12 United States Patent

US012088619B2

(10) Patent No.: US 12,088,619 B2

Barth 45) Date of Patent: Sep. 10, 2024
(54) IDENTITY-BASED RISK EVALUATION (56) References Cited
TECHNIQUES .
U.S. PATENT DOCUMENTS
(71) Appllcant PayPal'f‘ Inc'ﬂ San Joseﬂ CA (IJS) 656653725 Bl 3 12/2003 Dletz ““““““““““““ HO4L 45/745
709/228
(72) Inventor: Jonathan Steele Barth, Payson, AZ 6915433 Bl 7/2005 Barber
(US) 8,782,435 Bl 7/2014 Ghose
9,027,091 B2 5/2015 Mardikar et al.
(73) Assignee: PayPal, Inc., San Jose, CA (US) 10,097,464 B1* 10/2018 Conlon HOAL 47/125
10,120,993 B2 11/2018 Taveau et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
(21) Appl. No.: 18/059,792 Intel., “What 1s an MD35 Checksum Value and What 1s 1t used for?.,”
Sep. 11, 2012, 3 pages.
(22) Filed: Nov. 29, 2022 (Continued)
_ . Primary Examiner — James E Springer
(65) Prior Publication Data Assistant Examiner — Patrick F Ngankam
US 2023/0164165 Al May 25, 2023 (74) Attorney, Agent, or Firm — Kowert, Hood, Munyon,
Rankin & Goetzel, P.C.; Catherine L. Gerhardt; Dean M.
Munyon
Related U.S. Application Data (57) ABSTRACT
(63) Continuation-in-part of application No. 17/812,841, lechniques are disclosed relating to identity-based risk
filed on Jul. 15, 2022. evaluation using risk scores for different identities. The
disclosed techniques include a server system that provides a
service usable to perform computing operations for request-
(60) Provisional application No. 63/264,339, filed on Nov. ing users. The system may receive a request to perform a
19, 2021. particular computing operation from a client device. Based
on a name of a user associated with the request, the system
51) Int. CL assigns an first type of 1dentity that 1s a birthright 1dentity to
(31) 2 typ ty g y
GO6F 21/62 (2013.01) the user. Based on details of the request, the system assigns
HO4L 9/40 (2022.01) additional identities to the user that are different identity
(52) U.S. CL types than the first type of 1dentity. The system may score,
CPC HO4L 63/1433 (2013.01); GOGF 21/6245 based on accessing a risk score database storing known risk
(2013.01); HO4L 63/102 (2013.01) information associated with different identity types, the first
(58) Field of Classification Search type of identity and the additional identities. The system

CPC ..o HO4L 63/1433; HO4L 63/102; GO6F
21/6245
See application file for complete search history.

1000

may generate a response based on the scoring and transmit
the response to the client device.

20 Claims, 11 Drawing Sheets

Frovide a setvice usable to perform a plurality of computing operations for
requesting users.

1002

|

Receive, from a ciient device, a request to perform a particular computing operation.

1004

l

Assign, based on a name of a user associated with the request, an identity of a first
fype to the user, where the first type of identity is a birthright identity.
1006

l

Assign, based on details of the ra?uast, onhe or more additional identities to the user,
where the one or more additional identities are different identity types than the first
type of identity assigned to the user.

1008

|

Score the first type of identity and the one or more additional identities, where the
scoring is performed based on accessing a risk score database sforing known risk
information associated with different identity tvpes.

1010

|

Transmit, to the client device, a response 1o the request, where the response is
generated based on the scoring.

1012

US 12,088,619 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0071643 Al* 3/2005 Moghe HO4L 63/1441
713/182

2005/0171937 Al 8/2005 Hughes et al.

2010/0293533 Al 11/2010 Andrade et al.

2012/0155831 Al 6/2012 Uchida

2013/0283356 Al* 10/2013 Mardikar HO4L 63/08

726/4

2017/0289134 Al* 10/2017 Bradley HO4L 63/105

2018/0123940 Al 5/2018 Rimar et al.

2018/0359244 Al* 12/2018 Cockerill HO4L 63/12

2020/0228489 Al* 7/2020 Shaikh HO4L 61/5007

OTHER PUBLICATIONS

McAvoy P, “Continuous Digital Risk Management (DevRiskOps),”
RSA Labs, Retrieved on Jul. 29, 2019, Retrieved from Internet

URL: https://community.securid.com/t5/rsa-labs-1deas/continuous-
digital-risk-man, 3 pages.

Stojiljkovic M., “The Pandas DataFrame: Make Working With Data
Delightful,” Real Python, Feb. 14, 2022, 37 pages.

White S.K., “What 1s a CMDB? A Data Warehouse for Your IT
Environment,” CIO.Com, Jun. 15, 2021, 7 pages.

Wikipedia., “MD35,” Retrieved on Feb. 5, 2022, Retrieved from
Internet URL: https://en.wikipedia.org/w/index.php?title=MD35
&oldid=1070032706, 13 pages.

International Search Report and Written Opinion for Application
No. PCT/US2022/079272 mailed on Feb. 28, 2023, 9 pages.

Sun X., et al., “Detecting Code Reuse in Android Applications
Using Component-Based Control Flow Graph,” IFIP International

Federation for Information Processing, Jun. 4, 2014, Retrieved from
Internet URL: https://link.springer.com/chapter/10.1007/978-3-642-
55415-5_12, Retrieved on Jan. 3, 2023, 14 pages.

* cited by examiner

US 12,088,619 B2

Sheet 1 of 11

Sep. 10, 2024

U.S. Patent

by ejeq aimeubiS mojH

01

a|npoyy SisAjeuy moj

0ct
9inpoyy butosdsoid moj

01T WojsAs tenies

p| ejeqd Jesf —

| 810)S eje(Jusuoduwion

HCLL
Jusuoduwion

OCL1
Jusuoduwion

} Ol

oo 0 H\NN\N\
jusuoduion

® o O MN\L\
Jusuoduion

® & o QNBB
Jusuoduion

ICH}

Jusuoduwion

d¢l1
Jusuoduwion

Vil
Jusuoduwion

29/ asuodsay

091 }Senbay

@(90} 495N
!

70l

uonesijddy

701 ©

JIN8(J Jusi|)

U.S. Patent Sep. 10, 2024 Sheet 2 of 11 US 12,088,619 B2

Reconciliation Phase

Request 160
Server System 110

112A
Each hop in flow appends

112G component identifier to flow
identifier value

Completion of flow creates

112N Htg) flow signature value and
(LAST)[retum code

Flow Signature Value 220
Retum Code 230

-
Flow Results 21

Flow Analysis Module
130

Flow State Determination
240

FIG. 2

U.S. Patent Sep. 10, 2024 Sheet 3 of 11 US 12,088,619 B2

==
Flow Results 210

Flow Signature Value 220
Retum Code 230

Flow Analysis Module 130
To Flow
Signature State Logic
Data 144

States 320

O

240B A~ 240C A

240A

Expected processing flow
Increment counter for flow signature
value 220

D ittt ; Retum code indicates
i unsuccessful operation
Experience
@ Impac_t !
Unexpected processing flow An3a%s:s

Increment counter for flow
signature value 220

v

Event
Response

Workflow
330

FIG. 3

U.S. Patent Sep. 10, 2024 Sheet 4 of 11 US 12,088,619 B2

400
Prospecting Phase
404 406
@ CSomlponer}t @
Logical ystem o
= Components Record [T Components
402
Component Identifier Values 410
Flow Prospecting Module
120
Signature Values 220 for Permissible Processing Flows
= —
Flow Signature Data 144 To I\IZJO d"z I’é\”f%SiS
[temized list of flow
signature values 220 for
permissible flows 240A
200 Expected (+count)
Remediation or
Cortification 200 Unexpected (+count)
Workflow 420
2408

FIG. 4

U.S. Patent Sep. 10, 2024 Sheet 5 of 11 US 12,088,619 B2

200

Provide a service usable to perform a plurality of computing operations for requesting users,

where the server system includes components with corresponding component identifier values
902

Receive, from a client device, a request to perform a particular computing operation
204

Perform the particular computing operation via a particular processing flow in which a particular
sequence of the components perform a series of tasks associated with the particular computing
operation

206

Generate a particular flow signature value for the particular processing flow
908

Generating a flow identifier value for the particular processing fiow
by combining component identifier values for the particular

sequence of components used to perform the senes of tasks
910

Performing a hash operation based on the flow identifier value to

generate the particular flow signature value
912

FIG. 5

U.S. Patent Sep. 10, 2024 Sheet 6 of 11 US 12,088,619 B2

600

o Roquest660 | yer pata oerver system 014
entDevice 1021 0 664 Risk
-y [dentity Scores
App%‘jtlon Module 662
- 670 Risk Score
- , Module
Response 662 Assigned 680
(Based on Risk Identities 672 —
User 606 ﬁ Scores 662) _
Database
650 Assigned
identities
672
FIG. 6A
Example
Database
650
-a

nabled?
6648

Risk Score
652

Assigned Identity
672

Identity Type
674

User's Name Attempts

664C

Anastasia |Birthright (Login) ID A7 Yes Z

Work Personal

Computer (PC) “192.158.1.38" Yes 4.5

Anastasia

Dima Administrator ‘AdminD’ Yes 16.5

Mobile Device ‘MobileK1234" No 10.4

James Application ‘Mobile 55" Yes 12.5
James Birthright (Login) ID J Yes 2.3

Kathenne

)
_ . g

FIG. 6B

U.S. Patent Sep. 10, 2024 Sheet 7 of 11 US 12,088,619 B2

/700

* . Request 760 Use;ﬁgata Server System 710
Client Device 102 Risk Typs

Scores 784
Applicati ,
Pp;gjf’on Risk Score
. ' ' Module

Risk Types 742~ 780

Response 762

User 706 \@
R

ISk Type
Database 750 Risk Types
742
Example Risk Type FIG. 7A
Database
750 Identity Ri
y RISK
A Type Table
Identity Risk Type [53
S YPE | Vendor | Key Application Service |)/
[dentity Risk Type
Score 124 " -
Asset RISk
Type Table

Asset Risk Type

732 Physical

730
Admin | Control | Risk »
Ingress Application| Point | View Database |Experience)

Asset Risk Type 7

'

Score 734
Employee Risk
Type Table
Employee Risk Customer Full-time VIP Guest ’)
Type 772 Service Agent | Equivalent (FTE)

Employee Risk

Type Score /74 1

I
..

"l b

{dentity Role
Risk Type
Table 790

Data ,‘

EQress

Payment Card

ldentity Role Risk Birthright Personally Identifiable | Admin industry (PC)

Type 792 Information (Pll) | Application

Identity Role Risk
Type Score 794

Finance

Z 1

II
..

..
'

FIG. 7B

U.S. Patent Sep. 10, 2024 Sheet 8 of 11 US 12,088,619 B2

00

Flow Signature Data
144

(For Expg;gnce 810)

Layer ()
Layer 1

Layer 2

Assigned Identities
672

Layer 3

Risk Type Data
(47

Machine Learning/Risk
Deftection 820 -
Database 850 l

User’s Name Flow Identity ssigned ldentity Risk| Risk Score(s) | Risk Decision
620A Signature 144 | Types 6208 |/dentities 672 Type(s) 722 830 840
Birthright ap
. . A" and VIP and
Anastasia MD5 (Login) ID | «pqniinin - 10,3, 7, ..., 5 Deny

Birthright ID “J7 and
James SHAZ56 and “VobileJ55" Application | 4, 1,5, ..., 4 Approve
Application

FIG. 8

U.S. Patent Sep. 10, 2024 Sheet 9 of 11 US 12,088,619 B2

User Interface 910

Active Modules 920 Risk Log 930

Components (CI's) Logged event data

W | rows Module Output Summary 950
Component Risk Scores = XX, XX, XX, ...
Flow Risk Score = XX
Identity Risk Scores = XX, XX, XX, ...
Asset Risk Scores = XX, XX, XX, ...
Employee Risk Type Scores = XX, XX, XX, ...
Total Risk Score = XX

FIG. 9

U.S. Patent Sep. 10, 2024 Sheet 10 of 11 US 12,088,619 B2

1000

Provide a service usable to perform a plurality of computing operations for

requesting users.
1002

Receive, from a client device, a request to perform a particular computing operation.
1004

Assign, based on a name of a user associated with the request, an identity of a first
type to the user, where the first type of identity is a birthright identity.
1006

Assign, based on details of the request, one or more additional identities to the user,
where the one or more additional identities are different identity types than the first
type of identity assigned to the user.

1008

Score the first type of identity and the one or more additional identities, where the
scoring is performed based on accessing a risk score database storing known risk
information associated with different identity types.

1010

' Transmit, to the client device, a respons to the request, where the response is

generated based on the scoring.
1012

FIG. 10

U.S. Patent Sep. 10, 2024 Sheet 11 of 11 US 12,088,619 B2

1100

Memory
1140

Interconnect

1180

I/0O
Interface
1160

FProcessor
Subsystem

1120

I/0O
Devices
1170

FIG. 11

US 12,088,619 B2

1

IDENTITY-BASED RISK EVALUATION
TECHNIQUES

RELATED APPLICATIONS

The present application 1s a continuation-in-part of U.S.

application Ser. No. 17/812,841, entitled “COMPONENT-
BASED RISK EVALUATION TECHNIQUES USING
PROCESSING FLOW SIGNATURES,” filed Jul. 15, 2022,

which claims priority to U.S. Provisional App. No. 63/264,
339, enftitled “COMPONENT-BASED RISK EVALUA-
TION TECHNIQUES USING PROCESSING FLOW SIG-
NATURES,” filed Nov. 19, 2021, the disclosures of each of
the above-referenced applications are incorporated by ref-
erence herein in their entireties.

BACKGROUND

Technical Field

This disclosure relates generally to computer system
reliability, and more particularly to identity-based risk
evaluation techniques that utilize assigned risk types.

Description of the Related Art

A server system may provide various services (e.g., web
services) 1n which the computing resources of the server
system perform computing operations on behalf of a
requesting entity, such as an end user. A given service may
be made up of many individual computing operations that
may be performed for an end user. In performing a given one
of these computing operations, the server system may use a
processing tlow that utilizes a combination of many different
components. These components may be shared by multiple
different processing flows to support the various computing
operations. Accordingly, as the server system services a
request, the associated processing flow may utilize a com-
bination of many different components to generate the
desired result for the user. In some 1nstances, however, this
component-based approach may present various technical
challenges, particularly as the number of components uti-
lized by the server system increases.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating an example server
system that utilizes a set of components, according to some
embodiments.

FIG. 2 1s a block diagram illustrating an example server
system generating a flow signature value while implement-
ing a processing tlow, according to some embodiments.

FIG. 3 1s a block diagram illustrating an example flow
analysis module, according to some embodiments.

FIG. 4 1s a block diagram 1illustrating an example flow
prospecting module during a prospecting phase, according
to some embodiments.

FIG. 5 1s a flow diagram 1llustrating an example method
for performing component-based risk evaluation using pro-
cessing flow signatures, according to some embodiments.

FIG. 6A 1s a block diagram illustrating an example system
configured to assign i1dentities to one or more end users and
determine risk scores for the identities, according to some
embodiments.

FIG. 6B 1s a block diagram illustrating an example
identity database, according to some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7A 1s a block diagram 1illustrating an example system
configured to assign risk types to various elements corre-

sponding to a request and determine risk scores for the
request, according to some embodiments.

FIG. 7B 1s a block diagram illustrating an example
database storing assigned risk types, according to some
embodiments.

FIG. 8 1s a block diagram 1llustrating example layers of a
system configured to determine an overall risk score for a
request from a client device, according to some embodi-
ments.

FIG. 9 1s a block diagram illustrating an example user
interface for manipulating and viewing risk detection
results, according to some embodiments.

FIG. 10 1s a tlow diagram illustrating an example method
for performing identity-based risk evaluation, according to
some embodiments.

FIG. 11 1s a block diagram 1llustrating an example com-
puter system, according to some embodiments.

DETAILED DESCRIPTION

A server system may provide various services (e.g., web
services) 1 which the computing resources of the server
system (including hardware or software elements of the
server system) perform computing operations on behalf of a
requesting entity, such as an end user. Non-limiting
examples of web services a server system may provide
include email services, streaming media services, map-
based services, online payment services, retail services, etc.

