US012086205B2

12 United States Patent (10) Patent No.: US 12,086,205 B2

Meil et al. 45) Date of Patent: Sep. 10, 2024

(54) RANDOM SPARSITY HANDLING IN A (38) Field of Classification Search
SYSTOLIC ARRAY CPC GO6F 7/5443; GO6F 15/8046; GO6F
9/30036; GO6F 9/3893; GO6F 9/5027;
(71) Applicant: Intel Corporation, Santa Clara, CA GO6N 3/048: GO6N 3/0495: GO6N 3/063:
(US) GO6N 3/082; GO6N 20/00; GO6T 1/20
USPC e, 708/520

(72) Inventors: Chunhui Mei, San Diego, CA (US);
Hong Jiang, E]l Dorado Hills, CA (US);
Jiasheng Chen, El Dorado Hills, CA

See application file for complete search history.

(US); Yongsheng Liu, San Diego, CA (56) References Clited
(US); Yan Li, San Diego, CA (US) U.S. PATENT DOCUMENTS
(73) Assignee: Intel Corporation, Santa Clara, CA 11,520,853 B2* 12/2022 Nair .ccccocoovirrnnnnee. GOGF 17/153
(US) 2022/0057993 Al* 2/2022 Mengcooeeeviiinnnn, GO6F 17/16
2022/0261456 Al* 8/2022 Gla_ddjng **************** GO6F 17/16
(*) Notice: Subject to any disclaimer, the term of this 2022/0309124 AL 9/2022 Mei et al.
patent 1s extended or adjusted under 35 | |
U.S.C. 154(b) by 644 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 17/211,627 CN 115129464 A 9/2022

* cited by examiner
(22) Filed: Mar. 24, 2021

Primary Examiner — Tan V Mai

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Jaffery Watson
US 2022/0309124 A1 Sep. 29, 2022 Mendonsa & Hamilton LLP

(51) Int. CL. (57) ABSTRACT
Goot 17716 (2006-();) Matrix multiply units can take advantage of input sparsity by
Goor 7/544 (2006-0:) zero gating ALUs, which saves power consumption, but
Goot 9/30 (201 8-0:) compute throughput does not increase. To improve compute
GoOol 15/50 (2006-0:~) throughput from sparsity, processing resources 1n a matrix
Goor 17/11 (2006.01) accelerator can skip computation with zero involved 1n input

(52) U.S. CL or output. If zeros 1n mmput can be skipped, the processing
CPC GO6F 17/16 (2013.01);, GO6E 7/5443 units can focus calculations on generating meaningful non-

(2013.01); GO6F 9/3001 (2013.01); GO6F Zero output.
930043 (2013.01); GO6F 15/8046 (2013.01);

GooF 17711 (2013.01) 20 Claims, 39 Drawing Sheets
GRAPHICS PROCESSING ENGINE
410
L e |
; UNIFIED |
e — > RETURN |
| BUFFER GRAPHICS |
il CORE ARRAY |
414 |
421
, GRAPHICS | ki SAMPLER |
COMMAND | CORE(S) o _ 42 |
STREAMER | | 4154 K—> T |
=0 " USHARED 1Ry RN 423 :
I | ' FUNCTION LOGIC 0GIC INTER-THREAD
| | MEDIA | * 416 K= COMMUNICATION |
—T— PIPELINE ————— —£ . I
! ' 316 | GRAPRICS 475 |
CORE(S) |
: b—— 4153 K= CACHE(S) I
| I
: I
b e e e e e e e e e e e — —— —— — ————————_— —— — o —— —— —]

U.S. Patent Sep. 10, 2024 Sheet 1 of 39 US 12,086,205 B2

PROCESSOR(S)
/\ 102

MEMORY DEVICE - 120 - oo oo oo o oo o oo oo

CONTROLLER
116

DISPLAY DEVICE
111

GRAPHICS

— PROCESSOR(S)
T T EXTERNAL | | ACCELERATOR 108

|
: GRAPHICS1F1’§OCESSOR '{. 112 _
e 1 '

EXTERNAL INTERFACE BUS(ES) - 110
. ACCELERATOR

DATA STORAGE
DEVICE
124

PLATFORM |:
TOUCH SENSORS) CONTROLLER |
130 !

WIRELESS |:
TRANSCEIVER |

126

|
FIRMWARE INTERFACE |
B R oo I —

I

AUDIO | LEGACY /O |
CONTROLLER | CONTROLLER |

146 | 140 |

NETWORK
CONTROLLER
134

USB CONTROLLER(S)

100 142
o — 1

. CAMERA |
MOUSE - 143 1, 144

FIG. 1 ‘

US 12,086,205 B2

Sheet 2 of 39

Sep. 10, 2024

U.S. Patent

91¢
(S)LINN

d3T1081INOQDO
SNd

d055400dd SOIHAVHY

vle
d4TI0OHLINOD
AdONAN

We
43 TI04LNOD
AY1dSIa

01C
3400
INIOV W3LSAS

Ve Old

80¢

I
212 - ONIY

902 - (S)LINN IHOVYD AIHVHS

| Nvoz |

_ 70z
QNn T[] (s)umn
| 3HOVO | | JHOVY)
L——— |

|
_ | -
NZOZ 3400 V20Z 340D

3TINAOIN AHOWIIN
a3a039N3

00¢ 40SS400dd

US 12,086,205 B2

Sheet 3 of 39

Sep. 10, 2024

/e
H0SS300Yd
43AVHS

490¢
Y3 TdNVS
VIQ3N

VI
H0SS300Md
43AVHS

190¢
A TdAVS
VIA4N

162¢
SEREITE
ae

1G¢C
a4 1dANVS
e

1yee
AVESY N3 |
1227
NN
Tzz
AVHNY N3
Tz |
VY NI |

g¢ Il4

8€¢
J00T
NOILONNA G4Xid
TYNOILIAAV

LEC
AN iddId
NOILONNA d3XId
¥ AdLINOID

9T
AJOWIW FHOVO

[AGONZN
(d4dVHS

DLCC
d08S400dd
dAAVHS

290¢
A N1dAYS
VIAdW

d1ce
H0SS300Ud
Y3AVHS

d90¢
d3 TdNVS
VIddN

95144
a4 1dAYS
(€

d4cc
a4 IdANVS
(e

Ve
AVEEY (13

JCCC
AVHEY (1

dvic
AVEEY (13

décc
AVHEV N3

U.S. Patent

aree mm,@_m_w_\/m_qw Ve
q/77 AVHAY (1] v /77 AVHSY (3
d0554004d SI00 1 d0553004d
d40VHS NOILONNZ HAAVHS
(72¢ J4HVHS Y077 TZee
AVEEY (A | A3 TalVS AVEEV (3
vIA3A
0 — % % B INM3dd “
N34 YIaan d34TIOHINOOOHIIN 40V4d31NI NOILONNH ddXI4 “
SOIHdYHD J0S SOIHAYHD ¥ AHLANO4D _

US 12,086,205 B2

Sheet 4 of 39

Sep. 10, 2024

U.S. Patent

| 6£CNdD

|

| "

| _
|

| _

| _
_

| .

_ _

——————— o989 N ————— —

_ NOV¢ d0vC | i

| 90N O0OWN | |
|

_ I
_

| .

_ I
|

_ _
_

| _

|

|

|

I

A4
SADIAAA O

74
SLINMA 44N LX4L ANV JHOVO L]

Gve
SEN(00
ONIOVHL AVY

ve
(S)3114 ¥3LS193Y

e
43IHOLYASIAAAINAIHIS

VO¥Z dNOYD IHOD-ILININ

8¥C

1410 |

NN

6vC
AJOWAN

ac 94

1GC

Sd0SS300dd ANYININOO

£5¢
FHOVO 2T

iiiiiiiiiiiiiiiiiiiiiiii w—— rov— @.m.m.
(S)NdD

@\
o
I g
& mssm omemas memmar memas mmmme mmmar mmmen memer mmmen mames memee e mmacm mmemm mmmms mesen tmenms mmmae mmmam mamss ‘e mmmew mamses mmew mmmas mmases
< 0ZZ Nd9dO T ._
2 0 N09C |
< | LINN 3LNdNOD
99¢ ™10 |

| 43LNNOD e

| NYHO0Hd _ 575
- " CO7 — — AHONAN
Sol

AHONIN
v _ V09Z qns || s¥aLsoy ||| syaLsioay e
3 LINN 90 SAVAL 4OL03N R
= ”
2 " 31NdINOD e
) | 5 %2
\ | HIHOLYASIA QVIHHL AHOWIN QIHVYHS _
e\
< _ :3 _
=3 | AT
2 _ IHOVO |1 ” . iz
_ ! m AYOWAN

| .

| _ ”

|

U.S. Patent

81¢

J0IAdd
AV 1dSId

US 12,086,205 B2

1€ - JOV4HILINI AYOWIN

_
_
_
_
N _ _
& \ |
\& | |
D | |
= | |
v _ !
\ !
_ “
. e |1 o mw K mE | 208
S INIONT | “
= 03000 | || aNN3did NILSAS-ENS INIT3dId [1| 3NION3 4371104.LNOD
= 03dA | 1] VIA3INW via3an/ae a€ || AdOO AV1dSIC
2 _ |
’ | 01€
“ m/ INIONI
B ONISSIO0Ud SOIHAVYD

00t
d0SS300dd SOIHAVHD

U.S. Patent

US 12,086,205 B2

Sheet 7 of 39

Sep. 10, 2024

U.S. Patent

g¢ Old

82€ - IOV4HILNI 1SOH

pZ€ - LOANNODYIINI O14gvA

4676 3626
a9zs aole 3015 TS
AHONIN t 3711 ANION3 J71L ANION3 t
SOIHAVYO SOIHAVHO /| AdONER
11145 41AS IGZ§E
06LE VEZE
qe7¢ VSZe

g01€
3711 ANION3
SOIHAVY9

g9z¢

AHOWSN

vo0Te —
voze
3711 INION3 1 o

SOIHAVHD

| I
o
i 3090 |
i AV1dSIa L“
20¢ m
INION3 H3TI0YINOD
93009 AV1dSIa

O4dIA

v0E

ANIONS
AdOO

74
d31SNTO INIDNS

INISSIO0dd SOIHAVHD

7

0Ct
d0S5400dd SOIHdVED

US 12,086,205 B2

Sheet 8 of 39

Sep. 10, 2024

U.S. Patent

aoze
AJONIN

d9¢¢

AJOWAN

(7

ASce

aove

3111 ANIONS
31NdNOD

g0ve
371L ANIONT
31NdINOD

743

m | XA

9/ X43

acce

J€ Il

8Z€ - JOV44IINI 1SOH

= 1OdNNQOEILINI Old8V4

=1 ¥4

VEct
dect

O0¥¢
311 ANIONS
31 0dNOD

VOve
3711 ANIONT
31NdIN0D

t

01474

\ASTA)

v

09¢¢€
AJONAN

VOzE

AHOWEN

yre
' LOINNOD¥ILNI

<ENA
VOISAHd

e |
AHOVO |

ChE

o
—1

JOVAd3 1N
AHOMLAN

TA%3
d315MN70

ANIONL 4LNdNOD

/

0€E

d01Vd31400V 41NdINGO

US 12,086,205 B2

Sheet 9 of 39

Sep. 10, 2024

U.S. Patent

y Old

AJOWB|N\
WOJ

= 1
|
|
|
|
|

Ny K—————— 1
(A3I4INN

|
|
| (. 951y
S)AHOYO S ——
| STV (91300 o
| S¢v _Al..v SOIHAYHO 01€
_ - NOILYOINNIWINOD 02y ANy i | uﬂ__mwn&a | _l
_ | QyIUHL-YAINI IO _ | |]
| eoy NOILONNA ——— __
| CgauvHs [N J83ETES] g
| HLYIA I SETIERTES
| 2ty (9)3407 < | | ANVYIWNOD
| | Y3AVS SOHdVY9 4% |
| piy ag
| AVHYHY 40D <—————
| SOIHAVHO Y344N8
|
|
|

0Ly
ANIONL ONISSI00dd SOIHAVHD

US 12,086,205 B2

Sheet 10 of 39

Sep. 10, 2024

U.S. Patent

— r = J“
LS “ |
140d Y1vd " NQOS “ .

—
|
|
el ! om mwom S0C T
lg _ | “ ¥30VYL JHOYD
FHIV) vIva [— “ Avd |NOILONYLSN
[—— _
g 0L | oh ol
NS L

_)
m “m “
“ | | s T
_ | Fonc H3HOLVASIA | H0SSID0Hd
0805 [| w805 |
@mm}wzé - m N3 “m na | QvddHl HIAVHS
“ } "
| I /| I
Nz@% /ﬁm@om /ﬂéom

005
Q190 1TNOILNOAXS

US 12,086,205 B2

Sheet 11 of 39

Sep. 10, 2024

U.S. Patent

GES
SV
AnIS

PeS
S(1d4
AnIS

805 - LINN NOILND3X3 SOIHAYYD

AVAR

¢CS

—]
T
2
2=
x>
O
>
2
Lo
—]
—
Py

US 12,086,205 B2

Sheet 12 of 39

Sep. 10, 2024

U.S. Patent

wow
_._oz,qw_m_

109
aNdS

Cl9
AVHYY OITOLSAS

19
1Y

019
31NdINOD

909
=R[EREIRRER

709
300030 NOILONYLSNI

€09
HO13434d/HO 134
NOILONYLSNI

c09
31V1S AvIYHL

109
TOYINOD AYIYHL

009
1INM NOILNOIX

US 12,086,205 B2

Sheet 13 of 39

Sep. 10, 2024

U.S. Patent

iiiiii

8% - W [BIsed — gxxxx_oo xog%ooﬁ_o

o/ - Snoaue|joosIy —> Qxxxvm:goﬂmvooo_o

777/ - |0U0D) MO|{ —» Qxxxx.a_‘Qo apoado

=3p02do

21/ - 01607/9n0) —> nxxxxmxo

oL
300030 300940

22l | 022 | 8. ay ¢l 1.
LOYS | 004S | 1S3a [10YINOD | X3aN! [3a00do
0¢/

NOILONYLSNI LOVdINOD Lig-¥9

“ 071 . | zZ | gtz | 91z
| JQOW SSIYAAY/SSINDY ous | oows | 1s3a lazis9axa

NOILONYLSNI LIg-8¢1

00/
S1VINYO4 NOLLONYLSNI 40SSIO0¥d SOIHAVHD

vl. cLL
TOYLNOD {30000

U.

S. Patent Sep. 10, 2024

Sheet 14 of 39

GRAPHICS PROCESSOR
800 MEDIA PIPELINE
\ 830
COMMAND
STREAMER P ———
GEOMETRY 803 i \
PIPELINE —_ ; VIDEO MEDIA !
307 b FRONT-END ENGINE |
834 837 |

RING INTERCONNECT

THREAD DISPATCHER

DOMAIN
SHADER
: 817

-
|
¥
1
1

STREAM
OuT
823

SETUP

:
:
i
z
: CLIP/
1
' 829 I

el b G M ey Wi Chginely el b Y

831

FIG. 8

-XECUTION

US 12,086,205 B2

DISPLAY ENGIN
840

r‘

111

r-—--

i
i 20 ENGINE DISPLAY i
i CONTROLLER |;
— 83 |

EXECUTION LOGIC !
850

sininls mbee miniel e bbb s e o s o minhble b M e i gk sk

SAMPLER
854

DATA
PORT
856

UNITS

RENDER OUTPUT
PIPELINE
870

U.S. Patent Sep. 10, 2024 Sheet 15 of 39 US 12,086,205 B2

GRAPHICS PROCESSOR COMMAND FORMAT

FIG. 9A o

CLIENT | OPCODE |[SUB-OPCODE | DATA | COMMAND SIZE |
902 204 905 906 908

F[G. gB GRAPHICS PROCESSOR COMMAND SEQUENCE
910

—
| PIPELINE SELECT |
3 |

e et

PIPELINE CONTROL
914

RETURN BUFFER STATE
916
924
920 Media e
Pipeline?

MEDIA PIPELINE STATE
940

O

N

N
>
-

3D PIPELINE STATE
930

3D PRIMITIVE
932

MEDIA OBJECT
942

EXECUTE
934

EXECUTE
044

U.S. Patent Sep. 10, 2024 Sheet 16 of 39 US 12,086,205 B2

DATA PROCESSING SYSTEM
1000

3D GRAPHICS APPLICATION
1010

SHADER INSTRUCTIONS EXECUTABLE INSTRUCTIONS
1012 1014

GRAPHICS
OBJECTS
1016

OPERATING SYSTEM (OS)

1020
Ry USER MODE GRAPHICS DRVER | | gyippr S
1050 1020 COMPILER
1024 102

SHADER COMPILER
1027

_________ OS5 KERNEL MODE FUNCTIONS
KERNEL MODE GRAPHICS 1098
DRIVER o

1026

GRAPHICS
PROCESSOR

GENERAL
PURPOSE CORE(s)
1034

PROCESSOR

1032 10

FIG. 10

US 12,086,205 B2

0911
NOILOINNOD
SERER <

2 oy = 0ETT ALIMIOY4 NOIS3A

= NOILOINNOD

. a3dIm U —

s

= D _H_ 3710 NOIS3A 13ATT

(V1Y NOISIq 4I4SNVHL HILSIDFY

TVOISAHd ¥O 1aH) —

N T3A0ON IHYMAYVH Cll

S 13A0N NOILYINIIS

= 911 Eﬁw_\ﬂ_mz

S A TIVVA 37I1Y10A-NON

A NOILYOI4av4

0011 - INJWJO1aAIA 400 dl

U.S. Patent

0Li)

NOILYINNIS
JdVM L1405

U.S. Patent Sep. 10, 2024 Sheet 18 of 39 US 12,086,205 B2

PACKAGE
ASSEMBLY
1170
LOGIC INTERCONNECT LOGIC or I/O
1172 STRUCTURE 1174
2000008~ '’ \" 00000 es
BRIDGE
1182
SUBSTRATE
1180

PACKAGE
INTERCONNECT
1183

FIG. 11B

US 12,086,205 B2

Sheet 19 of 39

Sep. 10, 2024

U.S. Patent

9] T30 - |

¢Sl
10dNNOOHINI
JOVAOVd

0611
A1GNISSY
JOVAOVA

0811
31vH1S8NS 6911

I I I I I I I M. I I I I I I 1 I ————— T D 11101 mmwohn_mm;lz_

CoIL IS0 261 Gl 1617

2190 390149 IHOVD OlYgY- o]
I1 I III1I11I e/ L1 I I IIIII e/ L1 1111111
LI FINLONYLS i FINLONYLS LI
AJONEN 103INNOQYaINI L_ONPIROT | 153nN0oyaINI 0]

U.S. Patent Sep. 10, 2024 Sheet 20 of 39 US 12,086,205 B2

Interchangeable Chiplets
1195

Base Chiplet
1196

Interconnect
1197

Base Chiplet
1198

FIG. 11D

U.S. Patent Sep. 10, 2024 Sheet 21 of 39 US 12,086,205 B2

SOC
INTEGRATED CIRCUIT

1200

~

APPLICATION GRAPHICS
PROCESSOR(s) PROCESSOR
1205 1210

IMAGE VIDEO
PROCESSOR PROCESSOR
1215 1220

USB UART | | sPuspio
1225 1230 1235
|_ —eme =M r. - —--mM
'Sgﬁgmg: MEMORY | | FLasH |1 wmip : HDMI
gm0 1| 1268 1260 |, 1285 || 1250

FIG. 12

U.S. Patent Sep. 10, 2024 Sheet 22 of 39 US 12,086,205 B2

GRAPHICS PROCESSOR
1310

VERTEX PROCESSOR

1305

FRAGMENT | | FRAGMENT | ~ FRAGMENT |
PROCESSOR | | PROCESSOR | e=e= | PROCESSOR |
1315A 1315 | 1315N1

| FRAGMENT | | FRAGMENT ! - FRAGMENT |
| PROCESSOR | | PROCESSOR | em e | PROCESSOR |
13158 11 13150 . 131N |
e ,

MMU : MMU '

1320A , 13208 :

r - - - - - - - - - - 1
CACHE | CACHE |
1325A : 13258 :

r- - - - - - - - — = L
INTERCONNECT | INTERCONNECT |
1330A : 13308 :

FIG. 13A

U.S. Patent Sep. 10, 2024 Sheet 23 of 39 US 12,086,205 B2

GRAPHICS PROCESSOR
1340

INTER-CORE TASK-MANAGER
(e.g., THREAD DISPATCHER)

— — — - —_—— = - —— — — "
SHADER | | SHADER | | SHADER | . SHADER |
CORE | CORE || CORE | eowe= | CORE |
| 1355C || 1355E | | 1355N-1 |
. SHADER | | SHADER | | SHADER | . SHADER |
| CORE | CORE 1] CORE | e | CORE |
| 1355B || 1355D || 1355F | | 1355N |

TILING UNIT

1358

MMU : MMU |
1320A | 13208 :

r - - - - - - - - == -1
CACHE | CACHE |
1325A : 13258 :

r- - - - === =-=== L
INTERCONNECT | INTERCONNECT |
1330A : 13308 :

FIG. 13B

U.S. Patent Sep. 10, 2024 Sheet 24 of 39 US 12,086,205 B2
1400

Application Processor o
1402

Unified Memory
1410

System Memory

1412
Source Code Runtime Library

1416

Compiled Code Compiler
1414B 1415
|
E GPGPU Memory :
| 1418 |
. o o o e e e e e e L L M L M L o |
GPGPU
1420
Fetch & Decode Unit Scheduler Controller Tensor Accelerator
1421 1422 1423
Compule Compute Lompute Computs
RIGCK BHOCK SHOCK HIGTK
1424A 1424B 1424C 1424N
Registers Power and Performance Module Cache
1425 1426 1427
L3 Data Cache
1430

Shared Local Memory
1432

FIG. 14

U.S. Patent Sep. 10, 2024

Sheet 25 of 39 US 12,086,205 B2

1500
| i : Matrix
Receptive Field Tile Input Volume Buffer _
p 1502 1504 Operation
1505 Output Buffer
1506

0 S2200000000000000000000000¢

'

¥ + 4 b
000 Siaaatane s S A000000000000
. ﬂ.ﬂnﬂﬂ. ﬂﬂﬂﬂh----- - PR S O

-—
* % __# T e e . o T —— .

.-
Y) . . T T T A T A AT A A 2 e e L T
& 'i'#'{mﬁ-ﬁ.&'#-'&-"*'* W W W W R —— —— —— —— —

00000 e s oo IwrIUSBOO000000000
9990500000 0000000000000000000000
oooooooooooo-ooooooooooooooooooo

00000000000000000006000000000
0000000000608 000000000000000
0000000000000000000000000000
0600000000000000000000000000
0000000000000000000000000000

‘QO'Oﬁi."‘.l‘i""‘.t‘ﬁ".O
0000000000000000000000000000
0000000000000000000000000000

0000000000000000000000000000
000000000000 0000000000000000
0000000000000000000000000000
00000000000000000000000000006
00000060000000080000000000000
0000000000000 000000000009000¢
0000000000600000000000000000
0000000000000000000000000000
0000000000000000000000000000
0090060000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
00000050000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
00900000000000000009000000000
0060000000000 00000000000000¢

ooooﬁoooooooooooooccntoooooquoo
0000000000000000000000000000000

0000000000000000000000000000000
000000000000000000000000000000
0000900000000000000000000000000
000000000000000000000000000000
000000000000000000000000000000
oooccocaoooooooocooctoooooqggz

+¢
99,

&
9

+
Sy
+
+

*

N
.*.

=

*
+
4
*

-

>
&

Ol
000
10000

*
0;
90080

>
e/

+

+
+
>

.’.

.’.
.

000000000000000000000000000
.....0....0............Q.'......
.........’.........C............
..........O.......OQQ&’.'....O.Q
...................O............
......OQ..O..Q&h%p..C..Q...0....

1000000000000000
0000000000000000
0000000000000000

qpcoanooooooooo

3
0000000000000000
oooocoooooocqpqp
0000

X

Fetch & Decode Unit
1421

Scheduler Controller
1422

Tensor Accelerator
1423

Systolic Tensor
Array
1508

Compute
Biock
1424N

Lomputs
A

1424A

Memory
1530

U.S. Patent Sep. 10, 2024 Sheet 26 of 39 US 12,086,205 B2

1508

1602 S

SRC O
1600 1612
_____ N) 1
5 I | S
i - . D .
1 *é) e o | *é} ™ -
-—> o>
- LJA o e A . 1,
C G Out
C C
j @ - ﬁ—.@ ..
&t +| | [H—o——+
| | v - I .
SRC 1 —r o Bl (e o
1601 c o}
..é}i I _j.,m | | ; ! *
Q) - hﬁ; g i
bt | | [H———+| | | H—
| ’éf’—' %" i i
LA LA | S Lo AL . A l o H—»
C E;J C C Ot
C C c C

FIG. 16A

U.S. Patent Sep. 10, 2024 Sheet 27 of 39 US 12,086,205 B2

1602

1601
1612
1606 /
1626
1600
E— s
{0 next
accumulator

T 1624

to additional SIMD lanes

FIG. 16B

U.S. Patent Sep. 10, 2024 Sheet 28 of 39 US 12,086,205 B2

1700
Src2A-0 Src2A-0
Src2A-1 Src2A-1
SIC2A-T7] vee SIc2A-7
1710A 1711A -
s 1722A
Dst
Src0
Src1-0 Src1-0
Src1 1 17024 Src1 1
Src1 -7 Src1 7
1712A 1712C
SrcZ2B-0 Src2B-0
Src2B-1 Src2B-1
Src2B-7 SrcZ2B-7
1710B ' 1711B '
1 S 1722B
Dst
Src0
Sre1-C Src1-0
SI'C1 1 17028 SI'C1 1 1702D
Src1 -7 Src1 7
1712B 1712D

FIG. 17A

US 12,086,205 B2

Sheet 29 of 39

Sep. 10, 2024

U.S. Patent

Sparse Matrix Multiply Accelerator

1700

Memory

1720

1742

1731

Feed A
1744

(e.g., Processing
Elements)

e
s
=
-
©
-
O
g=
>
c
-
¥

Post-Merge Elements

o
o
>
~handd
—
.
=
=
[

1737

FIG. 17B

Merge Elements

1722
1724

1751

FIG. 17C

U.S. Patent Sep. 10. 2024 Sheet 30 of 39

W

A///'/A

./l

Im

Gl

st
GIIs.

