the FIG. 2A. For
example, a data storage system can be configured to include
at least one pair of nodes and at most a maximum number
of node pairs, such as for example, a maximum of 4 node
pairs. The maximum number of node pairs can vary with
embodiment. In at least one embodiment, a base enclosure
can nclude the minimum single pair of nodes and up to a
specified maximum number of PDs. In some embodiments,
a single base enclosure can be scaled up to have additional
BE non-volatile storage using one or more expansion enclo-
sures, where each expansion enclosure can include a number
of additional PDs. Further, in some embodiments, multiple
base enclosures can be grouped together 1n a load-balancing,
cluster to provide up to the maximum number of node pairs.
Consistent with other discussion herein, each node can
include one or more processors and memory. In at least one
embodiment, each node can include two multi-core proces-
sors with each processor of the node having a core count of
between 8 and 28 cores. In at least one embodiment, the PDs
can all be non-volatile SSDs, such as flash-based storage
devices and storage class memory (SCM) devices. It should
be noted that the two nodes configured as a pair can also
sometimes be referred to as peer nodes. For example, the
node A 102a 1s the peer node of the node B 1025, and the
node B 1025 1s the peer node of the node A 102a.

In at least one embodiment, the data storage system can
be configured to provide both block and file storage services
with a system software stack that includes an operating
system running directly on the processors of the nodes of the
system.

In at least one embodiment, the data storage system can
be configured to provide block-only storage services (e.g.,
no file storage services). A hypervisor can be installed on
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cach of the nodes to provide a virtualized environment of
virtual machines (VMs). The system software stack can
execute 1 the virtualized environment deployed on the
hypervisor. The system software stack (sometimes referred
to as the software stack or stack) can include an operating
system running in the context of a VM of the virtualized
environment. Additional software components can be
included 1n the system software stack and can also execute
in the context of a VM of the virtualized environment.

In at least one embodiment, each pair of nodes can be
configured 1n an active-active configuration as described
elsewhere herein, such as 1n connection with FI1G. 2 A, where
cach node of the pair has access to the same PDs providing
BE storage for high availability. With the active-active
configuration of each pair of nodes, both nodes of the pair
process I/0O operations or commands and also transier data
to and from the BE PDs attached to the pair. In at least one
embodiment, BE PDs attached to one pair of nodes are not
shared with other pairs of nodes. A host can access data
stored on a BE PD through the node pair associated with or
attached to the PD.

In at least one embodiment, each pair of nodes provides
a dual node architecture where both nodes of the pair can be
generally 1dentical 1n terms of hardware and software for
redundancy and high availability. Consistent with other
discussion herein, each node of a pair can perform process-
ing of the different components (e.g., FA, DA, and the like)
in the data path or I/O path as well as the control or
management path. Thus, 1 such an embodiment, different
components, such as the FA, DA and the like of FIG. 1, can
denote logical or functional components implemented by
code executing on the one or more processors of each node.
Each node of the pair can include its own resources such as
its own local (i.e., used only by the node) resources such as
local processor(s), local memory, and the like.

Consistent with other discussion herein, a cache can be
used for caching write I/O data and other cached informa-
tion. In one system, the cache used for caching logged writes
can be implemented using multiple caching devices or PDs,
such as non-volatile (NV) SSDs such as NVRAM devices
that are external with respect to both of the nodes or storage
controllers. The caching devices or PDs used to implement
the cache can be configured 1n a RAID group of any suitable
RAID level for data protection. In at least one embodiment,
the caching PDs form a shared non-volatile cache accessible
to both nodes of the dual node architecture. It should be
noted that in a system where the caching devices or PDs are

external with respect to the two nodes, the caching devices
or PDs are 1 addition to other non-volatile PDs accessible
to both nodes. The additional PDs provide the BE non-
volatile storage for the nodes where the cached data stored
on the caching devices or PDs 1s eventually flushed to the
BE PDs as discussed elsewhere herein. In at least one
embodiment, a portion of each node’s local volatile memory
can also be used for caching information, such as blocks or
pages of user data and metadata. For example, such node-
local cached pages of user data and metadata can be used 1n
connection with servicing reads for such user data and
metadata.

In the following paragraphs, the one or more caching
devices or PDs may be referred to as a data journal or log
used 1n the data storage system. In such a system, the
caching devices or PDs are non-volatile log devices or PDs
upon which the log 1s persistently stored. It should be noted
that as discussed elsewhere herein, both nodes can also each
have local volatile memory used as a node local cache for
storing data, structures and other information. In at least one




US 12,093,187 Bl

19

embodiment, the local volatile memory local to one of the
nodes 1s used exclusively by that one node.

In a data storage system, minimizing the latency of 1I/O
requests 1s a critical performance metric. In at least one data
storage system using the dual node architecture such as
described 1n connection with FIG. 2A, for write operations,
latency can be aflected by the amount of time taken to store
the write data i1n the log where the write data 1s visible to
both nodes or controllers of the system.

Consistent with other discussion herein, the log file used
to log user operations, such as write 1/Os, can be used to
optimize write operation latency. Generally, a write opera-
tion writing data 1s received by the data storage system from
a host or other client. The data storage system then performs
processing to persistently record the write operation 1n the
log. Once the write operation is persistently recorded 1n the
log, the data storage system can send an acknowledgement
to the client regarding successiul completion of the write
operation. At some point 1n time subsequent to logging the
write operation the log, the write operation 1s flushed or
destaged from the log to the BE PDs. In connection with
flushing the recorded write operation from the log, the data
written by the write operation 1s stored on non-volatile
physical storage of a BE PD. The space of the log used to
record the write operation that has been flushed can now be
reclaimed for reuse.

It should be noted that the flushing of the log can be
performed 1n response to an occurrence of any one or more
defined conditions. For example, the log can be flushed 1n
response to determimng that the amount of reclaimed log
space available for use and allocation 1s less than a specified
threshold amount or size.

In at least one embodiment, a metadata (MD) structure of
mapping information can be used in accordance with the
techniques herein.

The mapping information can be used, for example, to
map a logical address, such as a LUN and an LBA or oflset,
to 1ts corresponding storage location, such as a physical
storage location on BE non-volatile PDs of the system.
Consistent with discussion elsewhere herein, write requests
or operations stored 1n the log can be flushed to the BE PDs
(non-volatile) providing storage locations for the written
data. For example, a logged write operation that writes first
data to a logical address can be flushed whereby the logged
first data 1s written out to a physical storage location on a BE
PD. The mapping information can be used to map the logical
address to the physical storage location containing the
content or data stored at the logical address. In at least one
embodiment, the mapping information includes a MD struc-
ture that 1s lierarchical structure of multiple layers of MD
pages or blocks.

In at least one embodiment, the mapping information or
MD structure for a LUN, such as a LUN A, can be in the
form of a tree havmg a plurality of levels of MD pages. More
generally, the mapping structure can be 1n the form of any
ordered list or hierarchical structure. In at least one embodi-
ment, the mapping structure for the LUN A can include LUN
MD 1n the form of a tree having 3 levels mncluding a single
top or root node (TOP node), a single mid-level (MID node)
and a bottom level of leal nodes (LEAF nodes), where each
of the MD page leal nodes can point to, or reference (directly
or indirectly) one or more pages of stored data, such as user

data stored on the LUN A. Each node 1n the tree corresponds

to a MD page including MD for the LUN A. More generally,
the tree or other hierarchical structure of various MD pages
of the mapping structure for the LUN A can include any
suitable number of levels, such as more than 3 levels where
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there are multiple mid-levels. In at least one embodiment the
tree of MD pages for the LUN can be a B+ tree, also
sometimes referred to as an “N-ary” tree, where “N” 1ndi-
cates that each node 1n the tree structure can have up to a
maximum of N child nodes. For example, in at least one
embodiment, the tree of MD pages for the LUN can specitly
N=512 whereby each node 1n the tree structure can have up
to a maximum ol N child nodes. For simplicity of illustra-
tion, the tree structure of MD pages, corresponding to the
mapping structure in at least one embodiment, 1s represented
in FIG. 3 as including only 3 levels where each node in the
tree can have at most 3 child nodes. Generally, the tech-
niques herein can be used with any layered or hierarchical
structure of MD pages.

Belore describing 1n more detail the mapping information
of MD pages that can be used 1n an at least one embodiment
to map a logical address to a corresponding physical storage
location or address, further details are described 1n connec-
tion with using a log for logging user or client operations,
such as write 1/Os.

Consistent with other discussion herein, the log can be
used to optimize write operation latency. Generally, the
write operation writing data 1s recerved by the data storage
system from a host or other client. The data storage system
then performs processing to persistently record the write
operation 1n the log. Once the write operation 1s persistently
recorded 1n the log, the data storage system can send an
acknowledgement to the client regarding successiul comple-
tion of the write operation. At some point 1n time subsequent
to logging the write operation the log, the write operation 1s
flushed or destaged from the log to the BE PDs. In connec-
tion with flushing the recorded write operation from the log,
the data written by the write operation 1s stored on non-
volatile physical storage of a BE PD. The space of the log
used to record the write operation that has been flushed can
now be reclaimed for reuse. The write operation can be
recorded 1n the log in any suitable manner and can include,
for example, recording a target logical address to which the
write operation 1s directed and recording the data written to
the target logical address by the write operation.

In the log, each logged operation can be recorded 1n the
next logically sequential record of the log. For example, a
logged write I/O and write data (e.g., write I/O payload) can
be recorded 1n a next logically sequential record of the log.
The log can be circular 1n nature 1n that once a write
operation 1s recorded in the last record of the log, recording
of the next write proceeds with recording in the first record
of the log.

The typical 1/O pattern for the log as a result of recording,
write I/Os and possibly other information 1n successive
consecutive log records includes logically sequential and
logically contiguous writes (e.g., logically with respect to
the logical offl:

set or ordering within the log). Data can also
be read from the log as needed (e.g., depending on the
particular use or application of the log) so typical 1/O
patterns can also include reads. The log can have a physical
storage layout corresponding to the sequential and contigu-
ous order in which the data 1s wrtten to the log. Thus, the
log data can be written to sequential and consecutive physi-
cal storage locations in a manner corresponding to the
logical sequential and contiguous order of the data in the log.
Additional detail regarding use and implementation of the
log 1n at least one embodiment 1n accordance with the
techniques of the present disclosure 1s provided below.
Referring to FIG. 2B, shown 1s an example 200 1llustrat-
ing a sequential stream 220 of operations or requests
received that are written to a log 1 an embodiment in
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accordance with the techniques of the present disclosure. In
this example, the log can be stored on the LUN 11 where
logged operations or requests, such as write I/Os that write
user data to a file, target LUN or other storage object, are
recorded as records in the log. The element 220 includes
information or records of the log for 3 write I/Os or updates
which are recorded in the records or blocks I 221, 1+1 222
and I+2 223 of the log (e.g., where I denotes an integer oflset
of a record or logical location in the log). The blocks I 221,
I+1 222, and I+2 223 can be written sequentially 1n the
foregoing order for processing in the data storage system.
The block 221 can correspond to the record or block I of the
log stored at LUN 11, LBA 0 that logs a first write 1/0
operation. The first write I/O operation can write “ABCD”
to the target logical address LUN 1, LBA 0. The block 222
can correspond to the record or block I+1 of the log stored
at LUN 11, LBA 1 that logs a second write 1/O operation.
The second write I/O operation can write “EFGH” to the
target logical address LUN 1, LBA 5. The block 223 can
correspond to the record or block I+2 of the log stored at
LUN 11, LBA 2 that logs a third write I/O operation. The
third write I/O operation can write “WXYZ” to the target
logical address LUN 1, LBA 10. Thus, each of the foregoing
3 write I/0 operations logged 1n 221, 222 and 223 write to
3 different logical target addresses or locations each denoted
by a target LUN and logical offset on the target LUN. As
illustrated in the FIG. 2B, the information recorded in each
of the foregoing records or blocks 221, 222 and 223 of the
log can include the target logical address to which data 1s
written and the write data written to the target logical
address.

The head pointer 224 can denote the next free record or
block of the log used to record or log the next write 1/O
operation. The head pointer can be advanced 224a to the
next record in the log as each next write I/O operation 1s
recorded. When the head pointer 224 reaches the end of the
log by writing to the last sequential block or record of the
log, the head pointer can advance 203 to the first sequential
block or record of the log 1n a circular manner and continue
processing. The tail pointer 226 can denote the next record
or block of a recorded write I/O operation 1n the log to be
destaged and flushed from the log. Recorded or logged write
I/0s of the log are processed and flushed whereby the
recorded write I/O operation that writes to a target logical
address or location (e.g., target LUN and oflset) 1s read from
the log and then executed or applied to a non-volatile BE PD
location mapped to the target logical address (e.g., where the
BE PD location stores the data content of the target logical
address). Thus, as records are flushed from the log, the tail
pointer 226 can logically advance 226a sequentially (e.g.,
advance to the right toward the head pointer and toward the
end of the log) to a new tail position. Once a record or block
of the log 1s flushed, the record or block 1s freed for reuse 1n
recording another write I/O operation. When the tail pointer
reaches the end of the log by flushing the last sequential
block or record of the log, the tail pointer advances 203 to
the first sequential block or record of the log in a circular
manner and continue processing. Thus, the circular logical
manner 1 which the records or blocks of the log are
processed form a ring bufler in which the write 1/Os are
recorded.