A given service may be made up of many individual
computing operations (also referred to herein as “‘experi-
ences”’) that may be performed for an end user. Consider, as
a non-limiting example, an embodiment 1n which a server
system (e.g., implemented using multiple different, geo-
graphically diverse datacenters) provides an online payment
service to many users (e.g., millions of users). In this
example embodiment, the online payment service may allow
end users to perform various computing operations, such as
creating a user account, adding funding sources, sending and
receiving funds to other user accounts, etc.

In performing a given one of these computing operations,
the server system may use a processing flow that utilizes a
combination of multiple (and, potentially, many) “compo-
nents.” As used herein, the term “component” refers to a
hardware or software element used to perform a portion of
the computation used to complete the requested computing
operation. Various non-limiting examples of components are
described in detail below. In the context of a configuration
management system utilized by the server system, a “com-
ponent,” as used herein, may also be referred to as a
“configuration item” (or “CI”), where the configuration
management system may use various processes to monitor
the status of the mdividual Cls 1 use in the system. In this
disclosure, the term “processing flow™ refers to a sequence
of components used by the server system to perform a
requested computing operation (e.g., transferring funds
between user accounts, as one non-limiting example).

A server system may include a large number (e.g., thou-
sands, tens of thousands, etc.) of distinct components. These
components may be created by, and shared between, difler-
ent teams or divisions within the entity operating the server
system such that different components are “owned” or
managed by different internal entities. In such an embodi-
ment, when designing the processing flows that will be used
to perform the computing operations offered, different com-
binations of components may be selected, used, and shared

US 12,088,619 B2

3

to support the various computing operations. Accordingly, as
the server system services a request, the associated process-
ing flow may utilize a combination of many different com-
ponents to generate the desired result for the user. Note,
however, that there may be changes to any number (e.g.,
thousands) of these components on a daily basis, for
example, as part ol ongoing soitware development eflorts.
Further, in some instances, the number of components used
in a given processing tlow can be large (e.g., 100, compo-
nents, 1,000 components, 10,000 components, etc.).

While this component-based approach does {facilitate

scalability by allowing components to be created, managed,
and shared between internal entities and experiences, 1t also
presents various technical problems. For example, the pro-
cessing flow for a given computing operation may change
over time. Consider, as a non-limiting example, a particular
component that 1s used 1n the processing flow associated
with ten different computing operations included in the
service provided by the server system. In this example, 11
there 1s a change to this particular component, 1t will affect
the ten different processing tlows associated with these ten
different computing operations. Accordingly, 1f this change
to the particular component negatively impacts the perfor-
mance of this particular component, the performance of each
of these ten different processing flows may also be nega-
tively impacted (or prevented altogether).
Using prior techniques, there 1s little to no visibility about
the underlying components included 1n a given processing
flow, the changes made to those components, the pertor-
mance of those components, the decommaissioning of com-
ponents, etc. Further, using prior techniques, these compo-
nents may be treated as a group or “batch” (e.g., tier-1
databases) rather than as individual components. Accord-
ingly, 1t may be dithicult or impossible to determine, for a
given computing operation, the identity and status of the
underlying components included 1n the processing flow used
to perform that given computing operation. Further, using,
prior approaches, there 1s no suitable technique that may be
used to quantily the risk (e.g., to the server system, the
service(s) 1t provides, the business 1t supports, etc.) associ-
ated with the constant changes to the components in the
system.

In various embodiments, the disclosed techniques address
these technical problems by using component-based risk
evaluation techniques that use processing flow signature
values to monitor and analyze the processing tflows—and
therefore the components—utilized by the server system.
For example, 1 various embodiments, the disclosed tech-
niques include assigning some or all of the components
within a server system with a corresponding component
identifier value. In some embodiments, for example, a
component identifier value 1s an immutable name that
uniquely 1dentifies a particular component. As a requested
computing operation 1s performed by the server system,
these component 1dentifier values may be used to create a
flow 1dentifier value indicative of the sequence (that 1s, the
identity and order) of components included 1n the particular
processing flow used, by the server system, to perform the
requested computing operation. Stated differently, as differ-
ent components 1n the processing flow are used, the identi-
fier values for these different components are logged and
combined (e.g., concatenated) to form a flow 1dentifier value
that indicates the sequence of components used by the server
system to perform a given processing flow. Various embodi-
ments further include creating a processing tlow signature
value by performing a hash operation on (that 1s, computing,
a hash value from) this tlow identifier value. In one non-

10

15

20

25

30

35

40

45

50

55

60

65

4

limiting embodiment, the disclosed techniques store a pro-
cessing flow signature value, optionally along with one or
more other 1items of information, associated with some or all
of the processing flows performed by the server system.
Non-limiting examples of additional information that may
be logged includes: a flow 1dentifier value corresponding to
the tlow signature value, a timestamp indicating a time at
which the processing tlow was performed, a counter indi-
cating the number of times that the processing tlow with a
particular flow signature value was performed within a given
time period, etc.

Maintaining these items of information may provide
various technical benefits. For example, when a processing
flow 1s completed and a new processing tlow signature value
1s generated, that processing flow signature value may be
compared to processing flow signature values generated for
previous 1nstances of that processing tlow. In the event that
the new signature value fails to match the previous signature
values, the disclosed techniques may determine that there
has been a change to one or more of the components
included 1n that processing tlow. Once this change has been
detected, various embodiments include using the flow 1den-
tifier values for this processing tlow to 1identity which of the
underlying component(s) has changed. Non-limiting
examples of changes to the components may include: addi-
tions of new components to the processing flow, modifica-
tion of existing components in the processing flow, and
removal or decommissioning of components included 1n the
processing flow. Once the relevant components have been
identified (e.g., 1n a real-time or near real-time manner),
further 1nvestigation nto the nature and extent of the
changes to these components can be performed. Accord-
ingly, various disclosed embodiments provide improved
visibility into the i1dentity and status of the combination of
components included 1n the various (and, potentially, numer-
ous) processing tlows used by the server system. Additional
technical benefits provided by various disclosed embodi-
ments are described 1n more detail below.

Referring now to FIG. 1, block diagram 100 depicts a
server system 110 that includes a set of components 112A-
112N (or, collectively, components 112), a flow prospecting,
module 120, a flow analysis module 130, and a data store
140. In various embodiments, server system 110 provides
one or more computing resources as part of a service (e.g.,
a web service) that may be used directly by end users or that
may be integrated with (or otherwise used by) services
provided by third-parties. As one non-limiting example,
server system 110, 1n some embodiments, provides an online
payment service that may be used by end users to perform
online financial transactions (e.g., sending or receiving
funds) or utilized by merchants to receive funds from users
during {financial transactions. Note, however, that this
embodiment 1s described merely as one non-limiting
example. In other embodiments, server system 110 may
provide any of various suitable services, such as an email
service, a streaming media service, etc. Additionally note
that, 1n some embodiments, a “server system” (such as
server system 110) may be implemented using a single
machine. In other embodiments, however, a “server system”™
may be implemented using multiple machines executing
(e.g., at one or more datacenters) for the benefit of a single
entity. For example, 1n some embodiments, server system
110 may be implemented using multiple machines located at
one or more geographically remote datacenters.

FIG. 1 further includes client device 102 operated by user
106. Client device 102 may be any of various suitable
computing devices, such as a smartphone, laptop computer,

US 12,088,619 B2

S

desktop computer, tablet computer, etc. that user 106 may
use to access the service(s) provided via server system 110.
For example, 1n various embodiments, client device 102
executes a software application 104, such as a web browser
or a service-specilic software application, usable to access
one or more computing resources provided by the server
system 110. In the depicted embodiment, user 106 uses
client device 102 to send a request 160 to perform a
computing operation via a service provided by server system
110. As a non-limiting example, consider an embodiment 1n
which the requested computing operation specified by
request 160 1s to check an account balance of a user account
of the user 106.

In various embodiments, the server system 110 utilizes
different combinations of components 112 to perform the
various computing operations available via the service the
server system 110 provides. For example, to service request
160, the server system 110 implements a processing flow
that utilizes a sequence of components 112 to perform a
series of tasks (or “sub-operations™) necessary to complete
the requested computing operation. Non-limiting examples
of these tasks could include any of various different com-
putational sub-operations, such as user-verification, risk
evaluation, data retrieval, routing, load balancing, etc., that
need to be completed in order to accomplish the broader
computing operation requested by the user. As a simplified
example for the purposes of illustration, assume that the
processing flow utilized by the server system 110 uses the
following sequence of components 112 to perform the
requested computing operation for request 160: component
112A, 1128, 112D, 112E, and 112N. (Note that, in many
embodiments, a processing flow may include a sequence of
any number (e.g., hundreds, thousands, etc.) of components
112.) Once the processing flow has completed execution
(e.g., by successtully performing the requested operation,
through an unexpected termination of the processing tlow,
etc.), the server system 110 may provide a response 162 to
the client device 102.

Non-limiting examples of “components” that may be
included 1n a processing tlow include an asset, a container
that 1s running a service, a virtual machine, a third-party
library, a physical asset, business logic that 1s embedded nto
an application, a Kubemetes cluster, etc. Consider, as a
non-limiting example, an instance 1n which a service (pro-
vided by the server system 110) runs an API that may be
used by requesting entities (e.g., end users, third-party
systems, etc.) to send a request to that service. In this
example, the service running the API would be considered
a “component.” Further, assume that this API has a particu-
lar configuration such that 1t accepts, in a properly formatted
API request, a particular set of parameters. This configura-
tion for the API, in various embodiments, will have an
associated component 1dentifier value. If that configuration
1s later changed (e.g., to modily the particular set of attri-
butes included 1n an API request), that change would result
in the assignment of a new 1dentifier value for that compo-
nent. When the flow signature value (e.g., hash value) for a
processing tlow that includes this service 1s later computed,
this change to the configuration will result 1n a change to the
signature value. As described herein, that change 1n signa-
ture value may be mvestigated further to identity the source
of this change (the update to the API specification, 1n the
current example).

Various embodiments include utilizing identifier values
associated with components in the server system to track
which components within the infrastructure of the server
system 110 are in use for the various processing flows. As

10

15

20

25

30

35

40

45

50

55

60

65

6

one non-limiting example, a processing flow may include
the sequence of components 112 (or simply the set of
components 112 that have been assigned a component
identifier value) used by the server system 110 from the
ingress point of a request (e.g., a request 160 from a user
106), to a database, through one or more software applica-
tions or microservices, to a point of egress at which a
response 1s provided to the user. In various embodiments,
the disclosed techniques include generating tlow signature
values for the processing tlows utilized by the server system
110 to service client requests. In some embodiments, for
example, the server system 110 generates a flow signature
value as a hash value based on a concatenation (or other
combination) of the identifier values for the sequence of
components in the utilized processing flow. By using the
component 1dentifier values for each of the components 1n a
processing flow and using these component 1dentifier values
to create the flow signature value, the disclosed techniques
are capable of modeling the processing tflow for a given
computing operation. These flow 1dentifier values and tlow
signature values may be generated and stored over time for
many (or all) of the different processing flows used by the
server system 110, which, i various embodiments, helps to
identily any changes 1n the components 112 included 1n a
processing flow.

In various embodiments, the disclosed techniques may be
saild to operate 1 two complementary (and, optionally,
simultaneous) phases: a prospecting phase, and a reconcili-
ation phase. In various embodiments, the reconciliation
phase and prospecting phase may be said to operate as state
machines within an overall autonomous system. During the
prospecting phase, the flow prospecting module 120 gener-
ates flow signature values for the permissible processing
flows that are permitted via the server system 110. That 1is,
flow prospecting module 120 generates flow signature val-
ues for the sequences of components 112 that are permitted
based on the logic and constraints of the individual compo-
nents 112. In various embodiments, the prospecting opera-
tions may be repeated (e.g., on a periodic basis) to generate
new and updated flow signature values as components are
added to or removed from the server system 110. Flow
prospecting module 120 and various embodiments of the
prospecting phase are described in detail below with refer-
ence to FIG. 4.

The prospecting phase may be thought of as a “non-
production” phase because, 1n various embodiments, the
prospecting operations are performed independent of the
requests being received and serviced by the server system
110. The reconciliation phase, by contrast, may be thought
of as a “production phase” because, 1n various embodiments,
the reconciliation operations discussed herein are performed
based on the instantiated production environment used by
server system 110 to service requests from clients. For
example, as a request 1s serviced, a tlow signature value may
be created based on the component identifiers for the
sequence of components used to service that request. This
process of generating flow signature values for the process-
ing flows used by the server system 110 may be performed
for all (or any desired subset) of the requests received by the
server system 110. Note that, in embodiments 1 which
server system 110 hosts a large-scale service, server system
110 may receive many (e.g., millions) requests each day. In
various embodiments, flow signature values generated either
by the flow prospecting module 120 during a prospecting
operation, or by the server system 110 while performing
computing operations to service requests from requesting

US 12,088,619 B2

7

users, may be stored as part of flow signature data 144 in
data store 140 included 1n (or accessible to) server system
110.

In various embodiments, the disclosed techniques include
analyzing these flow signature values generated during the
reconciliation phase, which may provide various technical
benelits—particularly in the context of server systems pro-
viding large-scale services used by many users. For
example, 1n various embodiments the disclosed techniques
improve the ability to monitor the use of, and detect risks
associated with, the various (and often numerous) process-
ing tlows and components 112 utilized by the server system
110.

Various embodiments of flow analysis module 130 and
the disclosed flow analysis techniques are described 1n detail
below with reference to FIG. 3. In various embodiments,
these flow analysis techniques may provide various techni-
cal benefits to the server system 110. For example, 1n various
embodiments the flow analysis techniques include using the
flow signature values to detect changes to the components
112 included in the processing flows used by server system
110. As described below, this may enable the eflicient
tracking and monitoring of components 112 utilized in
business-critical processing tflows such that, when a change
1s made to one or more components 112, this change may be
detected 1n a fast and efhicient manner. Further, in various
embodiments, the flow analysis operations include tracking
the number of times that different processing flows are used
during a given time interval, which may be particularly
usetul for tracking changes 1n “velocity” with respect to the
server system 110 as a whole and with respect to specific
processing flows.

Additionally, 1n some embodiments, the tlow analysis
techniques 1include detecting “unexpected” processing flows
performed by the server system 110. For example, as
explained below, the flow analysis module 130 may compare
the tlow signature values generated during the reconciliation
phase to the flow signature values generated during the
prospecting phase and, 1f there 1s not a match, the processing,
flow associated with that flow signature value may be
deemed “unexpected” and flagged for further investigation.
By contrast, using prior techniques it may be difhicult or
impossible to detect when an “unexpected”™ processing tlow
has been used by the system. Further, 1n various embodi-
ments, the flow analysis techniques include identifying a
particular component (or components) as a point-of-failure
in a processing flow. For example, as described below, 1n
addition to a flow signature value, 1 various embodiments
cach processing flow will also have an associated “return
code” (e.g., an HT'TP status code) indicative of the outcome
of the processing tlow that may be used to determine
whether a requested operation was successtully performed.
I1 not, various embodiments include using the flow signature
value (or the underlying tlow identifier value) to identify a
component that acted as a point-of-failure for the processing
flow. This approach to i1dentifying a point-of-failure com-
ponent may provide significant technical benefits, for
example by allowing a malfunctioning component in a
processing flow—out of, for example, thousands of possible
components—to be i1dentified 1n a fast and computationally
eilicient manner.

Referring now to FIG. 2, block diagram 200 depicts an
embodiment 1n which server system 110 generates a tlow
signature value 220 while implementing a processing flow to
service a request 160 for a user 106.

As noted above, 1n various embodiments the server sys-
tem 110 utilizes different combinations of components 112

10

15

20

25

30

35

40

45

50

55

60

65

8

to perform computing operations provided via the service
that 1t hosts. The various components 112 used by a par-
ticular processing flow may be utilized in a particular
sequence so as to perform a series of tasks needed to
complete the requested computing operation. As shown 1n
FIG. 2, 1n some embodiments these components 112 may be
referred to as “hops” to signify that a component 112 1n a
processing flow 1s one step of many taken to complete a
requested operation.