FIG. 18

U.S. Patent Sep. 10, 2024 Sheet 31 of 39 US 12,086,205 B2

t1

CYsI=) b
[}
[}
[}
[
B

I=]
I-]
-
I=]
I=]

|

.
Iﬂ'
1)
]
]
1]
a
1]

1

N ¥ N R

"t
!

1
0,
[
=}
=}
5}
=}

1902

1 ‘DoD

’

u]=I=]=}

'“ﬂ““ﬂ“
hop Bl g

"

m[=l=)=
L

-
ﬂﬂ“““’

'
e
2]

1

I L 1L

|
)

1904 1908

:3
]

1

=4

I=]=J=}

!
-

.,
inoo, oo

m[=]=]=}

= [=]=

1812

i
"
;
;
;
-

| '} 0) ! H
B (stationary) lio! ! m! 'mt

" EERO0ORRN
E B B R O0OE B
E B B B O0OE B
"= R BB ORBN
"= R E R ORN
E B B BE OE B
E B BE B OUE B
T E N UOUEBN

mininfuinfulsgn
minininimjuings
mimjufujufuinfe
wimjufujufuinge
mininfuinjuinge
wiminimimimingm

C(accumulation) 1
1932

U.S. Patent Sep. 10, 2024 Sheet 32 of 39 US 12,086,205 B2

A (broadcast))_

o

WNA A
Y
-

©
N
M-

Am
PP I s

777

U.S. Patent Sep. 10, 2024 Sheet 33 of 39 US 12,086,205 B2

1922 2022 2122

1
1
;
;
o
i
;
-
i
i

"
;

i} WO W iO) WO i} 0} W D} W |0} (. O
‘0! 0! i0¢ i0: 10: 10: 0! 0 () 10y 1080100 507 0 0,
{0) w0 o0 o o o 0! Ml 0} 0% .04 .05 .04 04,0,
0, 1 Hi=H DU HE HE T | HEinOR HEaHE [l HEitH

A

2102 2104

4
1
.
i
!
'
.
I
i
'
'
|
'
i

(broadcast) |iD; I s T I T T} 0l ol o} o o o i o
It 0! W W0 W WO (0} 10! |m: 10 0 0 0 .

(i a0 0! 0! e il uliin I Tisiiin il Rl

1906 = |1 12igi= =] U= HE s 1=t Hri=Uia e i U1 HE{EL

] i 0 0 0 e O M {0 [0 [0 [0} 07 W ol
tE; :.{ :Ei :ﬂ} Eﬂ; }BE ;ﬂ{ =l{ ;U: :.; :ai lﬂi 1EE 11:'{ in{ l.; :E}
s 8 10 08 08 0 00 W ! (O} 50y 103 00 08 308 0 (0
L A} 13; 0] 0; 3] . .0 [= U= = Hn H Lt

1
i

{x} W 0! 16} 6] 01 0 0 W W 0) 0} O} 0 0) 6
(d, 0 W 0! |0 . (0 i0; {10! {0: i0¢ {0: 0 i0) i0;
o) i 0 100 0 00 0 e 31100 |l 108 100 308 ;0! 0!
Lo U IR TR T TR T TR I TR TR TR T T s]

A b e B R b il

2106

CT=I=]]
LLLL!

(! M .
l; 0 Ful
i} 0] 18k

i, It ful
' {a] {1
s 10! Al
(i}] 1}

T i O o)
I L - st H §
(M (sl 1T (el
L r 1! | HE D}

®E OBn
B OB
R O N
g 08
| U=
" OB
OB
"R 0N

QLaOOan
miminjininis]sis
sjusinisin]sln
ﬂﬂﬂﬂﬂﬂﬁﬂ%
wiminEmimuimpe
uimiufuinini=in]
mimiupwinjulnln
anoooanoon
mEaEENEEN
mEminguimningw
SENEENEEED
CF 1l R 1 01 8
AEENEEEN
Lo O00an
EEEEEEEN

_(C(accumulation)
1932

FIG. 21

U.S. Patent Sep. 10, 2024 Sheet 34 of 39 US 12,086,205 B2

2200
Accumulation K = 128)-

0.5
Speedup O
o1 02 03 04 05 06 07 08 089
Sparsity
| 2300
Accumulation K = 256)_
2.5
"t
2
®
. C 2310
~ @
1
0.5
Speedup 0.1 0.2 0.6 04 05 06 07 08 09

Sparsity

U.S. Patent Sep. 10, 2024 Sheet 35 of 39 US 12,086,205 B2

2400

LOAD MULTIPLE DATA ELEMENTS OF A FIRST SUBMATRIX AND A SECOND
SUBMATRIX INTO MEMORY OF A PROCESSOR DEVICE
2402

DETERMINE A FIRST GROUPING FOR ELEMENTS OF THE FIRST SUBMATRIX
AND A SECOND GROUPING FOR ELEMENTS OF THE SECOND SUBMATRIX
2404

MERGE ELEMENTS OF A FIRST GROUP OF THE FIRST GROUPING INTO A

SECOND GROUP OF THE SECOND GROUPING
2406

GENERATE METADATA TO INDICATE A MERGE PATTERN FOR ELEMENTS OF

THE FIRST GROUP
2408

PROVIDE THE SECOND GROUP AND THE METADATA TO A PROCESSING
ELEMENT OF THE PROCESSOR DEVICE AS INPUT FOR A MATRIX OPERATION
INCLUDING A MATRIX MULTIPLY
2410

FIG. 24

U.S. Patent Sep. 10, 2024 Sheet 36 of 39 US 12,086,205 B2

2500

READ A FIRST SET OF TWO OR MORE TILES OF ELEMENTS ASSOCIATED WITH
A FIRST MATRIX
2502

MERGE A FIRST GROUP OF ELEMENTS IN A FIRST TILE OF THE TWO OR MORE
TILES OF ELEMENTS INTO A SECOND GROUP OF ELEMENTS OF A
CORRESPONDING GROUP OF ELEMENTS IN A SECOND TILE OF THE TWO OR
MORE TILES OF ELEMENTS
2504

READING A SECOND SET OF TWO OR MORE TILES OF ELEMENTS ASSOCIATED
WITH A SECOND MATRIX
2506

PERFORMING A MATRIX MULTIPLY OPERATION HAVING INPUT INCLUDING
THE SECOND GROUP OF ELEMENTS IN THE SECOND TILE AND SELECTED

ELEMENTS FROM THE SECOND SET OF TWO OR MORE TILES OF ELEMENTS
2508

FIG. 25A

U.S. Patent Sep. 10, 2024 Sheet 37 of 39 US 12,086,205 B2

D10

DURING A MERGE OPERATION, BYPASSING A MERGE OF A FIRST COLUMN OF
ELEMENTS INTO A SECOND COLUMN OF ELEMENTS WHEN ALL ELEMENTS OF

THE SECOND COLUMN ARE ZERO
2512

4-------------

DURING A MATRIX MULTIPLY OPERATION, BYPASSING A DOT PRODUCT

OPERATION INCLUDING THE SECOND COLUMN OF ELEMENTS WHEN ALL
ELEMENTS OF THE SECOND COLUMN ARE ZERO

2514

FIG. 25B

U.S. Patent Sep. 10, 2024 Sheet 38 of 39 US 12,086,205 B2

READ A FIRST GROUP OF ELEMENTS IN A COLUMN OF A
FIRST SUBMATRIX
2522

SELECT NEXT
GROUP IN THE

NON-ZERO VALUE
ELEMENT IN GROUP?
2523

FIRST SUBMATRIX
2524

READ A SECOND GROUP OF ELEMENTS IN A
CORRESPONDING COLUMN OF A SECOND SUBMATRIX

2526

NO
ZERO VALUE

ELEMENT IN GROUP?
2527

YES

SWAP ZERO VALUE ELEMENT IN THE SECOND GROUP OF
ELEMENTS WITH THE NON-ZERO VALUE ELEMENT IN
THE FIRST GROUP OF ELEMENTS

2528

FIG. 25C

U.S. Patent Sep. 10, 2024 Sheet 39 of 39 US 12,086,205 B2

COMPUTING DEVICE (E.G., HOST COMPUTER)
2600

OPERATING SYSTEM (0S)
2602

GRAPHICS DRIVER LOGIC
2622

GRAPHICS MEMORY MANAGER
2621

GRAPHICS PROCESSOR
2604

CACHE
2614

GRAPHICS MICROCONTROLLER

2015

GPU OS
m 2616 | 2812 [2620
Z_

GPGPU ENGINE
2644

GPUTILES SPECIAL TILES

APPLICATION
PROCESSOR

MEMORY
2608

2606

INPUT/OUTPUT (I/0) SOURCES
2610

FIG. 26

US 12,086,205 B2

1

RANDOM SPARSITY HANDLING IN A
SYSTOLIC ARRAY

BACKGROUND

In deep learning applications, random sparsity 1s very
common 1n all types of data including activations, gradients,
and weights. Data sparsity exists in both inference and
training cases. The sparsity mainly come from two sources,
RELU function and pruning. RELU function clamps nega-
tive activation values to zeros which serve as iput to next
layer; pruning process drops weights that are less important
to save storage. Matrix multiply 1s a foundation of deep
learning computation. Zeros 1n activation, weights, or gra-
dient mput to a matrix multiply unit produce zero as result
and have no impact on accumulation. If an output element
1s known to be zero beforehand, the entire compute etfort for
that element 1s wasted.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mvention 1s illustrated by way of example
and not limitation 1n the figures of the accompanying
drawings in which like references indicate similar elements,
and 1n which:

FIG. 1 1s a block diagram of a processing system, accord-
ing to an embodiment;

FIG. 2A-2D 1illustrate computing systems and graphics
processors provided by embodiments described herein;

FI1G. 3A-3C 1llustrate block diagrams of additional graph-
ics processor and compute accelerator architectures pro-
vided by embodiments described herein;

FI1G. 4 15 a block diagram of a graphics processing engine
of a graphics processor 1 accordance with some embodi-
ments;

FIG. SA-5B illustrate thread execution logic including an
array ol processing elements employed 1n a graphics pro-
cessor core according to embodiments described herein;

FIG. 6 illustrates an additional execution unit, according,
to an embodiment;

FIG. 7 1s a block diagram 1llustrating a graphics processor
instruction formats according to some embodiments;

FIG. 8 1s a block diagram of a graphics processor accord-
ing to another embodiment;

FIG. 9A-9B 1illustrate a graphics processor command
format and command sequence, according to some embodi-
ments;

FI1G. 10 1llustrates exemplary graphics software architec-
ture for a data processing system according to some embodi-
ments;

FIG. 11A 1s a block diagram illustrating an IP core
development system, according to an embodiment;

FIG. 11B illustrates a cross-section side view ol an
integrated circuit package assembly, according to some
embodiments described herein;

FIG. 11C 1illustrates a package assembly that includes
multiple units of hardware logic chiplets connected to a
substrate:

FIG. 11D 1illustrates a package assembly including inter-
changeable chiplets, according to an embodiment;

FIG. 12 1s a block diagram illustrating an exemplary
system on a chip integrated circuit that may be fabricated
using one or more IP cores, according to an embodiment;

FIG. 13A-13B are block diagrams 1llustrating exemplary
graphics processors for use within an SoC, according to
embodiments described herein:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 14 1s a block diagram of a data processing system,
according to an embodiment;

FIG. 15 illustrates a matrix operation performed by an
instruction pipeline, according to an embodiment;

FIG. 16A-16B illustrate details of hardware-based sys-
tolic array, according to some embodiments;

FIG. 17A-17D 1illustrates a sparse matrix multiply accel-
erator using systolic arrays with feedback inputs;

FIG. 18 illustrates a matrix multiply 1n which random
sparsity 1s handled via element merges;

FIG. 19 illustrates operations for column merging to
handle random sparsity 1 an input matrix of a matrix
accelerator;

FIG. 20 1llustrates a successive set of operations that are
performed to merge residual mmput elements during a suc-
cessive 1teration;

FIG. 21 1illustrates operations for a second round of
merging;

FIG. 22 and FIG. 23 illustrate throughput gains for a
matrix multiply unit having support for random sparsity;

FIG. 24 illustrates a method of merging sparse matrix
input having random sparsity;

FIG. 25A-23C 1llustrates methods of handling random
sparsity of an input matrix during a matrix multiply opera-
tion;

FIG. 26 1s a block diagram of a computing device
including a graphics processor, according to an embodiment.

DETAILED DESCRIPTION

For the purposes of explanation, numerous specific details
are set forth to provide a thorough understanding of the
various embodiments described below. However, 1t will be
apparent to a skilled practitioner in the art that the embodi-
ments may be practiced without some of these specific
details. In other instances, well-known structures and
devices are shown 1n block diagram form to avoid obscuring
the underlying principles, and to provide a more thorough
understanding of embodiments. Although some of the fol-
lowing embodiments are described with reference to a
graphics processor, the techniques and teachings described
herein may be applied to various types of circuits or semi-
conductor devices, including general purpose processing
devices or graphic processing devices. Reference herein to
“one embodiment” or “an embodiment” indicate that a
particular feature, structure, or characteristic described in
connection or association with the embodiment can be
included 1n at least one of such embodiments. However, the
appearances of the phrase “in one embodiment™ in various
places 1n the specification do not necessarily all refer to the
same embodiment.

In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives,
may be used. It should be understood that these terms are not
intended as synonyms for each other. “Coupled” 1s used to
indicate that two or more elements, which may or may not
be 1n direct physical or electrical contact with each other,
co-operate or interact with each other. “Connected” 1s used
to indicate the establishment of communication between two
or more elements that are coupled with each other.

In the description that follows, FIGS. 1 through 13A-13B
provide an overview of exemplary data processing system
and graphics processor logic that incorporates or relates to
the various embodiments. FIGS. 14-26 provide specific
details of the various embodiments. Some aspects of the
following embodiments are described with reference to a
graphics processor, while other aspects are described with

US 12,086,205 B2

3

respect to a general-purpose processor, such as a central
processing unit (CPU). Similar techniques and teachings can
be applied to other types of circuits or semiconductor
devices, imncluding but not limited to a many integrated core
processor, a GPU cluster, or one or more nstances of a field
programmable gate array (FPGA). In general, the teachings
are applicable to any processor or machine that manipulates
or processes 1mage (e.g., sample, pixel), vertex data, or
geometry data or that performs parallel processing opera-
tions for machine learming and high-performance computing,
applications.

System Overview

FIG. 1 1s a block diagram of a processing system 100,
according to an embodiment. Processing system 100 may be
used 1n a single processor desktop system, a multiprocessor
workstation system, or a server system having a large
number of processors 102 or processor cores 107. In one
embodiment, the processing system 100 1s a processing
platform incorporated within a system-on-a-chip (SoC) inte-
grated circuit for use in mobile, handheld, or embedded
devices such as within Internet-oi-things (IoT) devices with
wired or wireless connectivity to a local or wide area
network.

In one embodiment, processing system 100 can include,
couple with, or be integrated within: a server-based gaming
platiorm; a game console, including a game and media
console; a mobile gaming console, a handheld game con-
sole, or an online game console. In some embodiments the
processing system 100 1s part of a mobile phone, smart
phone, tablet computing device or mobile Internet-con-
nected device such as a laptop with low internal storage
capacity. Processing system 100 can also include, couple
with, or be mtegrated within: a wearable device, such as a
smart watch wearable device; smart eyewear or clothing
enhanced with augmented reality (AR) or virtual reality
(VR) features to provide visual, audio or tactile outputs to
supplement real world visual, audio or tactile experiences or
otherwise provide text, audio, graphics, video, holographic
images or video, or tactile feedback; other augmented reality
(AR) device; or other virtual reality (VR) device. In some
embodiments, the processing system 100 includes or 1s part
of a television or set top box device. In one embodiment,
processing system 100 can include, couple with, or be
integrated within a self-driving vehicle such as a bus, tractor
trailer, car, motor or electric power cycle, plane or glider (or
any combination thereot). The self-driving vehicle may use
processing system 100 to process the environment sensed
around the vehicle.

In some embodiments, the one or more processors 102
cach include one or more processor cores 107 to process
instructions which, when executed, perform operations for
system or user soitware. In some embodiments, at least one
of the one or more processor cores 107 1s configured to
process a specific instruction set 109. In some embodiments,
istruction set 109 may facilitate Complex Instruction Set
Computing (CISC), Reduced Instruction Set Computing
(RISC), or computing via a Very Long Instruction Word
(VLIW). One or more processor cores 107 may process a
different instruction set 109, which may include instructions
to facilitate the emulation of other 1nstruction sets. Processor
core 107 may also include other processing devices, such as
a Digital Signal Processor (DSP).

In some embodiments, the processor 102 includes cache
memory 104. Depending on the architecture, the processor
102 can have a single internal cache or multiple levels of
internal cache. In some embodiments, the cache memory 1s
shared among various components of the processor 102. In

10

15

20

25

30

35

40

45

50

55

60

65

4

some embodiments, the processor 102 also uses an external
cache (e.g., a Level-3 (L3) cache or Last Level Cache
(LLC)) (not shown), which may be shared among processor
cores 107 using known cache coherency techniques. A
register file 106 can be additionally included 1n processor
102 and may include different types of registers for storing
different types of data (e.g., integer registers, floating point
registers, status registers, and an instruction pointer regis-
ter). Some registers may be general-purpose registers, while
other registers may be specific to the design of the processor
102.

In some embodiments, one or more processor(s) 102 are
coupled with one or more interface bus(es) 110 to transmit
communication signals such as address, data, or control
signals between processor 102 and other components 1n the
processing system 100. The interface bus 110, in one
embodiment, can be a processor bus, such as a version of the
Direct Media Interface (DMI) bus. However, processor
busses are not limited to the DMI bus, and may include one
or more Peripheral Component Interconnect buses (e.g.,
PCI, PCI express), memory busses, or other types of inter-
face busses. In one embodiment the processor(s) 102 include
an integrated memory controller 116 and a platform con-
troller hub 130. The memory controller 116 facilitates com-
munication between a memory device and other components
ol the processing system 100, while the platform controller
hub (PCH) 130 provides connections to I/O devices via a
local 1/0 bus.

The memory device 120 can be a dynamic random-access
memory (DRAM) device, a static random-access memory
(SRAM) device, flash memory device, phase-change
memory device, or some other memory device having
suitable performance to serve as process memory. In one
embodiment the memory device 120 can operate as system
memory for the processing system 100, to store data 122 and
instructions 121 for use when the one or more processors
102 executes an application or process. Memory controller
116 also couples with an optional external graphics proces-
sor 118, which may communicate with the one or more
graphics processors 108 1n processors 102 to perform graph-
ics and media operations. In some embodiments, graphics,
media, and or compute operations may be assisted by an
accelerator 112 which 1s a coprocessor that can be config-
ured to perform a specialized set of graphics, media, or
compute operations. For example, 1n one embodiment the
accelerator 112 1s a matrix multiplication accelerator used to
optimize machine learning or compute operations. In one
embodiment the accelerator 112 1s a ray-tracing accelerator
that can be used to perform ray-tracing operations in concert
with the graphics processor 108. In one embodiment, an
external accelerator 119 may be used in place of or 1n
concert with the accelerator 112.

In some embodiments a display device 111 can connect to
the processor(s) 102. The display device 111 can be one or
more of an internal display device, as 1n a mobile electronic
device or a laptop device or an external display device
attached via a display interface (e.g., DisplayPort, etc.). In
one embodiment the display device 111 can be a head
mounted display (HMD) such as a sterecoscopic display
device for use in virtual reality (VR) applications or aug-
mented reality (AR) applications.

In some embodiments the platform controller hub 130
enables peripherals to connect to memory device 120 and
processor 102 via a high-speed 1/0 bus. The 1/0 peripherals
include, but are not limited to, an audio controller 146, a
network controller 134, a firmware intertace 128, a wireless
transceiver 126, touch sensors 125, a data storage device 124

US 12,086,205 B2

S

(e¢.g., non-volatile memory, volatile memory, hard disk
drive, flash memory, NAND, 3D NAND, 3D XPoint, etc.).
The data storage device 124 can connect via a storage
interface (e.g., SATA) or via a peripheral bus, such as a
Peripheral Component Interconnect bus (e.g., PCI, PCI
express). The touch sensors 125 can include touch screen
sensors, pressure sensors, or fingerprint sensors. The wire-
less transceiver 126 can be a Wi-Fi transceiver, a Bluetooth
transceiver, or a mobile network transceiver such as a 3G,
4G, 5G, or Long-Term Evolution (LTE) transceiver. The
firmware interface 128 enables communication with system
firmware, and can be, for example, a unified extensible
firmware interface (UEFI). The network controller 134 can
enable a network connection to a wired network. In some
embodiments, a high-performance network controller (not
shown) couples with the interface bus 110. The audio
controller 146, in one embodiment, 1s a multi-channel high
definition audio controller. In one embodiment the process-
ing system 100 includes an optional legacy I/O controller
140 for coupling legacy (e.g., Personal System 2 (PS/2))
devices to the system. The platform controller hub 130 can
also connect to one or more Universal Serial Bus (USB)
controllers 142 connect input devices, such as keyboard and
mouse 143 combinations, a camera 144, or other USB input
devices.

It will be appreciated that the processing system 100
shown 1s exemplary and not limiting, as other types of data
processing systems that are differently configured may also
be used. For example, an instance of the memory controller
116 and platform controller hub 130 may be integrated into
a discreet external graphics processor, such as the external
graphics processor 118. In one embodiment the platform
controller hub 130 and/or memory controller 116 may be
external to the one or more processor(s) 102. For example,
the processing system 100 can include an external memory
controller 116 and platform controller hub 130, which may
be configured as a memory controller hub and peripheral
controller hub within a system chipset that 1s 1n communi-
cation with the processor(s) 102.

For example, circuit boards (“sleds”) can be used on
which components such as CPUs, memory, and other com-
ponents are placed are designed for increased thermal per-
formance. In some examples, processing components such
as the processors are located on a top side of a sled while
near memory, such as DIMMSs, are located on a bottom side
of the sled. As a result of the enhanced airtlow provided by
this design, the components may operate at higher frequen-
ciecs and power levels than in typical systems, thereby
increasing performance. Furthermore, the sleds are config-
ured to blindly mate with power and data communication
cables 1n a rack, thereby enhancing their ability to be quickly
removed, upgraded, reimnstalled, and/or replaced. Similarly,
individual components located on the sleds, such as proces-
sors, accelerators, memory, and data storage drives, are
configured to be easily upgraded due to their increased
spacing from each other. In the 1llustrative embodiment, the
components additionally include hardware attestation fea-
tures to prove their authenticity.

A data center can utilize a single network architecture
(“fabric™) that supports multiple other network architectures
including Ethernet and Ommni-Path. The sleds can be coupled
to switches via optical fibers, which provide higher band-
width and lower latency than typical twisted pair cabling
(e.g., Category 5, Category 5e, Category 6, etc.). Due to the
high bandwidth, low latency interconnections and network
architecture, the data center may, 1n use, pool resources, such
as memory, accelerators (e.g., GPUs, graphics accelerators,

10

15

20

25

30

35

40

45

50

55

60

65

6

FPGAs, ASICs, neural network and/or artificial intelligence
accelerators, etc.), and data storage drives that are physically
disaggregated, and provide them to compute resources (e.g.,
processors) on an as needed basis, enabling the compute
resources to access the pooled resources as if they were
local.

A power supply or source can provide voltage and/or
current to processing system 100 or any component or
system described herein. In one example, the power supply
includes an AC to DC (alternating current to direct current)
adapter to plug into a wall outlet. Such AC power can be
renewable energy (e.g., solar power) power source. In one
example, power source includes a DC power source, such as
an external AC to DC converter. In one example, power
source or power supply includes wireless charging hardware
to charge via proximity to a charging field. In one example,
power source can include an internal battery, alternating
current supply, motion-based power supply, solar power
supply, or fuel cell source.

FIG. 2A-2D illustrate computing systems and graphics
processors provided by embodiments described herein. The
clements of FIG. 2A-2D having the same reference numbers
(or names) as the elements of any other figure herein can
operate or function 1 any manner similar to that described
elsewhere herein, but are not limited to such.

FIG. 2A 1s a block diagram of an embodiment of a
processor 200 having one or more processor cores 202A-
202N, an ntegrated memory controller 214, and an inte-
grated graphics processor 208. Processor 200 can include
additional cores up to and including additional core 202N
represented by the dashed lined boxes. Each of processor
cores 202A-202N includes one or more internal cache units
204A-204N. In some embodiments each processor core also
has access to one or more shared cached units 206. The
internal cache units 204 A-204N and shared cache units 206
represent a cache memory hierarchy within the processor
200. The cache memory hierarchy may include at least one
level of instruction and data cache within each processor
core and one or more levels of shared mid-level cache, such
as a Level 2 (L2), Level 3 (IL3), Level 4 (L4), or other levels
of cache, where the highest level of cache belore external
memory 1s classified as the LLC. In some embodiments,
cache coherency logic maintains coherency between the
various cache units 206 and 204A-204N.

In some embodiments, processor 200 may also include a
set ol one or more bus controller units 216 and a system
agent core 210. The one or more bus controller units 216
manage a set of peripheral buses, such as one or more PCI
or PCI express busses. System agent core 210 provides
management functionality for the various processor compo-
nents. In some embodiments, system agent core 210
includes one or more integrated memory controllers 214 to
manage access to various external memory devices (not
shown).

In some embodiments, one or more of the processor cores
202A-202N 1nclude support for simultaneous multi-thread-
ing. In such embodiment, the system agent core 210 includes
components for coordinating and operating cores 202A-
202N during multi-threaded processing. System agent core
210 may additionally include a power control unit (PCU),
which includes logic and components to regulate the power
state of processor cores 202A-202N and graphics processor
208.