When a write 1/0O operation writing user data to a target
logical address 1s persistently recorded and stored in the
non-volatile log, the write I/O operation 1s considered com-
plete and can be acknowledged as complete to the host or
other client originating the write I/O operation to reduce the
write I/O latency and response time. The write 1/O operation
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and write data are destaged at a later point 1n time during a
flushing process that flushes a recorded write of the log to
the BE non-volatile PDs, updates and writes any corre-
sponding metadata for the flushed write 1/O operation, and
frees the record or block of the log (e.g., where the record
or block logged the write 1/O operation just flushed). The
metadata updated as part of the flushing process for the
target logical address of the write I/O operation can include
mapping information as described elsewhere herein. The
mapping imformation ol the metadata for the target logical
address can i1dentily the physical address or location on
provisioned physical storage on a non-volatile BE PD stor-
ing the data of the target logical address. The target logical
address can be, for example, a logical address on a logical
device, such as a LUN and oflset or LBA on the LUN.

Reterring to FIG. 2C, shown 1s an example of information
that can be included 1n a log, such as a log of user or client
write operations, 1n an embodiment 1n accordance with the
techniques of the present disclosure.

The example 700 includes the head pointer 704 and the
tail pointer 702. The elements 710, 712, 714, 718, 720 and
722 denote 6 records of the log for 6 write 1/O operations
recorded 1n the log. The element 710 1s a log record for a
write operation that writes “ABCD” to the LUN 1, LBA 0.
The element 712 1s a log record for a write operation that
writes “EFGH” to the LUN 1, LBA 5. The element 714 1s a
log record for a write operation that writes “WXYZ” to the
LUN 1, LBA 10. The element 718 1s a log record for a write
operation that writes “DATA1” to the LUN 1, LBA 0. The
clement 720 1s a log record for a write operation that writes
“DATA2” to the LUN 2, LBA 20. The element 722 1s a log
record for a write operation that writes “DATA3” to the LUN
2, LBA 30. As 1illustrated 1n FIG. 2C, the log records 710,
712, 714, 718, 720 and 722 can also record the write data
(e.g., write I/O operation payload) written by the write
operations. It should be noted that the log records 710, 712
and 714 of FIG. 2C correspond respectively to the log
records 221, 222 and 223 of FIG. 2B.

The log can be flushed sequentially or 1n any suitable
manner to maintain desired data consistency. In order to
maintain data consistency when flushing the log, constraints
can be placed on an order 1n which the records of the log are
flushed or logically applied to the stored data while still
allowing any desired optimizations. In some embodiments,
portions of the log can be flushed in parallel in accordance
with any necessary constraints needed in order to maintain
data consistency. Such constraints can consider any possible
data dependencies between logged writes (e.g., two logged
writes that write to the same logical address) and other
logged operations 1n order to ensure write order consistency.

Referring to FIG. 2D, shown 1s an example 600 1llustrat-
ing the tlushing of logged writes and the physical data layout
of user data on BE PDs 1n at least one embodiment 1n
accordance with the techniques of the present disclosure.
FIG. 2D 1ncludes the log 620, the mapping information A
610, and the physical storage (1.e., BE PDs) 640. The
clement 630 represents the physical layout of the user data
as stored on the physical storage 640. The element 610 can
represent the logical to physical storage mapping informa-
tion A 610 created for 3 write 1/0O operations recorded 1n the
log records or blocks 221, 222 and 223.

The mapping information A 610 includes the elements
611a-c denoting the mapping information, respectively, for
the 3 target logical address of the 3 recorded write 1/O
operations 1n the log records 221, 222, and 223. The element
611a of the mapping information denotes the mapping
information for the target logical address LUNI1, LBA 0 of
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the block 221 of the log 620. In particular, the block 221 and
mapping information 611a indicate that the user data
“ABCD” written to LUN 1, LBA 0 1s stored at the physical

location (PD location) P1 633a on the physical storage 640.
The element 6115 of the mapping information denotes the
mapping information for the target logical address LUNI,

LBA 5 of the block 222 of the log 620. In particular, the
block 222 and mapping information 6115 indicate that the
user data “EFGH” written to LUN 1, LBA 5 1s stored at the

physical location (PD location) P2 6335 on the physical
storage 640. The element 611¢ of the mapping information
denotes the mapping information for the target logical
address LUN 1, LBA 10 of the block 223 of the log 620. In
particular, the block 223 and mapping information 611

indicate that the user data “WXYZ” written to LUN 1, LBA
10 1s stored at the physical location (PD location) P3 633c¢
on the physical storage 640.

The mapped physical storage 630 1llustrates the sequential
contiguous manner 1n which user data can be stored and
written to the physical storage 640 as the log records or
blocks are flushed. In this example, the records of the log
620 can be flushed and processing sequentially (e.g., such as
described 1n connection with FIG. 2B) and the user data of
the logged writes can be sequentially written to the mapped
physical storage 630 as the records of the log are sequen-
tially processed. As the user data pages of the logged writes
to the target logical addresses are written out to sequential
physical locations on the mapped physical storage 630,
corresponding mapping information for the target logical
addresses can be updated. The user data of the logged writes
can be written to mapped physical storage sequentially as
follows: 632, 633a, 6335, 633¢ and 634. The element 632

denotes the physical locations of the user data written and
stored on the BE PDs for the log records processed prior to

the block or record 221. The element 633a denotes the PD
location P1 of the user data “ABCD” stored at LUN 1, LBA
1. The element 6335 denotes the PD location P2 of the user
data “EFGH” stored at LUN 1, LBA 5. The element 633c¢
denotes the PD location P3 of the user data “WXYZ” stored
at LUN 1, LBA 10. The element 634 denotes the physical
locations of the user data written and stored on the BE PDs
for the log records processed after the block or record 223.

In one aspect, the data layout (e.g., format or structure) of
the log-based data of the log 620 as stored on non-volatile
storage can also be physically sequential and contiguous
where the non-volatile storage used for the log can be
viewed logically as one large log having data that 1s laid out
sequentially in the order it 1s written to the log.

The data layout of the user data as stored on the BE PDs
can also be physically sequential and contiguous. As log
records of the log 620 are flushed, the user data written by
cach flushed log record can be stored at the next sequential
physical location on the BE PDs. Thus, flushing the log can
result in writing user data pages or blocks to sequential
consecutive physical locations on the BE PDs. In some
embodiments, multiple logged writes can be flushed in
parallel as a larger chunk to the next sequential chunk or
portion of the mapped physical storage 630.

Consistent with other discussion herein, the mapped
physical storage 630 can correspond to the BE PDs provid-
ing BE non-volatile storage used for persistently storing user
data as well as metadata, such as the mapping information.
With a log-structured system as discussed herein, as
recorded writes 1n the log are processed, the data written by
the writes can be written to new physical storage locations

on the BE PDs.
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Referring to FIG. 3, shown 1s an example 300 of a tree of
MD pages that can be used 1n an embodiment 1n accordance
with the techniques herein. The example 300 includes a tree
of MD pages denoting the mapping structure as discussed
above with 3 levels—a top or root level, level 1, including
a simngle MD TOP page; a single mid or middle level, level
2, of MD MID pages; and a bottom level, level 3, of leaf
nodes of MD LEAF pages. In the example 300, the top or
root level, level 1, includes MD page 302; the mid or middle
level, level 2, includes MD pages 304, 306 and 308; and the
bottom level, level 3, includes MD pages 310, 312, 314, 316,
318 and 320, which can also be referred to as leal nodes. As
also 1llustrated in the example 300, each of the leal MD
pages 1n level 3 of the tree points to, or references (e.g.,
directly or otherwise indirectly using one more additional
levels of 1indirection of pointers not illustrated) one or more
user data pages or blocks including data stored at various
LLBAs ofa LUN such as the LUN A. For example, MD pages
310, 312, 314, 316, 318 and 320 point or reference, respec-
tively, one or more UD pages 310a, 312a, 314a, 316a, 318a
and 320a.

The links or connections between a parent node (at level
M) and its one or more child nodes (at level M+1) in the tree
300 generally represent mappings between the parent node
and the one or more child nodes. In at least one embodiment,
the parent node can include a reference used to access
(directly or indirectly) each of 1ts one or more child nodes.
For example, the root node MD page top 302 can include
addresses or pointers used to access each of i1ts child nodes
304, 306 and 308. The mid-level node MD page midl 304
can include addresses or pointers used to access each of 1ts
chuld leaf nodes 310, 312. The mid-level node MD page mid
306 can include addresses or pointers used to access each of
its child leaf nodes 314, 316. The mid-level node MD page
mid 308 can include addresses or pointers used to access
each of 1ts child leat nodes 318, 320.

In at least one embodiment, each of the addresses or
pointers included in a MD page that references a location in
another MD page or references a location in a UD page can
be a physical storage location on the back-end PDs. Thus,
the traversal between connected nodes of the structure 300
can correspond to traversing physical address or storage
locations included 1n pages or nodes that are parent nodes.

In connection with accessing a particular UD page 1n at
least one embodiment, all MD pages 1n a path from the root
or top level of the tree to the UD page can be traversed 1n
a consecutive serialized order 1n which such pages appear 1n
the path traversal down the path from the top or root level
to the UD page accessed using a particular one of the MD
page leal nodes. For example, assume UD page or block X
1s included in the set of UD pages 312a. In order to access
UD page X of 312a, the following denotes the consecutive
serialized order 1n which the MD pages forming a sequence
are accessed: MD page top 302, MD page madl 304, and
MD page leai2 312. Generally, 1n at least one embodiment,
cach of the MD pages can include pointers or addresses to
locations of one or more child pages or nodes. Thus, the
foregoing traversal of MD pages denotes the sequence of
MD pages that are processed 1n consecutive seralized order
in order to access the particular UD page, such as UD page
X. In order to access the UD page X as stored on PDs where
UD page X includes first data needed to service a read 1/O
operation 1n connection with a cache miss of the first data,
cach of the MD pages in the foregoing sequence (e.g., MD
page top 302, MD page midl 304, and MD page leai2 312)
needs to be accessed 1n consecutive serialized order. In at
least one embodiment, the sequence of MD pages, and more
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generally, the path from the MD page top to the UD page X,
forms a linked list of nodes of pages. In at least one
embodiment, each parent node or MD page of the structure
300 can generally include multiple pointers or references to
locations of 1ts child nodes or pages. For example, MD page
top 302 1ncludes pointers to locations of its child nodes, MD
pages 304, 306 and 308. MD page mid2 306 includes
pointers to locations of 1ts child nodes, MD pages 314 and
316.

The data pages 310a, 312a, 314a, 316a, 318a and 320a
include UD stored on particular logical addresses of a
LUN’s address space, such as the LUN A’s logical address
space. In at least one embodiment each MD leaf can hold
MD for a specified number of LBAs of a LUN. For example,
in one embodiment each MD leaf can hold MD for 512
LBAs. For example, with reference to FIG. 3, the data pages
310a, 312a, 314a, 316a, 318a and 320 each include user
data stored on particular logical addresses of the LUN A’s
logical address space. It may be, for example, that element
310a 1ncludes user data stored at a first set of LBAs 0-511;
and that element 3124 includes user data stored at a second
set of LBAs 512-1023. Generally, the particular LBAs of the
LUN mapped to each MD page can vary with embodiment.
For example, mn at least one embodiment, consecutive
sequential subranges of the LUN’s logical address space can
be mapped to the MD page leaves. Additionally, when the
tree 1s traversed 1n a depth first manner, the MD page leaves
can correspond to consecutive sequential subranges. For
example, the element 310a denotes data pages for LBAs
0-511; the element 3124 denotes data pages for the LBAs
512-1023; the element 314a denotes data pages for LBAs
1024-1535; the element 316a denotes data pages for LBAs
1536-2047, and so on.

As generally known in the art, a depth-first traversal 1s an
algorithm for traversing or tree or graph data structures. The
algorithm starts at the root node (selecting some arbitrary
node as the root node 1n the case of a graph) and explores as
tar as possible along each path extending from the root to a
leal node before backtracking up the path to find a yet
another unexplored path. In at least one embodiment, tra-
versal of the tree 300 of MD pages 1n a depth-first manner
explores all paths, 1n sequential order, from the left-most
path to the nght most path as arranged 1n the tree.