In various embodiments, each component 112 in the
processing flow assists in creating a flow identifier value for
that processing flow. For example, in some embodiments the
flow 1dentifier value for a particular processing flow 1s a
combination (e.g., a concatenation) ol the components 112
used 1n that processing tlow in the order in which the
respective components 112 were utilized. For example, 1n
various embodiments, a flow 1dentifier value (e.g., an alpha-
numeric value) 1s created by appending the component
identifier value (e.g., a unique, immutable name) of each
successive component 112 in the processing flow, and a flow
signature value 220 1s created by taking a hash of the flow
identifier value. Accordingly, 1n various embodiments this
flow signature value 220 1s specific to the sequence of
components 112 used 1n the corresponding processing tlow,
and the same flow signature value 220 will be generated
cach time that same processing flow (that 1s, the exact same
sequence of components 112) 1s used by the server system
110 to service a request.

With reference to the non-limiting example shown 1n FIG.
2, for instance, the depicted processing flow first utilizes
component 112A. In some embodiments, once component
112 A completes 1ts task, 1t may add its unique component
identifier value to a tlow i1dentifier value for the particular
processing tlow. In this non-limiting example, the compo-
nent 1dentifier value for component 112A would be the first
and only 1dentifier value included in the flow 1dentifier value
at this point. In various embodiments, the flow identifier
value may be passed (e.g., in an HI'TP header field, such as
a cookie) from component 112 to component 112 1n the tlow
such that each subsequent component 112 can append their
respective 1dentifier value to the end (or beginning, in some
implementations) of the running flow i1dentifier value.

In the depicted embodiment, the last hop 1n the processing,
flow 1s component 112N. In various embodiments, the final
component 112 in a processing flow may both add its
identifier value to the flow identifier value and, once com-
pleted, generate a flow signature value 220 based on the flow
identifier value. In various embodiments, the flow signature
value 220 may be a hash value generated by taking a hash
of the flow 1dentifier value. As one non-limiting example, 1n
some embodiment the md5 message-digest algorithm may
be used to generate a tlow signature value 220 based on the
flow 1dentifier value. Note, however, this 1s merely one
non-limiting example and, i other embodiments, any suit-
able hashing algorithm may be used. Further, in other
embodiments, the flow signature value 220 may be gener-
ated using other suitable encoding techniques (e.g., encod-
ing techniques that do not utilize a hash function).

In the depicted embodiment, the flow signature value 220
1s stored, along with a return code 230 (e.g., an HI'TP status
code), 1 tlow results 210. As an example, for a particular
utilization of a processing flow, the flow results 210 may
include a corresponding data record that specifies the tlow
signature value 220 and the associated return code 230
(optionally along with one or more other 1tems of informa-
tion, e€.g., a timestamp, as desired). For example, various
embodiments include storing, 1 flow results 210, one or

US 12,088,619 B2

9

more of the flow i1dentifier value, the processing flow sig-
nature value 220, the return code 230, and a timestamp
associated with some or all of the processing flows per-
formed by the server system 110 for a given period of time
(e.g., week, month, year, etc., or indefinitely).

In various embodiments, a flow signature value 220 and
return code 230 may be stored 1n tlow results 210 for each
(or any desired subset) of the processing tlows utilized by
the server system 110 for subsequent analysis. For example,
as shown 1n FIG. 2, 1n various embodiments the flow results
210 may be accessed and analyzed by the tflow analysis
module 130. Various non-limiting embodiments of flow
analysis module 130 are described in detail below with
reference to FIG. 3. For the purposes of the present discus-
sion, however, note that flow analysis module 130, 1n
various embodiments, 1s operable to analyze the flow sig-
nature value 220 and return code 230 and, based on that
analysis, generate a flow state determination 240. In various
embodiments, this flow state determination 240 may 1nclude
one or more items ol information corresponding to the
processing flow, which may be used for various flow analy-
s1s techniques described herein, for example to monitor and
detect changes 1n tlow velocity, detect unexpected process-
ing flows, and i1dentity point-of-failure components.

Referring now to FIG. 3, block diagram 300 depicts an
embodiment of flow analysis module 130 evaluating tlow
results 210 associated with the processing tlows used by the
server system 110 to perform requested computing opera-
tions. In the depicted embodiment, flow analysis module 130
1s depicted as a state machine that includes state logic 310
and a set of states 320. (Note that, although only 3 states are
explicitly depicted 1 FIG. 3 for clarity, this 1s simply one
non-limiting embodiment. In other embodiments, flow
analysis module 130 may reach any suitable number of
states based on the state logic 310.)

In various embodiments, state logic 310 utilizes flow
signature data 144 (e.g., including the flow signature values
generated during the prospecting phase) to analyze the tlow
signature value 220 and return code 230 and generate an
appropriate flow state determination 240. As a non-limiting
example, for each result (e.g., stored as a character string
formatted as a “tlow signature value 220: return code 230~
value) 1n tlow results 210, the state logic 310 may split the
result such that flow signature value 220 1s added to a set “E”
(corresponding to “‘experiences”), the return code 230 1s
added to a set “RC.,” and a counter associated with that
particular flow signature value 220 and return code 230
combination 1s incremented. Further, 1n some such embodi-
ments the state logic 310 may then evaluate each of the
“experiences” 1n the set E. For example, as described 1n
more detail below, 1f the return code 230 indicates that a
requested operation was not successtully completed, the
flow analysis module 130 module may increment a counter
associated with that return code 230 and trigger an event-
response workflow. If, however, the return code 230 indi-
cates that the requested operation was successtul, the tlow
analysis module 130 may determine whether the flow sig-
nature value 220 matches a flow signature value 220 gen-
erated during prospecting. If so, an appropriate counter may
be incremented to track that occurrence. If not, the flow
analysis module 130 may initiate an 1mpact analysis work-
flow for further investigation. Various non-limiting embodi-
ments of these flow analysis operations are now described in
more detail below.

For example, as shown 1n FIG. 3, 1n various embodiments
the flow analysis module 130 determine an appropriate flow
state determination 240 by determining whether the return

10

15

20

25

30

35

40

45

50

55

60

65

10

code 230 for the processing flow indicates whether the
request was successiul or not. In some embodiments, for
example, the return codes may be HTTP status codes that
indicate whether a requested operation specified by a request
(e.g., request 160) has been successiully completed. In such
embodiments, for example, the 2xx class of status codes
(e.g., the 200 OK status code) indicates that the request was
successiul, while the 5xx class of status codes (e.g., the 500
Internal Server Error status code) indicates that the server
was unsuccessiul 1n complete the requested operation.

If the return code 230 1ndicates that a processing flow was
unsuccesstul (indicated by State 3 i FIG. 3), the flow
analysis module 130 may generate a flow state determina-
tion 240C 1ndicating that the requested operation was unsuc-
cessiul. In the depicted embodiment, for example, this flow
state determination 240 may be provided to an event
response worktlow 330 for further investigation. In various
embodiments the flow analysis techniques include 1dentify-
ing a particular component 112 (or components 112) as a
point-of-failure 1 a processing flow. For example, 11 the
return code 230 indicates that a requested operation was not
successiul, the flow analysis module 130 (or another module
in server system 110) may use the tlow signature value 220
to 1dentily a component 112 that caused the processing
fallure. As a non-limiting example, while servicing a
request, one of the components 112 1n the processing flow
may be malfunctioning, causing the processing flow to fail
to complete the requested computing operation. In some
such embodiments, the disclosed techniques may stop
appending component identifier values to the flow 1dentifier
value at a point of failure such that, when a processing flow
fails, the disclosed techniques may identify the final com-
ponent 112 specified 1in the flow 1dentifier value as a point of
failure for the processing flow. As another non-limiting
example, 11 a particular processing flow for a particular
computing operation 1s intended to include a sequence of 40
different components 112 and the flow identifier value
indicates that the flow stopped at the 15th component—
component 112M—this component 112M may be 1dentified
as a potential source of the failure. In various embodiments,
this may enable problematic components 112 to be 1dentified
and remedied more quickly than using prior techniques,
thereby improving the operation of the server system as a
whole.

If, however, the return code 230 indicates that the
requested operation was successiully performed, the flow
analysis module 130 may determine an appropriate tlow
state determination 240 by comparing a flow signature value
220 to the flow signature data 144 to determine whether the
flow signature value 220 matches a flow signature value 220
generated during the prospecting operations. If there 1s such
a match (indicated by State 1 1n FIG. 3), that flow signature
value 220 may be said to be “expected” because 1t matches
a flow signature value for a processing flow that was deemed
to be permissible by the flow prospecting module 120 during
prospecting. In FIG. 3, for example, 1n response to deter-
mining both that the return code 230 indicates the requested
operation was successiul and that the flow signature value
220 matches a flow signature value previously generated
during the prospecting operation, the flow analysis module
130 may generate a flow state determination 240A indicative
of this result. As noted above, 1n various embodiments the
flow analysis operations include tracking the number of
times that different processing flows are used during a given
time 1nterval. For example, in FIG. 3, based on a determi-
nation that the processing tlow was successtul (based on
return code 230) and that the tlow signature value 220 was

US 12,088,619 B2

11

“expected,” the flow analysis module 130 increments a
counter associated with the flow signature value 220 that
tracks the number of times that flow signature value 220 was
generated during a particular time period.

In various embodiments, the flow analysis module 130
may be operable to detect “unexpected” processing flows
performed by the server system 110. For example, if there 1s
not a match between the flow signature value 220 and any
of the flow signature values generated during prospecting
(indicated by State 2 1in FIG. 3), that flow signature value
220 may be said to be “unexpected” because it does not
match a tlow signature value for a processing flow that was
deemed to be permissible by the flow prospecting module
120 during prospecting. In FIG. 3, for example, in response
to determining that the return code 230 indicates the
requested operation was successiul and that the flow signa-
ture value 220 does not match a flow signature value 220
previously generated during the prospecting operation, the
flow analysis module 130 may generate a flow state deter-
mination 240B indicative of this result. In the depicted
embodiment, for example, this flow state determination 240
may be provided to an experience impact analysis 325 for
turther investigation. For example, this unexpected process-
ing tlow could correspond to a malicious operation that was
successiully performed via the server system 110, or the
unexpected processing tlow could simply correspond to a
computing operation that was not yet discovered during the
prospecting phase. By autonomously identifying and flag-
ging these processing flows for further investigation, the
disclosed techniques enable for the fast and computationally
cilicient resolution of potential problems as those problems
arise. Further note that, in various embodiments, the flow
analysis operations also include tracking the number of
times that “unexpected” processing tlows are detected. For
example, in FIG. 3, the flow analysis module 130 increments
a counter associated with the “unexpected” flow signature
value 220 to track the number of times that this flow
signature value 220 was generated during a particular time
period.

Information about an occurrence of the flow signature
value 220, including the tflow signature value 220, the return
code 230, a timestamp, the counter, etc., may be stored as
part of flow signature data 144. Such information may be
particularly useful, for example, in detecting changes in
velocity associated with various processing flows (both
“expected” and “unexpected”) utilized 1n the server system
110 over time. For example, in some embodiments, the flow
analysis module 130 may track the number of times a
particular processing flow 1s used, by the server system 110,
during successive time intervals and 1dentily changes in that
processing tlow’s use over time. This information may be
valuable on its own, providing the organization operating the
server system 110 with msight regarding how frequently the
different processing tlows are used and how that use changes
over time.

Further, in some embodiments, the flow signature values
220 or velocity information may be used to detect changes
in processing tlows or the respective components 112
included therein. For example, in some embodiments, the
components 112 included 1n a given processing flow may
change and, when this change occurs, there will be a
resulting change in the flow signature value 220 for that
processing flow. By monitoring the flow signature values
220, the disclosed techniques {facilitate the detection of
changes 1n processing flows (e.g., components added to the
flow, components removed from the flow, changes in the
sequence of components 1n the flow, changes to the con-

10

15

20

25

30

35

40

45

50

55

60

65

12

figuration of components in the flow, or any combination
thereol). Accordingly, once a change in the flow signature
value 220 has been detected, one may determine that there
has been a change 1n the underlying processing flow, which
may be ivestigated further. In various embodiments, detect-
ing and 1dentifying changes in a processing flow based on a
change 1n 1ts signature value 1s both less error-prone and less
computationally demanding than other available techniques
(e.g., comparing the list of component identifiers for the
components included 1n the processing tlow).

In some embodiments, the server system 110 may main-
tain (or have access to) a list (implemented using any
suitable data structure or collection) that maps a component
identifier value to a corresponding component 112. For
example, this operation may be performed by component
system of record 402 described below with reference to FIG.
4. In various embodiments, once 1t has been determined that
there has been a change to the processing tlow (based on a
change in the associated flow signature value 220), various
embodiments include determining which of the com-
ponent(s) 112 in that processing tlow have changed. For
example, 1n some embodiments, this determining includes
comparing the tlow 1dentifier value (e.g., the set of concat-
enated component identifier values) for the current instance
of the processing flow to the tlow identifier value for a
previous instance (e.g., the most-recent previous instance) of
the processing flow to determine how these values diiler.
Once the changed component(s) 112 have been 1dentified,
the extent of those changes may be investigated. For
example, a change management system may be consulted to
determine what changes were made to a given component
112 1n the flow.

Various embodiments further allow the entity operating
the server system 110 to define thresholds used to determine
whether a change 1s significant enough to warrant further
investigation or action (that 1s, if the risk posed by this
change 1s deemed “‘acceptable™). For example, in some
embodiments, certain important or business-critical compo-
nents 112 or processing tflows may be flagged (e.g., within
the data structure providing the mapping of component
identifier value to corresponding component 112) such that,
when a change 1s detected in these processing flows or
components 112, an indication of this change may be
generated.

Note that, although only three states 320 are explicitly
shown 1n FIG. 3, this non-limiting embodiment 1s depicted
merely as an example and, 1n other embodiments, state logic
310 may reach one or more additional states based on the
analysis of the flow signature values 220 and return codes
230. For example, in some embodiments one or more
additional states 320 may leverage volumetric differences
between the active cycle (e.g., a current time period) and
results from one or more previous cycles (e.g., flow signa-
ture values 220 and return codes 230 generated during
previous time periods or during prospecting). As a non-
limiting example, in some embodiments the flow analysis
operations may detect changes in velocity associated with
one or more processing tlows, where “velocity™ refers to the
number of times a processing tlow 1s utilized by the server
system 110 during a given cycle. Note that, in various
embodiments, these other states 320 (e.g., states beyond the
three depicted 1n FIG. 3) may add determination for reoc-
currence, tlapping states, and anomalous availability or
security results of the flow signature values 220.

Further note that, although the flow analysis module 130
1s shown as part of the reconciliation phase in the production
environment, this depicted embodiment 1s provided as

US 12,088,619 B2

13

merely one non-limiting example. In other embodiments,
some or all of the flow analysis operations described herein
may be performed 1n a non-production environment (e.g., as
part of the prospecting phase).

Referring now to FIG. 4, block diagram 400 depicts a flow
prospecting module 120 during a prospecting phase, accord-
ing to some embodiments. In various embodiments, the tlow
prospecting module 120 generates flow signature values 220
for the permissible processing flows that are permitted via
the server system 110.

In the embodiment depicted in FIG. 4, block diagram 400
includes a component system of record 402, which, 1n
various embodiments, 1s a data management system that acts
as an authoritative source for data relating to the components
112 utilized by the server system 110. In various embodi-
ments, through continued development efforts within an
organization (e.g., by various software development or busi-
ness teams within a company), both logical and information
technology (IT) components 112 may be added to the server
system 110. In FIG. 4, for example, business users 404
within the organization may develop logical components
112 and IT users 406 within the company may develop IT
components 112. As these components 112 are created and
on-boarded, umique, immutable component 1dentifier values
410 for the components 112 may be added to the component
system of record 402. That 1s, in various embodiments, as a
component 112 1s added to the server system 110, a unique,
immutable component identifier 4108 may be added to the
component system of record 402 for that component 112.

In various embodiments, the flow prospecting module 120
1s operable to compute flow signature values for the pro-
cessing flows that are permitted, using different combina-
tions of the components 112, via the server system 110. That
1s, 1n various embodiments the tlow prospecting module 120
1s a soltware agent that computes flow signature values 220
for any possible flow that 1s allowed by the configuration
deployed by the users 204 or 206 of the organization
operating the server system 110. For example, in some
embodiments the flow prospecting module 120 takes the
configuration information provided by the human users 204
or 206 and applies automation to identily every permitted
sequence of components 112, generating a flow signature
value 220 for each such sequence. In various embodiments,
cach flow signature value may be said to represent a corre-
sponding 1temized capability of the server system 110 and
the sum of all of its constituent components 112 in sequential
order.

