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PROBABILISTIC NEURAL NETWORK
ARCHITECTURE GENERATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 16/179,433, filed on Nov. 2, 2018, the disclo-
sure¢ ol which 1s hereby incorporated by reference 1n its
entirety.

BACKGROUND

The accuracy and performance of a neural network 1s
dependent on its architecture. However, designing a neural
network architecture 1s a time- and resource-intensive task.
While techniques exist to automate aspects of the architec-
ture design process, traditional techniques require large
amounts ol memory and processing time.

It 1s with respect to these and other general considerations
that the aspects disclosed herein have been made. Also,
although relatively specific problems may be discussed, 1t
should be understood that the examples should not be
limited to solving the specific problems identified 1n the
background or elsewhere in this disclosure.

SUMMARY

Examples of the present disclosure describe systems and
methods for probabilistic neural network architecture gen-
eration. In an example, neural network architectures are
sampled from an underlying probability distribution over
architectures based on various parameters. Training data 1s
evaluated in order to iteratively update the underlying dis-
tribution probability over the neural network architectures.
For example, an importance-weighted Monte Carlo
approach 1s used to generate gradient estimators and tune the
underlying probability distribution using the training data
accordingly.

The distribution 1s 1teratively trained either for a fixed
number of 1terations or until the parameters associated with
the neural network architecture converge. After this training
phase, the probability distribution may be used to generate
a resulting neural network architecture. In another example,
the neural network architecture with highest probability
according to the tramned probability distribution may be
selected. As a result, aspects of the present disclosure avoid
the need to fully train intermediate architectures or to
evaluate the complete search graph, which dramatically
reduces memory usage and/or processing time. Further, in
some 1nstances, 1t 1s possible to evaluate bigger architectures
and/or larger batch sizes while still reducing neural network
architecture generation time and maintaining or improving
neural network accuracy.

This Summary 1s provided to mtroduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limat
the scope of the claimed subject matter. Additional aspects,
teatures, and/or advantages of examples will be set forth 1n
part 1n the description which follows and, 1 part, will be
apparent from the description, or may be learned by practice
of the disclosure.
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2
BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive examples are described
with reference to the following figures.

FIG. 1 1illustrates an overview of an example system for
probabilistic neural network architecture generation.

FIG. 2 1illustrates an overview of an example method for
probabilistic neural network architecture generation.

FIG. 3A illustrates an overview ol an example probabi-
listic model for a supervised setting.

FIG. 3B illustrates an overview of an example probabi-
listic model for an unsupervised setting.

FIG. 4 1s a block diagram illustrating example physical
components of a computing device with which aspects of the
disclosure may be practiced.

FIGS. SA and 5B are simplified block diagrams of a
mobile computing device with which aspects of the present
disclosure may be practiced.

FIG. 6 1s a simplified block diagram of a distributed
computing system 1n which aspects of the present disclosure
may be practiced.

FIG. 7 1llustrates a tablet computing device for executing
one or more aspects of the present disclosure.

DETAILED DESCRIPTION

Various aspects of the disclosure are described more tully
below with reference to the accompanying drawings, which
form a part hereof, and which show specific example
aspects. However, diflerent aspects of the disclosure may be
implemented in many different forms and should not be
construed as limited to the aspects set forth herein; rather,
these aspects are provided so that this disclosure will be
thorough and complete, and will fully convey the scope of
the aspects to those skilled in the art. Aspects may be
practiced as methods, systems or devices. Accordingly,
aspects may take the form of a hardware implementation, an
entirely software implementation or an implementation
combining soiftware and hardware aspects. The following
detailed description 1s, therefore, not to be taken 1n a limiting
sense.

Traditional techniques for automating the design of a
neural network architecture require large amounts of
memory and processing time. For example, searching a
neural network architecture space (e.g., using reinforcement
learning, evolutionary approaches, etc.) for an architecture
having “good” accuracy requires fully training and evalu-
ating each architecture in the search, which 1s compute-
intensive. Other search techmiques incrementally train sub-
sequent architectures in the search space (as compared to
tully retraining each architecture), which reduces the asso-
ciated processing time but increases memory consumption.
As a result of the tradeofl between computational cost and
memory consumption, “surrogates” have also been used,
wherein architecture surrogates are used as scaled-down,
representative models of various architectures (e.g., with
tewer layers, motifs, filters, etc.), while a dataset surrogate
1s used as a proxy for the full dataset. Both types of
surrogates aim to reduce the resource requirements of the
search. However, all of the above-discussed search tech-
niques require fully training each architecture in order to
ultimately search for and 1dentify an accurate neural network
architecture.

Accordingly, the present disclosure provides systems and
methods for probabilistic neural network architecture gen-
eration. In examples, probabilistic modeling 1s used to define
and iteratively learn a probability distribution over neural
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network architectures controlled by various parameters. A
probability distribution over the neural network architec-
tures 1s estimated using training data. For example, an
importance-weighted Monte Carlo approach 1s used to gen-
crate gradient estimators and tune the underlying probability
distribution based on the training data accordingly. The
distribution 1s 1teratively trained either for a fixed number of
iterations or until the parameters associated with the neural
network architecture converge, among other termination
criteria. As a result, aspects of the present disclosure avoid
the need to fully train intermediate architectures or to
cvaluate the complete search graph, which dramatically
reduces memory usage and/or processing time. In some
instances, 1t 1s possible to evaluate bigger architectures, use

a larger surrogate dataset, and/or consider larger batch sizes
while maintaining or reducing memory and computational
requirements. In some instances, the entire dataset may be
used.

As used herein, an “optimized” or “accurate” architecture,

or an architecture having “good” accuracy, may be used
interchangeably. In examples, an accurate architecture 1is
identified based on a predetermined threshold, wherein the
percentage of data that the neural network architecture
correctly classifies 1s above the predetermined threshold. In
other examples, an accurate architecture 1s identified based
on the loss associated with the neural network architecture
being below the predetermined threshold. While example
metrics for determiming the accuracy of neural network
architectures are described herein, it will be appreciated that
any of a variety of other techniques may be used.