In at least one embodiment, when the structure 300 1s
traversed 1n a depth first manner (1.¢., from the left-most path
to the right most path as arranged 1n the tree), the MD page
leal nodes that occur 1n the depth first traversal correspond
to consecutive sequential LBA subranges of a LUN. In at
least one embodiment, when the overall tree including MD
page top node 302 and all 1ts descendant nodes are traversed
in this depth first manner, the MD page leal nodes that occur
in the depth first traversal correspond to consecutive sequen-
tial LBA subranges of a LUN.

In at least one embodiment as described herein, each of
the MD pages and data blocks 1n the example 300 can be of
a predetermined size and each of the MD pages can hold a
known number of entries containing pointer or address
values. In such a case and 1n combination with the corre-
spondence of sequential consecutive LBA ranges of each
MD leaf page, an embodiment can perform a calculation to
determine the MD page at a particular level that 1s accessed
in the tree MD mapping structure 300 to determine the data
block for a particular LUN and LBA. Similarly, 1t 1s a
straightforward mathematical calculation to determine the
index, oflset of entry in a particular page or node to be
accessed 1n connection with obtaining data blocks stored at

the particular LUN and LBAs of the LUN. Each MD page
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in 300 can be known to include MD relevant for accessing
data on a particular LUN and one or more LBAs of that
LUN. For example, consistent with discussion above, the
clement 310a denotes the data blocks for LBAs 0-511 of a
LUN. In order to access the data block for an LBA of the
LUN 1n the LBA subrange 0-511, MD pages 302, 304 and
310 can be traversed 1n sequential order. In particular, the
first entry or oflset of the MD page top 302 can contain the
address of the MD page mid 1 304; the first entry or offset
of the MD page mid 1 304 can contain the address of the MD
page leal 1 310; and the first entry or oflset of the MD page
leat 1 310 can contain the address of one of the data blocks
of 310a.

In a similar manner, a mapping can be made regarding
what MD pages of the structure 300 and entries thereof are
used 1n connection with obtaining data blocks containing
data for any particular LUN and LBA. In at least one
embodiment, the particular MD pages used to access a data
block including data for a particular LUN and LBA can be
known based on such mappings and correspondence of LBA
subranges to particular MD leaf pages.

Referring to FIG. 4, shown 1s a more detailed version of
a hierarchical structure used as the mapping structure 108
that can be used 1n an embodiment in accordance with the
techniques of the present disclosure. The structure 350 1s
similar to the structure 300 as described and 1llustrated 1n
FIG. 3 with the added difference that more detail 1s provided
regarding the intervening layer of a VLB (virtualization
layer block) MD pages between the MD page leaves and the
UD pages. Thus, 1n such an embodiment, the structure 350
includes 4 levels of MD pages as opposed to the possible 3
levels as allowed 1n the more generalized structure 300
represented 1 FIG. 3. In this case, each sequence of MD
pages traversed 1n a path from the MD page top or root to
access a particular UD page includes 4 MD pages—MD
page top 302, one of the MD page Mid nodes (e.g., one of
304, 306 or 308), one of the MD page leal nodes (e.g., one
of 310, 312, 314, 316, 318 and 320), and one of the VLB
pages (e.g., one of 352, 354, 356, 358, 360, 362, 364, 366,
368, 370, 372 and 374).

In at least one embodiment, the use of VLBs as a layer 1n
the hierarchy between the MD leaf nodes and the UD pages
can be used to facilitate different data storage services, such
as relocating UD between diflerent physical storage loca-
tion, data deduplication, and the like. An entry of the VLB
associated with a particular physical storage location can be
remapped without requiring remapping of a MD leaf to the
UD page.

The UD pages 380 and 382 denote two portions of UD
pages corresponding to UD pages 310a of FIG. 3 including
data for LBAs 0-511. The UD pages 384 and 386 denote two
portions of UD pages corresponding to UD pages 312a of
FIG. 3 including data for LBAs 512-1023. The UD pages
388 and 390 denote two portions of UD pages corresponding
to UD pages 314a of FIG. 3 including data for LBAs
1024-1535. The UD pages 392 and 394 denote two portions
of UD pages corresponding to UD pages 316a of FIG. 3
including data for LBAs 1536-2047. The UD pages 396 and
398 denote two portions of UD pages corresponding to UD
pages 318a of FIG. 3 including data for LBAs 2048-2559.
The UD pages 397a and 3975 denote two portions of UD

pages corresponding to UD pages 320a of FIG. 3 including
data for LBAs 2560-3072.

In furtherance of the example above regarding UD page
X and now with reference to FIG. 4, assume more specifi-
cally that UD page X 1s located in the set of UD pages
denoted by 384. In this case, the MD page sequence includ-
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ing the MD pages traversed 1n order to access UD page X
384 includes MD page 302, MD page 304, MD page 312,
and VLB page3 356.

Referring to FIG. §, shown 1s a more detailed represen-
tation 400 of the MD pages of the sequence traversed to
access the UD page X 384 included 1n the set of UD pages
312a. As noted above, the MD page sequence includes MD
page 302, MD page 304, MD page 312, and VLB page3 356.
In the example 400, MD page top 302 includes an entry or
address 302a that points to or references the location 304a
in the MD page midl 304. In at least one embodiment, the
starting entry 302q 1n the first MD page 302 of the sequence
can be determined based on the logical address including the
desired UD stored in a page or block of storage (e.g.,
physical non-volatile storage location on the BE PDs of the
system). For example, assume processing 1s performed to
read the UD for LUN A, LBA 514 located 1n UD page X. In
at least one embodiment, the logical address LUN A, LBA
514 can be used to determine the particular structure
instance and thus the particular MD page top 302 to access.
The LBA 514 of the logical address of the UD can also be
used to determine an index or offset mnto the MD page 302
to determine the relevant entry, location or address 3024
having a pointer, address or reference to an entry in the next
MD page 1n the sequence to access the desired page includ-
ing the UD for LUN A, LBA 514. An embodiment can
generally use any suitable technique to map a corresponding
logical address, such as an LBA of a particular LUN, to an
entry 1n the top level MD page 302.

The MD page top 302 can be accessed and read from a PD
to obtain the address or pointer ADD1 from location 302a.
If the MD page 302 1s already in cache, the cached copy can
be used to obtain the address or pomnter ADD1 from the
location 302a. The address or pointer ADD1 of location
302a can then be used to identily the entry 304a of the
particular mid level MD page, such as MD page mid1l 304,
that 1s accessed next in the sequence.

Continuing with the example 400, the MD page mid1 304
can be accessed where the location 3044 1s read to obtain the
address or pomter ADD2 from location 304a. The address or
pointer ADD2 can then be used to 1dentily the entry 312a of
a particular leaf level MD page, such as MD page leaf2 312,
that 1s next accessed in the sequence. If the MD page midl
304 1s not in cache, the on-disk copy of the MD page 304 on
a PD can be accessed to read the address or pointer ADD2
from the location 304a. The address or pointer ADD2
identifies location 312a of the MD page leaf 2 312. If the
MD page 312 1s not already 1n cache, the on-disk copy of the
MD page 312 on a PD can be read to obtain the content of
location 312a. The location 312a of the MD page leai2 312
can be accessed and read to obtain the address or pointer
ADD3 from location 312a. The address or pointer ADD3
can then be used to identity a particular entry of a VLB page,
such as the entry 356a of the VLB page3 356, that 1s next
accessed 1n the sequence. Thus, ADD3 can denote the
location or address of the entry 356a 1n the VLB page 3 356.

If the VLB page 356 1s not already in cache, the on-disk
copy of the VLB page 356 on a PD can be read to obtain the
content of location 356a. The location 356a of the VLB page
3 356 can be accessed and read to obtain the address or
pointer ADD4 from the location 356a. The address or
pointer ADD4 can then be used to identily the particular UD
page X 410 where the UD page X can next be read. If the
UD page X 1s not 1n cache, the on-disk copy of the UD page
X can be read 1n from a PD.

The example 400 of FIG. 5 includes the path or traversal
of MD pages 1n the structure 350 from the MD page root or
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top 302 to the UD page X of 384 including the desired UD
for the logical address LUN A, LBA 514. The path or
traversal of MD pages 302, 304, 312, 356 and 384 denotes
the sequence of MD pages read and accessed 1n order to
obtain the UD page X of 384.

Referring to FIG. 6, shown 1s an example illustrating 1n
more detail a particular embodiment 1n which a VLB layer
of multiple VLBs 1s the interveming layer between the MD
leat nodes of the mapping structure 108 and the data blocks.
The elements 1352, 1354 and 1356 can denote 3 MD leaf
nodes mcluded in a MD leafl layer of a MD mapping
structure such as described herein (e.g., in FIGS. 3, 4 and 5).
The elements 1358 and 1360 denote 2 VL Bs 1ncluded in the
intervening VLB layer 1349 between MD leal nodes 1351
and data blocks 1353. The elements 1362 and 1364 denote
2 data blocks each storing content such as user data stored
at logical addresses. In the example 1300, the MD leaf nodes
1352 and 1356 both indirectly reference the same data block
1362 through the same entry 1357a of the VLB 1358. The
two MD leaf nodes 1352 and 1356 both referencing the same
data block 1362 indirectly through use of the same VLB
entry 1357a can be a mapping resulting from data dedupli-
cation processing. In the example 1300, MD leat node 1354
points to the entry 13575 of the VLB 1360 whereby the entry
13575 of the VLB2 1360 then further references or points to
the data block 1364. The data blocks 1362, 1364 can denote
user data blocks as described herein.

The element 13584 denotes a pointer to, or address of, the
entry 1357a in the VLB 1338 used in connection with
obtaining the data block 1362 stored on a particular LUN
and LBA of the LUN. The pointer 1358a can be used as the
virtual or indirect pointer 1n connection with obtaining the
data block 1362. In at least one embodiment, the VLB 1358
can be a VLB page or node as described herein. Thus, 1n
such an embodiment, the virtual or indirect pointer 133584
can be a pointer to the entry 1357a of the VLB structure
1358, where the entry 1357a can further include fields 13014
and 13015. The field 13015 can be a pointer to, or address
of, the user data block 1362. The field 1301a can be a
reference count or counter indicating the number of
instances of, or references to, the particular data block 1362
(e.g., data block pointed to by 13015).

The element 1372 denotes a pointer to, or address of, the
entry 1357a in the VLB 1338 used in connection with
obtaining the data block 1362 stored on a particular LUN
and LBA of the LUN. The pointer 1372 can be used as the
virtual or indirect pointer 1n connection with obtaining the
data block 1362. In at least one embodiment, the VLB 1358
can be a VLB page or node as described herein. Thus, 1n
such an embodiment, the virtual or indirect pointer 1372 can
be a pointer to the entry 1357a of the VLB structure 1358,
where the entry 1357a can further include the fields 1301a
and 13015. The field 13015 can be a pointer to, or address
of, the user data block 1362. The field 1301a can be a
reference count or counter indicating the number of
instances of, or references to, the particular data block 1362
(e.g., data block pointed to by 13015).

The element 1360a denotes a pointer to, or address of, the
entry 13575 1 the VLB 1360 used 1n connection with
obtaining the data block 1364 stored on a particular LUN
and LBA of the LUN. The pointer 1360a can be used as the
virtual or indirect pointer 1n connection with obtaining the
data block 1364. Thus, 1n such an embodiment, the virtual or
indirect pointer 1360a can be a pointer to the entry 13575 of
the VLB structure 1360, where the entry 13575 can further
include the fields 1302a and 130256. The field 13025 can be
a pointer to, or address of, the user data block 1364. The field
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1302a can be a reference count or counter indicating the
number of 1nstances of, or references to, the particular data
block 1362 (e.g., data block pointed to by 13025).

The reference count 1301a can be 1nitialized to 1 when a
first or 1nitial instance of the associated data block 1362 is
stored. In this example, the reference 1301a 1s 2 indicating
that there are 2 instances of the data block 1362 and thus 2
references to the data block 1362. In this case, the are 2
instances of the data block 1362 in stored user data. The
instances denoted by the reference count 1301a include all
deduplicated instances corresponding to entries of the MDL
leaves 1352, 1356 that respectively point 1372, 1358a to the
VLB entry 1357a associated with the single copy of the data
block 1362.

The reference count 13024 can be 1nmitialized to 1 when a
first or 1nitial instance of the associated data block 1364 1s
stored. In this example, the reference 1302a 1s 1 indicating
that there 1s 1 instance of the data block 1364 and thus 1
reference to the data block 1364. The instances denoted by
the reference count 1302a generally include any/all dedu-
plicated instances associated with the single copy of the data
block 1364. However, 1n this example, there 1s only a single
reference to, and single mstance of, the data block 1364 in
stored user data. In particular, the MD leaf 1354 references
or points (1360a) to the VLB entry 13575 associated with
the single copy of the data block 1364.