In various embodiments, this process may be autono-
mously repeated such that, as the component system of
record 402 1s updated, new corresponding flow signature
values 220 are created. That 1s, 1n various embodiments the
flow prospecting module 120 1s constantly runmng and
generating a (potentially very large) list of flow signature
values 220 (e.g., as hash values) indicative of the permis-
sible processing flows that are possible via the components
112 1n the server system 110. In some embodiments, these
flow signature values 220 may be stored 1n tables (or in any
other suitable data-storage format) and may be used, for
example, by the flow analysis module 130, for example as
described above with reference to FIG. 3.

As shown 1 FIG. 4, in various embodiments the pros-
pecting phase receives feedback from the flow analysis
module 130. In various embodiments, the flow analysis
module 130 provides the flow state determinations 240 for
subsequent use in the prospecting phase or for use 1n
subsequent flow analysis operations. For example, 1n various
embodiments the tlow signature data 144 may be used to

10

15

20

25

30

35

40

45

50

55

60

65

14

store counter information associated with the different tlow
signature values 220 for expected processing flows. Further,

as depicted in FIG. 4, information relating to “unexpected”
processing flows may be utilized by the system. For
example, 1n FIG. 4, flow state determination 2408 corre-
sponding to an “unexpected” processing flow may be pro-
vided to a remediation or certification workiflow 420 for
further analysis. In some embodiments, the output of this
remediation or certification workilow 420 may be utilized,
for example, by business users 404 to revise aspects of one
or more components 112 (e.g., logical components) used by
the server system 110.

Example Method

Referring now to FIG. 5, a flow diagram illustrating an
example method 500 for performing component-based risk
cvaluation using processing flow signatures i1s depicted,
according to some embodiments. In various embodiments,
method 500 may be performed by server system 110 of FIG.
1 to generate a tlow signature value 220 based on a sequence
of components 112 used, by the server system 110, to
perform a requested computing operation. For example,
server system 110 may include (or have access to) a non-
transitory, computer-readable medium having program
instructions stored thereon that are executable by the server
system 110 (e.g., by one or more computer systems 1included
in the server system 110) to cause the operations described
with reference to FIG. 5. In FIG. 5, method 500 includes
clements 502-512. While these elements are shown 1n a
particular order for ease of understanding, other orders may
be used. In various embodiments, some of the method
clements may be performed concurrently, 1in a different order
than shown, or may be omitted. Additional method elements
may also be performed as desired.

At 502, 1n the 1llustrated embodiment, the server system
110 provides a service that i1s usable to perform various
computing operations for requesting users 106. As described
above, 1 various embodiments the server system 110
includes a set of (potentially numerous) components 112 that
have corresponding unique component i1dentifier values. In
various embodiments, different combinations of the compo-
nents 112 are usable to perform the various computing
operations included in the service hosted by server system
110.

At 504, 1n the 1llustrated embodiment, the server system
110 receives, from a client device 102, a request to perform
a particular computing operation. As a non-limiting example
in embodiments 1 which the server system 110 hosts an
online payment service, the requested computing operation
may be to transfer funds from one user account to another.
At 506, 1n the illustrated embodiment, the server system 110
performs the particular computing operation via a particular
processing flow. In various embodiments, the processing
flow includes a particular sequence of components 112
performing a series of tasks that are associated with the
particular computing operation.

At 508, in the illustrated embodiment, the server system
110 generates a particular flow signature value 220 for the
particular processing tlow. In FIG. 5, element 508 includes
sub-elements 510-512. Note, however, that this embodiment
1s provided merely as one non-limiting example and, 1n other
embodiments, generating the particular tlow signature value
for the particular processing flow may include additional or
different sub-elements than those shown 1n FIG. 5. At 510,
in the illustrated embodiment, the server system 110 gener-
ates a tflow 1dentifier value for the particular processing tlow

US 12,088,619 B2

15

by combining component 1dentifier values for the particular
sequence of components used to perform the series of tasks.
At 512, 1n the illustrated embodiment, the server system 110
performs a hash operation based on the flow identifier value
to generate the particular tlow signature value. As a non-
limiting example, in some embodiments the flow signature
value 1s generated as an md>5 hash value, though any suitable
hashing technique may be used, as desired.

As noted above, various disclosed embodiments include
performing flow analysis operations based on the flow
signature values generated by server system 110. In various
embodiments, method 500 may include one or more such
flow analysis operations. For example, in some embodi-
ments, method 500 includes determining that the particular
flow signature value for the particular processing tlow
matches a previously generated flow signature value (e.g.,
generated during a prospecting phase) corresponding to a
permissible processing flow that 1s permitted by the server
system 110 and, 1n response, incrementing a counter asso-
ciated with the particular flow signature value. In such
embodiments, the counter may indicate the number of times,
during a particular time period, that the particular processing
flow was utilized by the server system 110.

Further, in various embodiments, method 500 includes
flow analysis operations related to tracking the “velocity™
associated with one or more processing flows utilized by the
server system 110. For example, 1n some embodiments
method 500 includes the server system 110 generating,
during a first time period, a plurality of instances of the
particular flow signature value while servicing repeated
requests, from a plurality of users, to perform the particular
computing operation, and, for each of the plurality of
instances, mcrementing a counter indicating a number of
times, during the first time period, that the particular pro-
cessing flow was utilized by the server system. In such
embodiments, method 500 may further include comparing
the first counter to a second counter associated with the
particular tlow signature value, where the second counter
indicates a number of times, during a second time period,
that the particular processing flow was utilized by the server
system 110 and, based on the comparing, detecting a change
in frequency of the particular processing flow between the
first and second time periods.

Additionally, i various embodiments, method 500
includes determining that a particular flow signature value
does not match any signature values included in a list of
previously generated (e.g., during a prospecting phase) flow
signature values corresponding to permissible processing
flows that are permitted by the server system 110. For
example, as described above, 1n some embodiments the tlow
analysis module 130 may determine that a processing tlow
1s “unexpected” in response to the corresponding tlow
signature value 220 not matching any of the flow signature
values generated by the flow prospecting module 120 during,
its prospecting operations.

In some embodiments, method 500 includes detecting
when a requested operation was not successiully performed.
For example, 1n some embodiments, method 500 includes
detecting, based on a return code 230 associated with the
particular flow signature value 220, an unsuccessiul out-
come of the particular computing operation and, in response
to the detecting, 1dentifying a particular component, of the
particular sequence of components, as a point of failure for
the particular processing flow. In some embodiments, for
instance, identifying the particular component includes
determining a final component i1dentifier value included 1n
the tlow i1dentifier value for the particular processing flow

10

15

20

25

30

35

40

45

50

55

60

65

16

and, using this final component identifier value, 1dentifying
a 1inal component 1n the particular sequence of components
used 1n the particular processing flow.

Further, as noted above, in various embodiments method
500 includes performing various prospecting operations
(e.g., by a flow prospecting module 120). In some such
embodiments, method 500 includes accessing a set of com-
ponent 1dentifier values associated with a set of components
utilized by the server system 110 to provide the service and
generating a list of tlow signature values corresponding to
permissible processing flows that are permitted using the
different combinations of the plurality of components in the
server system. In some such embodiments, method 500
further includes autonomously generating the updated list of
flow signature values on a periodic basis, including by
accessing an updated set of 1dentifier values associated with
an updated set of components utilized by the server system
to provide the service and generating a corresponding
updated list of flow signature values corresponding to per-
missible processing flows that are permitted using diflerent
combinations of the updated set of components.

While the generation of a processing flow signature value
provides a way to quantity and ascertain risk for various
systems or services that allow continuous alteration of
components within the systems, this assessment does not
provide visibility into the risk associated with individual
entities (e.g., users, employees, customers, etc.) accessing
the system. For example, an entity may request to generate
or execute the processing tlows, to access resources, to
participate 1 experiences provided by the system, to par-
ticipate 1n transactions, etc. While the system discussed
above with reference to FIGS. 1-5 automatically quantifies
risk for a processing flow, this system does not provide
techniques for quantilying risk associated with the indi-
vidual themselves, the type of risk, the asset they are
attempting to access, efc.

The techniques discussed below with reference to FIGS.
6A-11 mnvolve detection of risk associated with end users
attempting to access the disclosed server system. User risk
assessment 1s performed by assigning 1dentities to individual
end users interacting with the server system. For example,
the disclosed techniques detect whether a person requesting
to access the system 1s risky prior to allowing them to access
various system resources. As one specific example, the
system determines whether the person has performed risky
actions in the past based on assigning 1dentities to the person
according to what they are attempting to access as well as
authorities granted to this user (e.g., what have they previ-
ously been allowed to access within the system). As dis-
cussed 1n further detail below with reference to FIGS. 8 and
9, 1n some embodiments, user identity risk techniques may
be utilized 1n combination with the signature flow value risk
techniques discussed above with reference to FIGS. 1-5.

In order to detect risk associated with an end user sub-
mitting a request, a server system assigns one or more
identities to the end user. For example, a user John Smith
may open an onboarding human resources user interface via
the server system and enter their first and last name 1nto the
interface. In this example, the server system generates and
assigns a birthright identity of “J” to John. John customer
service agent. On the backend, when John requests to access
an application (which may be referred to as a request to
access an “asset”), the system loops through 1ts authoriza-
tion framework and assigns a “role” (an identity of John
corresponding to the access request) and determines which
type of customer service agent John 1s (e.g., either a devel-
oper agent or a customer service assistant). Based on deter-

US 12,088,619 B2

17

mimng that John 1s a developer agent, the system automati-
cally generates a role 1dentity that 1s assigned a higher risk
score than the birthright i1dentifier assigned to John. The
server stores both identities in a database. Generally, the
system assigns lower risk scores to birthright identifiers than
risk scores assigned to other types of 1dentities (such as the
developer agent i1dentities). This 1s due to birthright identi-
ties presenting mimimal risk relative to other types of iden-
tities (but are still associated with some risk since they might
be phished). Throughout John’s interactions with the sys-
tem, he 1s assigned different identities by the system which
are maintained in an identity database along with individual
identity risk scores; however, the different 1dentities of John
may only be used during an overall risk evaluation of John
when they are enabled. In order to submit a request to access
an application, the user simply provides a username and
password (1.e., the user 1s not necessarily required to know
the number, types, etc. of 1dentities assigned to them).

As used herein, the term “identity” 1s intended to be
construed according to 1ts well-understood meaning, includ-
ing establishing and highlighting details about a user via a
label. For example, mn disclosed techniques, an identity
assigned to a user may be a birthright identity. In disclosed
techniques, a birthright identity 1s generally generated based
on a user’s first and last name as well as a login 1dentifier
(ID) of the user. In various embodiments, a given i1dentity
allows a user to perform certain actions when interacting
with a server system providing various services. For
example, a user with a first type of identity may be able to
access sensitive data, while a user with a second, different
type of 1dentity may not be able to access the sensitive data.
In this example and 1n disclosed techmques, the first type of
identity may be associated with greater risk than the second
type of identity. In some situations, an assigned identity
includes key or token materials. For example, an identity
that includes token materials may include an ephemeral
token that 1s distinct to a given application session, user
session, authorization process, etc. As another example, an
identity that includes key materials may include key mate-
rials from: a service account (which binds an application to
a given host computer), an open authentication account (e.g.,
a backend application account), a certificate used 1n securing
ingress (e.g., mgress of data for a given service of the
disclosed system).

As used herein, the term “asset” refers to a resource
provided by a server system. For example, an asset may be
a physical asset or a logical asset. Physical assets are
assigned and tracked by the server system and may include
computer components (e.g., memory, load balancers, com-
pute nodes, network routes, central processing units (CPUs),
etc.), while a logical asset may include a newly created
account, an existing account, a piece of soiftware, a product
that uses multiple computer components (e.g., memory, load
balancers, applied product logic, compute nodes, etc.) of the
system, etc. For example, 11 a user 1s requesting to access an
asset such as a product, this product may be a PayPal
application that allows users to participate 1n transactions. In
some embodiments, assets are of a mixed type including
both software and hardware elements.

In some embodiments, 1n addition to assigning identities
to users, the server system assigns risk types to diflerent
identities, assets, employees, identity roles, etc. As used
herein, the term “risk types” refers to diflerent categories of
threat presented by different system elements. For example
there may be different identity risk types such as a “token”
identity risk type assigned to an identity that includes a
token. In this example, the token identity risk type may be

N

10

15

20

25

30

35

40

45

50

55

60

65

18

associated with a certain amount of risk (and assigned a
corresponding risk score). In disclosed techniques, “types”
are assigned to different system elements corresponding to a
client request 1n order to provide context during risk assess-
ment and mitigation (e.g., how bad, fraudulent, malicious, or
dangerous are computer operations to be performed 1n
response to the client request?). For example, an 1dentity of
“ name_ " and a type of “admin” assigned to a given user
request provide a means for codified operations to distinctly
evaluate risk for diflerent “types™ 1n accordance with known
risk corresponding to a given “type.”

The disclosed risk evaluation techniques may advanta-
geously quantily risk associated with different elements
corresponding to a request submitted by a client device. For
example, 1n addition to the techmques discussed above with
reference to FIGS. 1-5 that advantageously quantity risk
associated with the constant changes to components 1n the
system using processing flow signature values to monitor
and analyze processing flows utilized by the system to
process client request, the techmques discussed below with
reference to FIGS. 6 A-9 quantily risk associated with dif-
terent privileges (e.g., actions they are able to perform, data
they are able to access, etc. within the system) of a given
user submitting a request by assigning different identities to
the user according to their privileges. Further, the disclosed
techniques provide a method for quantifying risk associated
with different assets, experiences, employees, etc. corre-
sponding to submitted requests to be process. Still further,
the disclosed system provides granular quantification of risk
associated with different eclements corresponding to a
request by assigning different risk types to these elements in
order to more accurately score the different elements for risk
determination. Such techniques may advantageously allow
systems to accurately identily (and potentially reject) risky
requests. This, 1n turn, may reduce or prevent loss (e.g., of
computational resources, financial resources, private user
data, etc.) associated with risky (and potentially malicious)
requests that are mistakenly approved.

In some embodiments, the disclosed techniques evaluate
risk occurring in an enterprise system. As such, the disclosed
techniques may advantageously evaluate risk of concurrent
changes within an enterprise by assessing different states of
clements involved 1n these changes. For example, as busi-
ness development and Changes to software of the enterprlse
occur at different points 1n time, such changes may effect one
another due to dependencies between different configuration
items during experiences occurring in different istantiated
states for these configuration items. The disclosed tech-
niques may advantageously identily and mitigate risk asso-
ciated with such changes by using multiple layers of finite
state machines that do not require management and main-
tenance.

Turning now to FIG. 6A, a block diagram 1llustrating an
example system configured to assign identities to one or
more end users and determine risk scores for the assigned
identities 1s shown. In the illustrated embodiment, system
600 includes a client device 102, which includes application
104, database 650, and server system 610, which 1n turn
includes 1dentity module 670 and risk score module 680.

In the illustrated embodiment, client device 102 receives
input from a user 606 via application 104 (discussed above
with reference to FIG. 1). Client device 102 generates and
transmits a request 660 to server system 610 based on the
input from the user. For example, user 606 may request to
initiate an electronic communication (e.g., a transaction) via
application 104 (e.g., a PayPal application) downloaded on
theirr smart phone (one example of device 102). In this

US 12,088,619 B2

19

example, device 102 transmits a request to system 610 to
process the mnitiated electronic communication.

Server system 610, i the 1illustrated embodiment,
receives user data 664 associated with the request 660 and
inputs this information into identity module 670. For
example, user data 664 may include the name, username,
password, etc. of the user 606, the type of device 102 utilized
by the user to submit the request, a type of application 104
accessed by the user 606, etc. Based on this information,
identity module 670 generates and assigns 1dentities 672 to
the user 606. After generating one or more new identities,
identity module 670 assigns them to user 606 and stores
them in database 650. For example, a given user (e.g., user
606) may be assigned 1, 10, 100, etc. identities which are
stored 1n database 650. Server system 610 may store other
information associated with the newly generated and
assigned i1dentities 1n database 630. As discussed in further
detail below with reference to FIGS. 7A and 7B, identities
may be assigned a given “type” that 1s based on known risk.
For example, a user accessing a given application may have
certain permissions and privileges in terms of accessing data
or assets of the disclosed system and 1t 1s these permissions
and privileges that dictate a known risk for a given i1dentity
“type.” Furthermore, the combined enabled 1dentities of a
given user in addition to the type of resources being inter-
acted with and the types of resources that the different
identities are authorized to access at the time which assists
the disclosed system in defining potential risks may nega-
tively allect the system the user 1s requesting to interact
with. In short, enabled i1dentities and resources authorized
for access for a given user are leveraged during risk assess-
ment to determine a risk state for the user interacting with
assets ol the system.