In some embodiments, processor 200 additionally
includes graphics processor 208 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 208 couples with the set of shared cache units 206,

US 12,086,205 B2

7

and the system agent core 210, including the one or more
integrated memory controllers 214. In some embodiments,
the system agent core 210 also includes a display controller
211 to drive graphics processor output to one or more
coupled displays. In some embodiments, display controller
211 may also be a separate module coupled with the graphics
processor via at least one interconnect, or may be integrated
within the graphics processor 208.

In some embodiments, a ring-based interconnect 212 1s
used to couple the internal components of the processor 200.
However, an alternative interconnect unit may be used, such
as a point-to-point interconnect, a switched interconnect, or
other techniques, including techmques well known in the art.
In some embodiments, graphics processor 208 couples with
the ring-based mterconnect 212 via an I/O link 213.

The exemplary I/O link 213 represents at least one of
multiple varieties of I/O interconnects, icluding an on
package I/O interconnect which facilitates communication
between various processor components and a high-perfor-
mance embedded memory module 218, such as an eDRAM
module. In some embodiments, each of the processor cores
202A-202N and graphics processor 208 can use embedded
memory modules 218 as a shared Last Level Cache.

In some embodiments, processor cores 202A-202N are
homogenous cores executing the same instruction set archi-
tecture. In another embodiment, processor cores 202A-202N
are heterogeneous in terms of instruction set architecture
(ISA), where one or more of processor cores 202A-202N
execute a first instruction set, while at least one of the other
cores executes a subset of the first instruction set or a
different instruction set. In one embodiment, processor cores
202A-202N are heterogeneous in terms of microarchitec-
ture, where one or more cores having a relatively higher
power consumption couple with one or more power cores
having a lower power consumption. In one embodiment,
processor cores 202A-202N are heterogeneous 1n terms of
computational capability. Additionally, processor 200 can be
implemented on one or more chips or as an SoC ntegrated
circuit having the illustrated components, in addition to
other components.

FIG. 2B 1s a block diagram of hardware logic of a
graphics processor core 219, according to some embodi-
ments described herein. Elements of FIG. 2B having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such. The graphics processor core 219, sometimes
referred to as a core slice, can be one or multiple graphics
cores within a modular graphics processor. The graphics
processor core 219 1s exemplary of one graphics core slice,
and a graphics processor as described herein may include
multiple graphics core slices based on target power and
performance envelopes. Each graphics processor core 219
can mclude a fixed function block 230 coupled with multiple
sub-cores 221A-221F, also referred to as sub-slices, that
include modular blocks of general-purpose and fixed func-
tion logic.

In some embodiments, the fixed function block 230
includes a geometry/fixed function pipeline 231 that can be
shared by all sub-cores in the graphics processor core 219,
for example, 1 lower performance and/or lower power
graphics processor implementations. In various embodi-
ments, the geometry/fixed function pipeline 231 includes a
3D fixed function pipeline (e.g., 3D pipeline 312 as in FIG.
3A and FIG. 4, described below) a video front-end unit, a
thread spawner and thread dispatcher, and a unified return

10

15

20

25

30

35

40

45

50

55

60

65

8

bufler manager, which manages unified return buflers (e.g.,
unified return bufler 418 1n FIG. 4, as described below).
In one embodiment the fixed function block 230 also
includes a graphics SoC interface 232, a graphics micro-
controller 233, and a media pipeline 234. The graphics SoC
interface 232 provides an interface between the graphics
processor core 219 and other processor cores within a
system on a chip integrated circuit. The graphics microcon-
troller 233 1s a programmable sub-processor that 1s config-
urable to manage various functions of the graphics processor
core 219, including thread dispatch, scheduling, and pre-
emption. The media pipeline 234 (e.g., media pipeline 316
of FIG. 3A and FIG. 4) includes logic to facilitate the
decoding, encoding, pre-processing, and/or post-processing
of multimedia data, including image and video data. The
media pipeline 234 implement media operations via requests
to compute or sampling logic within the sub-cores 221-221F.
In one embodiment the SoC interface 232 enables the
graphics processor core 219 to communicate with general-
purpose application processor cores (e.g., CPUs) and/or
other components within an SoC, including memory hier-
archy elements such as a shared last level cache memory, the
system RAM, and/or embedded on-chip or on-package
DRAM. The SoC interface 232 can also enable communi-
cation with fixed function devices within the SoC, such as
camera i1maging pipelines, and enables the use of and/or
implements global memory atomics that may be shared
between the graphics processor core 219 and CPUs within
the SoC. The SoC interface 232 can also implement power
management controls for the graphics processor core 219
and enable an interface between a clock domain of the
graphics processor core 219 and other clock domains within
the SoC. In one embodiment the SoC interface 232 enables
receipt of command buflers from a command streamer and
global thread dispatcher that are configured to provide
commands and 1nstructions to each of one or more graphics
cores within a graphics processor. The commands and
istructions can be dispatched to the media pipeline 234,
when media operations are to be performed, or a geometry
and fixed function pipeline (e.g., geometry and fixed func-
tion pipeline 231, geometry and fixed function pipeline 237)
when graphics processing operations are to be performed.
The graphics microcontroller 233 can be configured to
perform various scheduling and management tasks for the
graphics processor core 219. In one embodiment the graph-
ics microcontroller 233 can perform graphics and/or com-
pute workload scheduling on the various graphics parallel
engines within execution unit (EU) arrays 222A-222F,
224 A-224F within the sub-cores 221A-221F. In this sched-
uling model, host software executing on a CPU core of an
SoC including the graphics processor core 219 can submit
workloads one of multiple graphic processor doorbells,
which mvokes a scheduling operation on the appropnate
graphics engine. Scheduling operations include determining
which workload to run next, submitting a workload to a
command streamer, pre-empting existing workloads running
on an engine, momtoring progress of a workload, and
notifying host software when a workload 1s complete. In one
embodiment the graphics microcontroller 233 can also
tacilitate low-power or 1dle states for the graphics processor
core 219, providing the graphics processor core 219 with the
ability to save and restore registers within the graphics
processor core 219 across low-power state transitions inde-
pendently from the operating system and/or graphics driver
soltware on the system.
The graphics processor core 219 may have greater than or
tewer than the illustrated sub-cores 221A-221F, up to N

US 12,086,205 B2

9

modular sub-cores. For each set of N sub-cores, the graphics
processor core 219 can also include shared tunction logic
235, shared and/or cache memory 236, a geometry/fixed
function pipeline 237, as well as additional fixed function
logic 238 to accelerate various graphics and compute pro-
cessing operations. The shared function logic 235 can
include logic units associated with the shared function logic
420 of FIG. 4 (e.g., sampler, math, and/or inter-thread
communication logic) that can be shared by each N sub-
cores within the graphics processor core 219. The shared
and/or cache memory 236 can be a last-level cache for the
set of N sub-cores 221 A-221F within the graphics processor
core 219, and can also serve as shared memory that is
accessible by multiple sub-cores. The geometry/fixed tunc-
tion pipeline 237 can be included instead of the geometry/
fixed function pipeline 231 within the fixed function block
230 and can include the same or similar logic units.

In one embodiment the graphics processor core 219
includes additional fixed function logic 238 that can 1nclude
vartous fixed function acceleration logic for use by the
graphics processor core 219. In one embodiment the addi-
tional fixed function logic 238 includes an additional geom-
etry pipeline for use 1n position only shading. In position-
only shading, two geometry pipelines exist, the {full
geometry pipeline within the geometry/fixed function pipe-
line 231 and a cull pipeline, which 1s an additional geometry
pipeline which may be included within the additional fixed
function logic 238. In one embodiment the cull pipeline 1s a
trimmed down version of the full geometry pipeline. The full
pipeline and the cull pipeline can execute different instances
of the same application, each instance having a separate
context. Position only shading can hide long cull runs of
discarded triangles, enabling shading to be completed earlier
in some instances. For example and 1n one embodiment the
cull pipeline logic within the additional fixed function logic
238 can execute position shaders in parallel with the main
application and generally generates critical results faster
than the full pipeline, as the cull pipeline fetches and shades
only the position attribute of the vertices, without perform-
ing rasterization and rendering of the pixels to the frame
builer. The cull pipeline can use the generated critical results
to compute visibility information for all the triangles without
regard to whether those triangles are culled. The full pipeline
(which 1n this instance may be referred to as a replay
pipeline) can consume the visibility mnformation to skip the
culled triangles to shade only the visible triangles that are
finally passed to the rasterization phase.

In one embodiment the additional fixed function logic 238
can also include machine-learning acceleration logic, such
as fixed function matrix multiplication logic, for implemen-
tations including optimizations for machine learning train-
ing or inferencing.

Within each graphics sub-core 221 A-221F includes a set
ol execution resources that may be used to perform graphics,
media, and compute operations 1n response to requests by
graphics pipeline, media pipeline, or shader programs. The
graphics sub-cores 221A-221F include multiple EU arrays
222A-222F, 224A-224F, thread dispatch and inter-thread
communication (TD/IC) logic 223A-223F, a 3D (e.g., tex-
ture) sampler 225A-225F, a media sampler 206A-206F, a
shader processor 227A-227F, and shared local memory
(SLM) 228A-228F. The EU arrays 222A-222F, 224 A-224F
cach include multiple execution units, which are general-
purpose graphics processing units capable ol performing
floating-point and integer/fixed-point logic operations 1n
service of a graphics, media, or compute operation, includ-
ing graphics, media, or compute shader/GPGPU programs.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

The TD/IC logic 223 A-223F performs local thread dispatch
and thread control operations for the execution units within
a sub-core and facilitate communication between threads
executing on the execution units of the sub-core. The 3D
sampler 225A-225F can read texture or other 3D graphics
related data into memory. The 3D sampler can read texture
data diflerently based on a configured sample state and the
texture format associated with a given texture. The media
sampler 206A-206F can perform similar read operations
based on the type and format associated with media data. In
one embodiment, each graphics sub-core 221A-221F can
alternately include a unified 3D and media sampler. Threads
executing on the execution umts within each of the sub-
cores 221A-221F can make use of shared local memory
228A-228F within each sub-core, to enable threads execut-
ing within a thread group to execute using a common pool
of on-chip memory.

FIG. 2C illustrates a graphics processing unit (GPU) 239
that includes dedicated sets of graphics processing resources
arranged 1nto multi-core groups 240A-240N. The details of
multi-core group 240A are illustrated. Multi-core groups
240B-240N may be equipped with the same or similar sets
ol graphics processing resources.

As 1llustrated, a multi-core group 240A may include a set
of graphics cores 243, a set of tensor cores 244, and a set of
ray tracing cores 2435. A scheduler/dispatcher 241 schedules
and dispatches the graphics threads for execution on the
various cores 243, 244, 245. In one embodiment the tensor
cores 244 are sparse tensor cores with hardware to enable
multiplication operations having a zero value iput to be
bypassed.

A set of register files 242 can store operand values used
by the cores 243, 244, 245 when executing the graphics
threads. These may include, for example, mteger registers
for storing integer values, tloating point registers for storing
floating point values, vector registers for storing packed data
clements (integer and/or tloating point data elements) and
tile registers for storing tensor/matrix values. In one embodi-
ment, the tile registers are implemented as combined sets of
vector registers.

One or more combined level 1 (L1) caches and shared
memory units 247 store graphics data such as texture data,
vertex data, pixel data, ray data, bounding volume data, etc.,
locally within each multi-core group 240A. One or more
texture units 247 can also be used to perform texturing
operations, such as texture mapping and sampling. A Level
2 (L2) cache 253 shared by all or a subset of the multi-core
groups 240A-240N stores graphics data and/or instructions
for multiple concurrent graphics threads. As illustrated, the
[.2 cache 253 may be shared across a plurality of multi-core
groups 240A-240N. One or more memory controllers 248
couple the GPU 239 to a memory 249 which may be a
system memory (e.g., DRAM) and/or a dedicated graphics
memory (e.g., GDDR6 memory).

Input/output (I/0) circuitry 250 couples the GPU 239 to
one or more I/O devices 252 such as digital signal processors
(DSPs), network controllers, or user input devices. An
on-chip interconnect may be used to couple the I/O devices

252 to the GPU 239 and memory 249. One or more [/O
memory management umts (IOMMUSs) 251 of the /O
circuitry 250 couple the I/O devices 252 directly to the
memory 249. In one embodiment, the IOMMU 251 manages
multiple sets of page tables to map virtual addresses to

physical addresses 1n memory 249. In this embodiment, the
I/O devices 252, CPU(s) 246, and GPU 239 may share the
same virtual address space.

US 12,086,205 B2

11

In one implementation, the IOMMU 2351 supports virtu-

alization. In this case, 1t may manage a {irst set of page tables
to map guest/graphics virtual addresses to guest/graphics
physical addresses and a second set of page tables to map the
guest/graphics physical addresses to system/host physical
addresses (e.g., within memory 249). The base addresses of
cach of the first and second sets of page tables may be stored
in control registers and swapped out on a context switch
(e.g., so that the new context 1s provided with access to the
relevant set of page tables). While not 1llustrated 1n FIG. 2C,
cach of the cores 243, 244, 245 and/or multi-core groups
240A-240N may include translation lookaside bullers
(TLBs) to cache guest virtual to guest physical translations,
guest physical to host physical translations, and guest virtual
to host physical translations.
In one embodiment, the CPUs 246, GPU 239, and [/O
devices 252 are integrated on a single semiconductor chip
and/or chip package. The memory 249 may be integrated on
the same chip or may be coupled to the memory controllers
248 via an ofl-chip interface. In one implementation, the
memory 249 comprises GDDR6 memory which shares the
same virtual address space as other physical system-level
memories, although the underlying principles of the inven-
tion are not limited to this specific implementation.

In one embodiment, the tensor cores 244 include a plu-
rality of execution units specifically designed to perform
matrix operations, which are the fundamental compute
operation used to perform deep learning operations. For
example, simultaneous matrix multiplication operations
may be used for neural network training and inferencing.
The tensor cores 244 may perform matrix processing using
a variety ol operand precisions including single precision
floating-point (e.g., 32 bits), halif-precision floating point
(e.g., 16 bits), mteger words (16 bits), bytes (8 bits), and
half-bytes (4 bits). In one embodiment, a neural network
implementation extracts features of each rendered scene,
potentially combining details from multiple frames, to con-
struct a high-quality final image.

In deep learning implementations, parallel matrix multi-
plication work may be scheduled for execution on the tensor
cores 244. The tramning of neural networks, 1n particular,
requires a significant number of matrix dot product opera-
tions. In order to process an inner-product formulation of an
NxNxN matrix multiply, the tensor cores 244 may include
at least N dot-product processing elements. Before the
matrix multiply begins, one entire matrix i1s loaded 1nto tile
registers and at least one column of a second matrix 1s
loaded each cycle for N cycles. Each cycle, there are N dot
products that are processed.

Matrix elements may be stored at different precisions
depending on the particular implementation, including
16-bit words, 8-bit bytes (e.g., INT8) and 4-bit hali-bytes
(e.g., INT4). Different precision modes may be specified for
the tensor cores 244 to ensure that the most etlicient preci-
s10n 1s used for different workloads (e.g., such as inferencing
workloads which can tolerate quantization to bytes and
hali-bytes).

In one embodiment, the ray tracing cores 245 accelerate
ray tracing operations for both real-time ray tracing and
non-real-time ray tracing implementations. In particular, the
ray tracing cores 245 include ray traversal/intersection cir-
cuitry for performing ray traversal using bounding volume
hierarchies (BVHs) and identiiying intersections between
rays and primitives enclosed within the BVH volumes. The
ray tracing cores 245 may also include circuitry for per-
tforming depth testing and culling (e.g., using a Z butler or
similar arrangement). In one implementation, the ray tracing

5

10

15

20

25

30

35

40

45

50

55

60

65

12

cores 245 perform traversal and intersection operations 1n
concert with the image denoising techniques described
herein, at least a portion of which may be executed on the
tensor cores 244. For example, in one embodiment, the
tensor cores 244 implement a deep learning neural network
to perform denoising of frames generated by the ray tracing
cores 245. However, the CPU(s) 246, graphics cores 243,
and/or ray tracing cores 245 may also implement all or a
portion of the denoising and/or deep learning algorithms.

In addition, as described above, a distributed approach to
denoising may be employed 1n which the GPU 239 1s in a
computing device coupled to other computing devices over
a network or high speed mterconnect. In this embodiment,
the interconnected computing devices share neural network
learning/training data to improve the speed with which the
overall system learns to perform denoising for different
types ol image frames and/or different graphics applications.

In one embodiment, the ray tracing cores 245 process all
BVH traversal and ray-primitive intersections, saving the
graphics cores 243 from being overloaded with thousands of
instructions per ray. In one embodiment, each ray tracing
core 245 1includes a first set of specialized circuitry for
performing bounding box tests (e.g., for traversal opera-
tions) and a second set of specialized circuitry for perform-
ing the ray-triangle itersection tests (e.g., intersecting rays
which have been traversed). Thus, 1n one embodiment, the
multi-core group 240A can simply launch a ray probe, and
the ray tracing cores 245 independently perform ray tra-
versal and intersection and return hit data (e.g., a hit, no hat,
multiple hits, etc.) to the thread context. The other cores 243,
244 are freed to perform other graphics or compute work
while the ray tracing cores 2435 perform the traversal and
intersection operations.

In one embodiment, each ray tracing core 245 includes a
traversal unmit to perform BVH {testing operations and an
intersection unit which performs ray-primitive intersection
tests. The intersection unit generates a “hit”, “no hit”, or
“multiple hit” response, which 1t provides to the appropriate
thread. During the traversal and intersection operations, the
execution resources of the other cores (e.g., graphics cores
243 and tensor cores 244) are freed to perform other forms
ol graphics work.

In one particular embodiment described below, a hybnd
rasterization/ray tracing approach 1s used 1n which work 1s
distributed between the graphics cores 243 and ray tracing
cores 245.

In one embodiment, the ray tracing cores 245 (and/or
other cores 243, 244) include hardware support for a ray
tracing 1nstruction set such as Microsolt’s DirectX Ray
Tracing (DXR) which includes a DispatchRays command,
as well as ray-generation, closest-hit, any-hit, and miss
shaders, which enable the assignment of unique sets of
shaders and textures for each object. Another ray tracing
platiorm which may be supported by the ray tracing cores
245, graphics cores 243 and tensor cores 244 1s Vulkan
1.1.85. Note, however, that the underlying principles of the
invention are not limited to any particular ray tracing ISA.

In general, the various cores 245, 244, 243 may support
a ray tracing instruction set that includes instructions/func-
tions for ray generation, closest hit, any hit, ray-primitive
intersection, per-primitive and hierarchical bounding box
construction, miss, visit, and exceptions. More specifically,
one embodiment includes ray tracing instructions to perform
the following functions:

Ray Generation—Ray generation instructions may be
executed for each pixel, sample, or other user-defined work
assignment.

US 12,086,205 B2

13

Closest Hit—A closest hit mnstruction may be executed to
locate the closest intersection point of a ray with primitives
within a scene.

Any Hit—An any hit instruction 1dentifies multiple inter-
sections between a ray and primitives within a scene,
potentially to 1dentify a new closest intersection point.

Intersection—An intersection instruction performs a ray-
primitive itersection test and outputs a result.

Per-primitive Bounding box Construction—This mnstruc-
tion builds a bounding box around a given primitive or group
of primitives (e.g., when building a new BVH or other
acceleration data structure).

Miss—Indicates that a ray misses all geometry within a
scene, or specified region of a scene.

Visit—Indicates the children volumes a ray will traverse.

Exceptions—Includes various types of exception handlers
(e.g., invoked for various error conditions).

In one embodiment the ray tracing cores 245 may be
adapted to accelerate general-purpose compute operations
that can be accelerated using computational techniques that
are analogous to ray intersection tests. A compute frame-
work can be provided that enables shader programs to be
compiled into low level mnstructions and/or primitives that
perform general-purpose compute operations via the ray
tracing cores. Exemplary computational problems that can
benefit from compute operations performed on the ray
tracing cores 245 include computations involving beam,
wave, ray, or particle propagation within a coordinate space.
Interactions associated with that propagation can be com-
puted relative to a geometry or mesh within the coordinate
space. For example, computations associated with electro-
magnetic signal propagation through an environment can be
accelerated via the use of mstructions or primitives that are
executed via the ray tracing cores. Diflraction and reflection
of the signals by objects 1n the environment can be computed
as direct ray-tracing analogies.

Ray tracing cores 245 can also be used to perform
computations that are not directly analogous to ray tracing.
For example, mesh projection, mesh refinement, and volume
sampling computations can be accelerated using the ray
tracing cores 245. Generic coordinate space calculations,
such as nearest neighbor calculations can also be performed.
For example, the set of points near a given point can be
discovered by defining a bounding box in the coordinate
space around the point. BVH and ray probe logic within the
ray tracing cores 245 can then be used to determine the set
ol point intersections within the bounding box. The inter-
sections constitute the origin point and the nearest neighbors
to that origin point. Computations that are performed using,
the ray tracing cores 2435 can be performed in parallel with
computations performed on the graphics cores 243 and
tensor cores 244. A shader compiler can be configured to
compile a compute shader or other general-purpose graphics
processing program into low level primitives that can be
parallelized across the graphics cores 243, tensor cores 244,
and ray tracing cores 245.

FIG. 2D 1s a block diagram of general purpose graphics
processing unit (GPGPU) 270 that can be configured as a
graphics processor and/or compute accelerator, according to
embodiments described herein. The GPGPU 270 can inter-
connect with host processors (e.g., one or more CPU(s) 246)
and memory 271, 272 via one or more system and/or
memory busses. In one embodiment the memory 271 1s
system memory that may be shared with the one or more
CPU(s) 246, while memory 272 1s device memory that is
dedicated to the GPGPU 270. In one embodiment, compo-
nents within the GPGPU 270 and memory 272 may be

10

15

20

25

30

35

40

45

50

55

60

65

14

mapped 1nto memory addresses that are accessible to the one
or more CPU(s) 246. Access to memory 271 and 272 may
be facilitated via a memory controller 268. In one embodi-
ment the memory controller 268 includes an internal direct
memory access (DMA) controller 269 or can include logic
to perform operations that would otherwise be performed by
a DMA controller.

The GPGPU 270 includes multiple cache memories,
including an L2 cache 253, L1 cache 254, an instruction
cache 255, and shared memory 2356, at least a portion of
which may also be partitioned as a cache memory. The
GPGPU 270 also includes multiple compute units 260A-
260N. Each compute unit 260A-260N includes a set of
vector registers 261, scalar registers 262, vector logic units
263, and scalar logic units 264. The compute units 260A -
260N can also include local shared memory 265 and a
program counter 266. The compute units 260A-260N can
couple with a constant cache 267, which can be used to store
constant data, which 1s data that will not change during the
run of kernel or shader program that executes on the GPGPU
270. In one embodiment the constant cache 267 1s a scalar
data cache and cached data can be fetched directly into the
scalar registers 262.

During operation, the one or more CPU(s) 246 can write
commands 1nto registers or memory in the GPGPU 270 that
has been mapped 1nto an accessible address space. The
command processors 257 can read the commands from
registers or memory and determine how those commands
will be processed within the GPGPU 270. A thread dis-
patcher 258 can then be used to dispatch threads to the
compute units 260A-260N to perform those commands.
Each compute unit 260A-260N can execute threads inde-
pendently of the other compute units. Additionally each
compute unit 260A-260N can be imndependently configured
for conditional computation and can conditionally output the
results of computation to memory. The command processors
257 can interrupt the one or more CPU(s) 246 when the
submitted commands are complete.

FIG. 3A-3C illustrate block diagrams of additional graph-
ics processor and compute accelerator architectures pro-
vided by embodiments described herein. The elements of
FIG. 3A-3C having the same reference numbers (or names)
as the elements of any other figure herein can operate or
function 1n any manner similar to that described elsewhere
herein, but are not limited to such.

FIG. 3A 1s a block diagram of a graphics processor 300,
which may be a discrete graphics processing unit, or may be
a graphics processor integrated with a plurality of processing
cores, or other semiconductor devices such as, but not
limited to, memory devices or network interfaces. In some
embodiments, the graphics processor communicates via a
memory mapped 1I/0 interface to registers on the graphics
processor and with commands placed into the processor
memory. In some embodiments, graphics processor 300
includes a memory 1nterface 314 to access memory. Memory
interface 314 can be an mterface to local memory, one or
more internal caches, one or more shared external caches,
and/or to system memory.

In some embodiments, graphics processor 300 also
includes a display controller 302 to drive display output data
to a display device 318. Display controller 302 includes
hardware for one or more overlay planes for the display and
composition of multiple layers of video or user interface
clements. The display device 318 can be an internal or
external display device. In one embodiment the display
device 318 1s a head mounted display device, such as a
virtual reality (VR) display device or an augmented reality

US 12,086,205 B2

15

(AR) display device. In some embodiments, graphics pro-
cessor 300 includes a video codec engine 306 to encode,
decode, or transcode media to, from, or between one or more
media encoding formats, including, but not limited to Mov-
ing Picture Experts Group (MPEG) formats such as MPEG-
2, Advanced Video Coding (AVC) formats such as H.264/
MjEG 4 AVC, H.265/HEVC, Alhance for Open Media
(AOMedia) VP8, VP9, AV1 as well as the Society of Motion
Picture & Telewsmn Engineers (SMPTE) 421M/V(C-1, and

Joint Photographic JPEG) formats Such as

Experts Group (.
JPEG, and Motion JPEG (MJPEG) formats.

In some embodiments, graphics processor 300 includes a
block 1mage transier (BLIT) engine 304 to perform two-
dimensional (2D) rasterizer operations including, {for
example, bit-boundary block transiers. However, in one
embodiment, 2D graphics operations are performed using
one or more components of graphics processing engine
(GPE) 310. In some embodiments, GPE 310 1s a compute
engine for performing graphics operations, including three-
dimensional (3D) graphics operations and media operations.