In at least one embodiment, each VLB can be a VLB page
or node as described herein including multiple entries, such
as 512 entries, where each such VLB entry can include one
or more ficlds of information such as the address or pointer
to one of the data blocks such as 1362 or 1364.

In at least one embodiment, each MD leat can have
multiple entries, such as 512 entries, each corresponding to
a different logical address 1n a logical address range corre-
sponding to the MD leaf.

For a read 1/0O operation received at a node of a dual node
system or appliance such as 1n an active-active configura-
tion, servicing the read operation can include reading one or
more data blocks or storage locations as well as reading
information from one or more MD pages such as, for
example, of the MD or mapping structure as described 1n
connection with FIGS. 3-6.

For a write I/O operation recerved at a node of a dual node
system or appliance such as 1n an active-active configura-
tion, servicing the write operation can include reading
information from one or more MD pages. Servicing the
write operation can include updating one or more data
blocks or storage locations as well as updating one or more
MD pages such as, for example, of the MD or mapping
structure as described 1n connection with FIGS. 3-6.

In at least one embodiment, the MD or mapping infor-
mation used in connection with stored user data can be
stored on non-volatile storage, such as on the BE PDs of the
appliance or data storage system. At least some of the MD
pages ol mapping information for all such user data can be
stored 1n a volatile memory cache of each of the nodes of the
appliance or system. Depending on the write operation, one
or more logical addresses can be updated with new data or
content by a write operation. Additionally, one or more MD
pages used to map the one or more logical addresses to one
or more physical storage locations storing the new data can
also be updated, for example, to reference the one or more
physical storage location including the new data or content.

With a log-structured system in at least one embodiment,
as recorded writes of the log are processed and flushed or
destaged to the BE PDs, the content written by the recorded
writes of the log can be stored at new subsequent physical
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storage locations on the BE PDs. Additionally, the MD or
mapping information corresponding to the logged writes
being flushed can also be accordingly updated to reference
the new subsequent physical storage locations on the BE
PDs containing the content. In a dual node appliance or
system with an active-active configuration as described
herein, both nodes of the system can concurrently receive
and service write 1/Os, as well as other received requests and
commands using shared resources such as, for example, the

MD or mapping structure described 1n connection with the
FIGS. 3-6.

In at least one embodiment, updates or modifications to
the MD pages of the mapping structure described in con-
nection with the FIGS. 3-6 can also similarly be recorded in
entries or records of a persistently stored metadata log and
then flushed or destaged from the metadata log to persistent
BE storage of the BE PDs. In at least one embodiment, the
MD pages of the MD or mapping structure such as described
in connection with the FIGS. 3-6 can be persistently stored
in a MD page store on the BE PDs of the system. In some
contexts herein, the copy of a MD page as stored in the MD
page store on the BE PDs can also be referred to herein as
the on-disk copy of the MD page.

Workflows for some implementations to perform reads
and writes to the MD page can include loading the entire
MD page into the cache or volatile memory of a node, if the
MD page 1s not already 1n the cache or volatile memory of
the node.

A data storage system can perform diflerent data services
such as data deduplication discussed above to remove redun-
dant or duplicate copies of data or content by storing a single
copy of the user data and having multiple references or
pointers to the same stored single copy. For example, the
content or user data can be stored 1n a single data block that
can be referenced by multiple logical addresses where the
content of the data block is stored at all the multiple logical
addresses.

In connection with data deduplication, the data block that
includes the user data or content can be associated with a
MD page, where the MD page can include a reference count
denoting the number of references to the data block. For
example reference 1s made back to FIG. 6 and discussion
above regarding FIG. 6. In at least one embodiment using
the MD structures as described, for example, 1n connection
with FIGS. 3, 4, 5, and 6, the reference count associated with
a data block can be included in an entry of a VLB page
associated with the data block. For example with reference
to FIG. 6, the VLB entry 13574 includes a field 1301a with
the reference count=2 for the associated data block 1362;
and the VLB entry 13575 includes a field 1301a with the
reference count=1 for the associated data block 1364.

The reference count such as of the VLB entries 13574,
13575, can be updated in connection with deduplication
processing. For example, deduplication processing can be
performed on new data written to a target logical address by
a write I/0 operation. Deduplication processing can deter-
mine that the new data 1s a duplicate of existing data stored
in a data block. Rather than store another copy of the same
data 1n another data block, deduplication processing can
include alternatively having the target logical address ret-
erence the single existing copy of the data as stored in the
data block. As part of deduplication processing, the refer-
ence count associated with the single existing copy of the
data block can be incremented as each additional reference
to the same data block 1s made. In a similar manner, the
reference count can be decremented as content of a particu-
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lar logical address 1s modified or deleted to no longer be
considered a duplicate of the single existing copy of the data

block.

Consistent with other discussion herein 1n at least one
embodiment, updates or modifications can be with respect to
user data or stored content modified by client or host write
I/0s as well as with respect to metadata, such as updates or
modifications to the MD structure or mapping information
described above. As noted above 1n at least one embodiment

to increase performance, the updates to user data can be
stored (e.g., persisted temporarily) in a log or journal log-
ging client or host writes, and the updates to the MD or
mapping information can be stored (e.g., persisted tempo-
rarily) 1n a metadata log. One characteristic of a log struc-
tured system, such as 1n connection with the metadata log
and log of client updates or writes, 1s that updates or
modifications (which are recorded 1n an associated log and
then flushed to long term storage of the BE PDs) may not
physically overwrite or update the same BE PD physical
location storing the old data or existing content (e.g., no
physical 1n place update). Rather, the newly written or
updated data 1s typically written to a different physical
location on the BE PDs. Thus, the BE PDs can retain the
valid old data 1n the original physical location for some time
before being reclaimed for reuse by garbage collection
processing.

Garbage collection can be performed 1n connection with
storage management of the BE PDs to reclaim and reuse free
or invalidated physical storage as new data i1s written. In
some cases, “holes” of storage storing old, unused or invalid
content can be interspersed among portions ol storage
storing current valid content. Garbage collection can include
performing processing which allows multiple holes of stor-
age 1ncluding unused or invalid data to be compacted into a
single larger contiguous storage portion which can then be
reused. Thus garbage collection processing can include
moving first storage portions of valid data or content inter-
spersed among holes of mvalid content from a source to a
target location to thereby make free or available a larger
contiguous storage portion including the holes of invalid
content.

Consistent with other discussion herein, an entry from the
log of user or client updates (sometimes referred to as the
UD (user data) log) can be an update to a logical address
(e.g., LUN and LBA) which writes content to a UD page.
Flushing the entry can include destaging the updated UD
page to a backend storage location on non-volatile storage
(e.g., BE PD location). Additionally, flushing and destaging
the entry from the UD log can include updating the corre-
sponding MD pages which map the logical address to its
corresponding BE PD location including the content stored
at the logical address. In at least one existing system, the
mapping nformation including MD pages as described
herein can thus be updated. For example, such updating of
the mapping information can include updating any of the
top, mid and leat MD pages used 1n connection with
mapping the logical address to the BE PD location including
the content stored at the logical address. In at least one
existing implementation, updating the corresponding map-
ping mformation and MD pages can include loading all the
MD pages into the cache 1f any such MD pages are not
already 1n cache. The MD pages of the mapping information
can be characterized as a chain forming an access sequence
of top MD page, mid MD page, and leat MD page.

Described below are techniques of the present disclosure
which provide for improved and eflicient cache usage.
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In at least one embodiment, the techniques of the present
disclosure provide for assigning ownership of the VLBs of
the virtual layer among the multiple nodes of the system. In
at least one embodiment, the VLBs of the virtual layer can
be partitioned mto multiple sets, where exclusive ownership
of one of the multiple sets of VLBs 1s assigned to a
corresponding one of the multiple nodes. In at least one
embodiment, exclusive ownership of each VLB can be
assigned to a single one of the nodes.

In at least one embodiment, a node which receives an [/O
operation can be referred to as the mitiator node with respect
to that particular I/O operation.

In at least one embodiment, exclusive ownership, such as
with respect to a portion of logical address space as well as
a VLB or other metadata portion may include a strong
ownership or include the exclusive locking by a particular
node, where such ownership 1s not shared with another node.
In at least one embodiment, a storage node assigned exclu-
s1ive ownership over a logical address or a metadata portion
does not vyield access to that logical address or metadata
portion to another node.

In at least one embodiment, an architecture can be utilized
which partitions ownership of the logical address space of
user data or content among the multiple processing nodes. In
at least one embodiment, a node assigned a particular logical
address can be designated as the exclusive owner of the
logical address. If the node receives an I/O directed to a
logical address not owned by the node, the receiving node
can forward or redirect the 1/0 for servicing or processing to
the owning node. In at least one embodiment, the I/Os can
include read 1/O0s. For a read I/O directed to a target logical
address LLA1 where the read I/O 1s received by an initiator
node which does not own LLA1, the initiator node can 1ssue
a remote procedure call (RPC) to its peer node to service the
read, where the peer node owns LAl. In at least one
embodiment, the RPC for the read 1/0O can be a request {from
the initiator node to a peer node (owner of LA1) to perform
processing 1n connection with MD pages of mapping infor-
mation for LA1. In particular, the RPC for the read 1/O can
be a request for the peer node (which owns the logical
address LA1) to perform mapping resolution processing for
[LA1. The resolution processing can include mapping LA1 to
a corresponding VLB address or physical layer block (PLB)
address. The resolution processing can be in accordance
with the chain of MD pages of mapping information for
[LA1l. The resolution processing can include traversing one
or more of the MD pages of the chain of mapping informa-
tion for LA1. The VLB address can be a location or address
of an oflset or entry of a VLB 1ncluded 1n the chain of MD
pages of mapping information used to map LAl to a
corresponding PLB address. The PLB address can be a
physical location or address of a PLB (or physical location
or address within a PLB) including the content C1 stored at
LLA1. Thus, the VLB address can be an indirect pointer or
address used to indirectly access the content C1 stored at
[LAl. The PLB address can be a pointer to, or address of, a
physical storage location on BE non-volatile storage, where
the physical storage location contains the content C1 stored
at LAL.

In at least one embodiment, the peer node, which owns
L A1 and receives the RPC from the imitiator node, can return
either a VLB address V1 or a PLB address PAL. In at least
one embodiment, the peer node can return a PLB address 1f
the peer node 1s the exclusive owner of the VLB, VLBI,
where V1 1s an address or oflset of an entry within VLBI,
where V1 1s mcluded in the mappmg information used to

map LAl to PA1, and where PA1 1s the physical address or
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location of C1 stored at LAL. If the peer node receiving the
RPC owns LAl and also owns VLBI1 including V1, the peer
node continues performing additional resolution processing
using V1. In particular, V1 can denote an address, offset or
location of an entry E1 within VLB1, where E1 includes the
PLB address PAL. In this manner, the resolution processing
can include mapping LAl to V1, and then reading the
contents stored at V1 (e.g., the contents stored at entry E1 of
VLB1), where PA1 1s the contents stored at V1.

In at least one embodiment, the peer node receiving the
RPC can return the VLB address V1 1f the peer node 1s not
the exclusive owner of the VLB, VLB1, where VLBI1
includes the VLB address V1, where V1 1s included 1n the
mapping information used to map LAl to PA1l, and where
PA1 1s the physical address or location of C1 stored at LA1.
In connection with the foregoing case, V1 1s the address of
an entry E1 1n VLB1 where PA1 i1s included in the entry F1
of VLB1. If the peer node receiving the RPC owns L A1 but
does not own VLB1 including V1, the peer node can simply
return V1 (an address or pointer to the entry E1 of VLB1)
without performing the additional resolution processing
noted above.

In at least one embodiment, in response to the RPC, the
peer node owning LA1 can return information including
either the VLB address V1 or the PLB address PA1 depend-
ing on whether the peer node owns VLB1 which includes a
corresponding entry, location or address denoted by V1. In
such an embodiment, the flag IS_PLB can be included 1n an
RPC response or reply sent from the peer node to the
initiator node, where the initiator node sent the RPC. The
IS_PLB flag can denote the address or pointer type returned
as either a VLB address type or a PLB address type. The
initiator node can then examine the IS_PLB flag to interpret
the returned address as either a VLB address or a PLB
address. If the IS_PLB flag=1 (e.g., 1s true or on) and thus
denotes a PLB address, the mitiator can directly read the
content C1 using the returned PLB address PAL. If the
IS_PLB flag=0 (e.g., 1s false or ofl) and thus denotes a VLB
address, the mitiator owns the VLB, VLBI1, including the
returned VLB address, V1. In this latter case the initiator
node accesses VLB1 to read contents stored at the address,
location or entry thereof denoted by the returned VLB
address V1. In at least one embodiment, V1 can be an

address or location of an entry or offset E1 within the VLB,
where E1 includes PAL. Thus, F1 of VLLB1 can be accessed

to read PA1, and the PA1 can be accessed by the iitiator
node to read the contents C1 stored at LA1. C1 can then be
returned to the host or other client which 1ssued the read I/O
reading from LAI1.