In some embodiments, previously generated identities
that have been assigned to the user 606 are stored 1n database
650. For example, server system 610 may access database
650 based on a name of the user 606 to locate existing or
newly assigned identities (newly assigned by module 670
alter recerving request 660) corresponding to this user. In the
illustrated embodiment, server system 610 retrieves various
assigned 1dentities 672 from database 650 (whether they are
newly assigned or existing identities) and inputs the identi-
ties 1nto risk score module 680. For example, in some
situations, a given 1dentity assigned to user 606 and stored
in database 650 may be disabled, indicating that the user 1s
not currently able to perform actions associated with this
identity (and, thus, this 1dentity does not currently apply to

the user). For example, an identity may only be included in
a risk evaluation performed by system 610 for user 606 if the
identity 1s enabled. In this example, a risk score assigned to
an 1dentity that 1s disabled may not be included 1n an overall
risk score calculated for a user request even though that risk
score may still be calculated for the identity and stored for
use 1n potential future requests originating from this user. In
scenarios with disabled i1dentities, system 610 may only be
concerned with 1dentities 672 assigned to the user that are
currently enabled.

Risk score module 680 in the illustrated embodiment
receives assigned identities 672 (e.g., enabled 1dentities).
Risk score module 680 determines and outputs risk scores
682 for the identities. For example, risk score module 680
may assign risk scores to identities based on the amount of
damage a user may be able to cause when performing
actions within system 610 granted via their assigned 1den-
tities. For example, a user that has access to private data may
be able to execute malicious activity that has a greater
negative impact than a user that does not have access to the

10

15

20

25

30

35

40

45

50

55

60

65

20

private data at all. Further, if a user 1s associated with
previous malicious activity within the system, then one or
more of their assigned identities may be assigned a higher
risk score than users that do not have a history of malicious
activity. In such situations, system 610 may access an
activity history of the user (e.g., stored 1n database 650 or
another database) and feed this information into risk score
module 680 in addition to identities 672 assigned to this
user. In this way, risk score module 680 may use this
additional user information to calculate risk scores for the
user’s 1dentities.

In some embodiments, risk score module 680 uses a
trained machine learning model to determine risk scores for
assigned 1dentities 672. For example, risk score module 680
may iput assigned 1dentities 672 for a given user as well as
an activity history of this user into a machine learning model
trained to i1dentify risk associated with different types of
identities and historical user activity. The trained machine
learning model, 1n this example, may output risk scores for
respective 1dentities 672 assigned to this user or may output
classifications indicating a confidence of the model that the
identities are associated with huigh risk. If the model outputs
classifications, then risk score module 680 generates risk
scores for 1dentities 672 based on the classifications output
by the machine learning model. For example, 11 the model
outputs a classification of 0.1000 (on a scale of 0.0000 to
1.0000), risk score module 680 may assign a low risk score
to the i1dentity corresponding to this classification. In con-
trast, 1 the model outputs a classification of 0.8000, risk
score module 680 may assign a high risk score to the identity
corresponding to this classification.

In some embodiments, system 610 generates a response
662 based on risk score 682. For example, server system 610
may determine that the user’s request 660 should be autho-
rized based on the risk scores 682 being below one or more
predetermined risk thresholds. For example, each identity
type may be associated with a diflerent predetermined risk
threshold. In this example, system 610 may compare a risk
score for a first identity type with the corresponding prede-
termined risk threshold. In some embodiments, the one or
more predetermined risk thresholds are set by an adminis-
trator of server system 610. In other embodiments, server
system 610 determines predetermined risk thresholds using
a machine learning model trained on different risk scenarios.
For example, a machine learning model may be trained
using an identity risk score threshold by inputting i1dentity
risk scores for different identities that have been labeled
either risky or not risky. Based on the plurality of labeled
identity risk scores, the model will learn an identity risk
score threshold. Once trained, the identity threshold machine
learning model will receive a plurality of identity risk scores
for newly assigned (unlabeled) 1dentities and will output an
identity risk threshold. This 1dentity score threshold may be
personalized to a given user (when the model receives
identity risk scores for a given user) or may be a general
identity risk score threshold applicable to various difierent
users (when the model receives identity risk scores for
identities newly assigned to a plurality of different users).
Similar techniques may be used to generate predetermined
risk score thresholds for other elements associated with
client requests, such as a signature flow risk score threshold,
an asset risk score threshold, an identity type risk score
threshold, etc. In some embodiments, the one or more
predetermined risk thresholds are set by the server system
based on service-level agreements (SLAs) with different
entities utilizing resources of the server system. For
example, a given client entity (e.g., a merchant) may specily

US 12,088,619 B2

21

risk tolerance guidelines for its clients. In this example,
when the clients of the entity access the server system, their
requests may be evaluated according to thresholds that are
predetermined based on risk tolerance guidelines specified
in the service-level agreement of this entity.

In some embodiments, server system 610 generates an
overall risk score for request 660 based on the individual risk
scores 682 output by module 680 for identities 672 that are
assigned to user 606. In such situations, server system 610
may compare the oval risk score with a predetermined risk
threshold. Server system 610, 1n the 1llustrated embodiment,
sends a response 662 (generated based on risk score 682) to
client device 102. Client device 102 may, in turn, display a
message to user 606 via application 104 and an interface of
device 102 indicating that their request 660 has been autho-
rized. In some embodiments, response 662 (generated based
on risk score 682) may include a request for a factor 1n a
multi-factor authentication procedure or may include a
request for additional login information. In other embodi-
ments, 1n addition to authorizing a request received from
client device 102, server system 610 may decrease authen-
tication procedures for future requests received from client
device 102 based on risk scores 1n a risk vector for a current
request received from client device being below a predeter-
mined risk threshold. Such techniques are applicable to both
identities assigned to users and 1dentities assigned to assets
and configuration items

FIG. 6B 1s a block diagram illustrating an example
identity database. In the illustrated embodiment, an example
database 650 storing various 1dentities assigned to different
users 1s shown. Database 650 includes several columns:
user’s name 664A, an indicator 6648 showing whether an
identity 1s enabled, a number of attempts 664C, an i1dentity
type 674, an as signed identity 672, and a risk score 682
assigned to the i1dentity.

The user’s name 664 A column includes values indicating
a name of the user corresponding to different assigned
identities 672. For example, the first row 1n database 650
includes information for a user named *“Anastasia.” The
identity type 674 column includes values indicating a type of
identity that has been assigned to different users. Following
the earlier example, Anastasia 1s assigned an i1dentity that 1s
of type “birthright” which may also be referred to as a login
ID. The attempts 664C column includes entries correspond-
ing to each assigned identity 672 that indicates a number of
times the user 606 has attempted to use this identity (e.g.,
when they are attempting to access data, an asset, complete
a transaction, alter sensitive data, etc.). For example, user
606 may attempt to access private data stored by server
system 610 using their birthright i1dentity; however, this
attempt to access the private data will likely fail due to the
birthright identity not including privileges granting access to
the private data. The assigned identity 672 column indicates
the i1dentity 1tself. For example, Anastasia 1s assigned two
different 1dentities: a birthright 1dentity of “A” and a work
personal computer (PC) identity of 192.158.1.38.”” In some
embodiments, database 650 includes an additional column
indicating applications, certifications, or keys assigned to the
different user identities. For example, these certifications or
keys may indicate relationships between different elements
corresponding to a given client request. For example, rela-
tionships between a user which 1s assigned a given 1dentity
and experiences accessed by the user using one or more of
these 1dentities may be shown.

The indicator 664B shows whether an identity 1s currently
enabled for this user. For example, Katherine has a mobile
device 1dentity that 1s not currently enabled. In this example,

10

15

20

25

30

35

40

45

50

55

60

65

22

Katherine may not be authorized to use her mobile device to
interact with server system 610 and, thus, this identity 1s not
currently enabled. In some situations, an identity 1s disabled
in response to this identity being misused by the user (e.g.,
the user performs suspicious or malicious activities using
privileges provided by a given identity). Database 630
turther includes a risk score 682 column that indicates a risk
score assigned by risk score module 680 to the various
identities stored 1n database 650. For example, user Dima
has an administrator identity that 1s associated with the
highest amount of risk, with a risk score of 16.5, while
Anastasia’s birthright 1dentity 1s associated with the lowest
amount of risk, with a risk score of 2.1.

In some embodiments, server system 610 assigns authen-
tication procedures to or performs authentication procedures
for different elements associated with client requests. For
example, server system 610 may assign an authentication
procedure to Dima’s admimstrator identity based on this
identity having access to a larger number of privileges than
Anastasia (e.g., Dima may access a greater amount of data
than Anastasia). In this example, server system 610 may
execute an authentication procedure (e.g., requesting that
Dima provide one or more authentication factors) prior to
determining a risk score for a request received from Dima.
In other situations, server system 610 may execute the
authentication procedure instead of calculating a risk score
for Dima. Based on the results of the authentication proce-
dure, the server system 610 may determine whether to
approve or deny the request received from Dima.

In some embodiments, database 650 includes links indi-
cating relationships between diflerent i1dentities of a given
user. For example, when Anastasia first accesses server
system 610, she 15 assigned her birthright identity “A,” but
this 1dentity does not allow her to access private data within
system 610 yet. In order to do this, Anastasia needs to utilize
an employee 1dentifier that has access to more information
within system 610. So, i1n this example, when Anastasia
requests to access private data, identity module 670 provi-
sions an administrator identity (which may include a pass-
word as well that needs to be entered by Anastasia to access
the data). In this example, however, 11 Anastasia requests to
send the private data outside of system 610 (e.g., sending
files to a business outside of a current business within system
610 via a message), then she will be provisioned two
additional new 1dentities: an administrative identity and an
external messaging 1dentity. In this example, Anastasia has
four identities that are linked to one another: a birthright
identity, an administrator i1dentity, an external messaging
identity, and a work PC identity. Further 1n this example,
Anastasia may be associated with a high overall risk score
(due to the high risk scores of her individual identities)
relative to other user’s that do not have access to sensitive
data or the ability to share this data outside of the system
610. Anastasia’s overall risk score may be determined based
on observing all of her different identities stored within
database 650 based on their links.

In various embodiments, server system 610 executes a
plurality of finite state machines (FSM) (which may also be
referred to herein as “modules™) that automatically gather
data for various diflerent users as they access and utilize
different elements of the system. In some situations, a finite
state machine 1s made up of a plurality of different “mod-
ules.” In some situations, a finite state machine that executes
via a single module may receive risk data from another finite
state machine (running asynchronously) that executes via
multiple different modules. For example, the plurality of
different finite state machines may gather data for system

US 12,088,619 B2

23

610 including 1dentities, component processing flows (e.g.,
for experiences as discussed above with reference to FIGS.
1-5), assets (discussed below with reference to FIGS. 7A and
7B), identity risk types, asset risk types, employee risk
types, 1dentity role risk types, etc. and may interact with one
another via the disclosed server system 610 to combine risk
information for a given client request. The number of finite
state machines maintained and executed by server system
610 1s scalable (e.g., may be increased or decreased based on
the number of client requests received at any given time).
For example, identity module 670 1s one example of the
plurality of finite state machines that may be utilized by
server system 610 to gather data for risk decisioning. As one
specific example, within 60, 90, 180, etc. seconds of an
observed risk event (e.g., a user requests to send a set of files
outside of their company), the plurality of finite state
machines of server system 610 will execute (e.g., the FSM
will execute 1n parallel) to gather intelligence about the state
ol the instantiated risk event as discussed in further detail
below with reference to FIGS. 7A-9.

In disclosed techmiques, FSM are managed by via a
graphical user interface (GUI) such as the interface 910
shown 1n FIG. 9. For example, the FSMs are controllers that
operate across the different risk layers shown in FIG. 8.
Further in this example, the FSM have access to various
backend resources, including databases, publication queues,
web sockets, etc. which are shared across the FSMs. For
example, each controller (FSM) implements a shared code
base and performs tasks based on the role assigned to them
via the program code. As one specific example, the disclosed
system may spawn controllers needed for publication and
queue mangers 1n order for these controllers to pull tasks
from a queue.

FIG. 7A 1s a block diagram illustrating an example system
configured to assign risk types to various elements corre-
sponding to a request and determine risk scores for the
request. In the 1llustrated embodiment, system 700 includes
client device 102, which includes application 104, risk type
database 750, and server system 710, which in turn includes
risk type module 740 and risk score module 780. In some
embodiments, server system 710 1s the same system as
server system 610. For example, server system 710 may
include and execute 1dentity module 670, risk score module
680, risk type module 740, and risk score module 780.
Further in this example, server system 710 may access both
database 650 and risk type database 750 or may access a
single database storing both identity information and risk
type information. As risk data 1s gathered for a given client
request by server system 710, this data 1s compared with
expected risk (e.g., to i1dentily abnormalities which may
indicate higher risk for the given request), the risk data 1s
gathered 1nto a single vector for eflicient risk evaluation for
the given request, and multiple different risk vectors for
multiple different client requests may be combined for
evaluation. For example, all of the risk vectors for requests
for a given client device may be combined to evaluate the
overall risk for this client device (or the user utilizing this
device).

Similar to the embodiments discussed above with refer-
ence to FI1G. 6A, in FIG. 7A client device 102 receives mput
from one or more users 706 via application 104 and trans-
mits a request 760 to server system 710. For example, a user
706 may be an employee of a company utilizing services
provided by server system 710 (which may be an enterprise
system) that requests to utilize an asset (e.g., an account, a
piece of software, etc.) of system 710. Server system 710, in
the illustrated embodiment, performs a risk evaluation of the

10

15

20

25

30

35

40

45

50

55

60

65

24

user request 760 and transmits a response 762 to client
device 102 based on the evaluation.

In the 1llustrated embodiment, server system 710 inputs
user data 764 into risk type module 740. Similar to the
discussion above with reference to FIG. 6A, user data 764
may include various information about the user 706, the
user’s device, the user’s activity history, etc. This informa-
tion may be received from client device 102 or may be
retrieved by server system 710 from as database storing
historical information about the user 706, including previous
activity of the user within system 710. Risk type module
740, 1 the 1llustrated embodiment, generates and assigns
risk types 742 to diflerent element corresponding with the
user request 760. For example, risk type module 740 gen-
crates a risk type 742 for one or more identities (of the user
706) corresponding to request 760, a risk type for an asset
requesting to be accessed via request 760, a risk type for the
type of employee that user 706 1s, a risk type for the 1dentity
roles corresponding to one or more 1dentities of the user 706.
Risk types 742 are discussed in further detail below with
reference to FIG. 7B. Server system 710, 1n the illustrated
embodiment, stores the risk types 742 generated by risk type
module 740 1n risk type database 750. In various embodi-
ments, the risk quantified for a given user 1s multi-fold. In
the example of the risk type 742 assigned to the employee
identity of the user 706, the risk for this user 1s twolold. For
example, the system evaluates and quantifies the risk of
different enabled 1dentities assigned to this user as well as
cvaluates and quantifies risk for the employee type of the
user who submitted the request. Risk scores for the different
user 1dentities and risk scores for the employee type may be
stored 1n a risk vector for this user. In this way, server system
710 may evaluate the overall risk for a given client request
based on the known, active, and enable risk attributes
corresponding to this request and user.

In the illustrated embodiment, server system 710 retrieves
risk types 742 from database 750 and inputs them 1nto risk
score module 780. In some embodiments, server system 710
simply takes the risk types 742 generated by module 740 and
inputs them directly into module 780 instead of or in
addition to storing them in database 750. Further, in such
embodiments, system 710 may retrieve previously generated
risk types 742 from database 750 for user 706 and use these
risk types 1n generating risk type scores 784 for the request
760. Risk score module 780 generates risk type scores 784
for each risk type 742. In various embodiments, based on the
risk type scores 784, server system 710 generates a decision
for the request 760 and sends a response 762 to client device
102 indicating the decision. For example, server system 710
may reject the request 760 to access an asset of system 710
if the user 706 requesting to access the asset 1s associated
with a high amount of risk (e.g., their risk type scores 784
are greater than one or more predetermined risk type thresh-
olds).