FIG. 1 illustrates an overview of an example system 100
for probabilistic neural network architecture generation. In
examples, neural network architecture generation engine
100 15 used to probabilistically generate a neural network
architecture for processing data according to aspects
described herein. Neural network architecture generation
engine 100 may be part of a computing device, including,
but not limited to, a server computing device, a distributed
computing device, a desktop computing device, a laptop
computing device, a tablet computing device, or a mobile
computing device. Further, while neural network architec-
ture generation engine 100 1s described as comprising ele-
ments 102-106, it will be appreciated that, 1n some aspects,
at least one of elements 102-106 1s separate from neural
network architecture generation engine 100. As an example,
at least a part of the data stored by training data store 102
may be stored by a remote storage device.

Neural network architecture generation engine 100 1s
illustrated as comprising training data store 102, neural
network architecture space 104, and neural network archi-
tecture sampling engine 106. In examples, traiming data store
102 stores supervised and/or unsupervised training data for
processing when generating a neural network architecture as
described herein. As an example, supervised data may
comprise a set ol iputs and an associated set of labels or
outputs. As another example, unsupervised data may com-
prise a set of mputs. It will be appreciated that training data
may comprise any of a variety of data types, including, but
not limited to, graphical data (e.g., image data, video data,
etc.), textual data (e.g., words, sentences, numbers, etc.),
audio data (e.g., recorded speech, sounds, etc.), or any
combination thereof.
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Neural network architecture generation engine 100 1is
turther illustrated as comprising neural network architecture
space 104. In examples, neural network architecture space
104 1s used to sample a neural network architecture associ-

il

ated with one or more distributions of neural network

architecture parameters that are evaluated by neural network

architecture sampling engine 106 according to aspects
described herein. In examples, network parameters are asso-
ciated with a sampled neural network architecture that is
described by the neural network architecture parameters.

Thus, as compared to alternative techniques that store archi-
tecture and/or network parameters for all possible architec-
tures of a search space 1n memory, neural network architec-
ture space 104 may store only one neural network
architecture and a subset of applicable parameters, thereby
reducing memory consumption. In examples, at least a part
of neural network architecture space 104 1s stored 1n system
memory (e.g., memory accessible by a central processing
unit (CPU) of the computing device) and/or 1n the memory
of a graphical processing unit (GPU). In some examples,
multiple CPUs and/or GPUs are used to store and/or process
aspects of neural network architecture space 104. As another
example, at least a part of neural network architecture space
104 15 stored on a storage device, such as a local storage
device or a remote storage device.

As an example, neural network architecture space 104
comprises one or more cells, wherein each cell 1s a directed
acyclic graph of ordered nodes. Fach node may represent a
feature representation, and edges between nodes may be
associated with an operation. A neural network architecture
may be defined as a stack of cells, wherein the output of one
cell 1s provided as an 1put to a subsequent cell for further
processing. In examples, the architecture of each cell 1s
generated separately (e.g., by neural network architecture
sampling engine 106). In other examples, architectures for
multiple cells may be generated contemporaneously. In
examples, parameters may include architecture parameters
and network parameters. For example, architecture param-
eters may comprise a set of possible operations for each edge
within a cell and/or the number of nodes within the cell,
whereas network parameters may comprise a set of weights
associated with such edges. Thus, architecture parameters
may relate to the overall structure of the neural network
architecture, whereas network parameters may relate to
properties within the neural network architecture based on
the structure associated with the architecture parameters.
Accordingly, neural network architecture space 104 may be
sampled based on a set of distributions over the set of
possible operations and a set of distributions over edge
weights. It will be understood that, 1n other examples, neural
network architecture space 104 may comprise a different
structure and/or different parameters may be used.

Neural network architecture sampling engine 106 proba-
bilistically generates a neural network architecture accord-
ing to aspects described herein. In an example, neural
network architecture sampling engine 106 samples a pos-
sible neural network architecture from neural network archi-
tecture space 104. As an example, values are determined
using the probability distribution associated with each
parameter, such that the neural network architecture
described by the determined values 1s evaluated using train-
ing data from traiming data store 102. In examples, the
objective 1s to minimize the value of a loss function asso-
ciated with the neural network architecture and/or increase
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the accuracy of the neural network architecture when pro-
cessing input data to generate one or more outputs (e.g.,
labels, classifications, etc.).

One or more probability distributions associated with the
parameters may be updated accordingly. In examples, gra-
dient estimators are used to update the probabaility distribu-

tions accordingly, such as the example gradient estimators
below:

Zk Wi Vg lﬂgpg(ylx,{}fk) = ?9

Z:k W V. lﬂgp(arkl:r'r) =RV

Do (;Vl-?f pfl’ﬁc)
%, palylx,a ;)

Where a; ~ p(arl:r'r) and Wy =

In the above equations, 0 represents network parameters,
while T represents hyperparameters of the prior distribution
on o, p(alm). In the context of the example discussed above
with respect to neural network architecture space 104, 0 may
represent network parameters comprising weights associ-
ated with edges (e.g., layers) within a cell, while T may
parameterize a set of probabilities for architecture param-
eters relating to possible operations for each edge, such that
a represents a sample of the possible operations from T.