If the imitiator node which receives the read I/O operation
to read C1 from LA1 1s the owner of LA1 and also the owner
of the VLB, VLBI, included 1n the mapping information for
[LA1l, the mitiator node can perform all necessary resolution
processing for LA1. In this case, the initiator node, which
owns LA1 and VLB1, may not 1ssue an RPC to 1ts peer node.
Rather, the VLB access to VLBI1 1s done locally on the
owning initiator node.

In at least one embodiment, for a read I/O directed to
logical address LA1, the node designated as the exclusive
owner of LAl can map LAl to a corresponding VLB
address, V1, where V1 1s included 1n the mapping informa-
tion for LA1. Additionally 1n at least one embodiment, the
particular node designated as the exclusive owner with
respect to a target VLB (which includes an entry F1 having
the address V1) can map the VLB address V1 to a corre-
sponding PLLB address denoting a physical address or loca-
tion PA1 contaiming the content C1 stored at LAL.
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In this manner, the foregoing scenarios provide for efli-
cient use of cache by having the VLB owning node perform
mapper resolution processing with respect to a target logical
address LA1 of a read I/O operation. As a result 1n such
embodiments, the VLB can be read and accessed, and
correspondingly cached, on only the owning node of the
VLB but not the peer node. As a result of the foregoing
scenarios 1n accordance with the techniques of the present
disclosure, access and reading of a VLB by a non-owning
node can be avoided in such scenarios, whereby the non-
owning node with respect to a VLB can avoid caching the
VLB which it does not own.

In at least one embodiment, an 1nitiator node receiving a
read I/O directed to the logical address LLA1 can exclusively
own LA1 but not exclusively own the target VLB included
in the chain of MD pages of mapping information mapping
LAl to a corresponding PLLB address PA1 containing con-
tent C1 stored at LA1. In at least one embodiment 1n this
case, the imitiator node can 1ssue an RPC to the peer node
which owns the target VLB, where the target VLB includes
an entry E1, where E1 includes the corresponding PLB
address PAL. The peer node owning the target VLB can
access and read 1ts entry E1 thereby reading PA1 from E1.
The peer node can then return PA1 in response to the RPC.
After the mitiator node recerves the RPC response from the
peer node which owns the target VLB, the initiator node can
access PA1 and read the content C1, and then return C1 to
the host or other client which 1ssued the read 1/0.

In at least one embodiment, an 1nitiator node receiving a
read I/O directed to the logical address LA1 can exclusively
own LA1 but not own the target VLB included 1n the chain
of MD pages of mapping information mapping LAl to a
corresponding PLLB address PA1 containing content C1
stored at LA1. In at least one embodiment, one of multiple
options can be selected 1n order to access the target VLB and
obtain PA1 from a corresponding entry E1 of the target VLB.
In at least one embodiment, one or more of the multiple
options can include relaxation or removal of some of the
restrictions resulting from exclusive VLB ownership. In
particular, the second and third options noted below and
discussed elsewhere herein provide for a relaxation or
removal of some of the restrictions of exclusive VLB
ownership whereby the non-owning VLB node can be
allowed to Iimited access and/or caching of a VLB which 1t
does not own. In at least one embodiment, such limited
access and/or caching by a non-owning node with respect to
a target VLB can be performed in connection with a limited
usage case or scenario where the mitiator node receives the
read I/O directed to LAl and exclusively owns LA1 but
where the peer node owns the target VLB of the mapping
information mapping LLA1 to its corresponding PLLB address
PA1 containing content C1 stored at LAL.

In at least one embodiment, the multiple options can
include a first, second and third option. The first option can
include 1ssuing an RPC as noted above to the peer node
which owns the target VLB. The second option can include
the 1nitiator node (which does not own the target VLB)
reading the target VLB, such as from a corresponding
location on non-volatile BE storage; and then reading PA1
from the corresponding entry E1 of the target VLB. In this
second option, the target VLB read locally by the non-
owning 1nitiator node from BE non-volatile storage may not
be cached by the non-owning 1nitiator node. The third option
can include the mnitiator node (which does not own the target
VLB) reading the target VLB, such as from a corresponding
location on non-volatile BE storage; and then reading PA1
from the corresponding entry E1 of the target VLB. In this




US 12,093,187 Bl

35

third option, the target VLB read locally by the non-owning,
initiator node from BE non-volatile storage can be cached by
the non-owning initiator node. With this third option 1n at
least one embodiment, the initiator node can have a rela-
tively small local cache of un-owned VLBs (e.g., VLBs
which are exclusively owned by the peer node but not the
initiator node). With this third option 1n at least one embodi-
ment, the small local cache of un-owned VLBs can include
hot or frequently accessed VLBs which are owned by the
peer node.

In at least one embodiment including the three options
noted above, one or more criteria can be specified to provide
tor dynamically selecting one of the three options at runtime
in accordance with the current evaluation of the one or more
criteria. In at least one embodiment, the one or more criteria
can 1nclude one or more metrics. In at least one embodiment,
the one or more criteria can include the latency introduced
if the RPC of the first option 1s performed. The latency can
be determined 1n any suitable manner. In at least one
embodiment, the latency can be estimated based on prior
actual 1ssuances of the RPC of the first option alone, or 1n
combination with, current utilization or data trathic of an
internode link or connection between the 1nitiator and peer
nodes where the RPC would be i1ssued over the internode
link or connection. Generally, the higher the latency and/or
the higher the internode link utilization, the more motivation
to select another option other than the first option. In at least
one embodiment, the one or more criteria can include a VLB
cache hit rate with respect to the peer node which owns the
target VLB. Generally, the higher the VLB cache hit rate of
the owning node of the target VLB, the greater the motiva-
tion to send the RPC request by selecting the first option
rather than reading the target VLB locally from BE non-
volatile storage (as with the second or third options). In at
least one embodiment, the one or more criteria can include
a current utilization of BE non-volatile storage. Generally,
the higher the BE utilization, the greater the motivation to
send the RPC request by selecting the first option rather than
selecting the second or third options which read the target
VLB locally from BE non-volatile storage. In at least one
embodiment, the one or more criteria can include a local
VLB cache hit rate of the mnitiator node 1f a local VLB cache
1s used to cache VLB pages not owned by the mitiator node.
Generally, the higher the local VLB cache hit rate, the more
motivation to use the local VLB cache and not send an RPC
request (e.g., not select the first option but rather select the
above-noted second or third option which 1s performed
locally on the mitiator node which received the read 1/0
operation).

In at least one embodiment, the criteria can indicate to
select the first option and send a peer RPC request 11 the
latency 1s less than a specified maximum latency threshold,
if the VLB cache hit rate of the peer node i1s above a
specified hit rate threshold, and if the BE utilization 1s
greater than a specified utilization threshold.

In at least one embodiment, the criteria can indicate to
select the first option to send a peer RPC request if the
latency 1s less than a specified maximum latency threshold,
and 1f the VLB cache hit rate of the peer node 1s above a
specified hit rate threshold.

In at least one embodiment, the criteria can indicate to
select the first option to send a peer RPC request 1f the
latency 1s less than a specified maximum latency threshold,
and 11 the BE utilization 1s greater than a specified utilization
threshold.

In at least one embodiment, the criteria can indicate to
select the second or third option (and not send a peer RPC
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request) 11 the latency 1s more than a specified maximum
latency threshold, and/or if the internode link utilization 1s
greater than a specified utilization threshold.

In at least one embodiment, the criteria can include a
function F which includes one or more independent vari-
ables used to make a selection provided as an output of the
function F. The one more independent variables can include
one or more of: the latency introduced 11 the RPC of the first
option 1s performed; current utilization of an mternode link
or connection between the initiator and peer nodes where the
RPC would be 1ssued over the internode link or connection;
a VLB cache hit rate with respect to the peer node which
owns the target VLB, a current utilization of BE non-volatile
storage; and a local VLB cache hit rate of the initiator node
if a local VLB cache 1s used to cache VLB pages not owned
by the mitiator node. Generally, the function F can make a
selection from multiple specified or predefined options such
as discussed above. In at least one embodiment, F can be
used to select one of the specified options 1n accordance with
a weighting of the multiple independent varnables.

The foregoing and other aspects of the techniques of the
present disclosure are described 1n more detail in the fol-
lowing paragraphs.

In at least one embodiment, a user data (UD) or client
logical address, which can be the target logical address of a
client I/O operation such as a read operation, can be
umquely 1dentified using the volume or LUN ID (identifier),
or more generally a storage object or resource ID, 1n
combination with the LBA or oflset of the logical address.
In at least one embodiment, the logical address denoted by
the combination of the volume or LUN ID and the LBA or
oflset can be mapped to, and represented using, a ULXA
value, where the value of the ULXA can be generally
characterized as an identifier uniquely i1dentifying a particu-
lar user data (UD) page within a data storage system, and 1f
multiple storage systems are included 1n a cluster, uniquely
identified within the cluster of data storage systems. Thus,
the ULXA can be a value that uniquely denotes or represents
the logical address such as the UD logical address. From a
given ULXA value, the umquely associated LUN ID and
LBA denoting a logical address can be mapped or deter-
mined. Also, given a particular LUN ID and LBA (e.g.,
logical address), the unique corresponding ULXA value can
be mapped or determined. In the following paragraphs,
reference can be made to using logical addresses. Alterna-
tively, corresponding ULXA values can also be utilized.

The techniques of the present disclosure are described
below 1n an exemplary embodiment of a dual node active-
active data storage system or cluster where the two nodes are
connected by a network link or connection as discussed
above. However more generally, the techniques of the
present disclosure can be used in connection with a data
storage system including more than two nodes, and gener-
ally any suitable number of nodes.

In at least one embodiment in accordance with the tech-
niques of the present disclosure and with reference to the
example 500 of FIG. 7, the user data (UD) logical address
space 510 can be partitioned into multiple portions 502, such
as denoted by multiple logical address portions 502a-7.
Each of the logical address portions 5302aq-r can be a same
s1ze, such as 2 MB (megabytes), or any other suitable size.
The multiple address space portions 502a-z can then be
divided among the two nodes 1n any suitable manner such
that a first of the nodes, such as node A, 1s assigned exclusive
or strong ownership of a first set of the logical address
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portions and a second of the nodes, such as node B, 1s
assigned exclusive or strong ownership of a second set of
logical address portions.

The logical address space 510 can denote an associated
logical address space of any one or more storage objects or
storage space. The one or more storage objects can include,
for example, one or more volumes, logical devices or LUNS;
one or more sub-LUN portions; and/or one or more file
systems. Generally, the logical address space 510 can denote
a contiguous range ol consecutive logical addresses so that
cach of the logical address portions 502a-» 1s mapped to a
unique subrange of consecutive logical addresses of the
logical address space 510. For example, consider an embodi-
ment where each of the portions 502a-» 1s 2 MB 1n size. In
this case, the portion 502a can include all logical addresses
X 1n the subrange O=x<2 MB; the portion 5026 can include
all logical addresses x 1n the subrange 2 MB=x<4 MB; and
SO OI.

The logical address portions 502 can be partitioned 1nto
two sets where each logical address portion 1s included in
only one of the two sets. The logical address portions 502
can be partitioned equally or unequally between the two
nodes A and B. For example, 1n at least one embodiment, the
entire logical address range 510 can be divided equally 1n
half, where node A 1s assigned the exclusive ownership of
the portions of a first half of the address range 510, and
where node B 1s assigned the exclusive ownership of the
portions of the second half of the address range 510. As
another example, the logical address portions 502 can be
equally partitioned 1nto two sets such as based on even or
odd logical addresses. The first data set assigned to node A
can include logical address portions having an associated
starting logical address which 1s even; and the second data
set assigned to node B can include logical address portions
having an associated starting logical address which 1s odd.

In at least one embodiment, the logical address portions of
the contiguous logical address range can alternate in con-
nection with exclusive ownership assignment among the
nodes A and B. For example, the first portion 502a can be
assigned to node A, the second portion 5025 can be assigned
to node B, the third portion 502¢ can be assigned to node A,
the fourth portion 5044 can be assigned to node B, and so on.

In at least one embodiment, ownership of a portion of the
logical address space 510 can be derived from or based on
the portion itself. For example, as noted above, the exclusive
owner of a logical address portion can be determined based
on whether the portion 1s classified as having an even or odd
starting logical address, or whether the portion has an
associated even or odd portion identifier (e.g., portions
502a-n can be assigned an integer identifier corresponding
to relative ordering of the logical address subrange of each
portion, where portion 502a 1s “17, 5025 1s “27°, 502c¢ 1s <37,
and so on, as the associated logical address subranges of the
portions increases). As another example, a list or other
structure can be maintained which identifies the exclusive
owner assigned to each of the logical address portions 502
of the logical address space 510.