In some embodiments, server system 710 generates a
decision for request 760 by generating an overall risk type
score for the request based on individual risk type scores 784
output by risk score module 780 for the different risk type
742 associated with the request. For example, server system
710 may add up the risk type scores 784 to generate an
overall risk type score. Based on this overall risk type score
satisiying a predetermined risk type score threshold (e.g.,
the overall risk type score 1s greater than the threshold), the
system may determine to deny request 760. In some situa-
tions, server system 710 may adjust authentication require-

ments (increase the number of required authentication fac-

US 12,088,619 B2

25

tors) for the client device submitting request 760 based on
the overall risk type score meeting the predetermined risk
type score threshold.

FIG. 7B 1s a block diagram illustrating an example
database storing assigned risk types. In the illustrated
embodiment, risk type database 750 includes several difler-
ent tables: 1dentity risk type table 720, asset risk type table
730, employee risk type table 770, and 1dentity role risk type
table 790. In other embodiments, risk type database 750 may
include a single table storing the information included in
tables 720, 730, 770, and 790. Further, the example risk
types and risk type scores shown in database 750 are not
intended to limit the scope of the present disclosure; in other
embodiments, database 750 may store any of various risk
types and risk type scores.

Identity risk type table 720, 1n the 1llustrated embodiment,
includes an identity risk type 722 row and an identity risk
type score 724 row. For example, the first column of table
720 includes a “vendor™ identity risk type 722 value with a
risk type score 724 of two. The third column of table 720
includes an “admin™ risk type 722 with a risk type score 724
of 10. Identity risk types may include one or more of the
tollowing types: test, key, token, admin, vendor, service, and
application. For example, an identity with a *““test” risk type
may be an identity that 1s being used to test various aspects
of the system. An 1dentity assigned a key or token risk type
may be an 1dentity that is being used to access different types
of private data stored within server system 710 using a key
or token. Similarly, an identity assigned a risk type of
“application” may be an 1dentity used by a client device to
access an application.

Asset risk type table 730, 1n the 1llustrated embodiment,
includes an asset risk type 732 row and an asset risk type
score 734. For example, the first column of table 730
includes an asset risk type 732 value of “physical” with an
asset risk type score 734 of four. Similarly, the second
column of table 730 includes an asset risk type 732 of
“ingress” with an asset risk type score 734 of seven. Asset
risk types 732 may include the following types: physical,
ingress, admin application, control point, risk view, autono-
mous, database, experience, and capability. For example,
assets fall within different types. As one example, some
assets may support certain types of accesses (e.g., web-based
accesses, API accesses, administrator accesses, private data
accesses, etc.) As discussed above, an asset of the disclosed
system may be accessed during an experience that a user 1s
requesting to participate 1n (the experience being executed
by a plurality of computing nodes that make up a flow of
computations). Diflerent assets may be associated with
different amounts of risk. The risk types and risk type scores
generated by server system 710 attempt to quantily the
different amounts of risk associated with different assets.

Employee risk type table 770, 1n the illustrated embodi-
ment, includes an employee risk type 772 row and an
employee risk type score 774 row. For example, the first
column of table 770 includes a “customer service agent”
employee risk type 772 value with an employee risk type
score 774 of three. The second column of table 770 includes
a “tull-time equivalent (F'TE)” employee risk type 772 value
with an employee risk type score 774 of eight. Employee
risk types may include the following types: FTE, customer
service agent, very important person (VIP), guest. For
example, users are onboarded into a company to fulfill
assigned to perform different functions within a team or
organization of the company. These teams and organizations
are allocated into specific roles such as: a customer service
agent (e.g., that interfaces with product customers, but do

5

10

15

20

25

30

35

40

45

50

55

60

65

26

not interact with computing resources, such as configuration
items, of the server system 710), a VIP (e.g., a CEO, CFO,
CTO, etc. who may be associated with a great amount of risk
due to these users being adversarial targets for phishing or
impersonation), etc. Any of various types can be generated
by the disclosed server system to classily the type of
“human” that a user 1s (in contrast with their assigned
identities). For example, understanding which assigned
identity performed a given action or submitted a request 1n
combination with an assigned employee type assists the
disclosed system 1n i1dentiiying characteristics and patterns
associated with a human identity of the user which may
correspond to risky behavior.

Identity role risk type table 790, i the illustrated embodi-
ment, icludes an identity role risk type 792 row and an
identity role risk type score 794 row. For example, the first
column of table 790 includes a “birthright™ 1dentity risk type
792 value with an identity role risk type score 794 of one.
The second column of table 790 includes a “personally
identifiable information (PII)” i1dentity role risk type 792
value with an 1dentity role risk type score of 794 of twelve.
Identity role risk types may include the following types:
admin application, control point, PII, payment card industry
(PCI), administrator, birthright, database, finance, data
egress, and experience. Server system 710 may define a
plurality of different types of 1dentity roles. For example, a
birthright role 1s assigned to a user when they join a
company. More sensitive (e.g., risky) 1dentity roles of dii-
ferent types are created such as PII, PCI, other sensitive data
role types, which need authorization before an action can be
performed. For example, these types of 1identity roles require
a higher level of permission (e.g., a greater number of
authentication factors) before they are allowed to be used to
access sensitive data. Over time, an employee may make
requests based on different roles based on mandates 1n their
current job or a job change. As such changes occur, an
employee may no longer be authorized to use one or more
of their identity roles and their prior identity role may,
therefore, be associated with a higher level of risk. The
disclosed techniques evaluate risk for different 1dentity roles
based on e.g., which products or applications these 1dentity
roles are used to access; thus, the system knows the risk that
a given user request may pose based on which identities they
are leveraging to access which assets.

In some embodiments, each of the rows shown 1n data-
base 750 (e.g., the identity risk type, asset risk type,
employee risk type, identity role rnisk type) are different
objects (tables) 1n the database which are maintained sepa-
rately, but are linked to one another. In other embodiments,
these rows are all included 1n a single database object. For
example, a single table 1n database 750 may store risk types
assigned to each identity associated with a given user as well
as the risk types assigned to the assets and experiences
corresponding to requests submitted by the given user.
Further, the disclosed techmiques may utilize object rela-
tional mapping (ORM) to programmatically generate and
maintain relationships between different risk types and dii-
ferent system elements.

As discussed above with reference to FIG. 6B, in some
embodiments, mstead of (or in addition to) calculating risk
scores for 1dentities, signature processing flow values, asset
risk types, employee risk types, etc. the discussed risk
determination system (e.g., one of systems 110, 610, and
710) may perform authentication procedures. In still other
embodiments, the server system may block a given request
or user altogether based on one or more of their assigned
identities, signature processing tlow values, asset risk type,

US 12,088,619 B2

27

employee risk type, etc. For example, 11 an assigned identity
type 1s known to be malicious, the server system may
automatically deny a request received from a user assigned
this identity type. In contrast to this example, requests
mitiated from users assigned a given identity type may be
automatically approved.

In some embodiments, server systems 110, 610, and 710
are the same system. In such embodiments, this single
system 1s configured to perform the operations discussed
above with reference to FIGS. 1, 6A, and 7A. Turning now
to FIG. 8, a block diagram 1s shown illustrating example
layers of a system configured to determine an overall risk
score for a request received from a client device using the
techniques discussed above with reference to FIGS. 1, 6 A,
and 7A. In the illustrated embodiment, system 800 includes
various layers representing the different finite state machines
executable (e.g., in parallel) by system 800 to generate a risk
decision based on performing different types of risk scoring
for a user request based on a plurality of different elements
(e.g., tlow signature values, 1dentities, identity types, assets,
employees, etc.) associated with the request.

Layer 0, in the illustrated embodiment, represents the
portion of system 800 that generates flow signature data 144
for an experience 810. Layer O 1s a raw layer that includes
one or more finite state machines for evaluating risk and
threats of instantiated configuration items as discussed
above with reference to FIGS. 1-5. For example, the FSM of
layer O collect various counts, return codes, etc. of various
known configuration items. Layer 1, in the illustrated
embodiment, represents the portion of the disclosed system
that generates and assigns 1dentities 672. Layer 1 includes
one or more finite state machines for assigning i1dentities to
users based on various points of control (e.g., access privi-
leges) that thus user has been granted. For example, layer 1
takes data collected via controllers of layer 0 and links
identities to configuration items to be used for further risk
assessment and mitigation (e.g., via the controllers of layers
2 and 3). Further, in the illustrated embodiment, layer 2
represents the portion of the disclosed system that generates
risk type data 742 and assigns different risk types and risk
scores 830 to various elements (e.g., 1dentities, assets, expe-
riences, employees, etc.) associated with a recerved request
from a client device. Layer 2 includes one or more finite
state machines that assign dependencies between elements
of one or more other layers (e.g., layer O, layer 1, etc.). Layer
3, 1n the 1llustrated embodiment, represents the portion of
the disclosed system that performs machine learning and
risk detection operations 820 to generate risk decisions 830
for received requests. Layer 3 includes one or more finite
state machines that monitor and report on changes, messag-
ing, etc., for example, for business operations requested by
various client devices.

Database 850 (one example of database 650 or database
750), 1n the 1llustrated embodiment, includes various difler-
ent columns storing values generated by the layers 0-3 of the
disclosed system 800. For example, database 850 shows
corresponding types of encryption used to generate different
flow signature values 144 within layer O of the disclosed
system. As one specific example, Anastasia submits a
request for which a flow signature value 144 1s generated by
layer O of the disclosed system using an MD35 encryption
protocol. Database 850 may also store the flow signature
values themselves that are generated using e.g., the MD?3
and SHA256 encryption protocols. Database 850 also stores
the name 620A of users from which the requests are
received. Further, database 850 stores identity types 6208
(such as birthright, admin, and application identities) and

10

15

20

25

30

35

40

45

50

55

60

65

28

assigned 1dentities 672 (such as “A” and “AdminD”). For
example, 1dentity “A” 1s assigned an identity risk type of
“VIP,” while identity “AdminD” 1s assigned a risk type of

“Admin.”

In the 1illustrated embodiment, database 850 stores risk
types 722 for the different identities and risk scores 830
generated by layer 2 for various elements generated by
layers 0-2. For example, risk scores 830 of 10,3,7 ... 5, are
stored for a user named Anastasia. In this example, these risk
scores correspond to various elements (e.g., risk score 10 1s
assigned to the flow signature value 144, risk score 3 1is
assigned to the birthright identity of Anastasia, risk score 7
1s assigned to the admin identity of Anastasia, and a risk
score of 5 1s assigned to the identity risk type “Admin”
which 1s assigned to the “AdminD” i1dentity of Anastasia.
Database 830 stores risk decisions 840 generated by layer 3
of system 800 for requests. For example, system 800 gen-
crates a decision that demes the request submitted by
Anastasia based on evaluating (e.g., using machine learning)
the risk scores 830 assigned to various elements correspond-
ing to the request submitted by Anastasia.

FIG. 9 1s a block diagram illustrating an example user
interface for manipulating and wviewing risk detection
results. In the illustrated embodiment, a user interface 910 of
a computing device 900 that may be utilized by a system
administrator or risk evaluation agent 1s shown. The user
interface 910 includes active modules 920, a risk log 930, a
module output summary 950, add-ons 940, an exit option
962, and a launch option 964. The exit user interface element
962 allows administrators to exit the risk evaluation program
(which 1n turn may cause the user interface to close). The
launch user interface element 964 may cause computing
device 900 to launch additional user interfaces or computer
programs to assist 1n evaluating risk associated with differ-
ent client requests, which 1n turn may allow for informed
decisioning for such requests. In some situations, user
interface 910 displays options for controlling data stored
within a code base that can be shared and deployed accord-
ing to the specific needs of a given enfity (e.g., company). As
such, the user interface 910 and corresponding code base can
be deployed and managed within a given information tech-
nology (I'T) infrastructure of different companies. Individual
programs, controls of which are displayed in user interface
910, may be coupled or decoupled from one another accord-
ing to the personalization requests of various entities. The
results from different entities may be shared with a central
server system (e.g., server system 110, 610, or 710) to be
utilized 1n future risk assessments.

The pane within user interface 910 showing active mod-
ules 920 includes options to toggle different modules of the
disclosed system. For example, a risk admimstrator may
choose not to iclude assets 1n the risk evaluation for one or
more requests, but may choose to include the components
(CI’s), component flows, identities, risk types, and risk
scores 1n the overall risk evaluation of a request. For
example, score thresholds 942 A may be added such that risk
scores are compared to predetermined score thresholds set
by the system admimstrator, risk decisions 942B may be
generated and displayed for different requests, etc. An
administrator may set individual risk thresholds for each of
the modules 920 shown in the illustrated embodiment.
Additionally or alternatively, the administrator may set an
overall risk score threshold for the disclosed risk evaluation.
For example, a total risk score may be calculated for a given
client request and then compared to the overall risk score

threshold.

US 12,088,619 B2

29

The total risk score displayed 1n the summary 950 pane by
user mterface 910 may be determined by the disclosed risk
evaluation system (e.g., system 800) using various different
techniques. For example, a total score may be calculated for
a request by determining an average (e.g., a mean, medium,
median, etc.) of individual component, identity, asset,
employee type, etc. risk scores for a given request. In other
situations, the total score may be determined by adding
individual risk scores (before being compared with an
overall risk threshold). As one specific example, system 800
might output a risk vector for a client request that includes
an 1dentity risk score, an asset risk score, an identity type
risk score, a component risk score, a signature flow value
risk score, etc. The system 800 may perform various com-
putations on the values included 1n this vector to determine
an overall risk score for the client request. In some embodi-
ments, system 800 may perform a rolling output of risk
vectors for a given client request every one, two, three, etc.
minutes. For example, at the time a client request 1s sub-
mitted, a small set of mmformation may be available for
performing the disclosed risk evaluation. The system 800
may output a first vector based on this small set of infor-
mation. After two minutes have passed, a larger set of
information may be available for this request and, as such,
system 800 may output a new, second risk vector for the
request. In this example, system 800 may calculate a total
risk score for the request by averaging the values included
in the first and second vector before combining the different
risk score values to determine a total risk score for the
request.

While the user interface 910 1n the 1llustrated embodiment
presents risk scores for various elements corresponding to a
given client request, 1n some situations this interface may
also display a visual of the individual elements themselves
as well as intelligence data about the configuration item
dependencies to one another that were used to derive the
displayed risk scores. As such, user interface 910 may
display various level of granularity and visibility for the
entire risk evaluation process performed by the disclosed
server system. In addition and as shown 1n FIG. 9, the user
interface 910 allows for changes to finite state machines via
selectable user interface elements (e.g., toggle buttons) to
activate or mnactivate different layers of the disclosed system
discussed above with reference to FIG. 8.

In some embodiments, system 800 may input the indi-
vidual rnisk scores (e.g., component risk score, flow risk
score, 1dentity risk score, asset risk score, employee risk type
score, etc.) for a given request mto a machine learning
model. In such situations, the machine learning model 1s
trained to determine an overall risk score for the request
based on the individual scores. The output of the machine
learning model may be compared to the risk score thresholds
set via user interface 910, for example, to determine whether
client requests should be approved or denied. In some
embodiments, total risk scores for requests are compared to
multiple different risk thresholds. For example, 1f a client
device requests to make a change to a piece of code, system
800 calculates a risk score for the source code 1tself (the
asset), a vector of identity risk scores, a risk score for a
signature flow value corresponding to the code change, efc.
If the user requesting to make the change 1s not risky (based
on their 1dentity risk scores), 1f the code change 1s not overly
risky, etc., then this code change may be approved by system
800. However, if one of the asset risk score, 1dentity risk
score, the overall risk score, etc. for the code change request
surpass risk thresholds of system 800, the system may deny
the code change request. As one specific example, an overall

10

15

20

25

30

35

40

45

50

55

60

65

30

risk score may be used to determine whether a user access-
ing a DevOps tool for data ingress 1s above a risk threshold
(e.g., this user 1s malicious). All of the intelligence data
gathered via layers 0-3 may be used 1n complex decision
patterns 1n order to make authorization decisions for various
client requests.