In some embodiments, GPE 310 includes a 3D pipeline
312 for performing 3D operations, such as rendering three-
dimensional 1images and scenes using processing functions
that act upon 3D primitive shapes (e.g., rectangle, triangle,
etc.). The 3D pipeline 312 includes programmable and fixed
function elements that perform various tasks within the
clement and/or spawn execution threads to a 3D/Media
subsystem 315. While 3D pipeline 312 can be used to
perform media operations, an embodiment of GPE 310 also
includes a media pipeline 316 that 1s specifically used to
perform media operations, such as video post-processing
and 1mage enhancement.

In some embodiments, media pipeline 316 1includes fixed
function or programmable logic umts to perform one or
more specialized media operations, such as video decode
acceleration, video de-interlacing, and video encode accel-
eration in place of, or on behalf of video codec engine 306.
In some embodiments, media pipeline 316 additionally
includes a thread spawning unit to spawn threads for execu-
tion on 3D/Media subsystem 315. The spawned threads
perform computations for the media operations on one or
more graphics execution units included 1n 3D/Media sub-
system 315.

In some embodiments, 3D/Media subsystem 315 includes
logic for executing threads spawned by 3D pipeline 312 and
media pipeline 316. In one embodiment, the pipelines send
thread execution requests to 3D/Media subsystem 3185,
which includes thread dispatch logic for arbitrating and
dispatching the various requests to available thread execu-
tion resources. The execution resources include an array of
graphics execution umts to process the 3D and media
threads. In some embodiments, 3D/Media subsystem 315
includes one or more internal caches for thread instructions
and data. In some embodiments, the subsystem also includes
shared memory, 1ncluding registers and addressable
memory, to share data between threads and to store output
data.

FIG. 3B 1illustrates a graphics processor 320 having a tiled
architecture, according to embodiments described herein. In
one embodiment the graphics processor 320 includes a
graphics processing engine cluster 322 having multiple
instances ol the graphics processing engine 310 of FIG. 3A
within a graphics engine tile 310A-310D. Each graphics
engine tile 310A-310D can be interconnected via a set of tile
interconnects 323A-323F. Fach graphics engine tile 310A-
310D can also be connected to a memory module or memory

device 326 A-326D via memory interconnects 325A-325D.

10

15

20

25

30

35

40

45

50

55

60

65

16

The memory devices 326A-326D can use any graphics
memory technology. For example, the memory devices
326 A-326D may be graphics double data rate (GDDR)
memory. The memory devices 326 A-326D, 1n one embodi-
ment, are high-bandwidth memory (HBM) modules that can
be on-die with their respective graphics engine tile 310A-
310D. In one embodiment the memory devices 326 A-326D
are stacked memory devices that can be stacked on top of
their respective graphics engine tile 310A-310D. In one
embodiment, each graphics engine tile 310A-310D and
associated memory 326A-326D reside on separate chiplets,
which are bonded to a base die or base substrate, as
described on further detail in FIG. 11B-11D.

The graphics processor 320 may be configured with a
non-uniform memory access (NUMA) system in which
memory devices 326A-326D are coupled with associated
graphics engine tiles 310A-310D. A given memory device
may be accessed by graphics engine tiles other than the tile
to which 1t 1s directly connected. However, access latency to
the memory devices 326A-326D may be lowest when
accessing a local tile. In one embodiment, a cache coherent
NUMA (ccNUMA) system 1s enabled that uses the tile
interconnects 323 A-323F to enable communication between
cache controllers within the graphics engine tiles 310A-
310D to maintain a consistent memory 1mage when more
than one cache stores the same memory location.

The graphics processing engine cluster 322 can connect
with an on-chip or on-package fabric interconnect 324. In
one embodiment the fabric interconnect 324 includes a
network processor, network on a chip (NoC), or another
switching processor to enable the fabric interconnect 324 to
act as a packet switched fabric interconnect that switches
data packets between components of the graphics processor
320. The fabric interconnect 324 can enable communication
between graphics engine tiles 310A-310D and components
such as the video codec engine 306 and one or more copy
engines 304. The copy engines 304 can be used to move data
out of, mto, and between the memory devices 326A-326D
and memory that 1s external to the graphics processor 320
(e.g., system memory). The fabric interconnect 324 can also
couple with one or more of the tile interconnects 323 A-323F
to facilitate or enhance the interconnection between the
graphics engine tiles 310A-310D. The fabric interconnect
324 1s also configurable to imterconnect multiple instances of
the graphics processor 320 (e.g., via the host interface 328),
cnabling tile-to-tile communication between graphics
engine tiles 310A-310D of multiple GPUs. In one embodi-
ment, the graphics engine tiles 310A-310D of multiple
GPUs can be presented to a host system as a single logical
device.

The graphics processor 320 may optionally include a
display controller 302 to enable a connection with the
display device 318. The graphics processor may also be
configured as a graphics or compute accelerator. In the
accelerator configuration, the display controller 302 and
display device 318 may be omitted.

The graphics processor 320 can connect to a host system
via a host iterface 328. The host interface 328 can enable
communication between the graphics processor 320, system
memory, and/or other system components. The host inter-
face 328 can be, for example a PCI express bus or another
type of host system interface. For example, the host interface
328 may be an NVLink or NVSwitch interface. The host
interface 328 and fabric interconnect 324 can cooperate to
enable multiple instances of the graphics processor 320 to
act as single logical device. Cooperation between the host
interface 328 and fabric imnterconnect 324 can also enable the

US 12,086,205 B2

17

individual graphics engine tiles 310A-310D to be presented
to the host system as distinct logical graphics devices.

FI1G. 3C illustrates a compute accelerator 330, according
to embodiments described herein. The compute accelerator
330 can include architectural similarities with the graphics
processor 320 of FIG. 3B and 1s optimized for compute
acceleration. A compute engine cluster 332 can include a set
of compute engine tiles 340A-340D that include execution
logic that 1s optimized for parallel or vector-based general-
purpose compute operations. In some embodiments, the
compute engine tiles 340A-340D do not include fixed func-
tion graphics processing logic, although 1n one embodiment
one or more of the compute engine tiles 340A-340D can
include logic to perform media acceleration. The compute
engine tiles 340A-340D can connect to memory 326 A-326D
via memory interconnects 325A-325D. The memory 326 A-
326D and memory interconnects 325A-325D may be similar
technology as 1n graphics processor 320, or can be diflerent.
The graphics compute engine tiles 340A-340D can also be
interconnected via a set of tile interconnects 323A-323F and
may be connected with and/or interconnected by a fabric
interconnect 324. Cross-tile communications can be facili-
tated via the fabric interconnect 324. The fabric interconnect
324 (e.g., via the host interface 328) can also facilitate
communication between compute engine tiles 340A-340D
of multiple instances of the compute accelerator 330. In one
embodiment the compute accelerator 330 includes a large
[.3 cache 336 that can be configured as a device-wide cache.
The compute accelerator 330 can also connect to a host
processor and memory via a host mterface 328 1n a similar
manner as the graphics processor 320 of FIG. 3B.

The compute accelerator 330 can also include an inte-
grated network interface 342. In one embodiment the nte-
grated network interface 342 includes a network processor
and controller logic that enables the compute engine cluster
332 to communicate over a physical layer interconnect 344
without requiring data to traverse memory of a host system.
In one embodiment, one of the compute engine tiles 340A-
340D 1s replaced by network processor logic and data to be
transmitted or recetved via the physical layer interconnect
344 may be transmitted directly to or from memory 326 A-
326D. Multiple instances of the compute accelerator 330
may be joined via the physical layer interconnect 344 into a
single logical device. Alternatively, the various compute
engine tiles 340A-340D may be presented as distinct net-
work accessible compute accelerator devices.

Graphics Processing Engine

FI1G. 4 15 a block diagram of a graphics processing engine
410 of a graphics processor i1n accordance with some
embodiments. In one embodiment, the graphics processing
engine (GPE) 410 1s a version of the GPE 310 shown in FIG.
3A, and may also represent a graphics engine tile 310A-
310D of FIG. 3B. Flements of FIG. 4 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein, but are not limited to
such. For example, the 3D pipeline 312 and media pipeline
316 of FIG. 3A are illustrated. The media pipeline 316 is
optional in some embodiments of the GPE 410 and may not
be explicitly included within the GPE 410. For example and
in at least one embodiment, a separate media and/or 1mage
processor 1s coupled to the GPE 410.

In some embodiments, GPE 410 couples with or includes
a command streamer 403, which provides a command
stream to the 3D pipeline 312 and/or media pipelines 316.
Alternatively or additionally, the command streamer 403
may be directly coupled to a unified return bufler 418. The

10

15

20

25

30

35

40

45

50

55

60

65

18

unified return bufler 418 may be communicatively coupled
to a graphics core array 414. In some embodiments, com-
mand streamer 403 1s coupled with memory, which can be
system memory, or one or more of internal cache memory
and shared cache memory. In some embodiments, command
streamer 403 receives commands from the memory and
sends the commands to 3D pipeline 312 and/or media
pipeline 316. The commands are directives fetched from a
ring butler, which stores commands for the 3D pipeline 312
and media pipeline 316. In one embodiment, the ring builer
can additionally include batch command buflers storing
batches of multiple commands. The commands for the 3D
pipeline 312 can also include references to data stored in
memory, such as but not limited to vertex and geometry data
for the 3D pipeline 312 and/or image data and memory
objects for the media pipeline 316. The 3D pipeline 312 and
media pipeline 316 process the commands and data by
performing operations via logic within the respective pipe-
lines or by dispatching one or more execution threads to a
graphics core array 414. In one embodiment the graphics
core array 414 include one or more blocks of graphics cores
(e.g., graphics core(s) 415A, graphics core(s) 415B), each
block including one or more graphics cores. Each graphics
core mcludes a set of graphics execution resources that
includes general-purpose and graphics specific execution
logic to perform graphics and compute operations, as well as
fixed function texture processing and/or machine learning
and artificial intelligence acceleration logic.

In various embodiments the 3D pipeline 312 can include
fixed function and programmable logic to process one or
more shader programs, such as vertex shaders, geometry
shaders, pixel shaders, fragment shaders, compute shaders,
or other shader and/or GPGPU programs, by processing the
instructions and dispatching execution threads to the graph-
ics core array 414. The graphics core array 414 provides a
unified block of execution resources for use in processing
these shader programs. Multi-purpose execution logic (e.g.,
execution units) within the graphics core(s) 415A-414B of
the graphics core array 414 includes support for various 3D
API shader languages and can execute multiple simultane-
ous execution threads associated with multiple shaders.

In some embodiments, the graphics core array 414
includes execution logic to perform media functions, such as
video and/or i1mage processing. In one embodiment, the
execution units include general-purpose logic that 1s pro-
grammable to perform parallel general-purpose computa-
tional operations, in addition to graphics processing opera-
tions. The general-purpose logic can perform processing
operations 1n parallel or 1n conjunction with general-purpose
logic within the processor core(s) 107 of FIG. 1 or core
202A-202N as 1n FIG. 2A.

Output data generated by threads executing on the graph-
ics core array 414 can output data to memory 1n a unified
return bufler (URB) 418. The URB 418 can store data for
multiple threads. In some embodiments the URB 418 may
be used to send data between different threads executing on
the graphics core array 414. In some embodiments the URB
418 may additionally be used for synchronization between
threads on the graphics core array and fixed function logic
within the shared function logic 420.

In some embodiments, graphics core array 414 1s scalable,
such that the array includes a variable number of graphics
cores, each having a varniable number of execution units
based on the target power and performance level of GPE
410. In one embodiment the execution resources are
dynamically scalable, such that execution resources may be
enabled or disabled as needed.

US 12,086,205 B2

19

The graphics core array 414 couples with shared function
logic 420 that includes multiple resources that are shared
between the graphics cores 1n the graphics core array. The
shared functions within the shared function logic 420 are
hardware logic units that provide specialized supplemental
functionality to the graphics core array 414. In various
embodiments, shared function logic 420 includes but 1s not
limited to sampler 421, math 422, and iter-thread commu-
nication (ITC) 423 logic. Additionally, some embodiments
implement one or more cache(s) 425 within the shared
tunction logic 420.

A shared function 1s implemented at least 1n a case where
the demand for a given specialized function 1s insuilicient
for inclusion within the graphics core array 414. Instead a
single instantiation of that specialized function 1s 1mple-
mented as a stand-alone entity 1n the shared function logic
420 and shared among the execution resources within the
graphics core array 414. The precise set of functions that are
shared between the graphics core array 414 and included
within the graphics core array 414 varies across embodi-
ments. In some embodiments, specific shared functions
within the shared function logic 420 that are used exten-
sively by the graphics core array 414 may be included within
shared function logic 416 within the graphics core array 414.
In various embodiments, the shared function logic 416
within the graphics core array 414 can include some or all
logic within the shared function logic 420. In one embodi-
ment, all logic elements within the shared function logic 420
may be duplicated within the shared function logic 416 of
the graphics core array 414. In one embodiment the shared
tfunction logic 420 1s excluded in favor of the shared function
logic 416 within the graphics core array 414.

Execution Units

FIG. 5A-3B illustrate thread execution logic 500 1nclud-
ing an array of processing elements employed in a graphics
processor core according to embodiments described herein.
Elements of FIG. 5A-35B having the same reference numbers
(or names) as the elements of any other figure herein can
operate or function 1 any manner similar to that described
elsewhere herein, but are not limited to such. FIG. SA-5B
illustrates an overview of thread execution logic 500, which
may be representative of hardware logic illustrated with
cach sub-core 221 A-221F of FIG. 2B. FIG. 5A 1s represen
tative of an execution unit within a general-purpose graphics
processor, while FIG. 5B 1s representative ol an execution
unit that may be used within a compute accelerator.

As 1llustrated 1n FIG. 5A, 1n some embodiments thread
execution logic 500 includes a shader processor 302, a
thread dispatcher 504, istruction cache 506, a scalable
execution unit array including a plurality of graphics execu-
tion units S08A-508N, a sampler 510, shared local memory
511, a data cache 512, and a data port 514. In one embodi-
ment the scalable execution unit array can dynamically scale
by enabling or disabling one or more execution units (e.g.,
any ol graphics execution units 508A, 5088, 508C, 508D,
through 508N-1 and 508N) based on the computational
requirements of a workload. In one embodiment the
included components are interconnected via an interconnect
tabric that links to each of the components. In some embodi-
ments, thread execution logic 500 includes one or more
connections to memory, such as system memory or cache
memory, through one or more of instruction cache 506, data
port 514, sampler 510, and graphics execution units 508 A-
508N. In some embodiments, each execution unit (e.g.
508A) 1s a stand-alone programmable general-purpose com-
putational unit that 1s capable of executing multiple simul-
taneous hardware threads while processing multiple data

10

15

20

25

30

35

40

45

50

55

60

65

20

clements 1n parallel for each thread. In various embodi-
ments, the array of graphics execution units S08A-S08N 1s
scalable to 1mnclude any number individual execution units.

In some embodiments, the graphics execution units SO08A-
508N are primarily used to execute shader programs. A
shader processor 502 can process the various shader pro-
grams and dispatch execution threads associated with the
shader programs via a thread dispatcher 504. In one embodi-
ment the thread dispatcher includes logic to arbitrate thread
initiation requests from the graphics and media pipelines and
instantiate the requested threads on one or more execution
unit 1 the graphics execution umts 508A-508N. For
example, a geometry pipeline can dispatch vertex, tessella-
tion, or geometry shaders to the thread execution logic for
processing. In some embodiments, thread dispatcher 504 can
also process runtime thread spawning requests from the
executing shader programs.

In some embodiments, the graphics execution units S08A-
508N support an instruction set that includes native support
for many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D,
OpenGL, Vulkan, etc.) are executed with a minimal trans-
lation. The execution umts support vertex and geometry
processing (e.g., vertex programs, geometry programs, ver-
tex shaders), pixel processing (e.g., pixel shaders, fragment
shaders) and general-purpose processing (e.g., compute and
media shaders). Each of the execution units S08A-S08N 1s
capable of multi-1ssue single instruction multiple data
(SIMD) execution and multi-threaded operation enables an
cilicient execution environment in the face of higher latency
memory accesses. Fach hardware thread within each execu-
tion unit has a dedicated high-bandwidth register file and
associated independent thread-state. Execution 1s multi-
1ssue per clock to pipelines capable of integer, single and
double precision floating point operations, SIMD branch
capability, logical operations, transcendental operations, and
other miscellaneous operations. While waiting for data from
memory or one of the shared functions, dependency logic
within the graphics execution units 508A-508N causes a
waiting thread to sleep until the requested data has been
returned. While the waiting thread is sleeping, hardware
resources may be devoted to processing other threads. For
example, during a delay associated with a vertex shader
operation, an execution unit can perform operations for a
pixel shader, fragment shader, or another type of shader
program, including a different vertex shader. Various
embodiments can apply to use execution by use of Single
Instruction Multiple Thread (SIMT) as an alternate to use of
SIMD or 1n addition to use of SIMD. Reference to a SIMD
core or operation can apply also to SIMT or apply to SIMD
in combination with SIMT.

Each execution unit in graphics execution units S08A-
508N operates on arrays of data elements. The number of
data elements 1s the “execution size,” or the number of
channels for the instruction. An execution channel 1s a
logical unit of execution for data element access, masking,
and tflow control within instructions. The number of chan-
nels may be independent of the number of physical Arith-
metic Logic Units (AL Us), Floating Point Units (FPUs), or
other logic units (e.g., tensor cores, ray tracing cores, etc.)
for a particular graphics processor. In some embodiments,
graphics execution umts S08A-508N support integer and
floating-point data types.

The execution unit instruction set includes SIMD instruc-
tions. The various data elements can be stored as a packed
data type 1n a register and the execution unit will process the
various elements based on the data size of the elements. For

US 12,086,205 B2

21

example, when operating on a 256-bit wide vector, the 256
bits of the vector are stored in a register and the execution
unit operates on the vector as four separate 54-bit packed
data elements (Quad-Word (QW) size data elements), eight
separate 32-bit packed data elements (Double Word (DW)
size data elements), sixteen separate 16-bit packed data
clements (Word (W) size data elements), or thirty-two
separate 8-bit data elements (byte (B) size data elements).
However, different vector widths and register sizes are
possible.

In one embodiment one or more execution units can be
combined 1nto a fused graphics execution umt 509 A-509N
having thread control logic (507A-507N) that 1s common to
the tused EUs. Multiple EUs can be fused into an EU group.
Each EU 1n the fused EU group can be configured to execute
a separate SIMD hardware thread. The number of EUs 1n a
tused EU group can vary according to embodiments. Addi-
tionally, various SIMD widths can be performed per-EU,
including but not limited to SIMDS8, SIMD16, and SIMD32.
Each fused graphics execution unit 509A-509N includes at
least two execution units. For example, fused execution unit
509A includes a first EU 508A, second EU 508B, and thread
control logic 507A that 1s common to the first EU 508A and
the second EU 508B. The thread control logic 507A controls
threads executed on the fused graphics execution unit 509A,
allowing each EU within the fused execution units S09A-
509N to execute using a common instruction pointer regis-
ter.

One or more internal instruction caches (e.g., 506) are
included 1n the thread execution logic 500 to cache thread
instructions for the execution units. In some embodiments,
one or more data caches (e.g., 512) are included to cache
thread data during thread execution. Threads executing on
the execution logic 500 can also store explicitly managed
data 1n the shared local memory 511. In some embodiments,
a sampler 510 1s included to provide texture sampling for 3D
operations and media sampling for media operations. In
some embodiments, sampler 510 includes specialized tex-
ture or media sampling functionality to process texture or
media data during the sampling process before providing the
sampled data to an execution unit.

During execution, the graphics and media pipelines send
thread 1mitiation requests to thread execution logic 300 via
thread spawning and dispatch logic. Once a group of geo-
metric objects has been processed and rasterized into pixel
data, pixel processor logic (e.g., pixel shader logic, fragment
shader logic, etc.) within the shader processor 302 1s
invoked to further compute output imformation and cause
results to be written to output surfaces (e.g., color buflers,
depth buflers, stencil buflers, etc.). In some embodiments, a
pixel shader or fragment shader calculates the values of the
various vertex attributes that are to be interpolated across the
rasterized object. In some embodiments, pixel processor
logic within the shader processor 502 then executes an
application programming interface (API)-supplied pixel or
fragment shader program. To execute the shader program,
the shader processor 502 dispatches threads to an execution
unit (e.g., 508A) via thread dispatcher 504. In some embodi-
ments, shader processor 502 uses texture sampling logic in
the sampler 510 to access texture data 1n texture maps stored
in memory. Arithmetic operations on the texture data and the
iput geometry data compute pixel color data for each
geometric fragment, or discards one or more pixels from
turther processing.

In some embodiments, the data port 514 provides a
memory access mechanism for the thread execution logic
500 to output processed data to memory for further process-

10

15

20

25

30

35

40

45

50

55

60

65

22

ing on a graphics processor output pipeline. In some
embodiments, the data port 514 includes or couples to one
or more cache memories (e.g., data cache 512) to cache data
for memory access via the data port.

In one embodiment, the execution logic 500 can also
include a ray tracer 505 that can provide ray tracing accel-
eration functionality. The ray tracer 505 can support a ray
tracing 1nstruction set that icludes instructions/functions
for ray generation. The ray tracing instruction set can be
similar to or different from the ray-tracing instruction set
supported by the ray tracing cores 245 1 FIG. 2C.

FIG. 5B 1illustrates exemplary internal details of an execu-
tion unit 508, according to embodiments. A graphics execu-
tion unit 508 can include an instruction fetch unit 537, a
general register file array (GRF) 524, an architectural reg-
ister file array (ARF) 526, a thread arbiter 522, a send unait
530, a branch umt 532, a set of SIMD floating point units
(FPUs) 534, and in one embodiment a set of dedicated
integer SIMD ALUs 535. The GRF 524 and ARF 526
includes the set of general register files and architecture
register files associated with each simultaneous hardware
thread that may be active in the graphics execution unit 508.
In one embodiment, per thread architectural state 1s main-
tammed i the ARF 526, while data used during thread
execution 1s stored in the GRF 524. The execution state of
cach thread, including the instruction pointers for each
thread, can be held in thread-specific registers 1n the ARF
526.

In one embodiment the graphics execution unit 308 has an
architecture that 1s a combination of Simultaneous Multi-
Threading (SMT) and {fine-grained Interleaved Multi-
Threading (IMT). The architecture has a modular configu-
ration that can be fine-tuned at design time based on a target
number of simultaneous threads and number of registers per
execution unit, where execution unit resources are divided
across logic used to execute multiple simultaneous threads.
The number of logical threads that may be executed by the
graphics execution unit 308 i1s not limited to the number of
hardware threads, and multiple logical threads can be
assigned to each hardware thread.

In one embodiment, the graphics execution unit 508 can
co-1ssue multiple 1nstructions, which may each be difierent
instructions. The thread arbiter 522 of the graphics execution
umt thread 508 can dispatch the instructions to one of the
send unit 530, branch unit 532, or SIMD FPU(s) 534 for
execution. Fach execution thread can access 128 general-
purpose registers within the GRF 524, where each register

can store 32 bytes, accessible as a SIMD 8-element vector
of 32-bit data elements. In one embodiment, each execution
unmit thread has access to 4 Kbytes within the GRF 524,
although embodiments are not so limited, and greater or
fewer register resources may be provided in other embodi-
ments. In one embodiment the graphics execution unit 508
1s partitioned 1nto seven hardware threads that can indepen-
dently perform computational operations, although the num-
ber of threads per execution unit can also vary according to
embodiments. For example, 1n one embodiment up to 16
hardware threads are supported. In an embodiment in which
seven threads may access 4 Kbytes, the GRF 524 can store
a total o1 28 Kbytes. Where 16 threads may access 4 Kbytes,
the GRF 524 can store a total of 64 Kbytes. Flexible
addressing modes can permit registers to be addressed
together to build effectively wider registers or to represent
strided rectangular block data structures.

In one embodiment, memory operations, sampler opera-
tions, and other longer-latency system communications are
dispatched via “send” instructions that are executed by the

US 12,086,205 B2

23

message passing send unit 530. In one embodiment, branch
instructions are dispatched to a dedicated branch unit 532 to
tacilitate SIMD divergence and eventual convergence.

In one embodiment the graphics execution unit 508
includes one or more SIMD floating point units (FPU(s))
534 to perform floating-point operations. In one embodi-
ment, the FPU(s) 534 also support integer computation. In
one embodiment the FPU(s) 334 can SIMD execute up to M
number of 32-bit tloating-point (or integer) operations, or
SIMD execute up to 2ZM 16-bit integer or 16-bit floating-
point operations. In one embodiment, at least one of the
FPU(s) provides extended math capability to support high-
throughput transcendental math functions and double pre-
cision 54-bit floating-point. In some embodiments, a set of
8-bit mteger SIMD ALUSs 535 are also present, and may be
specifically optimized to perform operations associated with
machine learning computations.

In one embodiment, arrays of multiple nstances of the
graphics execution unit 508 can be 1nstantiated in a graphics
sub-core grouping (e.g., a sub-slice). For scalability, product
architects can choose the exact number of execution units
per sub-core grouping. In one embodiment the execution
unit 508 can execute instructions across a plurality of
execution channels. In a further embodiment, each thread
executed on the graphics execution unit 308 i1s executed on
a different channel.

FIG. 6 1llustrates an additional execution unit 600, accord-
ing to an embodiment. The execution unit 600 may be a
compute-optimized execution unit for use in, for example, a
compute engine tile 340A-340D as 1n FIG. 3C, but 1s not
limited as such. Vanants of the execution unit 600 may also
be used 1n a graphics engine tile 310A-310D as 1n FIG. 3B.
In one embodiment, the execution unit 600 includes a thread
control unit 601, a thread state unit 602, an 1nstruction
tetch/prefetch unit 603, and an nstruction decode unit 604.
The execution unit 600 additionally includes a register file
606 that stores registers that can be assigned to hardware
threads within the execution unit. The execution unit 600
additionally includes a send unit 607 and a branch unit 608.
In one embodiment, the send unit 607 and branch unit 608
can operate similarly as the send unit 530 and a branch unait
532 of the graphics execution unit 508 of FIG. 5B.