Neural network architecture sampling engine 106 may
perform numerous iterations of the above steps, thereby
continually refining the probability distribution on architec-
tures so as to tune the underlying distribution based on the
fraining data 1n training data store 102. Neural network
architecture sampling engine 106 may stop iterating at a
predetermined number of 1terations or when it 1s determined
that the validation accuracy of sampled neural network
architectures 1s converging on a certain value (e.g., plateau-
ing). It will be appreciated that while example termination
criteria (e.g., a set number of iterations, definition of con-
vergence, etc.) are described, any of a variety of other
criteria may be used according to aspects described herein.
Once learning of the underlying distribution 1s complete, a
resulting neural network architecture 1s generated either by
sampling from the distribution or by taking statistics of it.
For example, the mode of the resulting distribution may be
taken and used to define the parameters (e.g., architecture
parameters, network parameters, etc.) of the neural network
architecture. In other examples, a median or average may be
generated, among other techniques.

FIG. 2 1llustrates an overview of an example method 200
for probabilistic neural network architecture generation. In
examples, aspects of method 200 may be performed by a
neural network architecture generation engine, such as neu-
ral network architecture generation engine 100 in FIG. 1.
Aspects of method 200 may be performed by a computing
evice, including, but not limited to, a server compufting
evice, a distributed computing device, a desktop computing
evice, a laptop computing device, a tablet computing
evice, or a mobile computing device.

At operation 202, an 1nitial distribution for parameters 1s
determined. In examples, an 1nitial distribution 1s deter-
mined for architecture parameters and another initial distri-
bution 1s determined for network parameters. In examples,
architecture parameters may comprise types of operations,
which include, but are not limited to concatenate layers, sum
layers, 3X3 average pooling, 3X3 max pooling, identity
transformation, 3X3 separable convolutions, 3X5 separable
convolutions, 3x3 dilated separable convolutions, 3X3
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dilated separable convolutions, and/or a zero or mask opera-
tion, among other examples. As another example, network
parameters may include weights associated with the edges/
layers.

In an example, an 1mitial distribution may be determined
based on one or more pre-existing neural network architec-
tures having a similar use case. In another example, the
initial distribution may be a probability distribution associ-
ated with a surrogate neural network architecture that was
1identified using a dataset surrogate (e.g., a subset of training
data, or a different dataset entirely), which may then be
applied to the dataset of interest so as to fine-tune the
resulting neural network architecture in the context of the
latter dataset. In some instances, the initial distribution may
be based on a larger training dataset, whereas the dataset
used to fine-tune the resulting neural network architecture
may be a smaller training dataset or vice-versa. In another
example, the 1nitial distribution may be generated based on
attributes associated with the training data for which the
neural network architecture will be used. It will be appre-
ciated that other initial distributions may be used without
departing from the spirit of this disclosure. As an example,
a uniform distribution may be used. While aspects of method
200 are described with respect to a single parameter and a
single distribution, 1t will be appreciated that, in other
examples, multiple parameters and/or distributions may be
used.

Flow progresses to operation 204, where training data 1s
sampled from a training data store. As an example, training
data may be sampled from training data store 102 1n FIG. 1.
As described above, the training data may be supervised
and/or unsupervised training data. In some examples, spe-
ciic training data may be used so as to generate a neural
network architecture tuned for a specific purpose, while, 1n
other examples, a general set of training data may be used.
Training data may comprise any of a variety of data types,
including, but not limited to, graphical data (e.g., 1mage
data, video data, etc.), textnal data (e.g., words, sentences,
numbers, etc.), audio data (e.g., recorded speech, sounds,
etc.), or any combination thereof. In examples, training data
1s sampled randomly, sequentially, or using any of a variety
of other techniques.

At operation 206, a neural network architecture space 1s
sampled using the initial distribution for the parameter (as
was determined at operation 202), thereby generating a
specific neural network architecture from the neural network
architecture space that i1s described by parameter values
using the initial probability distribution. For example, the
neural network architecture space may be neural network
architecture space 104 in FIG. 1. The sampled neural net-
work architecture may be defined as o, ~p(0—T), wherein T
represents hyperparameters of the prior distribution on o,
p(olm). Thus, a may be a set of discrete random variables
associated with different architecture parameters of the
neural network architecture, while o, 1s a sample from
p(olm), which represents a neural network architecture
defined by values for each of the discrete architecture
parameters based on the probability distribution .

Moving to operation 208, for each sampled neural net-
work architecture o,, one or more gradient estimators are
computed. For example, gradients may be computed for the
0 and 1 parameters. In such an example, the below gradient
estimators may be used:

goVq log pa(ylx, o)

g0V, log p(a,IT)
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In examples, such gradient estimators for each sampled
neural network architecture are used to estimate overall
gradients. Each sample may be weighted when estimating
overall gradients. As an example, samples may be weighted
according to their accuracy, such that a weight for a given
sample, k, 1s determined based on the below equation:

w=pe(ylx,cy)

Accordingly, V, and V_ may be calculated by taking the
mode of each of the estimated gradients for each sample. For
example, as discussed above, the mode may be calculated
using the equations similar to those below:

~ Ky Do
E ; Wﬁcgé) = Vg

' '& —
E i Wﬂcg;r(rk) — V:a'r

polylx,x)
Ejpﬁ(ylx:a‘rj)

Where Wy =

2

such that the weights are normalized and sum to 1.

As a result, gradient descent techniques can be used to
update the parameters of the distributions according to the
direction of the estimated gradients. It will be appreciated
that other techniques may be used for updating the param-
eters based on multiple training data samples, including, but
not limited to, an average or a median.

At operation 210, the distribution for the parameter 1s
updated based on the sampled gradient. As an example, if 1t
1s determined that the accuracy sampled neural network
architecture has improved as compared to the current dis-
tribution from which the neural network architecture was
sampled, the distribution may be updated, such that a neural
network architecture defined by the same or similar value for
the parameter 1s more likely to be sampled 1n the future. For
example, the estimated gradient 1s used to update the param-
eters associated with the distributions 1n the appropriate
direction, as may be indicated by the gradient.