In the illustrated embodiment, the pane showing add-ons
940 allows a risk administrator to add further limitations or
clements to the risk evaluation performed by the disclosed
system. The add-ons 940 may allow administrators to cus-
tomize risk evaluation processes. The pane within user
interface 910 showing risk log 930 shows logged event data
gathered by the active modules 920 with their toggles set to
“on.” For example, risk log 930 may show a number of
different 1dentities determined and assigned by the disclosed
system to a given user that submitted a request (e.g., to
conduct an electronic transaction, alter a piece of program
code, access private user data, etc.). Further, user interface
910 may display an additional pane in the form of a pop-up
window. This additional pane shows a summary 950 of the
output of module 920. In contrast to the detailed information
displayed by risk log 930, summary 9350 displays different
scores and summaries calculated by the disclosed risk evalu-
ation system. For example, risk scores for diflerent compo-
nents, identities, assets, etc. corresponding to different client
requests may be shown. In addition, summary 950 may
show a total risk score calculated for a given request (or may
show lots of different total risk scores calculated for difierent
requests).

While the risk scores described herein are utilized 1n
determining whether to authorized access and change
requests, for example, the disclosed system also utilizes the
gathered risk information for various elements (e.g., 1den-
tities, risk types, configuration items, etc.) corresponding to
different requests to generate an overall attestable risk
footprint for different users, devices, accounts, etc. interact-
ing with the disclosed system. In some embodiments, the
disclosed server system uses these risk footprints for training
decision models to make decisions for future requests. For
example, the risk footprints may be used to train machine

learning models to predict whether future client requests
should be authorized.

Example Method

Referring now to FIG. 10, a flow diagram illustrating an
example method 1000 for performing identity-based risk
evaluation using processing risk scores for assigned identi-
ties 1s depicted, according to some embodiments. In various
embodiments, method 1000 may be performed by server
system 610 of FIG. 6A to assign 1dentities to a user asso-
ciated with a requested computing operation (which may
also be performed by server system 610 or may be per-
formed by server system 110 shown 1n FIG. 1). For example,
server system 610 may include (or have access to) a non-
transitory, computer-readable medium having program
instructions stored thereon that are executable by the server
system 610 (e.g., by one or more computer systems included
in the server system 610) to cause the operations described
with reference to FIG. 10. In FIG. 10, method 1000 includes
clements 1002-1012. While these elements are shown 1n a
particular order for ease of understanding, other orders may
be used. In various embodiments, some of the method
clements may be performed concurrently, in a different order
than shown, or may be omitted. Additional method elements
may also be performed as desired.

US 12,088,619 B2

31

At 1002, 1n the illustrated embodiment, a server system
provides a service usable to perform a plurality of comput-
ing operations for requesting users. The server system 610
may provide a service that 1s usable to perform various
computing operations for requesting users 106. As described 5
above, 1 various embodiments the server system 610
includes a set of (potentially numerous) components 112 that
have corresponding unique component identifier values. In
various embodiments, different combinations of the compo-
nents 112 are usable to perform the various computing 10
operations included 1n the service hosted by server system
610. These same component identifier values may be used
by server system 610 to generate a flow signature value for
a particular computing operation associated with a user
request. This flow signature value may, 1n turn, be utilized by 15
server system 610 to determine a risk score associated with
(and ultimately a decision for) a given user request 660. The
flow signature value may be assigned a risk score similar to
the process of assigning risk scores to assigned 1dentities as
discussed above with reference to FIG. 6A. 20

At 1004, in the 1llustrated embodiment, the server system
receives, from a client device, a request to perform a
particular computing operation. In some embodiments, the
particular computing operation includes one or more of the
tollowing: accessing private user data, viewing private user 25
data, processing an electronic communication involving the
user associated with the request, responding to a customer
service request, and altering program code of the server
system. For example, a user may request to participate in a
particular experience provided by the server system. This 30
experience may access various diflerent assets (e.g., a trans-
action service) of the server system.

At 1006, 1n the 1llustrated embodiment, the server system
assigns, based on a name ol a user associated with the
request, an 1dentity of a first type to the user, where the first 35
type of identity 1s a birthright i1dentity. In some embodi-
ments, the first type of 1dentity includes key materials that
the user has access to, where the key materials are usable to
access one or more assets. In some embodiments, the
different 1dentities assigned to the user are linked within an 40
identity database. In some embodiments, the first type of
identity includes token materials to which the user has
access. In some embodiments, the token materials are usable
to access one or more assets.

At 1008, in the 1llustrated embodiment, the server system 45
assigns, based on details of the request, one or more addi-
tional 1dentities to the user, where the one or more additional
identities are diflerent 1dentity types than the first type of
identity assigned to the user. In some embodiments, the
server system assigns a risk type to the first type of identity 50
and risk types to the one or more additional identities. In
some embodiments, the server system assigns risk types to
one or more components included 1n a plurality of compo-
nents that perform a series of tasks associated with the
particular computing operation. In some embodiments, the 55
server system assigns a risk type to an asset associated with
the particular computing operation. For example, the server
system assigns different risk types to different computing
components, 1dentities, and assets associated with a particu-
lar requested computing operation. 60

In some embodiments, the server system alters, based on
the risk types assigned to the identities, risk scores assigned
to the first type of i1dentity and the one or more additional
identities. In some embodiments, the server system assigns,
based on the risk types assigned to the one or more com- 65
ponents, risk scores to the one or more components. In some
embodiments, the server system assigns, based on the risk

32

type assigned to the asset, a risk score to the asset associated
with the particular computing operation. In some embodi-
ments, the server system generates, based on the risk scores
assigned to the one or more components, the risk score
assigned to the asset, and the risk scores assigned to the first
type of 1dentity and the one or more additional 1dentities, a
decision for the request, where the transmitting 1s further
performed based on the decision. For example, the server
system may score an 1dentity that 1s assigned to a user prior
to a risk type being assigned to this identity. In this example,
once a risk type has been assigned to the identity assigned
to the user, the server system may update the risk score for
this user 1dentity based on its assigned type. While the server
system sees objects representing the various identities, 1den-
tity types, etc. assigned to a given user, the system may
present separation of final risk states (e.g., identities) when
displaying this information to an end user (as shown 1n the
example user mterface 910 of FIG. 9)

In some embodiments, the server system assigns, an risk
type to the user. In some embodiments, the server system
generates, based on the employee risk type assigned to the
user, a new 1dentity that 1s based on a risk score associated
with the employee risk type assigned to the user. In some
embodiments, the server system performs, 1n response to the
request to perform the particular computing operation, the
particular computing operation via a particular processing,
flow 1n which a particular sequence of a plurality of com-
ponents perform a series of tasks associated with the par-
ticular computing operation, where the server system
includes a plurality of components with corresponding com-
ponent identifier values. In some embodiments, the server
system generates a particular flow signature value for the
particular processing flow, including by generating a flow
identifier value for the particular processing flow by com-
bining component 1dentifier values for the particular
sequence ol components used to perform the series of tasks.
In some embodiments, generating the particular tlow signa-
ture value for the particular processing flow includes per-
forming a hash operation based on the flow 1dentifier value
to generate the particular flow signature value. In some
embodiments, the server system detects, based on a return
code associated with the particular flow signature value, an
unsuccessiul outcome of the particular computing operation.
In some embodiments, 1n response to the detecting, the
server system 1dentifies a particular component, of the
particular sequence of components, as a point of failure for
the particular processing tlow. In some embodiments, the
server system determines whether the particular flow signa-
ture value matches signatures values included 1n a list of
previously generated signature values corresponding to pro-
cessing flows that are permissible by the server system,
where the response 11 further generated based on determin-
ing whether the signature values match. For example, the
server system may increase an overall risk score for the
request based on the signature value for the processing flow
associated with the request being risky (or prohibited alto-
gether).

At 1010, 1n the 1llustrated embodiment, the server system
scores the first type of identity and the one or more addi-
tional 1dentities, where the scoring 1s performed based on
accessing a risk score database storing known risk informa-
tion associated with different identity types. In some
embodiments, the scoring further includes mputting the risk
types assigned to the first type of identity, the risk types
assigned to the one or more additional i1dentities, the risk
types assigned to the one or more components, and the risk
types assigned to the asset, into a machine learning model.

US 12,088,619 B2

33

In some embodiments, the response 1s generated based on
the scoring 1s further generated based on output of the

machine learning model the classification generated by the
machine classifier. The disclosed techniques may utilized
any mix or combination of the risk scores 1t generates 1n
determining a final risk decision for a client request. For
example, when an 1dentity of a given user attempts to access
a product of the system, the system assesses the risk scores
of the identity, target destination or even itself (e.g., the
product 1s not healthy or 1s currently at max capacity and,
thus 1s unable to handle new requests), or even mappings
between different elements or risk scores assigned to this
user.

At 1012, in the 1llustrated embodiment, the server system
transmits, to the client device, a response to the request,
where the response 1s generated based on the scoring. In
some embodiments, the response includes an indication that
the request has been authorized. In some embodiments, prior
to receiving the request to perform the particular computing,
operation irom the client device, the server system displays
a user 1terface to an administrator of the server system. In
some embodiments, the user interface includes elements
selectable by the administrator to specity score thresholds
for 1dentity risk scores and risk type risk scores, whether to
calculate one or more risk scores, and whether to make a
final risk determination for the request. In some embodi-
ments, when high risk users are i1dentified by the disclosed
system, security auditing for these users 1s programmatically
increased.

Example Computer System

Referring now to FIG. 11, a block diagram of an example
computer system 1100 1s depicted, which may implement
one or more computer systems, such as server system 110
(or one or more computer systems included 1n server system
110) of FIG. 1 or server system 610 (or one or more
computer systems included in server system 610) of FIG.
6A, according to various embodiments. Computer system
1100 includes a processor subsystem 1120 that 1s coupled to
a system memory 1140 and I/O interfaces(s) 1160 via an
interconnect 1180 (e.g., a system bus). I/O interface(s) 1160
1s coupled to one or more I/O devices 1170. Computer
system 1100 may be any of various types of devices,
including, but not limited to, a server computer system,
personal computer system, desktop computer, laptop or
notebook computer, mainiframe computer system, server
computer system operating 1n a datacenter facility, tablet
computer, handheld computer, workstation, network com-
puter, etc. Although a single computer system 1100 1s shown
in FIG. 11 for convenience, computer system 1100 may also
be implemented as two or more computer systems operating,
together.

Processor subsystem 1120 may include one or more
processors or processing units. In various embodiments of
computer system 1100, multiple instances ol processor
subsystem 1120 may be coupled to interconnect 1180. In
various embodiments, processor subsystem 1120 (or each
processor unit within 1120) may contain a cache or other
form of on-board memory.

System memory 1140 1s usable to store program instruc-
tions executable by processor subsystem 1120 to cause
system 1100 perform various operations described herein.
System memory 1140 may be implemented using different
physical, non-transitory memory media, such as hard disk
storage, tloppy disk storage, removable disk storage, flash
memory, random access memory (RAM-SRAM, EDO

10

15

20

25

30

35

40

45

50

55

60

65

34

RAM, SDRAM, DDR SDRAM, RAMBUS RAM, efc.),
read only memory (PROM, EEPROM, etc.), and so on.
Memory 1n computer system 1100 1s not limited to primary
storage such as system memory 1140. Rather, computer
system 1100 may also include other forms of storage such as
cache memory 1n processor subsystem 1120 and secondary
storage on I/0 devices 1170 (e.g., a hard drive, storage array,
etc.). In some embodiments, these other forms of storage
may also store program instructions executable by processor
subsystem 1120.

I/O 1interfaces 1160 may be any of various types of
interfaces configured to couple to and communicate with
other devices, according to various embodiments. In one
embodiment, I/O interface 1160 1s a bridge chip (e.g.,
Southbridge) from a front-side to one or more back-side
buses. 1/0 terfaces 1160 may be coupled to one or more
I/O devices 1170 via one or more corresponding buses or
other interfaces. Examples of I/O devices 1170 include
storage devices (hard drive, optical drive, removable flash
drive, storage array, SAN, or their associated controller),
network interface devices (e.g., to a local or wide-area
network), or other devices (e.g., graphics, user interface
devices, etc.). In one embodiment, I/O devices 1170 includes
a network interface device (e.g., configured to communicate
over Wi-Fi, Bluetooth, Ethernet, etc.), and computer system
1100 1s coupled to a network via the network interface
device.

The present disclosure includes references to an “embodi-
ment” or groups of “embodiments” (e.g., “some embodi-
ments” or “various embodiments”). Embodiments are dif-
ferent 1mplementations or instances of the disclosed
concepts. References to “an embodiment,” “one embodi-
ment,” “a particular embodiment,” and the like do not
necessarily refer to the same embodiment. A large number of
possible embodiments are contemplated, including those
specifically disclosed, as well as modifications or alterna-
tives that fall within the spirit or scope of the disclosure.

This disclosure may discuss potential advantages that may
arise from the disclosed embodiments. Not all implementa-
tions of these embodiments will necessarily manifest any or
all of the potential advantages. Whether an advantage 1s
realized for a particular implementation depends on many
factors, some of which are outside the scope of this disclo-
sure. In fact, there are a number of reasons why an 1mple-
mentation that falls within the scope of the claims might not
exhibit some or all of any disclosed advantages. For
example, a particular implementation might include other
circuitry outside the scope of the disclosure that, 1n con-
junction with one of the disclosed embodiments, negates or
diminishes one or more the disclosed advantages. Further-
more, suboptimal design execution of a particular 1mple-
mentation (e.g., implementation techniques or tools) could
also negate or diminish disclosed advantages. Even assum-
ing a skilled implementation, realization of advantages may
still depend upon other factors such as the environmental
circumstances in which the implementation 1s deployed. For
example, mputs supplied to a particular implementation may
prevent one or more problems addressed 1n this disclosure
from arising on a particular occasion, with the result that the
beneflt of 1ts solution may not be realized. Given the
existence of possible factors external to thus disclosure, 1t 1s
expressly intended that any potential advantages described
herein are not to be construed as claim limitations that must
be met to demonstrate infringement. Rather, identification of
such potential advantages 1s intended to 1llustrate the type(s)
of improvement available to designers having the benefit of
this disclosure. That such advantages are described permis-

US 12,088,619 B2

35

sively (e.g., stating that a particular advantage “may arise™)
1s not intended to convey doubt about whether such advan-
tages can in fact be realized, but rather to recognize the
technical reality that realization of such advantages often
depends on additional factors.

Unless stated otherwise, embodiments are non-limiting.
That 1s, the disclosed embodiments are not intended to limait
the scope of claims that are drafted based on this disclosure,
even where only a single example 1s described with respect
to a particular feature. The disclosed embodiments are
intended to be illustrative rather than restrictive, absent any
statements 1n the disclosure to the contrary. The application
1s thus intended to permit claims covering disclosed embodi-
ments, as well as such alternatives, modifications, and
equivalents that would be apparent to a person skilled in the
art having the benefit of this disclosure.

For example, features in this application may be com-
bined 1n any suitable manner. Accordingly, new claims may
be formulated during prosecution of this application (or an
application claiming priority thereto) to any such combina-
tion of features. In particular, with reference to the appended
claims, features from dependent claims may be combined
with those of other dependent claims where approprate,
including claims that depend from other independent claims.
Similarly, features from respective independent claims may
be combined where appropnate.

Accordingly, while the appended dependent claims may
be drafted such that each depends on a single other claim,
additional dependencies are also contemplated. Any combi-
nations of features 1n the dependent that are consistent with
this disclosure are contemplated and may be claimed 1n this
or another application. In short, combinations are not limited
to those specifically enumerated in the appended claims.

Where appropriate, 1t 1s also contemplated that claims
drafted 1n one format or statutory type (e.g., apparatus) are
intended to support corresponding claims of another format
or statutory type (e.g., method).

Because this disclosure 1s a legal document, various terms
and phrases may be subject to administrative and judicial
interpretation. Public notice 1s hereby given that the follow-
ing paragraphs, as well as definitions provided throughout
the disclosure, are to be used 1n determining how to interpret
claims that are drafted based on this disclosure.

References to a singular form of an 1tem (i.e., a noun or
noun phrase preceded by “a,” “an,” or “the”) are, unless
context clearly dictates otherwise, intended to mean “one or
more.” Reference to “an item” 1n a claim thus does not,
without accompanying context, preclude additional
instances of the item. A “plurality” of items refers to a set of
two or more of the items.