The execution unit 600 also includes a compute unit 610
that includes multiple different types of functional units. The
compute unit 610 can include an ALU 611, a systolic array
612, and a math unit 613. The ALU 611 includes an array of
arithmetic logic umits. The ALU 611 can be configured to
perform 64-bit, 32-bit, and 16-bit integer and floating point
operations across multiple processing lanes and data chan-
nels and for multiple hardware and/or software threads. The
ALU 611 can perform integer and floating point operations
simultaneously (e.g., within the same clock cycle).

The systolic array 612 includes a W wide and D deep
network of data processing units that can be used to perform
vector or other data-parallel operations 1n a systolic manner.
In one embodiment the systolic array 612 can be configured
to perform various matrix operations, including as dot
product, outer product, and general matrix-matrix multipli-
cation (GEMM) operations. In one embodiment the systolic
array 612 supports 16-bit floating point operations, as well
as 8-bit, 4-bit, 2-bit, and binary integer operations. The
systolic array 612 can be configured to accelerate specific
machine learning operations, 1n addition to matrix multiply
operations. In such embodiments, the systolic array 612 can
be configured with support for the bfloat (brain floating
point) 16-bit floating point format or a tensor float 32-bit
floating point format (1TF32) that have diferent numbers of

10

15

20

25

30

35

40

45

50

55

60

65

24

mantissa and exponent bits relative to Institute of Electrical
and Electronics Engineers (IEEE) 754 formats.

The systolic array 612 includes hardware to accelerate
sparse matrix operations. In one embodiment, multiplication
operations for sparse regions of mput data can be bypassed
at the processing element level by skipping multiply opera-
tions that have a zero value operand. In on embodiment,
sparsity within input matrices can be detected and operations
having known output values can be bypassed before being
submitted to the processing elements of the systolic array
612. Additionally, the loading of zero value operands 1nto
the processing elements can be bypassed and the processing
clements can be configured to perform multiplications on the
non-zero value mput elements. Output can be generated in
a compressed (e.g., dense) format, with associated decom-
pression or decoding metadata. The output can be cached in
the compressed format. The output can be maintained 1n the
compressed format when written to local memory or host
system memory. The output may also be decompressed
before being written to local memory or host system
memory.

In one embodiment, the systolic array 612 includes hard-
ware to enable operations on sparse data having a com-
pressed representation. A compressed representation of a
sparse matrix stores non-zero values and metadata that
identifies the positions of the non-zero values within the
matrix. Exemplary compressed representations include but
are not limited to compressed tensor representations such as
compressed sparse row (CSR), compressed sparse column
(CSC), compressed sparse fiber (CSF) representations. Sup-
port for compressed representations enable operations to be
performed on input 1n a compressed tensor format without
requiring the compressed representation to be decompressed
or decoded. In such embodiment, operations can be per-
formed only on non-zero iput values and the resulting
non-zero output values can be mapped into an output matrix.
In some embodiments, hardware support 1s also provided for
machine-specific lossless data compression formats that are
used when transmitting data within hardware or across
system busses. Such data may be retained 1n a compressed
format for sparse input data and the systolic array 612 can
used the compression metadata for the compressed data to
enable operations to be performed on only non-zero values,
or to enable blocks of zero data input to be bypassed for
multiply operations.

In one embodiment, a math unit 613 can be included to
perform a specific subset of mathematical operations in an
cllicient and lower-power manner than the ALU 611. The
math unit 613 can include a variant of math logic that may
be found 1n shared function logic of a graphics processing
engine provided by other embodiments (e.g., math logic 422
of the shared function logic 420 of FIG. 4). In one embodi-
ment the math unit 613 can be configured to perform 32-bit
and 64-bit floating point operations.

The thread control unit 601 includes logic to control the
execution of threads within the execution unit. The thread
control unit 601 can include thread arbitration logic to start,
stop, and preempt execution of threads within the execution
unit 600. The thread state unit 602 can be used to store
thread state for threads assigned to execute on the execution
unmt 600. Storing the thread state within the execution unit
600 cnables the rapid pre-emption of threads when those
threads become blocked or idle. The instruction fetch/
prefetch unit 603 can fetch nstructions from an instruction
cache of higher-level execution logic (e.g., instruction cache
506 as in FIG. 5A). The istruction fetch/prefetch unit 603

can also 1ssue prefetch requests for mstructions to be loaded

US 12,086,205 B2

25

into the 1nstruction cache based on an analysis of currently
executing threads. The instruction decode unit 604 can be
used to decode 1nstructions to be executed by the compute
units. In one embodiment, the 1nstruction decode unit 604
can be used as a secondary decoder to decode complex
istructions 1nto constituent micro-operations.

The execution unit 600 additionally includes a register file
606 that can be used by hardware threads executing on the
execution unit 600. Registers in the register file 606 can be
divided across the logic used to execute multiple simulta-
neous threads within the compute umt 610 of the execution
unit 600. The number of logical threads that may be
executed by the graphics execution unit 600 1s not limited to
the number of hardware threads, and multiple logical threads
can be assigned to each hardware thread. The size of the
register file 606 can vary across embodiments based on the
number of supported hardware threads. In one embodiment,
register renaming may be used to dynamically allocate
registers to hardware threads.

FIG. 7 1s a block diagram illustrating graphics processor
instruction formats 700 according to some embodiments. In
one or more embodiment, the graphics processor execution
units support an mstruction set having instructions 1 mul-
tiple formats. The solid lined boxes illustrate the compo-
nents that are generally included in an execution umnit
instruction, while the dashed lines include components that
are optional or that are only included 1n a sub-set of the

instructions. In some embodiments, the graphics processor
instruction format 700 described and 1llustrated are macro-
instructions, in that they are instructions supplied to the
execution unit, as opposed to micro-operations resulting
from 1instruction decode once the instruction i1s processed.
Thus, a single 1nstructions may cause hardware to perform
multiple micro-operations.

In some embodiments, the graphics processor execution
units natively support instructions i a 128-bit instruction
format 710. A 64-bit compacted instruction format 730 1s
available for some 1nstructions based on the selected mstruc-
tion, instruction options, and number of operands. The
native 128-bit mstruction format 710 provides access to all
instruction options, while some options and operations are
restricted 1in the 64-bit format 730. The native instructions
available 1n the 64-bit format 730 vary by embodiment. In
some embodiments, the instruction 1s compacted i part
using a set of index values 1 an index field 713. The
execution unit hardware references a set ol compaction
tables based on the index values and uses the compaction
table outputs to reconstruct a native instruction 1n the 128-bit
instruction format 710. Other sizes and formats of instruc-
tion can be used.

For each format, instruction opcode 712 defines the
operation that the execution unit 1s to perform. The execu-
tion units execute each instruction in parallel across the
multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep-
resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, instruction
control field 714 enables conftrol over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For instructions in the
128-bit mstruction format 710 an exec-size field 716 limaits
the number of data channels that will be executed in parallel.
In some embodiments, exec-size field 716 1s not available
for use 1n the 64-bit compact instruction format 730.

10

15

20

25

30

35

40

45

50

55

60

65

26

Some execution umt instructions have up to three oper-
ands including two source operands, src0 720, srcl 722, and
one destination 718. In some embodiments, the execution
units support dual destination instructions, where one of the
destinations 1s implied. Data manipulation instructions can
have a third source operand (e.g., SRC2 724), where the
instruction opcode 712 determines the number of source
operands. An 1instruction’s last source operand can be an
immediate (e.g., hard-coded) value passed with the mstruc-
tion.

In some embodiments, the 128-bit instruction format 710
includes an access/address mode field 726 specitying, for
example, whether direct register addressing mode or indirect
register addressing mode 1s used. When direct register
addressing mode 1s used, the register address of one or more
operands 1s directly provided by bits 1n the instruction.

In some embodiments, the 128-bit instruction format 710
includes an access/address mode field 726, which specifies
an address mode and/or an access mode for the instruction.
In one embodiment the access mode 1s used to define a data
access alignment for the instruction. Some embodiments
support access modes including a 16-byte aligned access
mode and a 1-byte aligned access mode, where the byte
alignment of the access mode determines the access align-
ment of the instruction operands. For example, when 1n a
first mode, the instruction may use byte-aligned addressing
for source and destination operands and when 1n a second
mode, the mnstruction may use 16-byte-aligned addressing
for all source and destination operands.

In one embodiment, the address mode portion of the
access/address mode field 726 determines whether the
istruction 1s to use direct or indirect addressing. When
direct register addressing mode 1s used bits 1n the instruction
directly provide the register address of one or more oper-
ands. When indirect register addressing mode 1s used, the
register address of one or more operands may be computed
based on an address register value and an address immediate
field 1n the mnstruction.

In some embodiments instructions are grouped based on
opcode 712 bit-fields to simplity Opcode decode 740. For an
8-bit opcode, bits 4, 5, and 6 allow the execution unit to
determine the type of opcode. The precise opcode grouping
shown 1s merely an example. In some embodiments, a move
and logic opcode group 742 includes data movement and
logic 1nstructions (e.g., move (mov), compare (cmp)). In
some embodiments, move and logic group 742 shares the
five most significant bits (MSB), where move (mov) mstruc-
tions are 1n the form of 0000xxxxb and logic 1nstructions are
in the form of 0001xxxxb. A tlow control mstruction group
744 (e.g., call, jump (ymp)) includes 1nstructions 1n the form
of 0010xxxxb (e.g., 0x20). A miscellaneous instruction
group 746 includes a mix of instructions, including synchro-
nization instructions (e.g., wait, send) in the form of
0011xxxxb (e.g., 0x30). A parallel math instruction group
748 includes component-wise arithmetic instructions (e.g.,
add, multiply (mul)) 1n the form of 0100xxxxb (e.g., 0x40).
The parallel math instruction group 748 performs the arith-
metic operations in parallel across data channels. The vector
math group 750 includes arithmetic mstructions (e.g., dp4)
in the form of 0101xxxxb (e.g., 0x50). The vector math
group performs arithmetic such as dot product calculations
on vector operands. The 1llustrated opcode decode 740, 1n
one embodiment, can be used to determine which portion of
an execution unit will be used to execute a decoded 1nstruc-
tion. For example, some istructions may be designated as
systolic instructions that will be performed by a systolic
array. Other instructions, such as ray-tracing instructions

US 12,086,205 B2

27

(not shown) can be routed to a ray-tracing core or ray-tracing
logic within a slice or partition of execution logic.
Graphics Pipeline

FIG. 8 1s a block diagram of another embodiment of a
graphics processor 800. Elements of FIG. 8 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function 1n any manner similar
to that described elsewhere herein, but are not limited to
such.

In some embodiments, graphics processor 800 includes a
geometry pipeline 820, a media pipeline 830, a display
engine 840, thread execution logic 850, and a render output
pipeline 870. In some embodiments, graphics processor 800
1s a graphics processor within a multi-core processing sys-
tem that includes one or more general-purpose processing,
cores. The graphics processor 1s controlled by register writes
to one or more control registers (not shown) or via com-
mands 1ssued to graphics processor 800 via a ring 1ntercon-
nect 802. In some embodiments, ring nterconnect 802
couples graphics processor 800 to other processing compo-
nents, such as other graphics processors or general-purpose
processors. Commands from ring interconnect 802 are inter-
preted by a command streamer 803, which supplies mnstruc-
tions to individual components of the geometry pipeline 820
or the media pipeline 830.

In some embodiments, command streamer 803 directs the
operation of a vertex fetcher 805 that reads vertex data from
memory and executes vertex-processing commands pro-
vided by command streamer 803. In some embodiments,
vertex fetcher 805 provides vertex data to a vertex shader
807, which performs coordinate space transformation and
lighting operations to each vertex. In some embodiments,
vertex fetcher 8035 and vertex shader 807 execute vertex-
processing instructions by dispatching execution threads to
execution units 852A-8352B via a thread dispatcher 831.

In some embodiments, execution units 852A-852B are an
array ol vector processors having an instruction set for
performing graphics and media operations. In some embodi-
ments, execution units 852A-852B have an attached L1
cache 851 that 1s specific for each array or shared between
the arrays. The cache can be configured as a data cache, an
instruction cache, or a single cache that 1s partitioned to
contain data and instructions in different partitions.

In some embodiments, geometry pipeline 820 includes
tessellation components to perform hardware-accelerated
tessellation of 3D objects. In some embodiments, a pro-
grammable hull shader 811 configures the tessellation opera-
tions. A programmable domain shader 817 provides back-
end evaluation of tessellation output. A tessellator 813
operates at the direction of hull shader 811 and contains
special purpose logic to generate a set of detailed geometric
objects based on a coarse geometric model that 1s provided
as mput to geometry pipeline 820. In some embodiments, 1f
tessellation 1s not used, tessellation components (e.g., hull
shader 811, tessellator 813, and domain shader 817) can be
bypassed. The tessellation components can operate based on
data received from the vertex shader 807.

In some embodiments, complete geometric objects can be
processed by a geometry shader 819 via one or more threads
dispatched to execution umits 852A-852B, or can proceed
directly to the clipper 829. In some embodiments, the
geometry shader operates on entire geometric objects, rather
than vertices or patches of vertices as 1n previous stages of
the graphics pipeline. If the tessellation 1s disabled the
geometry shader 819 receives mput from the vertex shader
807. In some embodiments, geometry shader 819 is pro-

10

15

20

25

30

35

40

45

50

55

60

65

28

grammable by a geometry shader program to perform geom-
etry tessellation i1t the tessellation units are disabled.

Before rasterization, a clipper 829 processes vertex data.
The clipper 829 may be a fixed function clipper or a
programmable clipper having clipping and geometry shader
functions. In some embodiments, a rasterizer and depth test
component 873 1n the render output pipeline 870 dispatches
pixel shaders to convert the geometric objects into per pixel
representations. In some embodiments, pixel shader logic 1s
included 1n thread execution logic 850. In some embodi-
ments, an application can bypass the rasterizer and depth test
component 873 and access un-rasterized vertex data via a
stream out unit 823.

The graphics processor 800 has an interconnect bus,
interconnect fabric, or some other interconnect mechanism
that allows data and message passing amongst the major
components of the processor. In some embodiments, execu-
tion units 852A-852B and associated logic units (e.g., L1
cache 851, sampler 854, texture cache 858, etc.) intercon-
nect via a data port 856 to perform memory access and
communicate with render output pipeline components of the
processor. In some embodiments, sampler 854, caches 851,
858 and execution units 852A-852B each have separate
memory access paths. In one embodiment the texture cache
838 can also be configured as a sampler cache.

In some embodiments, render output pipeline 870 con-
tains a rasterizer and depth test component 873 that converts
vertex-based objects 1nto an associated pixel-based repre-
sentation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
878 and depth cache 879 are also available 1n some embodi-
ments. A pixel operations component 877 performs pixel-
based operations on the data, though 1n some 1nstances, pixel
operations associated with 2D operations (e.g. bit block
image transfers with blending) are performed by the 2D
engine 841, or substituted at display time by the display
controller 843 using overlay display planes. In some
embodiments, a shared L3 cache 875 1s available to all
graphics components, allowing the sharing of data without
the use of main system memory.

In some embodiments, media pipeline 830 includes a
media engine 837 and a video front-end 834. In some
embodiments, video front-end 834 receives pipeline com-
mands {from the command streamer 803. In some embodi-
ments, media pipeline 830 includes a separate command
streamer. In some embodiments, video front-end 834 pro-
cesses media commands before sending the command to the
media engine 837. In some embodiments, media engine 837
includes thread spawning functionality to spawn threads for
dispatch to thread execution logic 850 via thread dispatcher
831.

In some embodiments, graphics processor 800 includes a
display engine 840. In some embodiments, display engine
840 1s external to processor 800 and couples with the
graphics processor via the ring interconnect 802, or some
other interconnect bus or fabric. In some embodiments,
display engine 840 includes a 2D engine 841 and a display
controller 843. In some embodiments, display engine 840
contains special purpose logic capable of operating i1nde-
pendently of the 3D pipeline. In some embodiments, display
controller 843 couples with a display device (not shown),
which may be a system integrated display device, as 1n a
laptop computer, or an external display device attached via
a display device connector.

In some embodiments, the geometry pipeline 820 and
media pipeline 830 are configurable to perform operations

US 12,086,205 B2

29

based on multiple graphics and media programming inter-
faces and are not specific to any one application program-
ming 1nterface (API). In some embodiments, driver software
for the graphics processor translates API calls that are
specific to a particular graphics or media library into com-
mands that can be processed by the graphics processor. In
some embodiments, support 1s provided for the Open Graph-
ics Library (OpenGL), Open Computing Language
(OpenCL), and/or Vulkan graphics and compute API, all
from the Khronos Group. In some embodiments, support
may also be provided for the Direct3D library from the
Microsoit Corporation. In some embodiments, a combina-
tion of these libraries may be supported. Support may also
be provided for the Open Source Computer Vision Library
(OpenCV). A future API with a compatible 3D pipeline
would also be supported 11 a mapping can be made from the
pipeline of the future API to the pipeline of the graphics
Processor.

Graphics Pipeline Programming,

FIG. 9A 1s a block diagram 1illustrating a graphics pro-
cessor command format 900 that may be used to program
graphics processing pipelines according to some embodi-
ments. FIG. 9B 1s a block diagram illustrating a graphics
processor command sequence 910 according to an embodi-
ment. The solid lined boxes 1 FIG. 9A illustrate the com-
ponents that are generally included 1n a graphics command
while the dashed lines include components that are optional
or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command
format 900 of FIG. 9A includes data fields to identily a client

902, a command operation code (opcode) 904, and a data
ficld 906 for the command. A sub-opcode 905 and a com-
mand size 908 are also included in some commands.

In some embodiments, client 902 specifies the client unit
of the graphics device that processes the command data. In
some embodiments, a graphics processor command parser
examines the client field of each command to condition the
turther processing of the command and route the command
data to the appropnate client unit. In some embodiments, the
graphics processor client units include a memory interface
unit, a render unit, a 2D unit, a 3D unit, and a media unit.
Each client unit has a corresponding processing pipeline that
processes the commands. Once the command 1s receirved by
the client unit, the client unit reads the opcode 904 and, i
present, sub-opcode 905 to determine the operation to per-
form. The client unit performs the command using informa-
tion 1 data field 906. For some commands an explicit
command size 908 1s expected to specily the size of the
command. In some embodiments, the command parser auto-
matically determines the size of at least some of the com-
mands based on the command opcode. In some embodi-
ments commands are aligned via multiples of a double word.
Other command formats can be used.

The flow diagram i1n FIG. 9B illustrates an exemplary
graphics processor command sequence 910. In some
embodiments, software or firmware ol a data processing
system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up,
execute, and terminate a set of graphics operations. A sample
command sequence 1s shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be 1ssued as batch of commands 1n a
command sequence, such that the graphics processor will
process the sequence of commands 1n at least partially
concurrence.

10

15

20

25

30

35

40

45

50

55

60

65

30

In some embodiments, the graphics processor command
sequence 910 may begin with a pipeline flush command 912
to cause any active graphics pipeline to complete the cur-
rently pending commands for the pipeline. In some embodi-
ments, the 3D pipeline 922 and the media pipeline 924 do
not operate concurrently. The pipeline flush 1s performed to
cause the active graphics pipeline to complete any pending
commands. In response to a pipeline tlush, the command
parser for the graphics processor will pause command
processing until the active drawing engines complete pend-
ing operations and the relevant read caches are invalidated.
Optionally, any data in the render cache that 1s marked
‘dirty” can be flushed to memory. In some embodiments,
pipeline flush command 912 can be used for pipeline syn-
chronization or before placing the graphics processor into a
low power state.

In some embodiments, a pipeline select command 913 1s
used when a command sequence requires the graphics
processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 913 1s required
only once within an execution context before 1ssuing pipe-
line commands unless the context 1s to 1ssue commands for
both pipelines. In some embodiments, a pipeline flush
command 912 1s required immediately before a pipeline
switch via the pipeline select command 913.

In some embodiments, a pipeline control command 914

configures a graphics pipeline for operation and 1s used to
program the 3D pipeline 922 and the media pipeline 924. In
some embodiments, pipeline control command 914 config-
ures the pipeline state for the active pipeline. In one embodi-
ment, the pipeline control command 914 1s used for pipeline
synchronization and to clear data from one or more cache
memories within the active pipeline belore processing a
batch of commands.
In some embodiments, commands related to the return
bufler state 916 are used to configure a set of return bullers
for the respective pipelines to write data. Some pipeline
operations require the allocation, selection, or configuration
of one or more return buflers into which the operations write
intermediate data during processing. In some embodiments,
the graphics processor also uses one or more return buflers
to store output data and to perform cross thread communi-
cation. In some embodiments, the return bufler state 916
includes selecting the size and number of return builers to
use for a set of pipeline operations.

The remaining commands 1n the command sequence
differ based on the active pipeline for operations. Based on
a pipeline determination 920, the command sequence 1is
tallored to the 3D pipeline 922 beginning with the 3D
pipeline state 930 or the media pipeline 924 beginming at the
media pipeline state 940.

The commands to configure the 3D pipeline state 930
include 3D state setting commands for vertex bufler state,
vertex element state, constant color state, depth bufler state,
and other state variables that are to be configured before 3D
primitive commands are processed. The values of these
commands are determined at least in part based on the
particular 3D API 1n use. In some embodiments, 3D pipeline
state 930 commands are also able to selectively disable or
bypass certain pipeline elements 1f those elements will not
be used.

In some embodiments, 3D primitive 932 command 1s
used to submit 3D primitives to be processed by the 3D
pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 932
command are forwarded to the vertex fetch function 1n the
graphics pipeline. The vertex fetch function uses the 3D

US 12,086,205 B2

31

primitive 932 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buflers. In some embodiments, 3D primitive 932
command 1s used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 922 dispatches shader execution threads to graphics
processor execution units.

In some embodiments, 3D pipeline 922 is triggered via an
execute 934 command or event. In some embodiments, a
register write triggers command execution. In some embodi-
ments execution 1s triggered via a ‘go’ or ‘kick” command in
the command sequence. In one embodiment, command
execution 1s triggered using a pipeline synchronization com-
mand to flush the command sequence through the graphics
pipeline. The 3D pipeline will perform geometry processing,
for the 3D primitives. Once operations are complete, the
resulting geometric objects are rasterized and the pixel
engine colors the resulting pixels. Additional commands to
control pixel shading and pixel back end operations may
also be included for those operations.

In some embodiments, the graphics processor command
sequence 910 follows the media pipeline 924 path when
performing media operations. In general, the specific use
and manner of programming for the media pipeline 924
depends on the media or compute operations to be per-
formed. Specific media decode operations may be ofifloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media
decode can be performed 1n whole or 1n part using resources
provided by one or more general-purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor 1s used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

In some embodiments, media pipeline 924 1s configured
in a similar manner as the 3D pipeline 922. A set of
commands to configure the media pipeline state 940 are
dispatched or placed into a command queue before the
media object commands 942. In some embodiments, com-
mands for the media pipeline state 940 include data to
configure the media pipeline elements that will be used to
process the media objects. This includes data to configure
the video decode and video encode logic within the media
pipeline, such as encode or decode format. In some embodi-
ments, commands for the media pipeline state 940 also
support the use of one or more pointers to “indirect” state
clements that contain a batch of state settings.

In some embodiments, media object commands 942 sup-
ply pointers to media objects for processing by the media
pipeline. The media objects include memory bullers con-
taining video data to be processed. In some embodiments, all
media pipeline states must be valid before 1ssuing a media
object command 942. Once the pipeline state 1s configured
and media object commands 942 are queued, the media
pipeline 924 is triggered via an execute command 944 or an
equivalent execute event (e.g., register write). Output from
media pipeline 924 may then be post processed by opera-
tions provided by the 3D pipeline 922 or the media pipeline
924. In some embodiments, GPGPU operations are config-
ured and executed 1n a similar manner as media operations.
Graphics Software Architecture

FI1G. 10 1llustrates an exemplary graphics software archi-
tecture for a data processing system 1000 according to some
embodiments. In some embodiments, software architecture
includes a 3D graphics application 1010, an operating sys-

10

15

20

25

30

35

40

45

50

55

60

65

32

tem 1020, and at least one processor 1030. In some embodi-
ments, processor 1030 includes a graphics processor 1032
and one or more general-purpose processor core(s) 1034.
The graphics application 1010 and operating system 1020
cach execute 1n the system memory 1050 of the data
processing system.

In some embodiments, 3D graphics application 1010
contains one or more shader programs including shader
instructions 1012. The shader language 1nstructions may be
in a high-level shader language, such as the High-Level
Shader Language (HLSL) of Direct3D, the OpenGL Shader
Language (GLSL), and so {forth. The application also
includes executable instructions 1014 in a machine language
suitable for execution by the general-purpose processor core
1034. The application also includes graphics objects 1016
defined by vertex data.

In some embodiments, operating system 1020 1s a
Microsolt® Windows® operating system from the
Microsolit Corporation, a proprietary UNIX-like operating
system, or an open source UNIX-like operating system
using a variant ol the Linux kernel. The operating system
1020 can support a graphics API 1022 such as the Direct3D
API, the OpenGL API, or the Vulkan API. When the
Direct3D API 1s 1n use, the operating system 1020 uses a
front-end shader compiler 1024 to compile any shader
instructions 1012 1 HLSL into a lower-level shader lan-
guage. The compilation may be a just-in-time (JI'T) compi-
lation or the application can perform shader pre-compila-
tion. In some embodiments, high-level shaders are compiled
into low-level shaders during the compilation of the 3D
graphics application 1010. In some embodiments, the shader
instructions 1012 are provided in an intermediate form, such
as a version of the Standard Portable Intermediate Repre-
sentation (SPIR) used by the Vulkan API.

In some embodiments, user mode graphics driver 1026
contains a back-end shader compiler 1027 to convert the
shader instructions 1012 into a hardware specific represen-
tation. When the OpenGL API is 1n use, shader instructions
1012 1n the GLSL high-level language are passed to a user
mode graphics driver 1026 for compilation. In some
embodiments, user mode graphics driver 1026 uses operat-
ing system kernel mode functions 1028 to communicate
with a kernel mode graphics driver 1029. In some embodi-
ments, kernel mode graphics driver 1029 communicates
with graphics processor 1032 to dispatch commands and
instructions.