Flow progresses to determination 212, where it 1s deter-
mined whether termination criteria are met. For example, 1t
may be determined whether the validation accuracy of the
sampled neural network architecture converged on a certain
value (e.g., whether the accuracy 1s plateaning). The vali-
dation accuracy may be compared to a predetermined
threshold, such that a change below the predetermined
threshold may constitute convergence. In another example,
determination 212 may evaluate whether a predetermined
number of iterations has been performed. It will be appre-
ciated that any of a variety of other termination criteria may
be used according to aspects described herein. If it 1s
determined that the parameter 1s not converging, flow
branches “NO” to operation 204, where operations 204-212
may be performed based on the updated distribution gener-
ated at operation 210.

[f, however, 1t 1s determined that one of the termination
criteria are met, flow instead branches “YES” to operation
214, where a neural network architecture 1s generated based
on the iteratively tuned distribution that 1s generated by
performing operations 204-210 as discussed above. In
examples, the mode of a tuned distribution associated with
architecture parameters may be taken and used as the
architecture parameters describing the neural network archi-
tecture, while the mode of a tuned distribution associated
with the network parameters may be taken and used as the
network parameters accordingly. In other examples, a
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median or average may be taken, among other techniques.
Flow terminates at operation 214.

It will be appreciated that method 200 1s described with
respect to a single parameter for convenience, but that, in
other examples, multiple parameters and associated distri-
butions may be evaluated according to aspects described
herein. For example, each parameter may be drawn from a
probability distribution, wherein the i1nitial distribution for
each parameter 1s determined at operation 202. When sam-
pling the neural network architecture at operation 206, a
value 1s determined for each architecture parameter based on
their probability distribution, such that the sampled neural
network architecture 1s described by each of the determined
values. At operation 208, gradient estimators are used for
each parameter 1n order to evaluate the effect on the overall
accuracy of the neural network associated with changing
each parameter value. Accordingly, the respectively prob-
ability distributions are updated at operation 210 to further
tune the distributions based on the training data.

FIG. 3A 1llustrates an overview of an example probabi-
listic model 300 for a supervised setting. Model 300 is
described 1n the context of the above-discussed example, 1n
which O represents sets of weights associated with different
parts of a neural network architecture (e.g., operations,
filters, etc.), while T represents hyperparameters of the prior
distribution on o, p(IT). In examples, o 1s a set of discrete
variables associated with different architecture parameters
of the neural network architecture, such that o, may be a
sample from p(alm) that represents a neural network archi-
tecture defined by values for each of the discrete architecture
parameters based on the probability distribution T.

Model 300 illustrates a supervised setting, in which x,, 1s
an input associated with a known (e.g., labeled) output y .
As compared to an unsupervised setting that comprises input
data, a supervised setting further comprises an associated set
of output data (e.g., labels), which may be used when
training the model to determine whether the model accu-
rately categorizes the input data. Hyperparameters T 1s
illustrated with a directional arrow to set of discrete vari-
ables o, thereby indicating that o 1s dependent on T, such
that a discrete set of values for o may be determined using
probability distribution with hyperparameters TF. Model
300 further comprises a directional arrow from 0 to y_, so as
to illustrate the relationship of network parameters 8 with
the weights of edges within the neural network architecture,
in an example. Accordingly, 1n a supervised setting, the
objective 1s to maximize the likelihood p (yIx, 0, o), which
1s the likelithood of observing an associated output (y) given
the input (x), network parameters 0 (e.g., a set of edge
welghts), and architecture parameters o (e.g., a set of
discrete variables determined based on probability distribu-
fion TC).

FIG. 3B illustrates an overview of an example probabi-
listic model 320 for an unsupervised setting. Model 320 1s
similar to model 300, as discussed above. However, rather
than relating to training data having an input x, that 1s input
associlated with a known (e.g., labeled) output y,, only
inputs are available 1n an unsupervised setting. As a result,
the objective in the context of model 320 1s to maximize the
accuracy of the neural network architecture, as may be
described by the probability distribution log p(x), wherein x
1s 1nput training data.

It will be appreciated that models 300 and 320, and the
associated discussion of variables and functions, are pro-
vided as examples and other probabilistic models and/or
maximization functions may be used. Further, while model
300 and 320 are described with respect to different training
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data sets (e.g., wherein one data set comprises supervised
data while the other data set comprises unsupervised data),
it will be appreciated that, 1n some instances, the training
data may be a combination of supervised and unsupervised
data.

FIG. 4 1s a block diagram illustrating physical compo-
nents (e.g., hardware) of a computing device 400 with which
aspects of the disclosure may be practiced. The computing
device components described below may be suitable for the
computing devices described above. In a basic configura-
tion, the computing device 400 may include at least one
processing unit 402 and a system memory 404. Depending,
on the configuration and type of computing device, the
system memory 404 may comprise, but 1s not limited to,
volatile storage (e.g., random access memory), non-volatile
storage (e.g., read-only memory), flash memory, or any
combination of such memories. The system memory 404
may include an operating system 405 and one or more
program modules 406 suitable for performing the various
aspects disclosed herein such as neural architecture space
424 and neural architecture sampling engine 426. The oper-
ating system 403, for example, may be suitable for control-
ling the operation of the computing device 400. Further-
more, embodiments of the disclosure may be practiced in
conjunction with a graphics library, other operating systems,
or any other application program and 1s not limited to any
particular application or system. This basic configuration 1s
illustrated 1n FIG. 4 by those components within a dashed
line 408. The computing device 400 may have additional
features or functionality. For example, the computing device
400 may also include additional data storage devices (re-
movable and/or non-removable) such as, for example, mag-
netic disks, optical disks, or tape. Such additional storage 1s
illustrated 1n FIG. 4 by a removable storage device 409 and
a non-removable storage device 410.