The word “may” 1s used herein 1n a permissive sense (1.€.,
having the potential to, being able to) and not in a mandatory
sense (1.e., must).

The terms “‘comprising” and “including,” and forms
thereot, are open-ended and mean “including, but not lim-
ited t0.”

When the term “or” 1s used 1n this disclosure with respect
to a list of options, 1t will generally be understood to be used
in the inclusive sense unless the context provides otherwise.
Thus, a recitation of “x or y” 1s equivalent to “x or vy, or
both,” and thus covers 1) x but not y, 2) y but not x, and 3)
both x and y. On the other hand, a phrase such as “either x
or y, but not both” makes clear that “or” 1s being used 1n the
exclusive sense.

A recitation of “w, X, y, or Z, or any combination thereof”
or “at leastone of . . . w, X, y, and z” 1s intended to cover all
possibilities 1nvolving a single element up to the total

10

15

20

25

30

35

40

45

50

55

60

65

36

number of elements 1n the set. For example, given the set [w,
X, V, Z], these phrasings cover any single element of the set
(e.g., w but not X, v, or z), any two elements (e.g., w and X,
but not v or z), any three elements (e.g., w, X, and y, but not
7z), and all four elements. The phrase “at least one of . . . w,
X, v, and z” thus refers to at least one element of the set [w,
X, v, Z], thereby covering all possible combinations 1n this
list of elements. This phrase 1s not to be interpreted to
require that there 1s at least one nstance of w, at least one

instance of x, at least one instance of y, and at least one
instance of z.

Various “labels” may precede nouns or noun phrases 1n
this disclosure. Unless context provides otherwise, diflerent
labels used for a feature (e.g., “first circuit,” *“second cir-
cuit,” “particular circuit,” “given circuit,” etc.) refer to
different instances of the feature. Additionally, the labels
“first,” “second,” and “third” when applied to a feature do
not imply any type of ordering (e.g., spatial, temporal,
logical, etc.), unless stated otherwise.

The phrase “based on™ or 1s used to describe one or more
factors that aflect a determination. This term does not

foreclose the possibility that additional factors may aflect
the determination. That 1s, a determination may be solely
based on specified factors or based on the specified factors
as well as other, unspecified factors. Consider the phrase
“determine A based on B.” This phrase specifies that B 1s a
factor that 1s used to determine A or that aflects the deter-
mination of A. This phrase does not foreclose that the
determination of A may also be based on some other factor,
such as C. This phrase 1s also intended to cover an embodi-
ment 1n which A 1s determined based solely on B. As used
herein, the phrase “based on” 1s synonymous with the phrase
“based at least 1 part on.”

The phrases “in response to” and “responsive to”” describe
one or more factors that trigger an effect. This phrase does
not foreclose the possibility that additional factors may
aflect or otherwise trigger the eflect, either jointly with the
specified factors or independent from the specified factors.
That 1s, an effect may be solely 1n response to those factors,
or may be 1n response to the specified factors as well as
other, unspecified factors. Consider the phrase “perform A 1n
response to B.” This phrase specifies that B 1s a factor that
triggers the performance of A, or that triggers a particular
result for A. This phrase does not foreclose that performing
A may also be 1n response to some other factor, such as C.
This phrase also does not foreclose that performing A may
be jomtly 1n response to B and C. This phrase 1s also
intended to cover an embodiment in which A 1s performed
solely 1n response to B. As used herein, the phrase “respon-
sive t0”” 1s synonymous with the phrase “responsive at least
in part to.” Similarly, the phrase “in response t0” 1s synony-
mous with the phrase “at least 1n part in response t0.”

Within this disclosure, different entities (which may vari-
ously be referred to as “units,” “circuits,” other components,
etc.) may be described or claimed as “configured” to per-
form one or more tasks or operations. This formulation—
[entity] configured to [perform one or more tasks]—is used
herein to refer to structure (1.e., something physical). More
specifically, this formulation 1s used to indicate that this
structure 1s arranged to perform the one or more tasks during
operation. A structure can be said to be “configured to”
perform some task even 1f the structure 1s not currently being,
operated. Thus, an entity described or recited as being
“configured to” perform some task refers to something
physical, such as a device, circuit, a system having a

processor unit and a memory storing program instructions

e B 4 4

US 12,088,619 B2

37

executable to implement the task, etc. This phrase 1s not used
herein to refer to something intangible.

In some cases, various units/circuits/components may be
described herein as performing a set of task or operations. It
1s understood that those entities are “configured to” perform
those tasks/operations, even 1I not specifically noted.

The term “‘configured to” 1s not intended to mean “con-
figurable to.” An unprogrammed FPGA, for example, would
not be considered to be “configured to” perform a particular
tfunction. This unprogrammed FPGA may be “configurable
to” perform that function, however. After appropriate pro-
gramming, the FPGA may then be said to be “configured to™
perform the particular function.

For purposes of United States patent applications based
on this disclosure, reciting 1n a claim that a structure is
“configured to” perform one or more tasks 1s expressly
intended not to mnvoke 35 U.S.C. § 112(1) for that claim
clement. Should Applicant wish to mvoke Section 112(1)
during prosecution of a United States patent application
based on this disclosure, it will recite claim elements using
the “means for” [performing a function] construct.

“In this disclosure, various “modules™ operable to per-
form designated functions are shown in the figures and
described 1n detail. As used herein, a “module” refers to
software or hardware that 1s operable to perform a specified
set of operations. A module may refer to a set of software
instructions that are executable by a computer system to
perform the set of operations. A module may also refer to
hardware that 1s configured to perform the set of operations.
A hardware module may constitute general-purpose hard-
ware as well as a non-transitory computer-readable medium
that stores program instructions, or specialized hardware
such as a customized ASIC.

What 1s claimed 1s:

1. A method, comprising:

providing, by a server system, a service usable to perform

a plurality of computing operations for requesting
users;
receiving, at the server system from a client device, a
request to perform a particular computing operation;

automatically generating, by the server system based on
the request and a user associated with the request, a
birthright 1dentity for the user and one or more addi-
tional identities for the user, wherein the birthright
identity 1s automatically generated based on a name and
login 1dentifier (ID) of the user;

assigning, by the server system based on details of the

request, the birthright identity and the one or more

additional i1dentities to the user, wherein the one or

more additional identities are diflerent identity types

than the birthright 1dentity assigned to the user;
scoring, by the server system, the birthright identity and the
one or more additional identities, wherein the scoring 1is
performed based on accessing a risk score database storing,
known risk information associated with different identity
types, wherein the scoring includes assigning higher scores
to the one or more additional identities than a risk score
assigned to the birthright identity, and wherein the known
risk information indicates whether the birthright identity and
the one or more additional 1dentities are currently enabled;
and

transmitting, by the server system to the client device, a

response to the request, wherein the response 1s gen-
crated based on the scoring.

2. The method of claim 1, wherein the particular com-
puting operation includes one or more of the following:
accessing private user data, viewing private user data, pro-

10

15

20

25

30

35

40

45

50

55

60

65

38

cessing an electronic communication involving the user
associated with the request, responding to a customer ser-
vice request, and altering program code of the server system.

3. The method of claim 1, wherein the first type of
birthright identity includes key materials that the user has
access to, and wherein the key materials are usable to access
one or more assets, and wherein the different identities
assigned to the user are linked within an identity database.

4. The method of claim 1, further comprising:

assigning, by the server system, a risk type to the birth-

right 1dentity and risk types to the one or more addi-
tional 1dentities;

assigning, by the server system, risk types to one or more

components included 1n a plurality of components that
perform a series of tasks associated with the particular
computing operation; and

assigning, by the server system, a risk type to an asset

associated with the particular computing operation.

5. The method of claim 4, further comprising:

altering, by the server system based on the risk types

assigned to the i1dentities, risk scores assigned to the
birthright 1dentity and the one or more additional
identities:

assigning, by the server system based on the risk types

assigned to the one or more components, risk scores to
the one or more components;

assigning, by the server system based on the risk type

assigned to the asset, a risk score to the asset associated
with the particular computing operation; and
generating, by the server system based on the risk scores
assigned to the one or more components, the risk score
assigned to the asset, and the risk scores assigned to the
birthright i1dentity and the one or more additional
identities, a decision for the request, wherein the trans-
mitting 1s further performed based on the decision.

6. The method of claim 1, further comprising;:

assigning, by the server system, an employee risk type to

the user; and

generating, by the server system based on the employee

risk type assigned to the user, a new identity that is
based on a risk score associated with the employee risk
type assigned to the user.

7. The method of claim 1, further comprising;:

in response to the request to perform the particular

computing operation, performing, by the server system,
the particular computing operation via a particular
processing flow 1 which a particular sequence of a
plurality of components perform a series of tasks
associated with the particular computing operation,
wherein the server system includes a plurality of com-
ponents with corresponding component 1dentifier val-
ues; and

generating, by the server system, a particular flow signa-

ture value for the particular processing flow, including
by generating a flow 1dentifier value for the particular
processing flow by combining component identifier
values for the particular sequence of components used
to perform the series of tasks.

8. The method of claim 7, wherein generating the par-
ticular flow signature value for the particular processing
flow includes performing a hash operation based on the tlow
identifier value to generate the particular flow signature
value, and wherein the method further comprises:

detecting, by the server system based on a return code

associated with the particular flow signature value, an
unsuccessiul outcome of the particular computing
operation; and

US 12,088,619 B2

39

in response to the detecting, identifying, by the server
system, a particular component, of the particular
sequence of components, as a point of failure for the
particular processing tlow.

40

14. The system of claim 13, wherein the scoring further

includes:

inputting the risk types assigned to the birthright identity,
the risk types assigned to the one or more additional
identities, the risk types assigned to the one or more

9. The method of claim 7, further comprising: D . ;
.. . components, and the risk types assigned to the asset,
determining, by the server system, whether the particular . : : _
q _ | b _ | into a machine learning model;
HOW 51glilature. vaiue mletc ©5 mgnatures. values wherein the response generated based on the scoring 1s
included 1n a hst' of prewously generated signature further generated based on output of the machine
values corresponding to processing tlows that are per- " learning model.
missible by the server system, wherein the response 1s 15. The system of claim 13, wherein the instructions are
further generated based on determining whether the further executable to cause the system to:
signature values match. alter, based on the risk types assigned to the identities, risk
10. The method of claim 1, further comprising, prior to scores previously assigned to the birthright identity and
receiving the request to perform the particular computing, 5 t_he ONE OF MOTe aqdltlonal 1dept1tlesj
. : . assign, based on the risk types assigned to the one or more
operation from the client device: .
. . . components, risk scores to the one or more compo-
displaying, by the server system, a user interface to an nents:
administrator of the server system, wherein the user assign, based on the risk type assigned to the asset, a risk
interface includes elements selectable by the adminis- score to the asset associated with the particular com-
trator to specily score thresholds for identity risk scores 20 puting operation; and
and risk type risk scores, whether to calculate one or generate, based on the risk scores assigned to the one or
more risk scores, and whether to make a final risk more components, the risk score assigned to the asset,
determination for the request. and the risk scores assigned to the birthright identity
11. A system, comprising: and the one or more additional identities, a decision for
at least one processor; 25 the request, wheremn the transmitting 1s further per-
a non-transitory, computer-readable medium having formed based‘ on the decision. | |
instructions stored thereon that are executable by the at - 16. A non-transitory computer-readable medium having
least one processor to cause the system to: instructions stored thereop that are gxiecutable by a server
provide a service usable to perform a plurality of com- system‘? perform OPeratmI]lDSl comprls;;lg. Lupal ¢
puting operations for requesting users; 30 providing a service usable to perform a plurality o
. : . computing operations for requesting users;
receive, from a client device, a request to perform a . . .
. . ;o receiving, from a client device, a request to perform a
particular computing operation; : : .
. particular computing operation;
automatically generate, based on the request and a user . .

o with h birthrioht identitv for {h automatically generating, based on the request and a user
associate let the rfaque-:st, 4] It HE j” entity Of the 55 associated with the request, a birthright identity for the
Hset, Thgf i ;tlhe birthright 1((116:,[11‘[1"[37 1; agtgma?[c;all? user, wherein the birthright identity .is ‘autm.natically
ghenera ed based on a name and login 1dentifier (ID) o generated based on a name and a login identifier (ID)
the user; of the user:

determine, by a‘c?essin.g a d:aFabase storing identitiefs, one asgigniqgj hased on d.etailis Of‘the request, a plurality C:,f
Or more addltléijcli{ﬂ} ldﬁiﬂ.tclltles. ij the Uj?; Whﬂ:‘zlﬂ t}le 40 identities and the birthright identity to the user associ-
one or more additional identities are dilierent iaentity ated with the request, wherein the birthright identity
types than the birthright identity assigned to the user; and the plurality of identities are different identity

score the birthright identity and the one or more additional types;
identities, wherein the scoring 1s performed based on scoring the birthright identity and respective identities in
accessing a risk score database storing risk scores for 45 the plurality of identities, wherein the scoring is per-
different identity types and risk information for the formed based on accessing a risk score database storing
different 1dentity types, wherein a risk score accessed predetermined risk scores associated with different
for the one or more additional identities indicates a identity types and risk information for the different
greater amount of risk than a risk score accessed for the identity types, wherein a risk score accessed for the
birthright 1dentity, and wherein the risk information 50 plurality of 1dentities indicates a greater amount of risk
indicates whether the birthright 1dentity and the one or than a risk score accessed for the birthright identity, and
more additional identities are currently enabled; and wherein the risk imformation indicates whether the

transmit, to the client device, a response to the request, birthright i1dentity and the plurality of identities are
wherein the response 1s generated based on the scoring. currently enabled; and

12. The system of claim 11, wherein the of birthright 55 transmitting, to the client device, a response to the

request, wherein the response 1s generated based on the
scoring.
17. The non-transitory computer-readable medium of
claim 16, wherein a first type of identity of the plurality of
60 1dentities assigned to the user 1s the birthright 1dentity.
18. The non-transitory computer-readable medium of
claim 17, wherein the operations further comprise:
assigning risk types to the plurality of identities;
assigning risk types to one or more components included
in a plurality of components that perform a series of
tasks associated with the particular computing opera-
tion;

identity includes token materials to which the user has
access, and wherein the token materials are usable to access
one or more assets.
13. The system of claim 11, wherein the instructions are
turther executable to cause the system to:
assign a risk type to the birthright identity and risk types
to the one or more additional i1dentities;
assign risk types to one or more components imncluded in
a plurality of components that perform a series of tasks
associated with the particular computing operation; and 65
assign a risk type to an asset associated with the particular
computing operation.

US 12,088,619 B2

41 42
assigning a risk type to an asset associated with the generating a particular flow signature value for the par-
particular computing operation; and ticular processing flow, including by generating a tlow
generating, based on the risk types assigned to the one or identifier value for the particular processing tlow by
more components, the risk type assigned to the asset, combining component 1dentifier values for the particu-
and the risk types assigned to the plurality of identities, > lar sequence of components used to perform the series
a decision for the request, wherein the transmitting 1s of tasks.

20. The non-transitory computer-readable medium of
claim 19, wherein the operations further comprise:
determining, by the server system whether the particular
10 flow signature value matches signatures values
included in a list of previously generated signature
values corresponding to processing tlows that are per-
missible by the server system; and
altering, by the server system based on determining that
15 the flow signature values do not match, an overall risk
score associated with the request.

further performed based on the decision.
19. The non-transitory computer-readable medium of

claim 16, wherein the operations further comprise:
in response to the request to perform the particular
computing operation, performing the particular com-
puting operation via a particular processing flow 1n
which a particular sequence of a plurality of compo-
nents perform a series of tasks associated with the
particular computing operation, wherein the server
system includes a plurality of components with corre-
sponding component identifier values; and N T

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 12,088,619 B2 Page 1 of 1
APPLICATIONNO. : 18/059792

DATED : September 10, 2024
INVENTOR(S) . Jonathan Steele Barth

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In Column 38 (Claim 3), Lines 4-3, please delete “wherein the first type of birthright” and msert
-- wherein the birthright --.

In Column 39 (Claim 12), Line 35, please delete “wherein the of birthright” and msert -- wherein the
birthright --.

Signed and Sealed this
[Eighth Day of October, 2024

Katherme Kelly Vidal
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