IP Core Implementations

One or more aspects of at least one embodiment may be
implemented by representative code stored on a machine-
readable medium which represents and/or defines logic
within an integrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the pro-
cessor. When read by a machine, the mstructions may cause
the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described in asso-
ciation with any of the embodiments described herein.

FIG. 11A 1s a block diagram illustrating an IP core
development system 1100 that may be used to manufacture

US 12,086,205 B2

33

an itegrated circuit to perform operations according to an
embodiment. The IP core development system 1100 may be
used to generate modular, re-usable designs that can be
incorporated into a larger design or used to construct an
entire mtegrated circuit (e.g., an SOC integrated circuit). A
design facility 1130 can generate a soitware simulation 1110
of an IP core design 1n a high-level programming language
(e.g., C/C++). The software simulation 1110 can be used to
design, test, and verily the behavior of the IP core using a
simulation model 1112. The simulation model 1112 may
include functional, behavioral, and/or timing simulations. A
register transier level (RTL) design 1113 can then be created
or Synthesmed from the simulation model 1112. The RTL
design 11135 1s an abstraction of the behavior of the inte-
grated circuit that models the tlow of digital signals between
hardware registers, including the associated logic performed
using the modeled digital signals. In addition to an RTL
design 1115, lower-level designs at the logic level or tran-
sistor level may also be created, designed, or synthesized.
Thus, the particular details of the mitial design and simula-
tion may vary.

The RTL design 1115 or equivalent may be further
synthesized by the design facility into a hardware model
1120, which may be in a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verity the IP
core design. The IP core design can be stored for delivery to
a 3’ party fabrication facility 1165 using non-volatile
memory 1140 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 1150 or wireless connection 1160. The fabrica-
tion facility 1165 may then fabricate an integrated circuit
that 1s based at least in part on the IP core design. The
tabricated integrated circuit can be configured to perform
operations 1n accordance with at least one embodiment
described herein.

FIG. 11B 1illustrates a cross-section side view ol an
integrated circuit package assembly 1170, according to some
embodiments described herein. The mtegrated circuit pack-
age assembly 1170 1llustrates an implementation of one or
more processor or accelerator devices as described herein.

The package assembly 1170 includes multiple units of

hardware logic 1172, 1174 connected to a substrate 1180.
The logic 1172, 1174 may be implemented at least partly 1n
configurable logic or fixed-functionality logic hardware, and
can include one or more portions of any of the processor
core(s), graphics processor(s), or other accelerator devices
described herein. Each unit of logic 1172, 1174 can be
implemented within a semiconductor die and coupled with
the substrate 1180 via an interconnect structure 1173. The
interconnect structure 1173 may be configured to route
clectrical signals between the logic 1172, 1174 and the
substrate 1180, and can include interconnects such as, but
not limited to bumps or pillars. In some embodiments, the
interconnect structure 1173 may be configured to route
clectrical signals such as, for example, mput/output (I/0)
signals and/or power or ground signals associated with the
operation of the logic 1172, 1174. In some embodiments, the
substrate 1180 1s an epoxy-based laminate substrate. The
substrate 1180 may include other suitable types of substrates
in other embodiments. The package assembly 1170 can be
connected to other electrical devices via a package inter-
connect 1183. The package interconnect 1183 may be
coupled to a surface of the substrate 1180 to route electrical
signals to other electrical devices, such as a motherboard,
other chipset, or multi-chip module.

10

15

20

25

30

35

40

45

50

55

60

65

34

In some embodiments, the units of logic 1172, 1174 are
clectrically coupled with a bridge 1182 that 1s configured to
route electrical signals between the logic 1172, 1174. The
bridge 1182 may be a dense interconnect structure that
provides a route for electrical signals. The bridge 1182 may
include a bridge substrate composed of glass or a suitable
semiconductor material. Electrical routing features can be
formed on the bridge substrate to provide a chip-to-chip
connection between the logic 1172, 1174.

Although two units of logic 1172, 1174 and a bridge 1182
are 1llustrated, embodiments described herein may include
more or fewer logic units on one or more dies. The one or
more dies may be connected by zero or more bridges, as the
bridge 1182 may be excluded when the logic 1s included on
a single die. Alternatively, multiple dies or units of logic can
be connected by one or more bridges. Additionally, multiple
logic units, dies, and bridges can be connected together 1n
other possible configurations, including three-dimensional
configurations.

FIG. 11C 1illustrates a package assembly 1190 that
includes multiple units of hardware logic chiplets connected
to a substrate 1180. A graphics processing unit, parallel
processor, and/or compute accelerator as described herein
can be composed from diverse silicon chiplets that are
separately manufactured. In this context, a chiplet 1s an at
least partially packaged integrated circuit that includes dis-
tinct units of logic that can be assembled with other chiplets
into a larger package. A diverse set of chiplets with difierent
IP core logic can be assembled 1nto a single device. Addi-
tionally the chiplets can be integrated into a base die or base
chuplet using active interposer technology. The concepts
described herein enable the interconnection and communi-
cation between the diflerent forms of IP within the GPU. IP
cores can be manufactured using diflerent process technolo-
gies and composed during manufacturing, which avoids the
complexity of converging multiple IPs, especially on a large
SoC with several flavors IPs, to the same manufacturing
process. Enabling the use of multiple process technologies
improves the time to market and provides a cost-effective
way to create multiple product SKUs. Additionally, the
disaggregated IPs are more amenable to being power gated
independently, components that are not in use on a given
workload can be powered ofl, reducing overall power con-
sumption.

In various embodiments a package assembly 1190 can
include components and chiplets that are interconnected by
a Tabric 1185 and/or one or more bridges 1187. The chiplets
within the package assembly 1190 may have a 2.5D arrange-
ment using Chip-on-Water-on-Substrate stacking 1in which
multiple dies are stacked side-by-side on a silicon interposer
1189 that couples the chiplets with the substrate 1180. The
substrate 1180 includes electrical connections to the package
interconnect 1183. In one embodiment the silicon interposer
1189 1s a passive interposer that includes through-silicon
vias (ISVs) to electrically couple chiplets within the pack-
age assembly 1190 to the substrate 1180. In one embodi-
ment, silicon interposer 1189 1s an active interposer that
includes embedded logic in addition to TSVs. In such
embodiment, the chiplets within the package assembly 1190
are arranged using 3D face to face die stacking on top of the
active terposer 1189. The active interposer 1189 can
include hardware logic for I/O 1191, cache memory 1192,
and other hardware logic 1193, 1n addition to interconnect
fabric 1185 and a silicon bridge 1187. The fabric 1185
enables communication between the various logic chiplets
1172, 1174 and the logic 1191, 1193 within the active

interposer 1189. The fabric 1185 may be an NoC intercon-

US 12,086,205 B2

35

nect or another form of packet switched fabric that switches
data packets between components of the package assembly.
For complex assemblies, the fabric 1185 may be a dedicated
chiplet enables communication between the various hard-
ware logic of the package assembly 1190.

Bridge structures 1187 within the active interposer 1189
may be used to facilitate a point to point interconnect
between, for example, logic or /O chiplets 1174 and
memory chiplets 1175. In some implementations, bridge
structures 1187 may also be embedded within the substrate
1180. The hardware logic chiplets can include special pur-
pose hardware logic chiplets 1172, logic or I/O chiplets
1174, and/or memory, chiplets 1175. The hardware logic
chiplets 1172 and logic or I/O chiplets 1174 may be imple-
mented at least partly in configurable logic or fixed-func-
tionality logic hardware and can include one or more por-
tions of any of the processor core(s), graphics processor(s),

parallel processors, or other accelerator devices described
herein. The memory chiplets 1175 can be DRAM (e.g.,

GDDR, IBM) memory or cache (SRAM) memory. Cache
memory 1192 within the active interposer 1189 (or substrate
1180) can act as a global cache for the package assembly
1190, part of a distributed global cache, or as a dedicated
cache for the fabric 1185.

Each chiplet can be fabricated as separate semiconductor
die and coupled with a base die that 1s embedded within or
coupled with the substrate 1180. The coupling with the
substrate 1180 can be performed via an interconnect struc-
ture 1173. The terconnect structure 1173 may be config-
ured to route electrical signals between the various chiplets
and logic within the substrate 1180. The 1nterconnect struc-
ture 1173 can include interconnects such as, but not limited
to bumps or pillars. In some embodiments, the interconnect
structure 1173 may be configured to route electrical signals
such as, for example, mput/output (I/O) signals and/or
power or ground signals associated with the operation of the
logic, I/O and memory chiplets. In one embodiment, an
additional interconnect structure couples the active inter-
poser 1189 with the substrate 1180.

In some embodiments, the substrate 1180 1s an epoxy-
based laminate substrate. The substrate 1180 may include
other suitable types of substrates 1n other embodiments. The
package assembly 1190 can be connected to other electrical
devices via a package interconnect 1183. The package
interconnect 1183 may be coupled to a surface of the
substrate 1180 to route electrical signals to other electrical
devices, such as a motherboard, other chipset, or multi-chip
module.

In some embodiments, a logic or I/O chiplet 1174 and a
memory chiplet 1175 can be electrically coupled via a bridge
1187 that 1s configured to route electrical signals between
the logic or I/0 chiplet 1174 and a memory chiplet 1175. The
bridge 1187 may be a dense interconnect structure that
provides a route for electrical signals. The bridge 1187 may
include a bridge substrate composed of glass or a suitable
semiconductor material. Electrical routing features can be
formed on the bridge substrate to provide a chip-to-chip
connection between the logic or /O chiplet 1174 and a
memory chiplet 1175. The bridge 1187 may also be referred
to as a silicon bridge or an mterconnect bridge. For example,
the bridge 1187, 1n some embodiments, 1s an Embedded
Multi-die Interconnect Bridge (EMIB). In some embodi-
ments, the bridge 1187 may simply be a direct connection
from one chiplet to another chiplet.

FIG. 11D 1illustrates a package assembly 1194 including
interchangeable chiplets 1195, according to an embodiment.
The interchangeable chiplets 1195 can be assembled into

10

15

20

25

30

35

40

45

50

55

60

65

36

standardized slots on one or more base chiplets 1196, 1198.
The base chiplets 1196, 1198 can be coupled via a bridge
interconnect 1197, which can be similar to the other bridge
interconnects described herein and may be, for example, an
EMIB. Memory chiplets can also be connected to logic or
I/O chiplets via a bridge 1nterconnect. I/O and logic chiplets
can communicate via an interconnect fabric. The base chip-
lets can each support one or more slots 1n a standardized
format for one of logic or I/O or memory/cache.

In one embodiment, SRAM and power delivery circuits
can be fabricated into one or more of the base chiplets 1196,
1198, which can be fabricated using a different process
technology relative to the interchangeable chiplets 1195 that
are stacked on top of the base chiplets. For example, the base
chiplets 1196, 1198 can be fabricated using a larger process
technology, while the interchangeable chiplets can be manu-
factured using a smaller process technology. One or more of
the interchangeable chiplets 1195 may be memory (e.g.,
DRAM) chiplets. Different memory densities can be
selected for the package assembly 1194 based on the power,
and/or performance targeted for the product that uses the
package assembly 1194. Additionally, logic chiplets with a
different number of type of functional units can be selected
at time of assembly based on the power, and/or performance
targeted for the product. Additionally, chiplets containing IP
logic cores of differing types can be inserted into the
interchangeable chiplet slots, enabling hybrid processor
designs that can mix and match different technology IP
blocks.

Exemplary System on a Chip Integrated Circuit

FIG. 12 and FIG. 13A-13B illustrate exemplary integrated
circuits and associated graphics processors that may be
tabricated using one or more IP cores, according to various
embodiments described herein. In addition to what 1s 1llus-
trated, other logic and circuits may be included, including
additional graphics processors/cores, peripheral interface
controllers, or general-purpose processor cores.

FIG. 12 1s a block diagram illustrating an exemplary
system on a chip integrated circuit 1200 that may be
fabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 1200 includes
one or more application processor(s) 12035 (e.g., CPUs), at
least one graphics processor 1210, and may additionally
include an 1mage processor 1215 and/or a video processor
1220, any of which may be a modular IP core from the same
or multiple different design facilities. Integrated circuit 1200
includes peripheral or bus logic including a USB controller
1225, UART controller 1230, an SPI/SDIO controller 1235,
and an FS/FC controller 1240. Additionally, the integrated
circuit can include a display device 1245 coupled to one or
more of a high-definition multimedia interface (HDMI)
controller 1250 and a mobile industry processor interface
(MIPI) display interface 12355. Storage may be provided by
a flash memory subsystem 1260 including flash memory and
a flash memory controller. Memory interface may be pro-
vided via a memory controller 1265 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 1270.

FIG. 13A-13B are block diagrams 1llustrating exemplary
graphics processors for use within an SoC, according to
embodiments described herein. FIG. 13A 1illustrates an
exemplary graphics processor 1310 of a system on a chip
integrated circuit that may be fabricated using one or more
IP cores, according to an embodiment. FIG. 13B illustrates
an additional exemplary graphics processor 1340 of a sys-
tem on a chip integrated circuit that may be fabricated using,
one or more IP cores, according to an embodiment. Graphics

US 12,086,205 B2

37

processor 1310 of FIG. 13A 1s an example of a low power
graphics processor core. Graphics processor 1340 of FIG.
13B 1s an example of a higher performance graphics pro-
cessor core. Each of graphics processor 1310 and graphics
processor 1340 can be variants of the graphics processor >

1210 of FIG. 12.

As shown 1n FIG. 13 A, graphics processor 1310 includes
a vertex processor 1305 and one or more fragment proces-
sor(s) 1315A-1315N (e.g., 1315A, 13158, 1313C, 1315D,
through 1315N-1, and 1315N). Graphics processor 1310 can
execute diflerent shader programs via separate logic, such
that the vertex processor 1305 1s optimized to execute
operations for vertex shader programs, while the one or
more fragment processor(s) 1315A-1315N execute fragment
(e.g., pixel) shading operations for fragment or pixel shader
programs. The vertex processor 1305 performs the vertex
processing stage of the 3D graphics pipeline and generates
primitives and vertex data. The fragment processor(s)
1315A-1315N use the primitive and vertex data generated ¢
by the vertex processor 1305 to produce a framebutler that
1s displayed on a display device. In one embodiment, the
fragment processor(s) 1315A-1315N are optimized to
execute fragment shader programs as provided for in the
OpenGL API, which may be used to perform similar opera- 25
tions as a pixel shader program as provided for in the Direct
3D APL

Graphics processor 1310 additionally mcludes one or

more memory management units (MMUSs) 1320A-13208B,
cache(s) 1325A-1325B, and circuit interconnect(s) 1330A- 30

1330B. The one or more MMU(s) 1320A-1320B provide for
virtual to physical address mapping for the graphics proces-
sor 1310, including for the vertex processor 1305 and/or
fragment processor(s) 1315A-1315N, which may reference
vertex or image/texture data stored 1n memory, in addition to 35
vertex or i1mage/texture data stored in the one or more
cache(s) 1325A-1325B. In one embodiment the one or more
MMU(s) 1320A-1320B may be synchromized with other
MMUSs within the system, including one or more MMUSs
associated with the one or more application processor(s) 40
1205, image processor 1215, and/or video processor 1220 of
FIG. 12, such that each processor 1205-1220 can participate

in a shared or unified virtual memory system. The one or
more circuit interconnect(s) 1330A-1330B enable graphics
processor 1310 to interface with other IP cores within the 45
SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

As shown FIG. 13B, graphics processor 1340 includes the
one or more MMU(s) 1320A-1320B, cache(s) 1325A-

13258, and circuit interconnect(s) 1330A-1330B of the 50
graphics processor 1310 of FIG. 13A. Graphics processor
1340 includes one or more shader core(s) 1355A-1355N
(e.g., 1455A, 13558, 1355C, 1355D, 13355E, 1355F, through
1355N-1, and 1355N), which provides for a unified shader
core architecture 1in which a single core or type or core can 55
execute all types of programmable shader code, including
shader program code to implement vertex shaders, fragment
shaders, and/or compute shaders. The unified shader core
architecture 1s also configurable to execute direct compiled
high-level GPGPU programs (e.g., CUDA). The exact num- 60
ber of shader cores present can vary among embodiments
and implementations. Additionally, graphics processor 1340
includes an inter-core task manager 1345, which acts as a
thread dispatcher to dispatch execution threads to one or
more shader cores 1355A-1355N and a tiling unit 1358 to 65
accelerate tiling operations for tile-based rendering, 1n
which rendering operations for a scene are subdivided in

10

15

38

image space, for example to exploit local spatial coherence
within a scene or to optimize use of internal caches.
Random Sparsity Handling in a Systolic Array

Matrix multiply units can take advantage of input sparsity
by zero gating AL Us, which saves power consumption, but
compute throughput does not increase. To improve compute
throughput from sparsity, processing resources in a matrix
accelerator can skip computation with zero imvolved 1n mput
or output. The typical level of sparsity 1s about 30% {for
activations and corresponding gradient, and 1n case of prun-
ing the level of sparsity can reaches as high as 90% 1n
weilghts. If zeros 1n iput can be skipped, the processing
units can focus calculations on generating meaningful non-
zero output. Accordingly, compute throughput can be
increased theoretically by 2x for 50% sparsity, and by 10x
for 90% sparsity in pruning case.

Described heremn 1s a systolic array optimization for
random sparsity to improve the performance of a broad
range of machine learning applications. Unlike structured
sparsity where certain patterns of sparsity 1s required and
performance benefits are limited, random sparsity support
covers networks from generic pruning process and takes
advantage of higher level of sparsity in many networks. The
systolic array described herein takes advantage of random
sparsity in one input, either weights or feature maps for
neural network inference or training operations. The tech-
nique described herein squeezes sparse put matrix at
accumulation dimension and skips computation for zero-
value elements after merging input vectors, which increases
computation throughput for sparse neural networks or other
matrix operations on sparse input data.

This technique improves computation throughput on sys-
tolic array for random sparse input, for example 1.5x
improvement for 50% random sparsity. This technique cov-
ers structured sparsity as well, with similar 2x improvement
tor 50% structured sparsity. This technique 1s built on top of
systolic array for dense matrices, without any impact on
computation throughput for dense matrices.

Tensor Acceleration Logic for Machine Learning Workloads

FIG. 14 1s a block diagram of a data processing system
1400, according to an embodiment. The data processing
system 1400 1s a heterogeneous processing system having a
processor 1402, unified memory 1410, and a GPGPU 1420
including machine learning acceleration logic. The proces-
sor 1402 and the GPGPU 1420 can be any of the processors
and GPGPU/parallel processors as described herein. The
processor 1402 can execute mstructions for a compiler 14135
stored 1n system memory 1412. The compiler 1415 executes
on the processor 1402 to compile source code 1414A into
compiled code 1414B. The compiled code 1414B can
include 1nstructions that may be executed by the processor
1402 and/or instructions that may be executed by the
GPGPU 1420. During compilation, the compiler 14135 can
perform operations to insert metadata, including hints as to
the level of data parallelism present in the compiled code
1414B and/or hints regarding the data locality associated
with threads to be dispatched based on the compiled code
1414B. The compiler 1415 can include the information
necessary to perform such operations or the operations can
be performed with the assistance of a runtime library 1416.
The runtime library 1416 can also assist the compiler 1415
in the compilation of the source code 1414A and can also
include instructions that are linked at runtime with the
compiled code 1414B to facilitate execution of the compiled
instructions on the GPGPU 1420.

The unified memory 1410 represents a unified address
space that may be accessed by the processor 1402 and the

US 12,086,205 B2

39

GPGPU 1420. The unified memory can include system
memory 1412 as well as GPGPU memory 1418. The
GPGPU memory 1418 1s memory within an address pace of
the GPGPU 1420 and can include some or all of system
memory 1412. In one embodiment the GPGPU memory
1418 can also include at least a portion of any memory
dedicated for use exclusively by the GPGPU 1420. In one
embodiment, compiled code 1414B stored 1n system
memory 1412 can be mapped into GPGPU memory 1418 for
access by the GPGPU 1420.

The GPGPU 1420 includes multiple compute blocks
1424 A-1424N, which can include one or more of a variety
of processing resources described herein. The processing
resources can be or include a variety of different computa-
fional resources such as, for example, execution units,
compute units, streaming multiprocessors, graphics multi-
processors, or multi-core groups. In one embodiment the
GPGPU 1420 additionally includes a tensor (e.g., matrix)
accelerator 1423, which can include one or more special
function compute units that are designed to accelerate a
subset of matrix operations (e.g., dot product, etc.). The
tensor accelerator 1423 may also be referred to as a tensor
accelerator or tensor core. In one embodiment, logic com-
ponents within the tensor accelerator 1423 may be distrib-

uted across the processing resources of the multiple compute
blocks 1424 A-1424N.

The GPGPU 1420 can also include a set of resources that
can be shared by the compute blocks 1424 A-1424N and the
tensor accelerator 1423, including but not limited to a set of
registers 1425, a power and performance module 1426, and
a cache 1427. In one embodiment the registers 1425 include
directly and indirectly accessible registers, where the indi-
rectly accessible registers are optimized for use by the tensor
accelerator 1423. The power and performance module 1426
can be configured to adjust power delivery and clock fre-
quencies for the compute blocks 1424A-1424N to power
gate 1dle components within the compute blocks 1424 A-
1424N. In various embodiments the cache 1427 can include
an 1struction cache and/or a lower level data cache.

The GPGPU 1420 can additionally include an 1.3 data
cache 1430, which can be used to cache data accessed from
the unified memory 1410 by the tensor accelerator 1423
and/or the compute elements within the compute blocks
1424 A-1424N. In one embodiment the 1.3 data cache 1430
includes shared local memory 1432 that can be shared by the
compute elements within the compute blocks 1424 A-1424N
and the tensor accelerator 1423.

In one embodiment the GPGPU 1420 includes instruction
handling logic, such as a fetch and decode unit 1421 and a
scheduler controller 1422. The fetch and decode unit 1421
includes a fetch unit and decode unit to fetch and decode
instructions for execution by one or more of the compute
blocks 1424A-1424N or the tensor accelerator 1423. The
instructions can be scheduled to the appropriate functional
unit within the compute block 1424A-1424N or the tensor
accelerator via the scheduler controller 1422. In one embodi-
ment the scheduler controller 1422 1s an ASIC configurable
to perform advanced scheduling operations. In one embodi-
ment the scheduler controller 1422 1s a micro-controller or
a low energy-per-instruction processing core capable of
executing scheduler instructions loaded from a firmware
module.

In one embodiment some functions to be performed by
the compute blocks 1424A-1424N can be directly scheduled
to or offloaded to the tensor accelerator 1423. In various
embodiments the tensor accelerator 1423 includes process-
ing element logic configured to efficiently perform matrix

10

15

20

25

30

35

40

45

50

35

60

65

40

compute operations, such as multiply and add operations
and dot product operations used by 3D graphics or compute
shader programs. In one embodiment the tensor accelerator
1423 can be configured to accelerate operations used by
machine learning frameworks. In one embodiment the ten-
sor accelerator 1423 1s an application specific integrated
circuit explicitly configured to perform a specific set of
paralle]l matrix multiplication and/or addition operations. In
one embodiment the tensor accelerator 1423 i1s a field
programmable gate array (FPGA) that provides fixed func-
tion logic that can updated between workloads. The set of
matrix operations that can be performed by the tensor
accelerator 1423 may be limited relative to the operations
that can be performed by the compute block 1424A-1424N.
Howeyver, the tensor accelerator 1423 can perform those the
operations at a significantly higher throughput relative to the
compute block 1424 A-1424N.

FIG. 15 illustrates a matrix operation 1505 performed by
an 1nstruction pipeline 1500, according to an embodiment.
The nstruction pipeline 1500 can be configured to perform
a matrix operation 1505, such as, but not limited to a dot
product operation and/or a matrix multiply and accumulate
operation. The dot product of two vectors 1s a scalar value
that 1s equal to sum of products of corresponding compo-

nents of the vectors. The dot product can be calculated as
shown 1n equation (1) below.

" (1)
3.b = Zafbf =a1by +... +a,b,
i=1

A matrix multiply and accumulate operation multiplies
the elements of two matrices to generate a third matrix. To
generate the third matrix, successive dot product operations
are performed on rows and columns of the input matrices to
generate elements of the output matrix.

The dot product can be used 1n a convolution operation for
a convolutional neural network (CNN). FIG. 15 1llustrates a
two-dimensional (2D) convolution using a matrix operation
1505 including a dot product operation. While 2D convo-
lution 1s illustrated, N-dimensional convolution can be per-
formed on an N-dimensional volume using N-dimensional
filters. A receptive field tile 1502 highlights a portion of an
input volume in an input volume buffer 1504. The i1nput
volume buifer can be stored in memory 1530. A dot product
matrix operation 1505 can be performed between the data
within the receptive field tile 1502 and a convolutional filter
to generate a data point within output buffer 1506, which can
also be stored in memory 1530. The memory 1530 can be
any of the memory described herein, including system
memory 1412, GPGPU memory 1418, or one or more cache
memories 1427, 1430 as in FIG. 14.

The combination of the data points within the output
buffer 1506 represents an activation map generated by the
convolution operation. Each point within the activation map
1s generated by sliding the receptive field tile across the input
volume buifer 1504. The activation map data can be input to
an activation function to determine an output activation
value. In one embodiment, convolution of the input volume
buifer 1504 can be defined within a framework as high-level
matrix operation 1505. The high-level matrix operations can
be performed via primitive operations, such as a basic linear
algebra subprogram (BLAS) operation. The primitive opera-
tions can be accelerated via hardware instructions executed
by the instruction pipeline 1500.

US 12,086,205 B2

41

The 1nstruction pipeline 1500 used to accelerate hardware
instructions can include the mstruction fetch and decode unit
1421, which can fetch and decode hardware instructions,
and the scheduler controller 1422 which can schedule
decoded 1nstructions to one or more processing resources
within the compute blocks 1424A-1424N and/or the tensor
accelerator 1423. In one embodiment, a hardware 1nstruction
can be scheduled to the compute blocks 1424 A-1424N and
offloaded to the tensor accelerator 1423. The one or more
hardware instructions and associated data to perform the
matrix operation 1505 can be stored in the memory 1530.
Output of the hardware 1nstruction can also be stored in the
memory 1330.