As stated above, a number of program modules and data
files may be stored in the system memory 404. While
executing on the processing unit 402, the program modules
406 (e.g., application 420) may perform processes including,
but not limited to, the aspects, as described herein. Other
program modules that may be used in accordance with
aspects of the present disclosure may include electronic mail
and contacts applications, word processing applications,
spreadsheet applications, database applications, slide pre-
sentation applications, drawing or computer-aided applica-
tion programs, efc.

Furthermore, embodiments of the disclosure may be
practiced in an electrical circuit comprising discrete elec-
tronic elements, packaged or integrated electronic chips
containing logic gates, a circuit utilizing a microprocessor,
or on a single chip containing electronic elements or micro-
processors. For example, embodiments of the disclosure
may be practiced via a system-on-a-chip (SOC) where each
or many of the components illustrated in FIG. 4 may be
integrated onto a single integrated circuit. Such an SOC
device may include one or more processing units, graphics
units, communications units, system virtualization units and
various application functionality all of which are integrated
(or “burned”) onto the chip substrate as a single integrated
circuit. When operating via an SOC, the functionality,
described herein, with respect to the capability of client to
switch protocols may be operated via application-specific
logic integrated with other components of the computing
device 400 on the single integrated circuit (chip). Embodi-
ments of the disclosure may also be practiced using other
technologies capable of performing logical operations such

as, for example, AND, OR, and NOT, including but not
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limited to mechanical, optical, fluidic, and quantum tech-
nologies. In addition, embodiments of the disclosure may be
practiced within a general purpose computer or in any other
circuits or systems.

The computing device 400 may also have one or more
iput device(s) 412 such as a keyboard, a mouse, a pen, a
sound or voice mput device, a touch or swipe input device,
ctc. The output device(s) 414 such as a display, speakers, a
printer, etc. may also be included. The aforementioned
devices are examples and others may be used. The comput-
ing device 400 may include one or more communication
connections 416 allowing communications with other com-
puting devices 450. Examples of suitable communication
connections 416 include, but are not limited to, radio fre-
quency (RF) transmitter, receiver, and/or transceiver cir-
cuitry; universal serial bus (USB), parallel, and/or serial
ports.

The term computer readable media as used herein may
include computer storage media. Computer storage media
may include volatile and nonvolatile, removable and non-
removable media implemented 1n any method or technology
for storage of information, such as computer readable
instructions, data structures, or program modules. The sys-
tem memory 404, the removable storage device 409, and the
non-removable storage device 410 are all computer storage
media examples (e.g., memory storage). Computer storage
media may include RAM, ROM, electrically erasable read-
only memory (EEPROM), flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
article of manufacture which can be used to store informa-
tion and which can be accessed by the computing device
400. Any such computer storage media may be part of the
computing device 400. Computer storage media does not
include a carrier wave or other propagated or modulated data
signal.

Communication media may be embodied by computer
readable 1nstructions, data structures, program modules, or
other data in a modulated data signal, such as a carrier wave
or other transport mechanism, and includes any information
delivery media. The term “modulated data signal” may
describe a signal that has one or more characteristics set or
changed 1n such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media may include wired media such as a wired
network or direct-wired connection, and wireless media
such as acoustic, radio frequency (RF), infrared, and other
wireless media.

FIGS. SA and 5B illustrate a mobile computing device
500, for example, a mobile telephone, a smart phone,
wearable computer (such as a smart watch), a tablet com-
puter, a laptop computer, and the like, with which embodi-
ments of the disclosure may be practiced. In some aspects,
the client may be a mobile computing device. With reference
to FIG. 5A, one aspect of a mobile computing device S00 for
implementing the aspects 1s illustrated. In a basic configu-
ration, the mobile computing device 500 1s a handheld
computer having both mput elements and output elements.
The mobile computing device 500 typically includes a
display 505 and one or more input buttons 510 that allow the
user to enter information nto the mobile computing device
500. The display 505 of the mobile computing device 500
may also function as an input device (e.g., a touch screen
display). If included, an optional side mput element 515
allows further user input. The side input element 515 may be
a rotary switch, a button, or any other type of manual 1nput
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clement. In alternative aspects, mobile computing device
500 may incorporate more or less input elements. For
example, the display 505 may not be a touch screen 1n some
embodiments. In yet another alternative embodiment, the
mobile computing device 500 1s a portable phone system,
such as a cellular phone. The mobile computing device 500
may also include an optional keypad 535. Optional keypad
535 may be a physical keypad or a “soit” keypad generated
on the touch screen display. In various embodiments, the
output elements include the display 505 for showing a
graphical user interface (GUI), a visual indicator 520 (e.g.,
a light emitting diode), and/or an audio transducer 525 (e.g.,
a speaker). In some aspects, the mobile computing device
500 incorporates a vibration transducer for providing the
user with tactile feedback. In yet another aspect, the mobile
computing device 300 incorporates mnput and/or output
ports, such as an audio mput (e.g., a microphone jack), an
audio output (e.g., a headphone jack), and a video output
(e.g., a HDMI port) for sending signals to or receiving
signals from an external device.

FIG. 3B is a block diagram 1llustrating the architecture of
one aspect of a mobile computing device. That 1s, the mobile
computing device 500 can incorporate a system (e.g., an
architecture) 502 to implement some aspects. In one
embodiment, the system 3502 1s implemented as a “smart
phone™ capable of running one or more applications (e.g.,
browser, e-mail, calendaring, contact managers, messaging,
clients, games, and media clients/players). In some aspects,
the system 3502 1s integrated as a computing device, such as
an integrated personal digital assistant (PDA) and wireless
phone.