In a stmilar manner to that noted above with respect to the
logical address portions 502 of the logical address space
510, the VLBs 522a-n of the VLB layer 520 of mapping
information can also be partitioned 1nto two data sets, where
a first of the data sets of VLBs 1s exclusively or strongly
owned by one of the nodes such as node A, and where a
second of the data sets of VLBs 1s exclusively or strongly
owned by the other node, such as node B. Consistent with
discussion above, the VLBs 522 can be partitioned into the
two VLB sets using any suitable technique. The VLBs 502
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can be equally partitioned into the two VLB sets such that
cach VLB set assigned for exclusive ownership to one of the
nodes contains the same number of VLBs. Alternatively, the
VLBs 502 can be unequally partitioned into the two VLB
sets such that each VLB set assigned for exclusive owner-
ship to one of the nodes contains a diflerent number of

VLBs.

In at least one embodiment, other metadata included 1n the
mapping information for logical addresses 510 can be par-
titioned among the two nodes A and B. In such an embodi-
ment with reference back to FIG. 4, the top, mid, and leaf
MD pages can be partitioned or divided into two MD sets,
where the node A can be assigned exclusive ownership of a
first of the MD sets, and where the node B can be assigned
exclusive ownership of a second of the MD sets. Generally,
in at least one embodiment, the partitioning of the logical
address space and the partitioning of the MD top, mid and
leat objects can be performed in a manner such that a portion
of the logical address space and corresponding MD top, mid
and leat objects used to map logical addresses of the portion
can be exclusively owned by the same node. In at least one
embodiment, each MD leaf can denote a contiguous 2 MB
logical address space portion. Each node A and B can be
assigned alternating contiguous 2 MB logical address space
portions each associated with a MD leatf. For example, node
A can be assigned MD leaves for logical addresses 0-2 MB,
4-6 MB (e.g., MD leaf objects having even identifiers (IDs);
and node B can be assigned MD leaves for logical addresses
2-4 MB and 6-8 MB (e.g., MD leaf objects having odd IDs).
In at least one embodiment a 2 GB logical address portion
can be associated with each mid MD object and can include
multiple logical address space portions of multiple MD leaf
objects. In such an embodiment, the MD leaf objects can be
partitioned into even and odd groupings such as based on
MD leal object IDs noted above where a 2 GB mid MD
object can be mapped to 4 even MD leal objects and
assigned to exclusive node owner A; and where a 2 GB mid
MD object can be mapped to 4 odd MD leat objects and
assigned to exclusive node owner B. In at least one embodi-
ment, a 1 TB logical address portion can be associated with
cach top MD object and can include multiple logical address
space portions ol multiple MD mid objects. In such an
embodiment, the MD mid objects can be partitioned into
even and odd groupings such as based on MD mid object
IDs where a top MD object can be mapped to multiple even
MD mad objects and assigned to exclusive node owner A;
and where a top MD object can be mapped to multiple odd
MD mid objects and assigned to exclusive node owner B.

As a vanation to the foregoing, at least one embodiment
can use non-exclusive or weak ownership assignment of the
top mid, and/or leat MD objects of FIG. 4. A non-exclusive
ownership assignment of one or more MD objects associated
with a set of logical address portions can be based, at least
in part, on a type of I/O request. Non-exclusive ownership
can be a weak ownership assignment that can be shared
among multiple nodes. MD objects can be shared or
assigned to a particular node with non-exclusive ownership
based, at least in part, on the type of I/O request being
processed or other operation being performed on a particular
MD object. For example with reference to FIG. 3, for a read
I/O directed to a logical address 1n a logical address portlon
a node can be assigned non-exclusive ownership of corre-
sponding MD top 302, mid 304, and leaf 312 objects of
mapping information used to map the logical address to a
corresponding physical address or location containing con-
tent stored at the logical address.
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In at least one embodiment, each node can be allowed to
perform operations on a logical address portion of 510
which 1s exclusively owned by the node without any inter-
node synchromization and with node-local locking. In at
least one embodiment, when an I/O directed to a logical
address portion including an associated target logical
address LA1 1s recerved by an initiator node that does not
own the logical address portion (and thus does not own
[LA1l), the imitiator node can send an RPC to the remote peer
node which owns the logical address portion (and thus owns
[LA1) to perform mapper resolution processing using at least
a portion of the chain of MD pages of mapping information
used to map LA1 to a corresponding physical location PA1
contaiming content C1 stored at LA1. The mapping infor-
mation for LA1 can include a particular target VLB, VLBI,
where VLBI1 includes an offset or entry E1, and where E1
includes PAL. In at least one embodiment, the peer node
which owns the corresponding logical address LLA1 can
return either a VLB address (address V1 of the entry E1) or
a PLB address (address PA1) depending on whether the peer

node owns the target VLB1 of the mapping information for
LLAl. In at least one embodiment, 1f the peer node does not
own the target VLB1, the peer node can perform resolution
processing which stops traversing the chain of MD pages of
mapping information once the address V1 1s obtained from
an entry E2 of a MD leat of the chain. In this case, the peer
node can return a VLB address, V1, to the initiator node 1n
response to the RPC. Alternatively, 1f the peer node owns
VLB1 as well as owns LA1, the peer node can perform
resolution processing which traverses the chain of MD pages
until the physical address or location PA1 1s obtained. In this
case, the peer node can return a PLB address, PA1, to the
initiator node in response to the RPC.

In at least one embodiment, other operations such as
garbage collection processing with respect to VLBs can be
performed by the exclusive owner of such VLBs. Such
garbage collection processing can include performing a
compact and append operation to aggregate valid data from
multiple source VLBs and store the aggregated valid data
from the source VLBs on a single destination VLB. In one
such embodiment, the source VL Bs and the destination VLB
can be exclusively owned by the same node.

What will now be described are tlowcharts of processing,
steps which can be performed 1n at least one embodiment 1n
accordance with the techniques of the present disclosure.
The processing described below assumes that the logical
address space has been partitioned into multiple logical
address portions, where such logical address portions have
turther been assigned exclusive ownership among the nodes
A and B. Additionally, the processing described below
assumes that the VLBs have been partitioned and assigned
exclusive ownership among the nodes A and B. The pro-
cessing described below further assumes that any other
desired MD objects, such as MD top, page and/or leaf
objects, have also been partitioned and assigned suitable
ownership (e.g., exclusive or strong and/or non-exclusive or
weak) among the nodes A and B.

The processing of FIGS. 8A and 8B can be performed in
at least one embodiment 1n connection with an initiator node
which recetves an 1/0 read operation directed to a logical
address portion, or logical address thereof, not exclusively
owned by the inmitiator node.

Referring to FIG. 8A, shown 1s a first flowchart 1000 of
processing steps that can be performed 1n at least one
embodiment in accordance with the techniques of the pres-
ent disclosure.
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At the step 1002, the imtiator node A receives a read 1/0
request from a host. The read I/0 requests to read content C1
from the logical address LLA1 of the logical address portion
D1 From the step 1002, control proceeds to the step 1004.

At the step 1004, node A determines that its peer node B
exclusively owns D1, and thus node B also exclusively owns
LA1l. From the step 1004, control proceeds to the step 1006.

At the step 1006, node A sends an RPC to peer node B to
perform mapper resolution processing (also sometimes

referred to as resolution processing) for LA1. From the step
1006, control proceeds to the step 1008.

At the step 1008, node B receives the RPC and performs
resolution processing for LA1. The resolution processing
traverses a portion of the chain of MD pages of mapping
information which maps LA1 to a corresponding physical
address PA1 including C1 stored at LA1. In particular, the
resolution processing traverses the chain of MD pages until
an entry E11 of a MD leaf 1s reached, where E11 includes a
VLB address, V1, which points to, or 1s an address of, an
entry E12 of a target VLB, VLBI1. From the step 1008,
control proceeds to the step 1010.

At the step 1010, a determination 1s made by node B
whether node B owns the target VLB, VLBI1. If the step
1010 evaluates to no, whereby node B does not own the
target VLB1, control proceeds to the step 1012. At the step
1012, node B returns to node A an RPC reply or response
which includes the VLB address V1 and which includes the
IS_PLB tlag set to 0 (e.g., to denote that the returned address
or pointer type 1s not a PLB address but 1s rather a VLB
address). If the step 1010 evaluates to yes, control proceeds
to the step 1014.

At the step 1014, node B continues resolution processing
and generally uses the VLB address V1 to obtain a PLB
address, PAl, where C1 1s stored at PAL. Processing
includes using V1 to read entry E12 of VLB1, where E12
has the address, location or offset denoted by the VLB
address V1. Entry E12 of VLB1 includes the PLB address
PA1 whereby reading E12 includes reading PA1. Generally
in the step 1014, the VLB1 owning node B reads VLBI.
VLB1 can be stored in the cache of node B. If so, a VLB
cache hit occurs and VLBI1, and thus entry E12 can be
directly read from node B’s local cache. If VLBI1 1s not
cached on node B (e.g., VLB cache miss occurs) node B can
read VLB1 from BE non-volatile storage and then node B
can store VLB1 in node B’s cache. The entry E12 can be
read from the copy of VLB1 as obtained from the BE
non-volatile storage. From the step 1014, control proceeds to
the step 1016.

At the step 1016, node B returns to node A an RPC reply
or response which includes the PLB address PA1 and which
includes the IS_PLB flag set to 1 (e.g., to denote that the
returned address or pointer type 1s a PLB address rather than
a VLB address).

Retferring to FIG. 8B, shown 1s a second flowchart 1050
ol processing steps that can be performed 1n at least one
embodiment 1n accordance with the techniques of the pres-
ent disclosure. The steps of 1050 can be performed subse-
quent to performing the steps of FIG. 8A. The steps of FIG.
8B can be performed by the initiator node A where, 1n the
step 1052, the mitiator node A recerves the RPC reply from
node B (which owns the logical address portion D1 includes
[LA1). Generally, the RPC reply can be sent from node B to
node A in either the step 1016 or the step 1012 depending,
respectively, on whether node B owns or does not own the
target VLB, VLBI1. From the step 1052, control proceeds to
the step 1034.
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At the step 1054, a determination 1s made by node A
whether the IS_PLB flag returned in the RPC reply (received
from node B in the step 1052) 1s 1 or true. If the step 1054
evaluates to yes as a result of IS_PLB being 1 or true, control
proceeds to the step 1056. At this point, the address or
pointer included 1n the RPC reply 1s determined to be a PLB
address and that node B owns the target VLB, VLBI1. At the
step 1056, node A uses the PLB address PA1 returned in the
RPC reply to read the content C1 from the BE non-volatile
storage. Node A then returns C1 to the host which 1ssued the
read I/0 received in the step 1002. If the step 1054 evaluates
to no where IS_PLB=0 or false, control proceeds to the step
1058. At this point, the address or pointer included in the
RPC reply 1s determined to be a VLB address and that node
A owns the target VLB, VLBI.

At the step 1058, node A reads the target VLB, VLBI. In
particular, node A reads the entry E12 of VLB1, where E12
1s located at the address, location or ofiset denoted by V1
(also returned 1n the RPC response from node B). Reading
E12 includes reading PA1, which is stored in the entry E12
of VLBI1. Generally in the step 1058, the VLB1 owning
node A reads VLB1. VLBI1 can be stored in the cache of
node A. If so, a VLB cache hit occurs and VLLB1, and thus
entry E12 can be directly read from node A’s local cache. If
VLB1 1s not cached on node A (e.g., VLB cache miss
occurs) node A can read VLBI1 from BE non-volatile storage
and then node A can store VLB1 in node A’s cache. The
entry E12 can be read from the copy of VLB1 as obtained
from the BE non-volatile storage. From the step 1058,
control proceeds to the step 1060.

At the step 1060, node A reads C1 which 1s stored at PA1
on the BE non-volatile storage. From the step 1060, control
proceeds to the step 1062.

At the step 1062, node A returns C1 to the host which
issued the read 1/0 received by node A 1n the step 1002.

In connection with processing described in connection
with FIGS. 8A, 8B and 9, and generally in connection with
the techniques of the present disclosure, the target VLB can
be read, accessed and accordingly cached by the node which
exclusively owns the target VLB. In at least one embodiment
described 1in connection with FIGS. 8A, 8B and 9, VLBs
may only be read, accessed and cached by the owning node.