In one embodiment, the tensor accelerator 1423 can
execute one or more hardware instructions to perform the
matrix operation 1505 using an integrated systolic array
1508 (DP logic). The systolic array 1508 can include a
combination of programmable and fixed function hardware
that 1s configurable to perform dot product operations. While
functional units within the compute blocks 1424 A-1424N
can also be configured to perform dot product operations, the
systolic array 1508 can be configured to perform a limited
subset of dot product operations at a significantly higher
throughput relative to the compute block 1424 A-1424N.
Additionally, other types of matrix operations can be per-
formed, 1ncluding matrix multiply and accumulate opera-
tions.

FIG. 16A-16B 1illustrate details of hardware-based sys-
tolic array 1508, according to some embodiments. FIG. 16 A
illustrates a grid of multiple functional units that are con-
figurable to perform multiple dot product operations within
a single clock cycle. FIG. 16B illustrates a single exemplary
functional unait.

As shown 1n FIG. 16A, in one embodiment the systolic
array 1508 1s configurable to perform a set of parallel dot
product operations using a variety of functional units. The
dot products can be performed 1n a ‘systolic’ manner, 1n
which SIMD data 1s pumped across multiple layers of
functional units. As shown in FIG. 16A, in one embodiment
the systolic array 1508 1s configurable to perform a set of
parallel dot product operations using a variety of functional
units. The dot products can be performed in a ‘systolic’
manner, 1n which SIMD data 1s pumped across multiple
layers of functional umits. The systolic array 1508 1s a
collection of functional units that are arranged 1n a grid. The
orid of functional units work in lockstep and are optimized
to perform multiply-accumulate operations. Matrices to be
operated on by the systolic array 1508 are divided 1in to
sub-matrices, which are pumped across the grid of func-
tional units.

In one embodiment the systolic array 1508 can process a
configurable number of SIMD channels of data using a
configurable systolic depth. For a given instruction, a SIMD
width and a systolic depth can be selected to process a set of
source data. The systolic depth defines the number of
systolic layers of hardware logic that will be used to process
an 1nstruction. A systolic layer 1s a group of multiplier and
adder logic units having a variable SIMD width, where the
systolic layer can receive, as input, an mnitial accumulator
value and generates a dot product value for output to a
successive systolic layer or to an output register.

In some embodiments, three sources can be processed,
where each source can be a vector register or an immediate
value. In one embodiment, source 1600 (SRCO) can be one
or more 1nitial accumulator values, which can be a single
value or a vector of accumulator values. The nitial accu-
mulator value will be added to the first set of dot products

10

15

20

25

30

35

40

45

50

55

60

65

42

computed by each functional unit within the first systolic
layer. The dot product computed by a functional unit can be
provided to the next systolic layer for the given SIMD
channel. The dot products can be computed based on source
1601 (SRC1) and source 1602 (SRC2), which are vector
registers that can contain one more channels of packed data,
cach channel containing a four-clement vector. In one
embodiment, each channel 1s 32-bits wide and provides four,
8-bit vector elements. In one embodiment, each channel 1s
64-bits wide and provides eight, 8-bit vector elements. Some
embodiments are configurable to calculate dot products from
input vectors having 32-bit elements, 16-bit elements, 8-bit
elements, 4-bit elements, and/or 2-bit elements. In one
embodiment, mixed precision operations can be performed
using any combination of supported element sizes (e.g.,
8-bitx2-bit, 8-bitx4-bit, 4-bitx4-bit, etc.). In one embodi-
ment, the systolic array 1508 1s configured for integer
calculation, although automatic fixed-point operation 1s con-
figurable 1 some embodiments. Although the instruction
described herein 1s a four-element dot product, in some
embodiments the systolic array 1508 may also be configured
to support tloating-point dot-product calculations on a dif-
ferent number of elements per vector.

In one embodiment, multiple channels of four-element
vectors can be packed into a single vector register of various
widths (e.g., 64-bit, 128-bit, 256-bit, 512-bit, etc.). Simul-
taneous dot products can be computed via the systolic array
1508 for multiple channels of vector elements provided via
source 1601 and source 1602. The number of channels of
vector elements to be processed can be configured based on
a selected execution size and systolic depth for the dot
product calculation. In one embodiment, source vectors that
are wider than the specified execution size and/or systolic
depth may be calculated using multiple cycles of the systolic
array 13508.

The number of calculations that can be performed within
a given clock cycle can vary based on the number of SIMD
lanes and systolic layers. The systolic array 1508, as 1llus-
trated, can perform sixteen dot products per SIMD lane of
throughput using a systolic depth of four. If configured for
cight SIMD lanes, the logic can perform 128 eight-bit
integer (INT8) dot products within a given cycle. If config-
ured for eight SIMD lanes and a systolic depth of eight, each
lane can perform 32 eight-bit integer (INT8) dot products
and 256 dot products in total. These specific number of
operations are exemplary of one embodiment, and other
embodiments vary in throughput. Furthermore, 11 the data
types are diflerent, then the number of operations will be
scaled based on the different data types.

At each functional unit, a dot product 1s computed via
multiplier and adder logic and the dot product 1s added to an
accumulator value. The resulting data can be output to a
destination register or provide to the accumulator of the next
systolic layer. Details of a functional unit 1612 are shown 1n
FIG. 16B.

As shown 1n FIG. 16B a functional umit 1612 can include
a set of mput data buflers 1604, 1606 and an accumulator
1622, which can each accept input data. In one embodiment,
data builer 1606 can accept source 1602, (SRC2), which can
be a packed vector of input data. Input data bufler 1604 can
accept a source 1601 (SRC1), which can also be a packed
vector of mput data. The accumulator 1622 can accept
source 1600 (SRCO) that provides an initial accumulator
value for the functional unit 1612. The mnitial accumulator
value 1s added to the dot product computed from the
clements of source 1601 and source 1602. The dot product
1s computed via an element-wise multiplication of the source

US 12,086,205 B2

43

vectors using a set of multipliers 1623A-1623D and an adder
1624. The multipliers 1623A-1623D are used to compute a
set of products. A sum of the set of products 1s computed by
the adder 1624. The sum can be accumulated with (e.g.,
added to) any 1nitial value provided via source 1600. In one
embodiment, this accumulated value can be provided as an
input value 1626 to the next accumulator, which can reside
in a subsequent systolic layer. In one embodiment, source
1601 may include multiple channels of input data. Addi-
tional channels of source 1601 can be relayed as SRC1 1nput
to additional SIMD lanes 1628. In one embodiment, source
1602 may include multiple channels of input data. Addi-
tional channels of source 1602 can be used as SRC2 input
data to logic units within additional systolic depths. In one
embodiment, source 1600 can optionally include multiple
channels, with additional channels provided as 1nput to the
accumulator within additional functional units. In one
embodiment, source 1600 can be a single value that 1s added
to each accumulator in each functional unit of the initial
systolic layer.

FIG. 17A-17D 1illustrates a sparse matrix multiply accel-
erator 1700 using systolic arrays with feedback inputs. FIG.
17A shows a scalable, multi-path sparse matrix multiply
accelerator 1700. FIG. 17B illustrates element merge logic
within the sparse matrix multiply accelerator 1700. FIG.
17C-17D 1llustrate merging columns of matrix elements
within a sparse maftrix.

As shown in FIG. 17A, the sparse matrix multiply accel-
erator 1700 1includes processing elements 1702A-1702D that
include arrays of multipliers and adders. In one embodiment,
processing elements 1702A-1702D are structurally similar
to functional unit 1612 of FIG. 16B. Processing elements
1702A-1702B at the beginning of each path include input
logic for SrcO. Each stage of each path of scalable sparse
matrix multiply accelerator 1700 can receive any element of
an independent or shared Srcl via input selectors 1712A-
1712D. Each stage of each path can also receive any element
of a Src2 input. Independent Src2 inputs can be provided via
separate input element selectors (e.g., Src2A via input selec-
tor 1710A and 1input selector 1711 A, Src2B via input selector
1710B and input selector 1711B). The separate Src2 input
enables the separate paths to compute different instructions
if necessary, although the paths can be used for the same
instruction. Separate output logic 1722A-1722B 1s present
for each path to enable output for the different instructions.
A feedback loop can be used to feed output from processing
elements 1702C-1702D back to processing elements
1702A-1702B to enable any number of systolic pipeline
stages.

Output 1722A-1722B from the final stage 1s labeled as

Dst. Where d=the systolic depth and e=the number of data
elements per channel, the output of a channel 1s described by

equation (2) below:

(2)

54
_DSII — SFI‘SOI + ZZ(SFIC]. + j)EirE'?HEHI k ﬂf channel fﬂfS}ﬂf:‘zEfEmEng‘ & gf channel J]r
=0 k=0

As shown 1n equation (2), each channel can include
multiple data elements on which operations are performed 1n
parallel. In one embodiment, each channel represents a four
element data vector, although a different number of elements
can be configured for each channel. In one embodiment, the
number of data elements within a channel can vary based on
the size of each data element. Dot products can be performed
using, for example, four element vectors with 8-bit data

10

15

20

25

30

35

40

45

50

35

60

65

44

types per element, two element vectors with 16-bit data
types, eight element vectors with 4-bit data types (e.g.,
INT4), or 16 element vectors with 2-bit data types (e.g.,
INT2). The number of channels can be automatically
adjusted depending on the datatype of Srcl and Src2. An
instruction can also specily a required systolic depth to be
used for the instruction.

In one embodiment the processing elements 1702A-
1702D may read inputs 1710A-1710B, 1711A-1711B
directly from the general-purpose register file. In one
embodiment systolic array 1700 includes logic to read inputs
1710A-1710B, 1711 A-1711B from the general purpose reg-
ister file and store input data in registers, buifers, or memory
that 1s internal to the systolic array. Internal logic can then
feed the input data elements to the processing elements
1702A-1702D for processing. Output 1722A-1722B can be
written to internal registers or memory of the systolic array
1700 and/or written directly to the general-purpose register
file.

Matrix Multiply with Random Sparsity

Embodiments described herein provide hardware and an
assoclated processing technique that builds on top of the
inner-product systolic array described herein, which accepts
a first matrix (Matrix A) as broadcast vector input, a second
matrix (Matrix B) as stationary matrix iput, and multiplies
Matrix A with Matrix B and adds to the third input Matrix
C to produce output Matrix D using the formula:

D=A*B+C

Matrix accelerators described herein can take advantage
of sparsity in one input matrix, while treading other inputs
as dense matrices. The zero value elements 1n an input vector
are filled with non-zero values from a paired input vector
input elements positions within a vector that are zeros are
filled with non-zero elements 1n order to fully utilize ALUs
1n a systolic array. This 1s achieved by merging input vectors
before providing the vectors to the systolic array. This
invention merges input vectors at accumulation dimension
so 1t has no impact on output matrix. Unlike structured
sparsity, random sparsity doesn’t not guarantee perfect
merging which leaves no residuals. The sparsity 1s increased
in residual vectors and some of them will be fully empty
after merging. The speedup 1s achieved by skipping empty
vectors. This invention merges remaining residual vectors
with mput vector of next iteration.

To multiply with merged sparse input vector, two iteration
worth of stationary Input B 1s stored in systolic array.
Metadata of Vector A 1s sent along with 1nput itsellf for
systolic array to determine which B element to select. There
1s no change to the flow of how 1nput Matrix C and output
Matrix D are processed, except for higher throughput.

Structured sparsity 1s treated as special case of random
sparsity. Taking Input A with structured sparsity, every other
iteration 1s fully empty and completely skipped. In this case,
this invention provides similar performance improvement as
other technique only handle structured sparsity.

As shown 1n FIG. 17B, 1n one embodiment the sparse
matrix multiply accelerator 1700 includes or couples with
memory 1720 that can store matrix elements 1722 for a
Matrix A (e.g., Src2) input and matrix elements 1724 for a
Matrix B (e.g., Srcl) input. A load umit 1731 can load a
subset of matrix element 1722 into a memory or register of
the sparse matrix multiply accelerator 1700. An element
merge unit 1742 can merge elements 1n a first set of column
vectors into a second set of column vectors. Output of the
element merge unit 1742 can be stored 1n a matrix element

buffer and fed to the functional units 1702 (e.g., 1702A-

US 12,086,205 B2

45

1702D) via a feed unit 1744 for Matrix A input (e.g., Src2
input). The merge process can generate metadata 1732 that
indicates the original position of an element. The metadata
1732 can be used by a load umit 1737 to determine how to
order vector elements of a Matrix B input vector, which 1s
ted to the functional units via an additional feed unit 1738.

As shown 1 FIG. 17C, a first group of vectors from a
sparse 1nput matrix can be a first element group 1746 and a
second group of vectors from the sparse input matrix can be
a second element group 1747. The element merge unit 1742
can perform an operation 1751 to merge non-zero elements
from the first element group 1746 into the second element
group 1747. In one embodiment, each element group
includes four vectors having four elements per vector. For a
given vector, 1f any non-zero elements of a vector in the first
clement group 1746 can be merged mnto a corresponding
vector of the second element group 1747, then those non-
zero clements are merged into the second element group
174°7. The original vector 1n the first element group 1746
becomes more sparse than before the merge, and in some
instances may become fully sparse.

As shown 1n FIG. 17D, the element merge umt 1742 can
generate post-merge elements 1752 1n which non-zero val-
ues 1n a pair of corresponding vectors of a sparse input are
coalesced 1nto one of the pair of vectors. The efliciency of
parallel compute operations i1s increased for vectors that
become more dense, while multiply operations for vectors
that become fully sparse may be skipped.

FIG. 18 1llustrates operations 1800 for a matrix multiply
in which random sparsity 1s handled via element merges. A
matrix multiply operation MxKxN generally accumulates
results at K dimension through multiple 1iterations on mner-
product systolic array (e.g., sparse matrix multiply accel-
crator 1700 of FIG. 17). Elements of a first matrix 1810
(Matrix B, Srcl) are loaded as stationary vector input and
clements of a second matrix 1820 (Matrix A, Src0) are
loaded as broadcast matrix input. Results of the matrix
multiply operation performed between Matrix A and Matrix
B are accumulated with a third matrix 1830 (Matrix C,
Src(0), which 1n some configurations may also be configured
as a destination matrix (Matrix D, Dst). Depending on the
s1ze of the input, multiple iterations using multiple subma-
trix tiles are performed to process an enfire matrix. Each
iteration operates on submatrix tiles from each mput. During
cach 1teration, a previous partial sum or set of initial values
1s loaded, along with two mput matrix tiles. A multiply and
add operation 1s performed and a partial sum 1s stored to
storage. To utilize sparsity in Matrix A, two mput tiles 1822
are loaded and merged together to remove zeros 1n the input.
The two input tiles 1822 of Matrix A are processed with two
iput tiles 1812 of Matrix B. Elements selected from one of
mput tiles 1812 of Matrix B are multiplied by merged
clements 1n a merge recipient tile of the mput tiles 1822 of
Matrix A. Metadata generated during the merge of columns
in the input tiles 1822 of Matrix A can be used to select
clements from the two 1nput tiles 1812 of Matrix B to feed
to processing elements of the matrix accelerator. Vector
merging 1s shown in FIG. 17C-17D. The use of vector
merging to merge columns across two interactions of input
tiles 1s shown 1n FIG. 19.

FI1G. 19 illustrates operations 1900 for column merging to
handle random sparsity in an input matrix of a matrix
accelerator. At Step 0, the two mnput tiles 1822 of the second
matrix 1820 (Matrix A) are shown with exemplary original
values before the merge. The two 1mnput tiles 1812 of the first
matrix 1810 are treated as dense matrices and are not
merged. At Step 1, each column of a first tile 1902 of the two

10

15

20

25

30

35

40

45

50

55

60

65

46

input tiles 1812 of the first matrix 1810 are merged with a
corresponding column of a second tile 1904 of the two
inputs 1822. In one embodiment, each column 1s divided
into 4-element groups or vectors, and each pair of groups are
merge together to consolidate zero and non-zero values. In
such embodiment, elements are merged within the vector or
group of elements. However, other embodiments can enable
free-form merging across tiles. Metadata 1s generated to
record the element swaps that occur while merging. In
various embodiments, the metadata can difer based on the
underlying implementation of the merge hardware. In one
embodiment, metadata 1s stored for each vector or element
group to indicate the merging pattern of each group pair. In
such embodiment, the merge pattern may be referenced
indirectly via a look-up table. In one embodiment, a batfield
can be generated for a tile that indicates the position in the
original vector or group for an element that 1s merged.

In one embodiment, merging 1s performed for each pair of
columns within the tiles unless the entire column to of the
second tile 1904 1s empty. For that case, the merge operation
1s bypassed for the column, as multiply operations for a fully
sparse column may be skipped. A result of an exemplary
merge of the first tile 1902 into the second tile 1904 1s shown
as the two input tiles 1922 of Step 1, which include a
residual tile 1906 and a merged tile 1908. Elements of the
merged tile 1908 can be transmitted for processing by
processing elements of the systolic array, along with meta-
data that 1s generated during the merge operation. Elements
from two blocks of Input B (e.g., the two 1nput tiles 1812 of
Matrix B) are sent to the systolic array during an 1teration.
In one embodiment, the two sets of elements from Input B
are stored at each processing unit of the systolic array as
stationary 1nput. The systolic array processing can use one or
more multiplexers positioned 1n front of mput B unit to
shuflle mput elements before processing (e.g., via input
selectors 1712A-1712D of FIG. 17A). The multiplexers can
use the merge metadata to select the corresponding input B
clement to multiply with the merged elements from input A
to compensate for the position shifts caused by the merge. In
one embodiment, instead of sending the entirety of the two
sets of elements from mput B, only selected elements are
sent, with the selected elements to send being determined
according to the merge metadata.

IT all groups or vectors of a column are determined to be
empty, operations for the entire column can be skipped and
the systolic array and proceed directly to the next column, as
the resulting partial sum associated with the entire column
will be zero. The more columns that are empty 1n 1nput block
A, the higher the speed-up that 1s achieved on the systolic
array. Input Matrix C and output Matrix D are processed 1n
the same fashion as 1n the dense matrix multiply case. Given
a zero value accumulation matrix, output of the matrix
operation that 1s performed between the second tile 1904 of
clements from 1nput block A and the two input tiles 1812 of
input block B 1s shown as output matrix 1932, which
includes a zero value column that corresponds to the fully
zero value column of the second tile 1904 of elements from
input Block A. While the output matrix 1932 1s otherwise
dense, speedup or power saving may be realized for each
sparse group or vector of elements within a column of the
merged input. Increased processing efliciency may be real-
1zed for those groups or vectors of elements that are made
more dense within the column of merged nput.

FIG. 20 illustrates a successive set of operations 2000 that
are performed to merge residual mput elements during a
successive iteration. Two input tiles 2022 of elements asso-
ciated with mput block A can be merged, where one of the

US 12,086,205 B2

47

two tiles includes residual elements from the previous merge
and another of the two tiles includes previously unprocessed
clements. Zero value elements within the vectors or groups
of elements of the residual tile of the previous merge can be
replaced with non-zero values of a corresponding group or
vector of the previously unprocessed tile. The tile having the
merged elements can be multiplied by elements selected
from one of the two mput tiles 2012 associated with 1mput
block B based on merge metadata. As with the operations
1800 of FIG. 18, clements of the two mput tiles 2012
associated with input Block B can be selected based on the
metadata output from the merge operation based on the
original position of an element 1n the merged tiled. The
output matrix 1932 from the previous iteration 1s read as
input and added to the results of the multiply operation
performed.

FI1G. 21 1llustrates operations 2100 for a second round of
merging. The two mput tiles 1922 of Step 1 (residual tile
1906, merged tile 1908) are shown. Accumulation opera-
tions along the K dimension continue with Step 2. Two input
tiles 2022 of Step 2 include an incoming tile 2102 and the
residual tile 1906 Step 1. In Step 3, elements of the incoming,
tile 2102 are merged with elements of the residual tile 1906
to create a new pair of mput tiles 2122 that includes a new
residual tile 2104 and a new merge tile 2106. The merging,
process 1s repeated for each iteration and 1s performed for
cach pair of associated columns except 1f the destination
column of the pair 1s full empty. For example, the illustrated
new merge tile 2106, which 1s the residual of the previous
merge, includes three columns that are entirely zero. Merg-
ing 1nto those columns are bypassed, as the multiply opera-
tion for those columns can be entirely skipped, as reflected
in the output matrix 2132 that 1s generated after the iteration
associated with Step 3.

The merging process described above can be performed
as an on-the-fly operation for deep learning network training
process. Furthermore, the merging process enables the han-
dling of random sparsity in feature maps, which may not be
able to be pruned into structured sparsity patterns as with
weights. In one embodiment, merging can also be performed
as an oflline operation for weights that are used for inference
applications. Additionally, while the merging of columns
within two tiles 1s described, embodiments described herein
can be configured to merge columns of two or more tiles.
Merging can be performed for vectors of elements within a
vector register file or packed elements that are configured to
be distributed to scalar thread engines. While vectors/groups
of four elements are 1llustrated, embodiments are not limited
to any particular number of elements per vector or group,
and elements can be merged within groups of two, four,
eight, or sixteen or more elements depending on the size of
the elements and the implementation of the processing
clements of the systolic array, matrix accelerator, or tensor
processor that implements the techniques described herein.

Experimental throughput increases are shown for an
8-deep systolic array that 1s configured to process 32-bit
input. The systolic array can be configured as a 16-deep
systolic array for 16-bit floating point input or a 32-deep
systolic array for 8-bit integer input.

The speedup that will be realized from the random
sparsity support described herein depends on the level of
sparsity, data format, and size of mput at the accumulation
dimension. The results also depends on sparsity patterns 1n
the sparse input matrix. Structurally sparse input enables a
predetermined performance lift, for istance a 2x speedup
from 50% structured sparsity with this scheme. While ran-
dom sparsity may provide lower gains for the same level of

10

15

20

25

30

35

40

45

50

55

60

65

48

sparsity, as the opportunity for merging zeros into empty
vectors may be reduced for random and unstructured spar-
sity, random sparsity implementations support a higher level
ol sparsity, as the degree of sparsity 1s not restricted by a
sparsity pattern. Accordingly, the potential gains for an
architecture having support for random and unstructured
sparsity are higher 1 comparison to structured sparsity
implementations.

FIG. 22 and FIG. 23 illustrate throughput gains for a

matrix multiply unit having support for random sparsity.
FIG. 22 illustrates exemplary throughput gain 2200 for a
16-deep systolic array having 16-bit tloating-point input.
FIG. 23 illustrates exemplary throughput gain 2300 for a
32-deep systolic array having 8-bit integer input. The 1llus-
trated speedups 2210, 2310 occur with a fully randomized
mput Matrix A, with a sweep of multiple sparsity levels.
Performance benefits rise as sparsity level increases for both
the 16-bit floating point input shown 1n FIG. 22 and the 8-bit

integer input of FIG. 23, with sizes of accumulation in the
K dimension of K=128 for FI1G. 22 and K=256 for FIG. 23.

As noted 1n the exemplary throughput gains, the techniques
described herein show a performance improvement even 1n
the presence of low sparsity. Accordingly, the techniques
described herein can be generally enabled in hardware
without a negative impact to performance when operating on
dense matrices. However, separate sparse and non-sparse
instructions may be provided to enable power saving by
enabling the matrix multiply logic to disable zero detection
and merge logic when 1nputs are known to be dense. In one
embodiment the hardware can be configured to automati-
cally disable zero detection and merge logic for dense input.

FIG. 24 illustrates a method 2400 of merging sparse
matrix input having random sparsity. The method 2400 of
FIG. 24 can be performed by hardware or firmware logic of
a matrix accelerator unit of a graphics processor, compute
accelerator, or other computing device, including a general-
purpose computing device (CPU) or a field programmable
gate array (FPGA). In some embodiments, a subset of
operations can be performed by driver, compute framework
logic, or machine learning framework logic associated with
a processor or accelerator.

Logic configured to implement method 2400 can perform
an operation to load multiple data elements of a first sub-
matrix and a second submatrix into memory ol a processor
device (2402). The memory can be a memory within or
coupled with a matrix accelerator unit of a processor device.
In one embodiment the matrix accelerator includes include
a systolic array of processing units. The logic can then
determine a first grouping of elements of the first submatrix
and a second grouping of elements of the second submatrix
(2404). The first grouping and the second grouping can each
include multiple groups, where each group in the first
grouping has a corresponding group in the second grouping.
Corresponding groups can be groups that are stored at the
same location 1n the respective submatrices. For example, a
group at the given row and column i1ndex of the first matrix
has a corresponding group at the same row and column
index of the second matrix.

In one embodiment, the groupings correspond with mul-
tiple-element vectors that are read from or stored to vector
registers within the processor and/or matrix accelerator unait.
In one embodiment the vectors include four matrix ele-
ments, although embodiments are not so limited. The num-
ber of elements within a vector can vary based on the size
of the data elements and the size of the vector register. The
groupings can also correspond with packed data elements

US 12,086,205 B2

49

that are to be provided to scalar compute units, for example
in a single instruction, multiple thread (SIMT) GPU.

The logic can then perform an operation to merge ¢le-
ments of a first group of the first grouping into a second
group of the second grouping (2406). In one embodiment the
second group, 1 to which elements are merged, i1s the
corresponding group of the first group and 1s located at the
same row and column index of the second submatrix as the
first group 1s located 1n the first submatrix. In one embodi-
ment, the merge process includes to read an element from
the first group and determine 1f space exists within the
second group at the corresponding location of the first group.
Space exists within the second group if one or more ele-
ments of the second group are zero. If space exists in the
second group, the first group and the second group can swap
the corresponding elements, such that the zero value 1s
written to the first group and the non-zero value 1s written to
the second group. In one embodiment, mstead of explicitly
swapping elements, the non-zero value can be written to the
second group and the original location 1n the first group can
be cleared. The merge process can then repeat for each
clement 1n the first group until all values 1n the second group
are non-zero.