One or more application programs 566 may be loaded 1nto
the memory 562 and run on or in association with the
operating system 564. Examples of the application programs
include phone dialer programs, e-mail programs, personal
information management (PIM) programs, word processing
programs, spreadsheet programs, Internet browser pro-
grams, messaging programs, and so forth. The system 502
also includes a non-volatile storage arca 568 within the
memory 562. The non-volatile storage areca 568 may be used
to store persistent information that should not be lost 1f the
system 502 1s powered down. The application programs 566
may use and store information in the non-volatile storage
area 568, such as e-mail or other messages used by an e-mail
application, and the like. A synchronization application (not
shown) also resides on the system 502 and 1s programmed
to interact with a corresponding synchronization application
resident on a host computer to keep the information stored
in the non-volatile storage area 568 synchronized with
corresponding 1nformation stored at the host computer. As
should be appreciated, other applications may be loaded 1nto
the memory 562 and run on the mobile computing device
500 described herein (e.g., search engine, extractor module,
relevancy ranking module, answer scoring module, etc.).

The system 502 has a power supply 570, which may be
implemented as one or more batteries. The power supply
570 might further include an external power source, such as
an AC adapter or a powered docking cradle that supplements
or recharges the batteries.

The system 502 may also include a radio interface layer
572 that performs the function of transmitting and receiving
radio frequency communications. The radio interface layer
572 facilitates wireless connectivity between the system 502
and the “outside world,” via a communications carrier or
service provider. Transmissions to and from the radio inter-
tace layer 572 are conducted under control of the operating
system 564 . In other words, communications received by the
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radio interface layer 572 may be disseminated to the appli-
cation programs 566 via the operating system 564, and vice
versa.

The visual indicator 520 may be used to provide visual
notifications, and/or an audio interface 574 may be used for

producing audible notifications via the audio transducer 525.
In the illustrated embodiment, the visual indicator 520 1s a
light emitting diode (LED) and the audio transducer 525 is
a speaker. These devices may be directly coupled to the
power supply 570 so that when activated, they remain on for
a duration dictated by the nofification mechanism even
though the processor 560 and other components might shut
down for conserving battery power. The LED may be
programmed to remain on indefinitely until the user takes
action to indicate the powered-on status of the device. The
audio interface 574 1s used to provide audible signals to and
receive audible signals from the user. For example, in
addition to being coupled to the audio transducer 525, the
audio interface 574 may also be coupled to a microphone to
receive audible iput, such as to facilitate a telephone
conversation. In accordance with embodiments of the pres-
ent disclosure, the microphone may also serve as an audio
sensor to facilitate control of notifications, as will be
described below. The system 502 may further include a
video interface 576 that enables an operation of an on-board
camera 530 to record still images, video stream, and the like.

A mobile computing device 500 implementing the system
502 may have additional features or functionality. For
example, the mobile computing device 500 may also include
additional data storage devices (removable and/or non-
removable) such as, magnetic disks, optical disks, or tape.
Such additional storage is illustrated in FIG. 5B by the
non-volatile storage areca 568.

Data/information generated or captured by the mobile
computing device 500 and stored via the system 502 may be
stored locally on the mobile computing device 500, as
described above, or the data may be stored on any number
of storage media that may be accessed by the device via the
radio iterface layer 572 or via a wired connection between
the mobile computing device 500 and a separate computing
device associated with the mobile computing device 500, for
example, a server computer 1n a distributed computing
network, such as the Internet. As should be appreciated such
data/information may be accessed via the mobile computing
device 500 wvia the radio interface layer 372 or via a
distributed computing network. Similarly, such data/infor-
mation may be readily transierred between computing
devices for storage and use according to well-known data/
information transier and storage means, including electronic
mail and collaborative data/information sharing systems.

FIG. 6 illustrates one aspect of the architecture of a
system for processing data received at a computing system
from a remote source, such as a personal computer 604,
tablet computing device 606, or mobile computing device
608, as described above. Content displayed at server device
602 may be stored 1n different communication channels or
other storage types. For example, various documents may be
stored using a directory service 622, a web portal 624, a
mailbox service 626, an instant messaging store 628, or a
social networking site 630. Neural network engine 621 may
be employed by a client that communicates with server
device 602, and/or remote neural network architecture gen-
cration engine 620 may be employed by server device 602.
The server device 602 may provide data to and from a client
computing device such as a personal computer 604, a tablet
computing device 606 and/or a mobile computing device
608 (c.g., a smart phone) through a network 6135. By way of
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example, the computer system described above may be
embodied 1n a personal computer 604, a tablet computing
device 606 and/or a mobile computing device 608 (e.g., a
smart phone). Any of these embodiments of the computing
devices may obtain content from the store 616, 1n addition
to receiving graphical data useable to be either pre-pro-
cessed at a graphic-originating system, or post-processed at
a receiving computing system.

FIG. 7 illustrates an exemplary tablet computing device
700 that may execute one or more aspects disclosed herein.
In addition, the aspects and functionalities described herein
may operate over distributed systems (e.g., cloud-based
computing systems), where application functionality,
memory, data storage and retrieval and various processing,
functions may be operated remotely from each other over a
distributed computing network, such as the Internet or an
intranet. User interfaces and information of various types
may be displayed via on-board computing device displays or
via remote display units associated with one or more com-
puting devices. For example user mterfaces and information
of various types may be displayed and interacted with on a
wall surface onto which user interfaces and information of
various types are projected. Interaction with the multitude of
computing systems with which embodiments of the inven-
tion may be practiced include, keystroke entry, touch screen
entry, voice or other audio entry, gesture entry where an
associated computing device 1s equipped with detection
(e.g., camera) functionality for capturing and interpreting
user gestures for controlling the functionality of the com-
puting device, and the like.