Referring to FIG. 9, shown 1s a tlowchart 1100 of pro-
cessing steps that can be performed 1n at least one embodi-
ment 1 accordance with the techmiques of the present
disclosure. The steps of FIG. 9 can be performed 1n con-
nection with an imtiator node A which owns the target
logical address portion (and thus the target logical address
[LA1l) and which also owns the target VLB corresponding to
the target logical address portion.

At the step 1102, at the mitiator node A, a host read 1/O
1s recerved. The read I/O requests to read content C1 from
logical address LA1 of logical address portion D1. From the
step 1102, control proceeds to the step 1104.

At the step 1104, node A determines that node A exclu-
stvely owns D1 and LA1l. From the step 1104, control
proceeds to the step 1106.

At the step 1106, node A performs resolution processing
for LA1. The resolution processing traverses a portion of the
chain of MD pages of mapping information which maps
LAl to a corresponding physical address PA1 including C1
stored at LA1. In particular, the resolution processing tra-
verses the chain of MD pages until an entry E11 of a MD leaf
1s reached where E11 includes a VLB address, V1, which
points to, or 1s an address of, an entry E12 of a target VLB,
VLB1. From the step 1106, control proceeds to the step

1108.
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At the step 1108, node A determines that node A exclu-
sively owns the target VLB, VLBI1. From the step 1108,
control proceeds to the step 1110.

At the step 1110, node A continues resolution processing
and uses the VLB address, V1, to obtain a corresponding
PLB address, PA1, where C1 1s stored at PAL. Processing
includes using V1 to read entry E12 of VLB1, where E12
has the address, location or offset denoted by the VLB
address V1. Entry E12 of VLB1 includes the PLB address
PA1 whereby reading E12 includes reading PAL. Generally,

the VLB owning node 1s node A where only node A accesses,
reads and caches VLB1. If VLBI1 1s in node A’s cache (e.g.,

VLB cache hit), then entry E12 and thus PA1 can be read
from node A’s cached copy of VLB1. If VLB1 1s not 1n node
A’s cache (e.g., VLB cache miss), then node A can read
VLB1 from BE non-volatile storage, store VLB1 1n node
A’s cache, and obtain PA1 by reading the entry E12 (located
at the VLB address V1) of the cached copy of VLBI1 as
stored 1n node A’s cache. From the step 1110, control
proceeds to the step 1112.

At the step 1112, node A uses PA1 to read C1 from BE
non-volatile storage. From the step 1112, control proceeds to
the step 1114.

At the step 1114, node A returns C1 to the host which
issued the read 1/0 (received 1n the prior step 1102).

Referring to FIGS. 10A-10B, shown 1s a flowchart 1200,
1250 of processing steps that can be performed 1n at least
one embodiment 1n accordance with the techniques of the
present disclosure. The processing of FIGS. 10A-10B can be
performed in connection with an initiator node A which
receives a read I/O directed to a logical address portion,
where the mitiator node A exclusively owns the logical
address portion and where the peer node B exclusively owns
the target VLB corresponding to the logical address portion.
In this scenario where the peer node B exclusively owns the
target VLB, an embodiment can consider multiple options
discussed below and elsewhere herein where ownership
rules regarding the target VLB can be relaxed to varying
degrees. In particular, an embodiment can implement the
first option discussed herein which strictly follows exclusive
target VLB ownership where only the exclusive owner can
read, access and cache the owned VLB. Additionally, an
embodiment can implement one or more options which can
relax the foregoing exclusive ownership rules or behavior. In
particular, the second and third options discussed herein
provide various degrees of relaxation of the exclusive VLB
ownership behavior. For example, with the second option 1n
at least one embodiment, the non-owning node with respect
to a VLB can be allowed to read but not locally cache the
VLB. With a further relaxation of exclusive ownership, the
third option can allow a non-owning node with respect a
VLB to read the VLB locally and also to cache a small
number of VLBs which are not exclusively owned by the
node.

At the step 1202, the imtiator node A receives a read 1/0
from a host. The read I/O requests to read content C1 from
logical address LA1 of the logical address portion D1. From
the step 1202, control proceeds to the step 1204.

At the step 1204, node A determines that node A exclu-
sively owns D1 and LA1l. From the step 1204, control
proceeds to the step 1206.

At the step 1206, node A performs resolution processing
for LA1. The resolution processing traverses a portion of the
chain of MD pages of mapping information which maps
LAl to a corresponding physical address PA1 including C1
stored at LA1. In particular, the resolution processing tra-
verses the chain of MD pages until an entry E11 of a MD leaf
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1s reached, where F11 includes a VLLB address, V1, which
points to, or 1s an address of, an entry E12 of a target VLB,
VLBI.

At this point, processing can be performed to select one
of multiple defined options 1n at least one embodiment. In at
least one embodiment, processing can be performed to select
one of three defined options which are also discussed herein.
IT the first option 1s selected, control proceeds to the step
1252. If the second option 1s selected, control proceeds to the
step 1254. I the third option 1s selected, control proceeds to
the step 1262.

In at least one embodiment, selection of one of the
above-noted three options can be evaluated and performed at
runtime 1n accordance with one or more criteria as described
in more detail elsewhere herein. As a variation, an embodi-
ment can alternatively have an associated workflow which
only defines or makes available two of the denoted options.
In this case, processing can select from the available two
options. As yet a further variation, in at least one embodi-
ment, there may not be any selection from multiple available
options. Rather, 1n this latter case, the workflow may include
only a single option which 1s performed. In this latter case,
the workflow can generally include any one of the three
options thereby providing the specified option in the work-
flow.

In at least one embodiment including the three options
described herein, one or more criteria can be specified to
provide for dynamically selecting one of the three options at
runtime in accordance with the current evaluation of the one
or more criteria. In at least one embodiment, the one or more
criteria can include one or more metrics. In at least one
embodiment, the one or more criteria can include the latency
introduced 11 the RPC of the first option i1s performed. The
latency can be determined in any suitable manner. In at least
one embodiment, the latency can be estimated based on prior
actual 1ssuances of the RPC of the first option alone, or 1n
combination with, current utilization or data tratlic of an
internode link or connection between the 1nitiator and peer
nodes where the RPC would be i1ssued over the internode
link or connection. Generally, the higher the latency and/or
the higher the internode link utilization, the more motivation
to select another option other than the first option. In at least
one embodiment, the one or more criteria can include a VLB
cache hit rate with respect to the peer node which owns the
target VLB. Generally, the higher the VLB cache hit rate of
the owning node of the target VLB, the greater the motiva-
tion to send the RPC request by selecting the first option
rather than reading the target VLB locally from BE non-
volatile storage (as with the second or third options). In at
least one embodiment, the one or more criteria can include
a current utilization of BE non-volatile storage. Generally,
the higher the BE utilization, the greater the motivation to
send the RPC request by selecting the first option rather than
selecting the second or third options which read the target
VLB locally from BE non-volatile storage. In at least one
embodiment, the one or more criteria can include a local
VLB cache hit rate of the mnitiator node 1f a local VLB cache
1s used to cache VLB pages not owned by the mitiator node.
Generally, the higher the local VLB cache hit rate, the more
motivation to use the local VLB cache and not send an RPC
request (e.g., not select the first option but rather select the
above-noted second or third option which 1s performed
locally on the mitiator node which received the read 1/0
operation).

In at least one embodiment, the criteria can indicate to
select the first option and send a peer RPC request 1f the
latency 1s less than a specified maximum latency threshold,
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if the VLB cache hit rate of the peer node 1s above a
specified hit rate threshold, and if the BE utilization 1s
greater than a specified utilization threshold.

In at least one embodiment, the criteria can indicate to
select the first option to send a peer RPC request 1f the
latency 1s less than a specified maximum latency threshold,
and 11 the VLB cache hit rate of the peer node 1s above a
specified hit rate threshold.

In at least one embodiment, the criteria can indicate to
select the first option to send a peer RPC request 1f the
latency 1s less than a specified maximum latency threshold,
and 11 the BE utilization 1s greater than a specified utilization
threshold.

In at least one embodiment, the criteria can indicate to
select the second or third option (and not send a peer RPC
request) 11 the latency 1s more than a specified maximum
latency threshold, and/or i1 the internode link utilization 1s
greater than a specified utilization threshold.

In at least one embodiment, the criteria can include a
function F which includes one or more independent vari-
ables used to make a selection provided as an output of the
function F. The one more independent variables can include
one or more of: the latency introduced i1 the RPC of the first
option 1s performed; current utilization of an mternode link
or connection between the initiator and peer nodes where the
RPC would be 1ssued over the internode link or connection;
a VLB cache hit rate with respect to the peer node which
owns the target VLB; a current utilization of BE non-volatile
storage; and a local VLB cache hit rate of the initiator node
if a local VLB cache 1s used to cache VLB pages not owned
by the mitiator node. Generally, the function F can make a
selection from multiple specified or predefined options such
as discussed above. In at least one embodiment, F can be
used to select one of the specified options 1n accordance with
a weighting of the multiple independent variables.

I1 the first option 1s selected, control proceeds to the step
1252. At the step 1252, node A sends an RPC to node B (the
target VLB1 owner) requesting that node B map the VLB
address V1 (an entry, offset, address or location in the target
VLB1) to a corresponding PLLB address. From the step 1252,
control proceeds to the step 1254.

At the step 1254, node B reads VLBI1. Consistent with
other discussion herein, if VLB1 1s in node B’s cache (VLB

cache hit), node B can read necessary information from 1ts
cached copy of VLBI1. If VLB1 1s not 1n node B’s cache

(VLB cache miss) node B can read VLB1 from BE non-
volatile storage, store VLB1 1n node B’s cache, and then

read the necessary information from its cached copy of
VLB1. Entry E12 of VLB1 1s located at an address or oflset

denoted by V1. E12 includes the PLB address PAL. Thus,
node B can read PA1 from its cached copy of VLBI1. From
the step 1254, control proceeds to the step 1256.

At the step 1256, node B returns to node A an RPC reply
or response including PA1l. From the step 1256, control
proceeds to the step 1266.

If the second option 1s selected, control proceeds to the
step 1258. At the step 1258, node A reads the target VLBI1
locally without retaining a copy of VLB1 1n node A’s cache.
Thus, the step 1258 includes node A reading the target VLB1
from BE non-volatile storage. From the step 12358, control
proceeds to the step 1260.

At the step 1260, node A reads entry E12 of VLB1 where
E12 1s located at the address or oflset denoted by V1. E12
includes the PLB address PAL. From the step 1260, control
proceeds to the step 1266.

I1 the third option 1s selected, control proceeds to the step
1262. At the step 1262, node A reads the target VLLB1 locally
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and can maintain a small cache of non-owned VLBs. Node
A reading the target VLBI1 can include determining whether
VLB1 1s in node A’s cache thereby resulting in a cache hat.
If so, node A’s cached copy of VLBI1 can be used to read the
desired information in the step 1264. Otherwise, 1f there 1s
a VLB cache miss where VLLB1 1s not 1n node A’s cache,
VLB1 can be read from BE non-volatile storage and then
cached locally on node A. The cached copy of VLB (as just
read from the non-volatile BE storage) can be used to read
the desired information 1n the step 1264. From the step 1262,
control proceeds to the step 1264.

At the step 1264, node A read entry E12 of VLB1 where

E12 1s located at the address, oflset or location denoted by
V1. E12 includes the PLB address PAL. Control proceeds

from the step 1264 to the step 1266.

At the step 1266, node A uses PA1l to read C1 from BE
non-volatile storage. From the step 1266, control proceeds to

the step 1268.

At the step 1268, node A returns C1 to the host which sent
the read 1/0 (e.g., as received 1n the step 1202).

In connection with the processing of FIGS. 10A-10B,
when a read I/O directed to a target logical address LA1 1s
received by an inmitiator node that owns L A1 (and thus owns
the corresponding logical address portion including LA1)
but where the initiator node does not own a corresponding,
target VLB, processing associated with the corresponding
target VLB can be characterized as less optimized in com-
parison to other scenarios and processing such as described
in connection with FIGS. 8A, 8B and 9. However, assuming
a worst case 1n at least one embodiment, at most an average
ol 25% of I/O reads can be expected to fall into this category
and utilize processing of FIGS. 10A-10B. In such an
embodiment, VLB ownership can have a tendency to cor-
relate with corresponding logical address and logical address
portion ownership.

In connection with processing described herein 1n at least
one embodiment, a read I/O operation requesting to read
content C1 from a logical address LLA1 can be serviced using
content that may be included 1n a user data (UD) log. In at
least one embodiment, the UD log can be as described
clsewhere herein where content written by a write I/O can be
stored 1n the UD log and then subsequently destaged to BE
non-volatile storage. A read 1/O directed to LA1 may pos-
s1bly be serviced using the UD log 1f the UD log includes C1
as stored at LAl. In this case, the processing described
herein such as in connection with workflows of FIGS. 8A,
8B, 9, and 10A-10B would not be performed since the
requested content C1 for LA1 1s serviced using content of
the UD log.