The logic can then generate metadata to indicate a merge
pattern for elements of the first group (2408). The metadata
can 1nclude a bitfield that indicates an original position of a
merged element 1n the original group from which the ele-
ment 1s read. Other metadata formats may also be used. The
logic can then provide the second group and the metadata to
a processing element of the processor device as mput for a
matrix operation including a matrix multiply (2410). The
second group can be provided as mput along with elements
of a third and fourth submatrix of a second input matrix,
where elements are selected from the third or fourth sub-
matrix based on the metadata.

FIG. 25A-25C 1llustrates methods 2500, 2510, 2520 of
handling random sparsity of an input matrix during a matrix
multiply operation. The methods 2500, 2510 can be per-
tformed by hardware or firmware logic of a matrix accelera-
tor unit of a graphics processor, compute accelerator, or
other computing device, including a general-purpose com-
puting device (CPU) or a field programmable gate array
(FPGA). In some embodiments, a subset of operations can
be performed by driver, compute frame work logic, or
machine learming framework logic associated with a pro-
cessor or accelerator.

As shown i FIG. 25A, logic configured to implement
method 2500 can read a first set of two or more tiles of
clements associated with a first matrix (23502). The first set
of two or more tiles can 1include two or more submatrix tiles
of a matrix mput having elements to be broadcast across
processing elements of the matrix accelerator unit. The logic
can then merge a first group of elements 1n a first tile of the
two or more tiles of elements into a second group of
clements of a corresponding group of elements 1n a second
tile of the two or more tiles of elements (2504). The merging
can be performed based on operations described with respect
to method 2400 of FIG. 24. Merging the first group of
clements 1s performed to reduce the sparsity of the second
tile and increases sparsity of the second tile, such that
non-zero eclements of the first tile are coalesced into the
second tile. The merge process produces metadata that
indicates an original position for merged elements to enable
corresponding elements of a matrix multiply operation to be
identified.

The logic can additionally perform an operation to read a
second set of two or more tiles of elements associated with

10

15

20

25

30

35

40

45

50

55

60

65

50

a second matrix. The second matrix include elements that
will remain stationary within the matrix accelerator during a
systolic matrix multiply operation. (2506). The logic can
then perform a matrix multiply operation having input
including the second group of elements 1n the second tile and
selected elements from the second set of two or more tiles
of elements (2508). The selected elements from the second
set of two or more tiles are selected based on the metadata
generated based on the merging, such that the matrix mul-
tiply operation 1s performed between the correct elements, as
though the merge process did not occur.

As shown 1n FIG. 25B, during the merge operation and
the matrix operation, the operations can be skipped when an
entire column of a submatrix tile 1s zero, as the dot product
associated with that column will be zero. According to
method 2510, merge logic, during a merge operation, can
bypass a merge of a first column of elements into a second
column of elements when all elements of the second column
are zero (2512). Additionally, matrix multiply logic, during
a matrix multiply operation, can bypass a dot product
operation including the aforementioned second column of
clements when all elements of the second column are zero
(2514).

As shown 1n FIG. 25C, according to method 23520, the
merge operation, 1 one embodiment, 1s performed on cor-
responding groups within columns of submatrix tiles of an
input matrix for a matrix multiply operation. Method 2520
include operations performed by logic such as an element
merge unit 1742 of FIG. 17B. The operations include read
a first element of a first group of elements (2522). The first
group ol elements can be elements of a vector stored 1n a
vector register or an element 1n a packed group of elements.
The operations additionally include to determine whether
there 1s a non-zero value element 1n the first group (2523).
If there are no non-zero values in the first group (“No,”
2523), the logic can select the next group in the first
submatrix (2524). In one embodiment the next group 1s the
next group along the K dimension in the same column as the
first submatrix. If there 1s a non-zero value element in the
first group (*“Yes”, 2523), the logic can read a second group
of elements 1n a corresponding column of a second subma-
trix (2526). The second group of elements 1s a group of
clements of the same size and at the same location 1n the
second submatrix as the first group 1n the first submatrix. If
there 1s a zero value element 1n the second group (*Yes”,
2527), the logic can swap the zero value element in the
second group of elements with the non-zero value element
in the first group of elements (2528). The logic can then
determine 1f additional non-zero value elements remain 1n
the first group (2523). 11 there are no zero value elements 1n
the second group (“No”, 2527), the logic can select the next
group 1n the first submatrix (2524) and operations can
continue by reading the selected next group (2522).

According to the above disclosure, one embodiment
described herein provides a method comprising loading
multiple data elements of a first submatrix and a second
submatrix imto memory of a processor device, determining
a first grouping ol elements of the first submatrix and a
second grouping of clements of the second submatrix,
wherein the first grouping and the second grouping include
multiple groups and each group in the first grouping has a
corresponding group in the second grouping, merging ele-
ments of a first group of the first grouping into a second
group of the second grouping, wherein the second group 1s
the corresponding group of the first group, generating meta-
data to indicate a merge pattern for elements of the first
group, and providing the second group and the metadata to

US 12,086,205 B2

51

a processing element of the processor device as mput for a
matrix operation including a matrix multiply.

A further embodiment provides a method comprising
reading a first set of two or more tiles of elements associated
with a first matrix, merging a {irst group of elements 1n a first
tile of the two or more tiles of elements 1nto a second group
of elements of a corresponding group of clements 1 a
second tile of the two or more tiles of elements, wherein
merging the first group of elements reduces sparsity of the
second tile and increases sparsity of the second tile and
generates metadata based on the merging of the first group
ol elements into the second group of elements, reading a
second set of two or more tiles of elements associated with
a second matrix, and performing a matrix multiply operation
having input including the second group of elements 1n the
second tile and selected elements from the second set of two
or more tiles of elements, the selected elements from the
second set of two or more tiles selected based on the
metadata generated based on the merging.

Additional Exemplary Computing Device

FIG. 26 1s a block diagram of a computing device 2600
including a graphics processor 2604, according to an
embodiment. Versions of the computing device 2600 may be
or be included within a communication device such as a
set-top box (e.g., Internet-based cable television set-top
boxes, etc.), global positioning system (GPS)-based devices,
etc. The computing device 2600 may also be or be included
within mobile computing devices such as cellular phones,
smartphones, personal digital assistants (PDAs), tablet com-
puters, laptop computers, e-readers, smart televisions, tele-
vision platforms, wearable devices (e.g., glasses, watches,
bracelets, smartcards, jewelry, clothing items, etc.), media
players, etc. For example, 1n one embodiment, the comput-
ing device 2600 includes a mobile computing device
employing an itegrated circuit (“IC”"), such as system on a
chip (“SoC” or “SOC”), integrating various hardware and/or
soltware components of computing device 2600 on a single
chip. The computing device 2600 can be a computing device
such as the data processing system 100 as in of FIG. 1.

The computing device 2600 includes a graphics processor
2604. The graphics processor 2604 represents any graphics
processor described herein. In one embodiment, the graphics
processor 2604 includes a cache 2614, which can be a single
cache or divided into multiple segments of cache memory,
including but not limited to any numberof L1, L2, L3, or L4
caches, render caches, depth caches, sampler caches, and/or
shader unit caches. In one embodiment the cache 2614 may
be a last level cache that 1s shared with the application
processor 2606.

In one embodiment the graphics processor 2604 includes
a graphics microcontroller that implements control and
scheduling logic for the graphics processor. The control and
scheduling logic can be firmware executed by the graphics
microcontroller 2615. The firmware may be loaded at boot
by the graphics driver logic 2622. The firmware may also be
programmed to an electronically erasable programmable
read only memory or loaded from a flash memory device
within the graphics microcontroller 2615. The firmware may
enable a GPU OS 2616 that includes device management/
driver logic 2617, 2618, and a scheduler 2619. The GPU OS
2616 may also include a graphics memory manager 2620
that can supplement or replace the graphics memory man-
ager 2621 within the graphics driver logic 2622.

The graphics processor 2604 also includes a GPGPU
engine 2644 that includes one or more graphics engine(s),
graphics processor cores, and other graphics execution
resources as described heremn. Such graphics execution

10

15

20

25

30

35

40

45

50

55

60

65

52

resources can be presented in the forms including but not
limited to execution units, shader engines, fragment proces-
sors, vertex processors, streaming multiprocessors, graphics
processor clusters, or any collection of computing resources
suitable for the processing of graphics resources or 1mage
resources, or performing general purpose computational
operations 1n a heterogencous processor. The processing
resources of the GPGPU engine 2644 can be included within
multiple tiles of hardware logic connected to a substrate, as
illustrated in FIG. 11B-11D. The GPGPU engine 2644 can
include GPU tiles 2645 that include graphics processing and
execution resources, caches, samplers, etc. The GPU tiles
2645 may also include local volatile memory or can be
coupled with one or more memory tiles, for example, as
shown 1n FIG. 3B-3C.

The GPGPU engine 2644 can also include and one or
more special tiles 2646 that include, for example, a non-
volatile memory tile 2656, a network processor tile 2657,
and/or a general-purpose compute tile 2658. The GPGPU
engine 2644 also includes a matrix multiply accelerator
2660. The general-purpose compute tile 2658 may also
include logic to accelerate matrix multiplication operations.
The non-volatile memory tile 2656 can include non-volatile
memory cells and controller logic. The controller logic of
the non-volatile memory tile 2656 may be managed by one
of device management/driver logic 2617, 2618. The network
processor ftile 2657 can include network processing
resources that are coupled to a physical interface within the
input/output (I/O) sources 2610 of the computing device
2600. The network processor tile 2657 may be managed by
one or more of device management/driver logic 2617, 2618.

The matrix multiply accelerator 2660 1s a modular scal-
able sparse matrix multiply accelerator as described herein.
The matrix multiply accelerator 2660 can includes multiple
processing paths, with each processing path imncluding mul-
tiple pipeline stages. Each processing path can execute a
separate 1nstruction. In various embodiments, the matrix
multiply accelerator 2660 can have architectural features of
any one of more of the matrix multiply accelerators
described herein. For example, in one embodiment, the
matrix multiply accelerator 2660 1s a four-deep systolic
array 1700 with a feedback loop that i1s configurable to
operate with a multiple of four number of logical stages
(e.g., Tour, eight, twelve, sixteen, etc.). In one embodiment
the matrix multiply accelerator 2660 includes one or more
instances ol a two-path matrix multiply accelerator 1900
with a four stage pipeline or a four-path matrix multiply
accelerator 2000 with a two stage pipeline. In one embodi-
ment the matrix multiply accelerator 2660 1ncludes process-
ing clements configured as the scalable sparse matrix mul-
tiply accelerator 2100 or the scalable sparse matrix multiply
accelerator 2300. The matrix multiply accelerator 2660 can
be configured to operate only on non-zero values of at least
one 1nput matrix. Operations on entire columns or subma-
trices can be bypassed where block sparsity 1s present. The
matrix multiply accelerator 2660 can also include any logic
based on any combination of these embodiments, and par-
ticularly include logic to enable support for random sparsity,
according to embodiments described herein.

As 1llustrated, 1n one embodiment, and 1n addition to the
graphics processor 2604, the computing device 2600 may
further include any number and type of hardware compo-
nents and/or soitware components, including, but not lim-
ited to an application processor 2606, memory 2608, and
input/output (I/0) sources 2610. The application processor
2606 can interact with a hardware graphics pipeline, as
illustrated with reference to FIG. 3A, to share graphics

US 12,086,205 B2

53

pipeline functionality. Processed data 1s stored in a bufler in
the hardware graphics pipeline and state information 1s
stored 1n memory 2608. The resulting data can be transferred
to a display controller for output via a display device, such
as the display device 318 of FIG. 3A. The display device
may be of various types, such as Cathode Ray Tube (CRT),
Thin Film Transistor (TFT), Liquid Crystal Display (LCD),
Organic Light Emitting Diode (OLED) array, etc., and may
be configured to display information to a user via a graphical
user interface.

The application processor 2606 can include one or pro-
cessors, such as processor(s) 102 of FIG. 1 and may be the
central processing unit (CPU) that 1s used at least in part to
execute an operating system (OS) 2602 for the computing
device 2600. The OS 2602 can serve as an interface between
hardware and/or physical resources of the computing device
2600 and one or more users. The OS 2602 can include driver
logic for various hardware devices in the computing device
2600. The driver logic can include graphics driver logic
2622, which can include the user mode graphics driver 1026
and/or kernel mode graphics driver 1029 of FIG. 10. The
graphics driver logic can include a graphics memory man-
ager 2621 to manage a virtual memory address space for the
graphics processor 2604.

It 1s contemplated that in some embodiments the graphics
processor 2604 may exist as part of the application processor
2606 (such as part of a physical CPU package) in which
case, at least a portion of the memory 2608 may be shared
by the application processor 2606 and graphics processor
2604, although at least a portion of the memory 2608 may
be exclusive to the graphics processor 2604, or the graphics
processor 2604 may have a separate store of memory. The
memory 2608 may comprise a pre-allocated region of a
butfler (e.g., framebuiler); however, 1t should be understood
by one of ordinary skill in the art that the embodiments are
not so limited, and that any memory accessible to the lower
graphics pipeline may be used. The memory 2608 may
include various forms of random-access memory (RAM)
(e.g., SDRAM, SRAM, etc.) comprising an application that
makes use of the graphics processor 2604 to render a
desktop or 3D graphics scene. A memory controller hub,
such as memory controller 116 of FIG. 1, may access data
in the memory 2608 and forward it to graphics processor
2604 for graphics pipeline processing. The memory 2608
may be made available to other components within the
computing device 2600. For example, any data (e.g., input
graphics data) received from various I/O sources 2610 of the
computing device 2600 can be temporarily queued into
memory 2608 prior to their being operated upon by one or
more processor(s) (e.g., application processor 2606) 1n the
implementation of a software program or application. Simi-
larly, data that a software program determines should be sent
from the computing device 2600 to an outside entity through
one of the computing system interfaces, or stored into an
internal storage element, 1s often temporarily queued 1in
memory 2608 prior to its being transmitted or stored.

The 170 sources can include devices such as touchscreens,
touch panels, touch pads, virtual or regular keyboards,
virtual or regular mice, ports, connectors, network devices,
or the like, and can attach via a platform controller hub 130
as referenced in FIG. 1. Additionally, the I/O sources 2610
may include one or more I/O devices that are implemented
for transierring data to and/or from the computing device
2600 (e.g., a networking adapter); or, for a large-scale
non-volatile storage within the computing device 2600 (e.g.,
SSD/HDD). User input devices, including alphanumeric and
other keys, may be used to communicate information and

10

15

20

25

30

35

40

45

50

55

60

65

54

command selections to graphics processor 2604. Another
type of user input device 1s cursor control, such as a mouse,
a trackball, a touchscreen, a touchpad, or cursor direction
keys to communicate direction mformation and command
selections to GPU and to control cursor movement on the
display device. Camera and microphone arrays of the com-
puting device 2600 may be employed to observe gestures,
record audio and video and to receive and transmit visual
and audio commands.

The I/O sources 2610 can include one or more network
interfaces. The network interfaces may include associated
network processing logic and/or be coupled with the net-
work processor tile 2657. The one or more network interface
can provide access to a LAN, a wide area network (WAN),
a metropolitan area network (MAN), a personal area net-
work (PAN), Bluetooth, a cloud network, a cellular or
mobile network (e.g., 37 Generation (3G), 4” Generation
(4G), 5 Generation (5G), etc.), an intranet, the Internet, etc.
Network interface(s) may include, for example, a wireless
network interface having one or more antenna(e). Network
interface(s) may also include, for example, a wired network
interface to communicate with remote devices via network
cable, which may be, for example, an Ethernet cable, a
coaxial cable, a fiber optic cable, a serial cable, or a parallel
cable.

Network interface(s) may provide access to a LAN, for
example, by conforming to IEEE 802.11 standards, and/or
the wireless network interface may provide access to a
personal area network, for example, by conforming to
Bluetooth standards. Other wireless network interfaces and/
or protocols, including previous and subsequent versions of
the standards, may also be supported. In addition to, or
istead of, communication via the wireless LAN standards,
network interface(s) may provide wireless communication
using, for example, Time Division, Multiple Access
(TDMA) protocols, Global Systems for Mobile Communi-
cations (GSM) protocols, Code Division, Multiple Access
(CDMA) protocols, and/or any other type of wireless com-
munications protocols.

It 1s to be appreciated that a lesser or more equipped
system than the example described above may be preferred
for certain implementations. Therefore, the configuration of
the computing devices described herein may vary from
implementation to implementation depending upon numer-
ous factors, such as price constraints, performance require-
ments, technological improvements, or other circumstances.
Examples include (without limitation) a mobile device, a
personal digital assistant, a mobile computing device, a
smartphone, a cellular telephone, a handset, a one-way
pager, a two-way pager, a messaging device, a computer, a
personal computer (PC), a desktop computer, a laptop com-
puter, a notebook computer, a handheld computer, a tablet
computer, a server, a server array or server farm, a web
server, a network server, an Internet server, a work station,
a mini-computer, a main frame computer, a supercomputer,
a network appliance, a web appliance, a distributed com-
puting system, multiprocessor systems, processor-based sys-
tems, consumer electronics, programmable consumer elec-
tronics, television, digital television, set top box, wireless
access point, base station, subscriber station, mobile sub-
scriber center, radio network controller, router, hub, gate-
way, bridge, switch, machine, or combinations thereof.

One embodiment provides a processing apparatus com-
prising a tile of processing resources including a general-
purpose parallel processing engine and a matrix accelerator,
the matrix accelerator including first circuitry to load mul-
tiple data elements of a first submatrix and a second sub-

US 12,086,205 B2

3

matrix into memory accessible to the matrix accelerator and
second circuitry determine a first grouping of elements of
the first submatrix and a second grouping of elements of the
second submatrix. The first grouping and the second group-
ing include multiple groups and each group in the first
grouping has a corresponding group 1n the second grouping.
The apparatus additionally includes third circuitry to merge
clements of a first group of the first grouping into a second
group ol the second grouping and generate metadata to
indicate a merge pattern for elements of the first group. The
second group 1s the corresponding group of the first group.
The processing apparatus additionally includes fourth cir-
cuitry to provide the second group and the metadata to an
array ol processing elements within the matrix accelerator as
input for a matrix operation.

In one embodiment, the memory accessible to the matrix
accelerator 1s 1internal to the matrix accelerator. Additionally,
the matrix operation to be performed can include a dot
product operation. The dot product operation may be a
sub-operation of a matrix multiply operation. The array of
processing elements can include a systolic array. In one
embodiment, to merge elements of a first group of the first
grouping mto a second group ol the second grouping
includes to read a first group of elements 1n a column of the
first submatrix, read a second group of elements 1 a
corresponding column of the second submatrix, and swap a
non-zero value element 1n the first group of elements with a
zero value element 1n the second group of elements. To swap
the non-zero value element 1n the first group of elements
with the zero value element in the second group of elements
includes to write the value of the non-zero value element to
a position i the second group of elements and clear the
memory that stores the position of the non-zero value
clement 1n the first group of elements. In one embodiment,
the first group of elements and the second group of elements
are multi-element vectors. The group of elements may also
be a packed group of elements to be operated on by a scalar
and/or SIMT processor. To merge elements of the first group
of the first grouping into the second group of the second
grouping includes to determine that the column of the
second submatrix that includes the second grouping includes
only zero value elements and bypass merge operations for
the column. In one embodiment, the metadata to indicate the
merge pattern for elements of the first group includes a
bitfield to indicate an origin position of a merged element.

One embodiment provides an apparatus comprising
means for reading a first set of two or more tiles of elements
associated with a first matrix, means for merging a {first
group of elements 1n a first tile of the two or more tiles of
clements into a second group of elements of a corresponding
group of elements in a second tile of the two or more tiles
of elements, wherein merging the first group of elements
reduces sparsity of the second tile and increases sparsity of
the second tile and generates metadata based on the merging,
of the first group of elements mto the second group of
clements, means for reading a second set of two or more tiles
of elements associated with a second matrix, and means for
performing a matrix multiply operation having input includ-
ing the second group of elements 1n the second tile and
selected elements from the second set of two or more tiles
of elements, the selected elements from the second set of
two or more tiles selected based on the metadata generated
based on the merging.

Those skilled 1n the art will appreciate from the foregoing
description that the broad techniques of the embodiments
can be implemented 1n a variety of forms. Therefore, while
the embodiments have been described in connection with

10

15

20

25

30

35

40

45

50

55

60

65

56

particular examples thereol, the true scope of the embodi-
ments should not be so limited since other modifications will
become apparent to the skilled practitioner upon a study of
the drawings, specification, and following claims.

What 1s claimed 1s:
1. A processing apparatus including:
a tile of processing resources including a general-purpose
parallel processing engine and a matrix accelerator, the
matrix accelerator including:
first circuitry to load multiple data elements of a first
submatrix and a second submatrix nto memory
accessible to the matrix accelerator;

second circuitry to determine a first grouping of ele-
ments of the first submatrix and a second grouping of
elements of the second submatrix, wherein the first
grouping and the second grouping include multiple
groups and each group in the first grouping has a
corresponding group 1n the second grouping;

third circuitry to merge elements of a first group of the
first grouping into a second group of the second
grouping, wherein the second group is the corre-
sponding group of the first group, and generate
metadata to indicate a merge pattern for elements of
the first group; and

fourth circuitry to provide the second group and the
metadata to an array of processing elements within
the matrix accelerator as input for a matrix operation.

2. The processing apparatus as in claim 1, wherein the
memory accessible to the matrix accelerator 1s internal to the
matrix accelerator.

3. The processing apparatus as in claim 1, wherein the
matrix operation to be performed includes a dot product
operation.

4. The processing apparatus as 1n claim 3, wherein the dot
product operation 1s a sub-operation of a matrix multiply
operation.

5. The processing apparatus as in claim 4, wherein the
array of processing elements includes a systolic array.

6. The processing apparatus as in claim 1, wherein to
merge elements of a first group of the first grouping into a
second group of the second grouping includes to:

read a first group of elements n a column of the first
submatrix;

read a second group of elements in a corresponding
column of the second submatrix; and

swap a non-zero value element 1 the first group of
clements with a zero value element in the second group
of elements.

7. The processing apparatus as in claim 6, wherein to
swap the non-zero value element in the first group of
clements with the zero value element in the second group of
clements 1ncludes to:

write the value of the non-zero value element to a position
in the second group of elements; and

clear the memory that stores the position of the non-zero
value element 1n the first group of elements.

8. The processing apparatus as 1n claim 6, wherein the first
group ol elements and the second group of elements are
multi-element vectors.

9. The processing apparatus as in claim 6, wherein to
merge elements of the first group of the first grouping into
the second group of the second grouping includes to:

determine that the column of the second submatrix that
includes the second grouping includes only zero value
elements; and

bypass merge operations for the column.

US 12,086,205 B2

S7

10. The processing apparatus as in claim 1, wherein the
metadata to indicate the merge pattern for elements of the
first group 1ncludes a bitfield to indicate an origin position of
a merged element.
11. A method including:
loading multiple data elements of a first submatrix and a
second submatrix into memory of a processor device;

determining a first grouping of elements of the first
submatrix and a second grouping of elements of the
second submatrix, wherein the first grouping and the
second grouping include multiple groups and each
group 1n the first grouping has a corresponding group 1n
the second grouping;

merging elements of a first group of the first grouping nto

a second group of the second grouping, wherein the
second group 1s the corresponding group of the first
group,

generating metadata to indicate a merge pattern for ele-

ments of the first group; and

providing the second group and the metadata to an array

of processing elements of the processor device as mput
for a matrix operation including a matrix multiply.

12. The method as 1n claim 11, wherein the memory of the
processor device 1s mternal to a matrix accelerator of the
processor device and the matrix operation to be performed
includes a dot product operation.

13. The method as 1n claim 12, wherein the dot product
operation 1s a sub-operation of a matrix multiply operation.

14. The method as in claim 13, wherein the array of
processing elements imcludes a systolic array.

15. The method as 1n claim 11, wherein merging elements
of a first group of the first grouping into a second group of
the second grouping includes:

reading a {irst group of elements 1 a column of the first

submatrix;

reading a second group of elements 1 a corresponding

column of the second submatrix; and

swapping a non-zero value element 1n the first group of

clements with a zero value element 1n the second group
ol elements.

16. The method as in claim 15, wherein swapping the
non-zero value element in the first group of elements with
the zero value element in the second group of elements
includes:

writing the value of the non-zero value element to a

position 1n the second group of elements; and

10

15

20

25

30

35

40

45

58

clearing the memory that stores the position of the non-

zero value element 1n the first group of elements.

17. The method as 1n claim 15, wherein the first group of
clements and the second group of clements are multi-
clement vectors and merging elements of the first group of
the first grouping into the second group of the second
grouping includes:

determiming that the column of the second submatrix that

includes the second grouping includes only zero value
elements; and

bypassing merge operations for the column.

18. The method as 1n claim 11, wherein the metadata to
indicate the merge pattern for elements of the first group
includes a bitfield to indicate an origin position of a merged
clement.

19. A system comprising:
a memory device; and
a graphics processor including;:
a tile of processing resources including a general-
purpose parallel processing engine and a matrix
accelerator, the matrix accelerator including:
first circuitry to load multiple data elements of a first
submatrix and a second submatrix into memory
accessible to the matrix accelerator;

second circuitry to determine a {first grouping of
clements of the first submatrix and a second
grouping ol elements of the second submatrix,
wherein the first grouping and the second group-
ing include multiple groups and each group 1n the
first grouping has a corresponding group in the
second grouping;

third circuitry to merge elements of a first group of
the first grouping mnto a second group of the
second grouping, wherein the second group is the
corresponding group of the first group, and gen-
crate metadata to indicate a merge pattern for
clements of the first group; and

fourth circuitry to provide the second group and the
metadata to an array of processing elements within
the matrix accelerator as mput for a matrix opera-
tion.

20. The system as i claim 19, wherein the memory
accessible to the matrix accelerator 1s internal to the matrix
accelerator, the matrix operation to be performed 1ncludes a
dot product operation, and the dot product operation 1s a
sub-operation of a matnx multiply operation.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