As will be understood from the foregoing disclosure, one
aspect of the technology relates to a system comprising: at
least one processor; and memory storing instructions that,
when executed by the at least one processor, causes the
system to perform a set of operations. The set of operations
comprises: sampling training data from a training data store;
generating a sampled neural network architecture using a
first probability distribution associated with a neural net-
work architecture parameter, wherein a value 1s determined
for the neural network architecture parameter based on the
first probability distribution; evaluating the sampled training
data using the sampled neural network architecture to com-
pute a gradient of a loss function associated with the
sampled neural network architecture; generating a second
probability distribution for the neural network architecture
parameter from the first probability distribution, based on
the computed gradient of the loss function; evaluating the
second probability distribution based on termination criteria
to determine whether the termination criteria 1s satisfied; and
when 1t 1s determined that the termination criteria 1s satis-
fied, generating a result neural network architecture having
a value for the parameter based on the second probability
distribution. In an example, the set of operations further
comprises: when 1t 1s not determined that the termination
criteria 1s satisfied, generating a second sampled neural
network architecture using the second probability distribu-
tion; evaluating training data from the training data store
using the second sampled neural network architecture to
compute a gradient of a loss function associated with the
second sampled neural network architecture; and generating
a third probability distribution for the neural network archi-
tecture parameter from the second probability distribution.
In another example, determining whether the termination
criteria 1s satisfied comprises comparing a first accuracy of
a neural network architecture associated with the second
probability distribution and a second accuracy of a neural
network architecture associated with the first probability
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distribution based on a predetermined threshold. In a further
example, the sampled neural network architecture 1s gener-
ated from a neural network architecture space. In yet another
example, set of operations further comprises: training the
result neural network architecture using training data from
the training data store. In a further still example, the first
probability distribution 1s determined based on a neural
network architecture that was determined using a surrogate
dataset, wherein the surrogate dataset comprises a different
set of training data from the training data store than a set of
training data used when sampling training data from a
training data store. In another example, first probability
distribution 1s a uniform distribution.

In another aspect, the technology relates to a method for
generating a neural network architecture. The method com-
prises: sampling training data from a training data store;
determining, based on an imtial probability distribution, a
sample neural network architecture from a neural network
architecture space; performing an evaluation of the sampled
training data using the sample neural network architecture;
updating, based on the evaluation, the initial probability
distribution to generate an updated probability distribution;
determining whether termination criteria i1s satisfied; and
when 1t 1s determined that the termination criteria 1s satis-
fied, generating a result neural network architecture based on
the updated probability distribution. In an example, perform-
ing the evaluation of the sampled training data comprises:
evaluating the sampled training data using the sampled
neural network architecture to compute a gradient of a loss
function associated with the sampled neural network archi-
tecture. In another example, updating the 1mitial probability
distribution to generate the updated probability distribution
comprises: updating the initial probability distribution to
generate the updated probability distribution based on the
computed gradient of the loss function. In a further example,
determining whether the termination criteria 1s satisfied
comprises comparing a first accuracy of a neural network
architecture associated with the mitial probability distribu-
tion and a second accuracy of a neural network architecture
associated with the updated probability distribution based on
a predetermined threshold. In yet another example, the
method further comprises: training the result neural network
architecture using training data from the training data store.
In a further still example, the 1nitial probability distribution
1s determined based on a surrogate neural network architec-
ture that was determined using a dataset surrogate, wherein
the dataset surrogate comprises a diflerent set of traiming
data from the training data store than a set of training data
used when sampling training data from a training data store.

In a further aspect, the technology relates to another
method for generating a neural network architecture. The
method comprises: sampling training data from a traiming,
data store; generating a sampled neural network architecture
using a first probability distribution associated with a neural
network architecture parameter, wherein a value 1s deter-
mined for the neural network architecture parameter based
on the first probability distribution; evaluating the sampled
training data using the sampled neural network architecture
to compute a gradient of a loss function associated with the
sampled neural network architecture; generating a second
probability distribution for the neural network architecture
parameter from the first probability distribution, based on
the computed gradient of the loss function; evaluating the
second probability distribution based on termination criteria
to determine whether the termination criteria 1s satisfied; and
when 1t 1s determined that the termination criteria 1s satis-
fied, generating a result neural network architecture having
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a value for the parameter based on the second probability
distribution. In an example, the method further comprises:
when 1t 1s not determined that the termination criteria 1s
satisfied, generating a second sampled neural network archi-
tecture using the second probability distribution; evaluating
training data from the training data store using the second
sampled neural network architecture to compute a gradient
of a loss function associated with the second sampled neural
network architecture; and generating a third probability
distribution for the neural network architecture parameter
from the second probability distribution. In another
example, determining whether the termination criteria is
satisfied comprises comparing a first accuracy of a neural
network architecture associated with the second probability
distribution and a second accuracy of a neural network
architecture associated with the first probability distribution
based on a predetermined threshold. In a further example,
the sampled neural network architecture 1s generated from a
neural network architecture space. In yet another example,
the method further comprises: training the result neural
network architecture using training data from the training
data store. In a further still example, the first probabaility
distribution 1s determined based on a surrogate neural net-
work architecture that was determined using a dataset sur-
rogate, wherein the dataset surrogate comprises a diflerent
set of training data from the training data store than a set of
training data used when sampling traimning data from a
training data store. In another example, the first probability
distribution 1s a uniform distribution.

Aspects of the present disclosure, for example, are
described above with reference to block diagrams and/or
operational illustrations of methods, systems, and computer
program products according to aspects of the disclosure. The
functions/acts noted 1n the blocks may occur out of the order
as shown in any flowchart. For example, two blocks shown
in succession may 1n fact be executed substantially concur-
rently or the blocks may sometimes be executed in the
reverse order, depending upon the functionality/acts
involved.

The description and 1illustration of one or more aspects
provided 1n this application are not intended to limit or
restrict the scope of the disclosure as claimed in any way.
The aspects, examples, and details provided 1n this applica-
tion are considered suflicient to convey possession and
enable others to make and use the best mode of claimed
disclosure. The claimed disclosure should not be construed
as being limited to any aspect, example, or detail provided
in this application. Regardless of whether shown and
described 1n combination or separately, the various features
(both structural and methodological) are intended to be
selectively included or omitted to produce an embodiment
with a particular set of features. Having been provided with
the description and 1llustration of the present application,
one skilled in the art may envision variations, modifications,
and alternate aspects falling within the spirit of the broader
aspects of the general inventive concept embodied 1n this

application that do not depart from the broader scope of the
claimed disclosure.