The processing described above can be performed in
connection with a single block read I/O associated with a
single logical address. More generally, the same workilow
and logic can be extended for use with multiple block read
I/0s directed to multiple logical addresses. In at least one
embodiment, a single host read I/O to multiple blocks (and
thus multiple logical addresses and also multiple corre-
sponding PLLB addresses) can be split into subsets, where
cach subset can include multiple logical addresses associ-
ated with the same VLB. To further illustrate, reference 1s
made to FIGS. 8A and 8B. In connection with this workflow,
the RPC (sent from the mitiator node A to the node B which
owns the VLB1) can include 3 logical addresses LA1, LA2
and LA3 each having an associated PLB address. The node
B which owns VLBI1 can return a PLB address for each of
the 3 logical addresses associated with the owned VLB,

and otherwise, can return a VLB address for the logical
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address. If, {i

for example, all 3 logical addresses are associ-
ated with VLBI1, then node B can return 3 corresponding
PLB addresses.

In at least one embodiment, a single host read I/O can be
partitioned into multiple read 1/Os for processing 1n the data
storage system 1n a manner which 1s transparent to the host.
Each of the multiple read I/Os can be processed and the
results of all such multiple read 1/Os can then be aggregated
on the data storage system to return a single read I/O
response to the host. For example, a host read /O can
request to read content from multiple logical addresses in
multiple logical address portions, where at least a first of
multiple logical address portions (and at least a first of the
logical addresses) 1s owned by node A, and where at least a
second of the multiple address portions (and at least a second
of the logical addresses) 1s owned by node B. In this case,
the single host read 1I/O can be partitioned by the storage
system 1nto two smaller read 1/Os, where a first of the two
read I/Os 1s processed by node A for those logical addresses
and logical address space portions owned by node A, and
where a second of the two read 1/0s 1s processed by node B
for those logical addresses and logical address space por-
tions owned by node B. Subsequently, the content read by
both the first and second smaller read 1/0Os can be combined
or aggregated to return a response to the host read 1/0. In at
least one embodiment, the 1nitiator node which received the
single host read I/O can perform the partitioning and aggre-
gation as may be needed.

Consistent with other discussion herein, mapping infor-
mation including the chain of MD pages can be updated
and/or created when flushing a recorded write I/O writing
content C2 to a logical address LA2 from the UD log to BE
non-volatile storage. Flushing processing can include stor-
ing the written content C2 on BE non-volatile storage at a
PLLB address PA2. For the first or initial write to LA2,
flushing processing can also include allocating any needed
VLB or other MD page included 1n the chain of MD pages
of mapping mformation mapping LLA2 to PA2.

The techniques herein can be performed by any suitable
hardware and/or soitware. For example, techniques herein
can be performed by executing code which 1s stored on any
one or more different forms of computer-readable media,
where the code can be executed by one or more processors,
for example, such as processors of a computer or other
system, an ASIC (application specific integrated circuit), and
the like. Computer-readable media can include different
forms of volatile (e.g., RAM) and non-volatile (e.g., ROM,
flash memory, magnetic or optical disks, or tape) storage
which can be removable or non-removable.

While the techniques of the present disclosure have been
presented in connection with embodiments shown and
described 1n detail herein, their modifications and improve-
ments thereon will become readily apparent to those skilled
in the art. Accordingly, the spirit and scope of the techniques
of the present disclosure should be limited only by the
following claims.

What 1s claimed 1s:

1. A computer-implemented method comprising:

recerving, at a {irst node from a host, a read 1/O operation

requesting to read content C1 from a first logical
address A1, where the first node and a second node
are mncluded 1n a data storage system:;

determining that LAl 1s owned by the second node but not

owned by the first node;

sending, from the first node to the second node, a first

request requesting that the second node perform first
resolution processing for LA1; and
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responsive to receiving the first request at the second
node, the second node performing said first resolution
processing for LA1, wherein said {first resolution pro-
cessing includes:

mapping LAl to a first entry E1 of a {irst metadata

(MD) leaf object, wherein E1 includes a first virtual
layer block (VLB) address which corresponds to a
first VLB of a virtual block layer;

determining whether the second node owns the first

VLB;
responsive to determining the second node does not
own the first VLB, sending a first response from the
second node to first node, where the first response
includes the first VLB address and includes a first
indicator with a first setting which indicates that the
first response includes a VLB address type; and
responsive to determining that second node does own
the first VLB, performing first processing including:
the second node using the first VLB address to obtain

a first physical address or location PA1 on non-

volatile storage, wherein C1 1s stored at PA1; and

sending the first response from the second node to
the first node, wherein the first response mcludes
PA1 and includes the first indicator with a second
setting which indicates that the first response
includes a physical layer block (PLB) address
type.

2. The computer-implemented method of claim 1,
wherein the VLB address type 1s an indirect pointer or
address used to indirectly access stored content.

3. The computer-implemented method of claim 2,
wherein the PLB address type 1s a physical address or
location of stored content on non-volatile storage.

4. The computer-implemented method of claim 3, further
comprising;

receiving, at the first node from the second node, the first

response;

determining, by the first node, whether the first indicator

of the first response has the first setting or the second
setting; and

responsive to determining that the first indicator has the

first setting, the first node determining that the first
response 1ncludes the VLB address type, and the first
node performing second processing which includes
using the first VLB address to read C1 from PAL.

5. The computer-implemented method of claim 4,
wherein the first VLB address 1dentifies a VLB entry E2 of
the first VLB, wherein E2 includes PA1l, and wherein the
second processing includes:

reading, by the first node, the first VLB from non-volatile

storage;

caching, by the first node, the first VLB 1n a local cache

of the first node;

reading, by the first node, PA1 from E2 of the first VLB;

reading, by the first node, C1 which 1s stored at PA1 on

non-volatile storage; and

returning, by the first node, C1 to the host 1 a read I/O

response.

6. The computer-implemented method of claim 4, further
comprising;

responsive to determining that the first indicator has the

second setting, the first node determining that the first

response 1mcludes the PLB address type, and perform-

ing third processing comprising:

reading, by the first node, C1 from PA1; and

returning, by the first node, C1 to the host in a read 1I/O
response.
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7. The computer-implemented method of claim 6,
wherein the second node using the first VLB address to
obtain PA1 further comprises:

reading, by the second node, the first VLB from non-

volatile storage;

caching, by the second node, the first VLB 1n a local cache

of the second node; and

reading, by the second node, PA1 from E2 of the first

VLB.

8. The computer-implemented method of claim 1, further
comprising;

partitioning a plurality of virtual layer blocks (VLBs) of

the virtual block layer into a plurality of sets including
a first set and a second set, wherein the first node 1s
assigned exclusive ownership of VLBs 1n the first set
and wherein the second node 1s assigned exclusive
ownership of VLBs 1n the second set.

9. The computer-implemented method of claim 8, further
comprising;

partitioning a logical address space into a plurality of

logical address portions; and

dividing the plurality of logical address portions into a

plurality of logical address sets including a first logical
address set and a second logical address sets, wherein
the first node 1s assigned exclusive ownership of logical
address portions of the first logical address set, and
wherein the second node 1s assigned exclusive owner-
ship of logical address portions of the second logical
address set.

10. A non-transitory computer readable medium compris-
ing code stored thereon that, when executed, performs a
method comprising:

recerving, at a first node from a host, a read 1/O operation

requesting to read content C1 from a first logical
address [LA1, where the first node and a second node
are mcluded 1n a data storage system:;

determining that LA1 1s owned by the first node;

the first node performing first resolution processing for

LLA1l, wherein the first resolution processing includes
the first node mapping LLA1 to a first entry E1 of a first
metadata (MD) leat object, wherein E1 includes a first
virtual layer block (VLB) address which corresponds to
a first VLB of a virtual block layer;

determiming, by the first node, whether the first node or

the second node owns the first VLB; and

responsive to determining that the first node owns the first

VLB, performing first processing imncluding:

the first node using the first VLB address to obtain a
first physical address or location PA1 on non-volatile
storage, wherein C1 1s stored at PA1;

the first node reading C1 from PA1; and

the first node returning C1 to the host in a read 1I/O
response.

11. The non-transitory computer readable medium of
claim 10, wherein the first VLLB address 1dentifies a second
entry E2 of the first VLB, and wherein the first node using
the first VLB address to obtain a first physical address or
location PA1 on non-volatile storage turther includes:

the first node reading the first VLB from non-volatile

storage;

the first node caching the first VLB 1n a local cache of the

first node; and

the first node reading PA1 from E2 of the first VLB.

12. The non-transitory computer readable medium of

claim 11, further comprising;
determining, by the first node, that the second node owns

the first VLLB; and
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responsive to determining that the second node owns the

first VLB, performing second processing including:

selecting one option from a plurality of processing
options;

performing processing of the selected one option to 5
obtain PA1 for the first node;

the first node using PA1 to read C1 from non-volatile
storage; and

the first node returning C1 1n a read 1/O response to the
host. 10

13. The non-transitory computer readable medium of
claiam 12, wherein the plurality of options includes a first
option, wherein processing of the first option includes:

sending a request, from the first node to the second node,

requesting that the second node map the first VLB 15
address of the first VLB to a corresponding physical
address, PA1;

receiving, by the second node, the request;

reading, by the second node, the first VLB from non-

volatile storage; 20
storing the first VLB 1n a local cache of the second node;
reading, by the second node, PA1 from E2 of the first

VLB: and
the second node returning a response to the first node,

wherein the response includes PAL. 25

14. The non-transitory computer readable medium of
claim 12, wherein the plurality of options includes a second
option, wherein processing of the second option 1ncludes:

the first node reading the first VLB from non-volatile

storage and not caching the first VLB locally on the first 30

node; and

the first node reading PA1 from E2 of the first VLB.

15. The non-transitory computer readable medium of
claim 12, wherein the plurality of options includes a third
option, wherein processing of the third option includes: 35

the first node reading the first VLB from non-volatile

storage;

the first node caching the first VLB locally on the first

node; and

the first node reading PA1 from E2 of the first VLB. 40

16. The non-transitory computer readable medium of
claim 12, wherein said selecting said one option from the
plurality of options includes:

evaluating one or more criteria dynamically at runtime to

select said one option from the plurality of options. 45

17. The non-transitory computer readable medium of
claim 16, wherein the one or more criteria selects said one
option 1n accordance with one or more metrics, the one or
more metrics including any of: latency introduced by 1ssuing,

a request from the first node to the second node; a VLB page 50
cache hit rate with respect a first local cache of the first node;

a VLB page cache hit rate with respect a second local cache

of the second node; and a current utilization of backend
non-volatile storage including PA1 where C1 1s stored.

18. The non-transitory computer readable medium of 55
claim 17, wherein the one or more criteria includes a first
criterion which indicates to select a first option of the
plurality of options 1f the latency 1s less than a specified

50

threshold, wherein the first option includes 1ssuing the
request, from the first node to the second node, requesting
that the second node map the first VLB address of the first

v

LB to a corresponding physical address, PAL.
19. The non-transitory computer readable medium of

claim 18, wherein the one or more criteria includes a second
criterion which indicates to select a second option of the
plurality of options or a third option of the plurality of
options 1f the latency 1s not less than the specified threshold
and 11 the current utilization of backend non-volatile storage
1s less than a utilization threshold, wherein the second option
and the third option both include the first node locally
reading the first VLB from backend non-volatile storage.

20. A system comprising;:
one or more processors; and
a memory comprising code stored thereon that, when

executed, performs a method comprising:
receiving, at a first node from a host, a read 1/O
operation requesting to read content C1 from a first
logical address LLA1, where the first node and a
second node are included 1n a data storage system:;
determining that L A1 1s owned by the second node but
not owned by the {first node;
sending, from the first node to the second node, a first
request requesting that the second node perform {first
resolution processing for LA1; and
responsive to receiving the first request at the second
node, the second node performing said first resolu-
tion processing for LA1, wherein said first resolution
processing includes:
mapping LLA1 to a first entry E1 of a first metadata
(MD) leal object, wherein E1 includes a first
virtual layer block (VLB) address which corre-
sponds to a first VLB of a virtual block layer;
determining whether the second node owns the first
VLB;
responsive to determining the second node does not
own the first VLB, sending a first response from
the second node to first node, where the first
response includes the first VLB address and
includes a first indicator with a first setting which
indicates that the first response includes a VLB
address type; and
responsive to determining that second node does
own the first VLB, performing first processing
including;:
the second node using the first VLB address to
obtain a first physical address or location PA1l
on non-volatile storage, wherein C1 1s stored at
PA1l; and
sending the first response from the second node to
the {first node, wherein the {first response
includes PA1 and includes the first indicator
with a second setting which indicates that the

first response includes a physical layer block
(PLB) address type.
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