What 1s claimed 1s:
1. A system comprising:
at least one processor; and
memory storing instructions that, when executed by the at
least one processor, causes the system to perform a set
ol operations, the set of operations comprising:
iteratively tuning a probability distribution associated
with a neural network architecture parameter for
generating a neural network, the iteratively tuning
comprising;:
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generating a sampled neural network architecture
using the probability distribution;

evaluating training data from a training data store
using the sampled neural network architecture to
compute a gradient of a loss function associated
with the sampled neural network architecture;

updating the probability distribution for the neural
network architecture parameter based on the com-
puted gradient of the loss function, thereby gen-
crating an updated iteration of the probability
distribution for a subsequent iteration of tuning
the probability distribution; and

evaluating the probability distribution based on ter-
mination criteria to determine whether the termi-
nation criteria 1s satisfied; and

when 1t 1s determined that the termination criteria 1s

satisfied, generating a result neural network archi-

tecture having a value for the parameter based on the

iteratively tuned probability distribution.

2. The system of claim 1, wherein the set of operations
turther comprises:

when 1t 1s not determined that the termination criteria 1s

satisfied, performing another 1teration to further update
the probability distribution.

3. The system of claim 1, wherein determining whether
the termination criteria 1s satisfied comprises comparing a
first accuracy of a first neural network architecture associ-
ated with a first instance of the probability distribution and
a second accuracy of a neural network architecture associ-
ated with a second instance of the probability distribution
based on a predetermined threshold.

4. The system of claim 1, wherein the sampled neural
network architecture 1s generated from a neural network
architecture space.

5. The system of claim 1, wherein the set of operations
turther comprises:

training the result neural network architecture using train-

ing data from the training data store.

6. The system of claam 1, wherein an iteration of the
probability distribution 1s determined based on a neural
network architecture that was determined using a surrogate
dataset, wherein the surrogate dataset comprises a difierent
set of training data from the training data store than a set of
training data used when sampling training data from a
training data store.

7. The system of claim 1, wherein an 1teration of the
probability distribution i1s a uniform distribution.

8. A method for generating a neural network architecture,
comprising;

iteratively tuning a probability distribution associated

with a neural network architecture parameter for gen-

erating a neural network, the iteratively tuning com-

prising:

generating a sampled neural network architecture using,
the probability distribution;

evaluating training data from a training data store using
the sampled neural network architecture to compute
a gradient ol a loss function associated with the
sampled neural network architecture;

updating the probability distribution for the neural
network architecture parameter based on the com-
puted gradient of the loss function, thereby generat-
ing an updated iteration of the probability distribu-
tion; and

evaluating the probability distribution based on termi-
nation criteria to determine whether the termination
criteria 1s satisfied; and
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when i1t 1s determined that the termination criteria 1s
satisfied, generating a result neural network architec-
ture having a value for the parameter based on the
second 1teratively tuned probability distribution.

9. The method of claim 8, further comprising;:

when 1t 1s not determined that the termination criteria 1s

satisfied, performing another 1teration to further update
the probability distribution.

10. The method of claim 8, wherein determining whether
the termination criteria 1s satisfied comprises comparing a
first accuracy of a neural network architecture associated
with a first instance of the probability distribution and a
second accuracy of a neural network architecture associated
with a second instance of the probability distribution based
on a predetermined threshold.

11. The method of claim 8, wherein the sampled neural
network architecture 1s generated from a neural network
architecture space.

12. The method of claim 8, further comprising;:

training the result neural network architecture using train-

ing data from the training data store.

13. The method of claim 8, wherein an iteration of the
probability distribution 1s determined based on a surrogate
neural network architecture that was determined using a
dataset surrogate, wherein the dataset surrogate comprises a
different set of training data from the traiming data store than
a set of training data used when sampling training data from
a training data store.

14. The method of claim 8, wherein an iteration of the
probability distribution 1s a uniform distribution.

15. A method for generating a neural network architec-
ture, comprising;

iteratively tuning a probability distribution associated

with a neural network architecture parameter for gen-

erating a neural network, the iteratively tuming com-

prising:

generating a sampled neural network architecture using
the probability distribution;

evaluating training data from a training data store using
the sampled neural network architecture to compute
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a gradient ol a loss function associated with the
sampled neural network architecture;

updating the probability distribution for the neural
network architecture parameter based on the com-
puted gradient of the loss function, thereby generat-
ing an updated iteration of the probability distribu-
tion; and

comparing a first accuracy ol a neural network archi-
tecture associated with a first mstance of the prob-
ability distribution and a second accuracy of a neural
network architecture associated with a second
instance of the probability distribution based on a
predetermined threshold to determine whether the
termination criteria 1s satisfied; and

when 1t 1s determined that the termination criteria 1s

satisfied, generating a result neural network architec-
ture having a value for the parameter based on the
second 1teratively tuned probability distribution.

16. The method of claim 15, further comprising:

when 1t 1s not determined that the termination criteria 1s

satisfied, performing another 1teration to further update
the probability distribution.

17. The method of claim 15, wherein the sampled neural
network architecture 1s generated from a neural network
architecture space.

18. The method of claim 15, further comprising:

training the result neural network architecture using train-

ing data from the training data store.

19. The method of claim 15, wherein an iteration of the
probability distribution 1s determined based on a surrogate
neural network architecture that was determined using a
dataset surrogate, wherein the dataset surrogate comprises a

different set of traiming data from the training data store than
a set of traiming data used when sampling training data from
a training data store.

20. The method of claim 15, wherein an iteration of the
probability distribution i1s a uniform distribution.
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